Properties

Label 560.4.a.g.1.1
Level $560$
Weight $4$
Character 560.1
Self dual yes
Analytic conductor $33.041$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} -11.0000 q^{9} -60.0000 q^{11} +38.0000 q^{13} -20.0000 q^{15} +42.0000 q^{17} +52.0000 q^{19} +28.0000 q^{21} -120.000 q^{23} +25.0000 q^{25} +152.000 q^{27} -234.000 q^{29} +304.000 q^{31} +240.000 q^{33} -35.0000 q^{35} -106.000 q^{37} -152.000 q^{39} -54.0000 q^{41} +196.000 q^{43} -55.0000 q^{45} -336.000 q^{47} +49.0000 q^{49} -168.000 q^{51} +438.000 q^{53} -300.000 q^{55} -208.000 q^{57} +444.000 q^{59} +38.0000 q^{61} +77.0000 q^{63} +190.000 q^{65} +988.000 q^{67} +480.000 q^{69} +720.000 q^{71} +146.000 q^{73} -100.000 q^{75} +420.000 q^{77} +808.000 q^{79} -311.000 q^{81} -612.000 q^{83} +210.000 q^{85} +936.000 q^{87} +1146.00 q^{89} -266.000 q^{91} -1216.00 q^{93} +260.000 q^{95} -70.0000 q^{97} +660.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.00000 −0.769800 −0.384900 0.922958i \(-0.625764\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −11.0000 −0.407407
\(10\) 0 0
\(11\) −60.0000 −1.64461 −0.822304 0.569049i \(-0.807311\pi\)
−0.822304 + 0.569049i \(0.807311\pi\)
\(12\) 0 0
\(13\) 38.0000 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(14\) 0 0
\(15\) −20.0000 −0.344265
\(16\) 0 0
\(17\) 42.0000 0.599206 0.299603 0.954064i \(-0.403146\pi\)
0.299603 + 0.954064i \(0.403146\pi\)
\(18\) 0 0
\(19\) 52.0000 0.627875 0.313937 0.949444i \(-0.398352\pi\)
0.313937 + 0.949444i \(0.398352\pi\)
\(20\) 0 0
\(21\) 28.0000 0.290957
\(22\) 0 0
\(23\) −120.000 −1.08790 −0.543951 0.839117i \(-0.683072\pi\)
−0.543951 + 0.839117i \(0.683072\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 152.000 1.08342
\(28\) 0 0
\(29\) −234.000 −1.49837 −0.749185 0.662361i \(-0.769554\pi\)
−0.749185 + 0.662361i \(0.769554\pi\)
\(30\) 0 0
\(31\) 304.000 1.76129 0.880645 0.473776i \(-0.157109\pi\)
0.880645 + 0.473776i \(0.157109\pi\)
\(32\) 0 0
\(33\) 240.000 1.26602
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −106.000 −0.470981 −0.235490 0.971877i \(-0.575670\pi\)
−0.235490 + 0.971877i \(0.575670\pi\)
\(38\) 0 0
\(39\) −152.000 −0.624089
\(40\) 0 0
\(41\) −54.0000 −0.205692 −0.102846 0.994697i \(-0.532795\pi\)
−0.102846 + 0.994697i \(0.532795\pi\)
\(42\) 0 0
\(43\) 196.000 0.695110 0.347555 0.937660i \(-0.387012\pi\)
0.347555 + 0.937660i \(0.387012\pi\)
\(44\) 0 0
\(45\) −55.0000 −0.182198
\(46\) 0 0
\(47\) −336.000 −1.04278 −0.521390 0.853319i \(-0.674586\pi\)
−0.521390 + 0.853319i \(0.674586\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −168.000 −0.461269
\(52\) 0 0
\(53\) 438.000 1.13517 0.567584 0.823315i \(-0.307878\pi\)
0.567584 + 0.823315i \(0.307878\pi\)
\(54\) 0 0
\(55\) −300.000 −0.735491
\(56\) 0 0
\(57\) −208.000 −0.483338
\(58\) 0 0
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 0 0
\(61\) 38.0000 0.0797607 0.0398803 0.999204i \(-0.487302\pi\)
0.0398803 + 0.999204i \(0.487302\pi\)
\(62\) 0 0
\(63\) 77.0000 0.153986
\(64\) 0 0
\(65\) 190.000 0.362563
\(66\) 0 0
\(67\) 988.000 1.80154 0.900772 0.434293i \(-0.143002\pi\)
0.900772 + 0.434293i \(0.143002\pi\)
\(68\) 0 0
\(69\) 480.000 0.837467
\(70\) 0 0
\(71\) 720.000 1.20350 0.601748 0.798686i \(-0.294471\pi\)
0.601748 + 0.798686i \(0.294471\pi\)
\(72\) 0 0
\(73\) 146.000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) −100.000 −0.153960
\(76\) 0 0
\(77\) 420.000 0.621603
\(78\) 0 0
\(79\) 808.000 1.15072 0.575361 0.817899i \(-0.304861\pi\)
0.575361 + 0.817899i \(0.304861\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) −612.000 −0.809346 −0.404673 0.914461i \(-0.632615\pi\)
−0.404673 + 0.914461i \(0.632615\pi\)
\(84\) 0 0
\(85\) 210.000 0.267973
\(86\) 0 0
\(87\) 936.000 1.15345
\(88\) 0 0
\(89\) 1146.00 1.36490 0.682448 0.730934i \(-0.260915\pi\)
0.682448 + 0.730934i \(0.260915\pi\)
\(90\) 0 0
\(91\) −266.000 −0.306422
\(92\) 0 0
\(93\) −1216.00 −1.35584
\(94\) 0 0
\(95\) 260.000 0.280794
\(96\) 0 0
\(97\) −70.0000 −0.0732724 −0.0366362 0.999329i \(-0.511664\pi\)
−0.0366362 + 0.999329i \(0.511664\pi\)
\(98\) 0 0
\(99\) 660.000 0.670025
\(100\) 0 0
\(101\) 1950.00 1.92111 0.960556 0.278088i \(-0.0897006\pi\)
0.960556 + 0.278088i \(0.0897006\pi\)
\(102\) 0 0
\(103\) −488.000 −0.466836 −0.233418 0.972377i \(-0.574991\pi\)
−0.233418 + 0.972377i \(0.574991\pi\)
\(104\) 0 0
\(105\) 140.000 0.130120
\(106\) 0 0
\(107\) 996.000 0.899878 0.449939 0.893059i \(-0.351446\pi\)
0.449939 + 0.893059i \(0.351446\pi\)
\(108\) 0 0
\(109\) 758.000 0.666085 0.333042 0.942912i \(-0.391925\pi\)
0.333042 + 0.942912i \(0.391925\pi\)
\(110\) 0 0
\(111\) 424.000 0.362561
\(112\) 0 0
\(113\) −1422.00 −1.18381 −0.591905 0.806008i \(-0.701624\pi\)
−0.591905 + 0.806008i \(0.701624\pi\)
\(114\) 0 0
\(115\) −600.000 −0.486524
\(116\) 0 0
\(117\) −418.000 −0.330292
\(118\) 0 0
\(119\) −294.000 −0.226478
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 0 0
\(123\) 216.000 0.158342
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −848.000 −0.592503 −0.296251 0.955110i \(-0.595737\pi\)
−0.296251 + 0.955110i \(0.595737\pi\)
\(128\) 0 0
\(129\) −784.000 −0.535096
\(130\) 0 0
\(131\) −588.000 −0.392166 −0.196083 0.980587i \(-0.562822\pi\)
−0.196083 + 0.980587i \(0.562822\pi\)
\(132\) 0 0
\(133\) −364.000 −0.237314
\(134\) 0 0
\(135\) 760.000 0.484521
\(136\) 0 0
\(137\) −1254.00 −0.782018 −0.391009 0.920387i \(-0.627874\pi\)
−0.391009 + 0.920387i \(0.627874\pi\)
\(138\) 0 0
\(139\) 1564.00 0.954365 0.477183 0.878804i \(-0.341658\pi\)
0.477183 + 0.878804i \(0.341658\pi\)
\(140\) 0 0
\(141\) 1344.00 0.802732
\(142\) 0 0
\(143\) −2280.00 −1.33331
\(144\) 0 0
\(145\) −1170.00 −0.670091
\(146\) 0 0
\(147\) −196.000 −0.109971
\(148\) 0 0
\(149\) 1038.00 0.570713 0.285357 0.958421i \(-0.407888\pi\)
0.285357 + 0.958421i \(0.407888\pi\)
\(150\) 0 0
\(151\) −3008.00 −1.62111 −0.810555 0.585663i \(-0.800834\pi\)
−0.810555 + 0.585663i \(0.800834\pi\)
\(152\) 0 0
\(153\) −462.000 −0.244121
\(154\) 0 0
\(155\) 1520.00 0.787673
\(156\) 0 0
\(157\) 3062.00 1.55652 0.778262 0.627940i \(-0.216102\pi\)
0.778262 + 0.627940i \(0.216102\pi\)
\(158\) 0 0
\(159\) −1752.00 −0.873853
\(160\) 0 0
\(161\) 840.000 0.411188
\(162\) 0 0
\(163\) 988.000 0.474762 0.237381 0.971417i \(-0.423711\pi\)
0.237381 + 0.971417i \(0.423711\pi\)
\(164\) 0 0
\(165\) 1200.00 0.566181
\(166\) 0 0
\(167\) −1656.00 −0.767336 −0.383668 0.923471i \(-0.625339\pi\)
−0.383668 + 0.923471i \(0.625339\pi\)
\(168\) 0 0
\(169\) −753.000 −0.342740
\(170\) 0 0
\(171\) −572.000 −0.255801
\(172\) 0 0
\(173\) −3066.00 −1.34742 −0.673710 0.738996i \(-0.735300\pi\)
−0.673710 + 0.738996i \(0.735300\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −1776.00 −0.754194
\(178\) 0 0
\(179\) 2028.00 0.846815 0.423407 0.905939i \(-0.360834\pi\)
0.423407 + 0.905939i \(0.360834\pi\)
\(180\) 0 0
\(181\) −4210.00 −1.72888 −0.864439 0.502738i \(-0.832326\pi\)
−0.864439 + 0.502738i \(0.832326\pi\)
\(182\) 0 0
\(183\) −152.000 −0.0613998
\(184\) 0 0
\(185\) −530.000 −0.210629
\(186\) 0 0
\(187\) −2520.00 −0.985458
\(188\) 0 0
\(189\) −1064.00 −0.409495
\(190\) 0 0
\(191\) 2616.00 0.991032 0.495516 0.868599i \(-0.334979\pi\)
0.495516 + 0.868599i \(0.334979\pi\)
\(192\) 0 0
\(193\) 722.000 0.269278 0.134639 0.990895i \(-0.457012\pi\)
0.134639 + 0.990895i \(0.457012\pi\)
\(194\) 0 0
\(195\) −760.000 −0.279101
\(196\) 0 0
\(197\) 2934.00 1.06111 0.530555 0.847650i \(-0.321983\pi\)
0.530555 + 0.847650i \(0.321983\pi\)
\(198\) 0 0
\(199\) 520.000 0.185235 0.0926176 0.995702i \(-0.470477\pi\)
0.0926176 + 0.995702i \(0.470477\pi\)
\(200\) 0 0
\(201\) −3952.00 −1.38683
\(202\) 0 0
\(203\) 1638.00 0.566330
\(204\) 0 0
\(205\) −270.000 −0.0919884
\(206\) 0 0
\(207\) 1320.00 0.443219
\(208\) 0 0
\(209\) −3120.00 −1.03261
\(210\) 0 0
\(211\) −3476.00 −1.13411 −0.567056 0.823679i \(-0.691918\pi\)
−0.567056 + 0.823679i \(0.691918\pi\)
\(212\) 0 0
\(213\) −2880.00 −0.926452
\(214\) 0 0
\(215\) 980.000 0.310863
\(216\) 0 0
\(217\) −2128.00 −0.665705
\(218\) 0 0
\(219\) −584.000 −0.180197
\(220\) 0 0
\(221\) 1596.00 0.485785
\(222\) 0 0
\(223\) 1456.00 0.437224 0.218612 0.975812i \(-0.429847\pi\)
0.218612 + 0.975812i \(0.429847\pi\)
\(224\) 0 0
\(225\) −275.000 −0.0814815
\(226\) 0 0
\(227\) 3324.00 0.971901 0.485951 0.873986i \(-0.338473\pi\)
0.485951 + 0.873986i \(0.338473\pi\)
\(228\) 0 0
\(229\) 1694.00 0.488833 0.244416 0.969670i \(-0.421404\pi\)
0.244416 + 0.969670i \(0.421404\pi\)
\(230\) 0 0
\(231\) −1680.00 −0.478510
\(232\) 0 0
\(233\) −6198.00 −1.74268 −0.871340 0.490680i \(-0.836749\pi\)
−0.871340 + 0.490680i \(0.836749\pi\)
\(234\) 0 0
\(235\) −1680.00 −0.466345
\(236\) 0 0
\(237\) −3232.00 −0.885827
\(238\) 0 0
\(239\) −936.000 −0.253326 −0.126663 0.991946i \(-0.540427\pi\)
−0.126663 + 0.991946i \(0.540427\pi\)
\(240\) 0 0
\(241\) 1730.00 0.462403 0.231201 0.972906i \(-0.425734\pi\)
0.231201 + 0.972906i \(0.425734\pi\)
\(242\) 0 0
\(243\) −2860.00 −0.755017
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 1976.00 0.509028
\(248\) 0 0
\(249\) 2448.00 0.623035
\(250\) 0 0
\(251\) 3708.00 0.932458 0.466229 0.884664i \(-0.345612\pi\)
0.466229 + 0.884664i \(0.345612\pi\)
\(252\) 0 0
\(253\) 7200.00 1.78917
\(254\) 0 0
\(255\) −840.000 −0.206286
\(256\) 0 0
\(257\) 4746.00 1.15194 0.575968 0.817473i \(-0.304625\pi\)
0.575968 + 0.817473i \(0.304625\pi\)
\(258\) 0 0
\(259\) 742.000 0.178014
\(260\) 0 0
\(261\) 2574.00 0.610447
\(262\) 0 0
\(263\) −4200.00 −0.984727 −0.492363 0.870390i \(-0.663867\pi\)
−0.492363 + 0.870390i \(0.663867\pi\)
\(264\) 0 0
\(265\) 2190.00 0.507663
\(266\) 0 0
\(267\) −4584.00 −1.05070
\(268\) 0 0
\(269\) 8502.00 1.92705 0.963524 0.267621i \(-0.0862374\pi\)
0.963524 + 0.267621i \(0.0862374\pi\)
\(270\) 0 0
\(271\) 4336.00 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 1064.00 0.235884
\(274\) 0 0
\(275\) −1500.00 −0.328921
\(276\) 0 0
\(277\) 3350.00 0.726650 0.363325 0.931663i \(-0.381641\pi\)
0.363325 + 0.931663i \(0.381641\pi\)
\(278\) 0 0
\(279\) −3344.00 −0.717563
\(280\) 0 0
\(281\) −8406.00 −1.78455 −0.892277 0.451488i \(-0.850894\pi\)
−0.892277 + 0.451488i \(0.850894\pi\)
\(282\) 0 0
\(283\) −6284.00 −1.31995 −0.659974 0.751289i \(-0.729433\pi\)
−0.659974 + 0.751289i \(0.729433\pi\)
\(284\) 0 0
\(285\) −1040.00 −0.216155
\(286\) 0 0
\(287\) 378.000 0.0777444
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) 0 0
\(291\) 280.000 0.0564051
\(292\) 0 0
\(293\) 3582.00 0.714207 0.357104 0.934065i \(-0.383764\pi\)
0.357104 + 0.934065i \(0.383764\pi\)
\(294\) 0 0
\(295\) 2220.00 0.438147
\(296\) 0 0
\(297\) −9120.00 −1.78180
\(298\) 0 0
\(299\) −4560.00 −0.881979
\(300\) 0 0
\(301\) −1372.00 −0.262727
\(302\) 0 0
\(303\) −7800.00 −1.47887
\(304\) 0 0
\(305\) 190.000 0.0356701
\(306\) 0 0
\(307\) −8804.00 −1.63671 −0.818356 0.574711i \(-0.805114\pi\)
−0.818356 + 0.574711i \(0.805114\pi\)
\(308\) 0 0
\(309\) 1952.00 0.359370
\(310\) 0 0
\(311\) 2424.00 0.441969 0.220985 0.975277i \(-0.429073\pi\)
0.220985 + 0.975277i \(0.429073\pi\)
\(312\) 0 0
\(313\) −9070.00 −1.63791 −0.818956 0.573856i \(-0.805447\pi\)
−0.818956 + 0.573856i \(0.805447\pi\)
\(314\) 0 0
\(315\) 385.000 0.0688644
\(316\) 0 0
\(317\) −6738.00 −1.19383 −0.596914 0.802305i \(-0.703607\pi\)
−0.596914 + 0.802305i \(0.703607\pi\)
\(318\) 0 0
\(319\) 14040.0 2.46423
\(320\) 0 0
\(321\) −3984.00 −0.692726
\(322\) 0 0
\(323\) 2184.00 0.376226
\(324\) 0 0
\(325\) 950.000 0.162143
\(326\) 0 0
\(327\) −3032.00 −0.512752
\(328\) 0 0
\(329\) 2352.00 0.394134
\(330\) 0 0
\(331\) −7868.00 −1.30654 −0.653269 0.757125i \(-0.726603\pi\)
−0.653269 + 0.757125i \(0.726603\pi\)
\(332\) 0 0
\(333\) 1166.00 0.191881
\(334\) 0 0
\(335\) 4940.00 0.805675
\(336\) 0 0
\(337\) 9218.00 1.49002 0.745010 0.667054i \(-0.232445\pi\)
0.745010 + 0.667054i \(0.232445\pi\)
\(338\) 0 0
\(339\) 5688.00 0.911297
\(340\) 0 0
\(341\) −18240.0 −2.89663
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 2400.00 0.374527
\(346\) 0 0
\(347\) −1212.00 −0.187503 −0.0937515 0.995596i \(-0.529886\pi\)
−0.0937515 + 0.995596i \(0.529886\pi\)
\(348\) 0 0
\(349\) 10118.0 1.55187 0.775937 0.630810i \(-0.217277\pi\)
0.775937 + 0.630810i \(0.217277\pi\)
\(350\) 0 0
\(351\) 5776.00 0.878348
\(352\) 0 0
\(353\) 1194.00 0.180029 0.0900145 0.995940i \(-0.471309\pi\)
0.0900145 + 0.995940i \(0.471309\pi\)
\(354\) 0 0
\(355\) 3600.00 0.538220
\(356\) 0 0
\(357\) 1176.00 0.174343
\(358\) 0 0
\(359\) −2064.00 −0.303437 −0.151718 0.988424i \(-0.548481\pi\)
−0.151718 + 0.988424i \(0.548481\pi\)
\(360\) 0 0
\(361\) −4155.00 −0.605773
\(362\) 0 0
\(363\) −9076.00 −1.31230
\(364\) 0 0
\(365\) 730.000 0.104685
\(366\) 0 0
\(367\) 7504.00 1.06732 0.533659 0.845700i \(-0.320817\pi\)
0.533659 + 0.845700i \(0.320817\pi\)
\(368\) 0 0
\(369\) 594.000 0.0838006
\(370\) 0 0
\(371\) −3066.00 −0.429053
\(372\) 0 0
\(373\) 902.000 0.125211 0.0626056 0.998038i \(-0.480059\pi\)
0.0626056 + 0.998038i \(0.480059\pi\)
\(374\) 0 0
\(375\) −500.000 −0.0688530
\(376\) 0 0
\(377\) −8892.00 −1.21475
\(378\) 0 0
\(379\) 12004.0 1.62692 0.813462 0.581618i \(-0.197580\pi\)
0.813462 + 0.581618i \(0.197580\pi\)
\(380\) 0 0
\(381\) 3392.00 0.456109
\(382\) 0 0
\(383\) −10848.0 −1.44728 −0.723638 0.690179i \(-0.757532\pi\)
−0.723638 + 0.690179i \(0.757532\pi\)
\(384\) 0 0
\(385\) 2100.00 0.277989
\(386\) 0 0
\(387\) −2156.00 −0.283193
\(388\) 0 0
\(389\) −5538.00 −0.721819 −0.360910 0.932601i \(-0.617534\pi\)
−0.360910 + 0.932601i \(0.617534\pi\)
\(390\) 0 0
\(391\) −5040.00 −0.651877
\(392\) 0 0
\(393\) 2352.00 0.301890
\(394\) 0 0
\(395\) 4040.00 0.514619
\(396\) 0 0
\(397\) 11270.0 1.42475 0.712374 0.701800i \(-0.247620\pi\)
0.712374 + 0.701800i \(0.247620\pi\)
\(398\) 0 0
\(399\) 1456.00 0.182685
\(400\) 0 0
\(401\) 2802.00 0.348941 0.174470 0.984662i \(-0.444179\pi\)
0.174470 + 0.984662i \(0.444179\pi\)
\(402\) 0 0
\(403\) 11552.0 1.42791
\(404\) 0 0
\(405\) −1555.00 −0.190787
\(406\) 0 0
\(407\) 6360.00 0.774579
\(408\) 0 0
\(409\) 4106.00 0.496403 0.248201 0.968708i \(-0.420161\pi\)
0.248201 + 0.968708i \(0.420161\pi\)
\(410\) 0 0
\(411\) 5016.00 0.601998
\(412\) 0 0
\(413\) −3108.00 −0.370302
\(414\) 0 0
\(415\) −3060.00 −0.361951
\(416\) 0 0
\(417\) −6256.00 −0.734671
\(418\) 0 0
\(419\) −4284.00 −0.499492 −0.249746 0.968311i \(-0.580347\pi\)
−0.249746 + 0.968311i \(0.580347\pi\)
\(420\) 0 0
\(421\) 1550.00 0.179436 0.0897178 0.995967i \(-0.471403\pi\)
0.0897178 + 0.995967i \(0.471403\pi\)
\(422\) 0 0
\(423\) 3696.00 0.424836
\(424\) 0 0
\(425\) 1050.00 0.119841
\(426\) 0 0
\(427\) −266.000 −0.0301467
\(428\) 0 0
\(429\) 9120.00 1.02638
\(430\) 0 0
\(431\) −16584.0 −1.85342 −0.926709 0.375780i \(-0.877375\pi\)
−0.926709 + 0.375780i \(0.877375\pi\)
\(432\) 0 0
\(433\) −8422.00 −0.934724 −0.467362 0.884066i \(-0.654796\pi\)
−0.467362 + 0.884066i \(0.654796\pi\)
\(434\) 0 0
\(435\) 4680.00 0.515836
\(436\) 0 0
\(437\) −6240.00 −0.683066
\(438\) 0 0
\(439\) 2968.00 0.322676 0.161338 0.986899i \(-0.448419\pi\)
0.161338 + 0.986899i \(0.448419\pi\)
\(440\) 0 0
\(441\) −539.000 −0.0582011
\(442\) 0 0
\(443\) 2436.00 0.261259 0.130630 0.991431i \(-0.458300\pi\)
0.130630 + 0.991431i \(0.458300\pi\)
\(444\) 0 0
\(445\) 5730.00 0.610400
\(446\) 0 0
\(447\) −4152.00 −0.439335
\(448\) 0 0
\(449\) 7362.00 0.773796 0.386898 0.922123i \(-0.373547\pi\)
0.386898 + 0.922123i \(0.373547\pi\)
\(450\) 0 0
\(451\) 3240.00 0.338283
\(452\) 0 0
\(453\) 12032.0 1.24793
\(454\) 0 0
\(455\) −1330.00 −0.137036
\(456\) 0 0
\(457\) 9290.00 0.950914 0.475457 0.879739i \(-0.342283\pi\)
0.475457 + 0.879739i \(0.342283\pi\)
\(458\) 0 0
\(459\) 6384.00 0.649193
\(460\) 0 0
\(461\) 11862.0 1.19841 0.599207 0.800594i \(-0.295483\pi\)
0.599207 + 0.800594i \(0.295483\pi\)
\(462\) 0 0
\(463\) 13264.0 1.33138 0.665692 0.746227i \(-0.268137\pi\)
0.665692 + 0.746227i \(0.268137\pi\)
\(464\) 0 0
\(465\) −6080.00 −0.606351
\(466\) 0 0
\(467\) −14628.0 −1.44947 −0.724736 0.689027i \(-0.758038\pi\)
−0.724736 + 0.689027i \(0.758038\pi\)
\(468\) 0 0
\(469\) −6916.00 −0.680919
\(470\) 0 0
\(471\) −12248.0 −1.19821
\(472\) 0 0
\(473\) −11760.0 −1.14318
\(474\) 0 0
\(475\) 1300.00 0.125575
\(476\) 0 0
\(477\) −4818.00 −0.462476
\(478\) 0 0
\(479\) −4416.00 −0.421236 −0.210618 0.977568i \(-0.567548\pi\)
−0.210618 + 0.977568i \(0.567548\pi\)
\(480\) 0 0
\(481\) −4028.00 −0.381832
\(482\) 0 0
\(483\) −3360.00 −0.316533
\(484\) 0 0
\(485\) −350.000 −0.0327684
\(486\) 0 0
\(487\) 232.000 0.0215871 0.0107936 0.999942i \(-0.496564\pi\)
0.0107936 + 0.999942i \(0.496564\pi\)
\(488\) 0 0
\(489\) −3952.00 −0.365472
\(490\) 0 0
\(491\) 17892.0 1.64451 0.822255 0.569119i \(-0.192716\pi\)
0.822255 + 0.569119i \(0.192716\pi\)
\(492\) 0 0
\(493\) −9828.00 −0.897831
\(494\) 0 0
\(495\) 3300.00 0.299644
\(496\) 0 0
\(497\) −5040.00 −0.454879
\(498\) 0 0
\(499\) 6316.00 0.566619 0.283310 0.959029i \(-0.408568\pi\)
0.283310 + 0.959029i \(0.408568\pi\)
\(500\) 0 0
\(501\) 6624.00 0.590696
\(502\) 0 0
\(503\) 12600.0 1.11691 0.558455 0.829534i \(-0.311394\pi\)
0.558455 + 0.829534i \(0.311394\pi\)
\(504\) 0 0
\(505\) 9750.00 0.859147
\(506\) 0 0
\(507\) 3012.00 0.263841
\(508\) 0 0
\(509\) 17094.0 1.48856 0.744281 0.667866i \(-0.232792\pi\)
0.744281 + 0.667866i \(0.232792\pi\)
\(510\) 0 0
\(511\) −1022.00 −0.0884748
\(512\) 0 0
\(513\) 7904.00 0.680254
\(514\) 0 0
\(515\) −2440.00 −0.208775
\(516\) 0 0
\(517\) 20160.0 1.71496
\(518\) 0 0
\(519\) 12264.0 1.03724
\(520\) 0 0
\(521\) 14586.0 1.22653 0.613267 0.789876i \(-0.289855\pi\)
0.613267 + 0.789876i \(0.289855\pi\)
\(522\) 0 0
\(523\) 16324.0 1.36482 0.682408 0.730972i \(-0.260933\pi\)
0.682408 + 0.730972i \(0.260933\pi\)
\(524\) 0 0
\(525\) 700.000 0.0581914
\(526\) 0 0
\(527\) 12768.0 1.05538
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) 0 0
\(531\) −4884.00 −0.399148
\(532\) 0 0
\(533\) −2052.00 −0.166758
\(534\) 0 0
\(535\) 4980.00 0.402438
\(536\) 0 0
\(537\) −8112.00 −0.651878
\(538\) 0 0
\(539\) −2940.00 −0.234944
\(540\) 0 0
\(541\) −7162.00 −0.569165 −0.284583 0.958652i \(-0.591855\pi\)
−0.284583 + 0.958652i \(0.591855\pi\)
\(542\) 0 0
\(543\) 16840.0 1.33089
\(544\) 0 0
\(545\) 3790.00 0.297882
\(546\) 0 0
\(547\) −9956.00 −0.778223 −0.389111 0.921191i \(-0.627218\pi\)
−0.389111 + 0.921191i \(0.627218\pi\)
\(548\) 0 0
\(549\) −418.000 −0.0324951
\(550\) 0 0
\(551\) −12168.0 −0.940788
\(552\) 0 0
\(553\) −5656.00 −0.434932
\(554\) 0 0
\(555\) 2120.00 0.162142
\(556\) 0 0
\(557\) 15342.0 1.16708 0.583538 0.812086i \(-0.301668\pi\)
0.583538 + 0.812086i \(0.301668\pi\)
\(558\) 0 0
\(559\) 7448.00 0.563536
\(560\) 0 0
\(561\) 10080.0 0.758606
\(562\) 0 0
\(563\) −3300.00 −0.247031 −0.123515 0.992343i \(-0.539417\pi\)
−0.123515 + 0.992343i \(0.539417\pi\)
\(564\) 0 0
\(565\) −7110.00 −0.529416
\(566\) 0 0
\(567\) 2177.00 0.161244
\(568\) 0 0
\(569\) 2154.00 0.158700 0.0793501 0.996847i \(-0.474716\pi\)
0.0793501 + 0.996847i \(0.474716\pi\)
\(570\) 0 0
\(571\) 1348.00 0.0987952 0.0493976 0.998779i \(-0.484270\pi\)
0.0493976 + 0.998779i \(0.484270\pi\)
\(572\) 0 0
\(573\) −10464.0 −0.762897
\(574\) 0 0
\(575\) −3000.00 −0.217580
\(576\) 0 0
\(577\) −16486.0 −1.18946 −0.594732 0.803924i \(-0.702742\pi\)
−0.594732 + 0.803924i \(0.702742\pi\)
\(578\) 0 0
\(579\) −2888.00 −0.207290
\(580\) 0 0
\(581\) 4284.00 0.305904
\(582\) 0 0
\(583\) −26280.0 −1.86691
\(584\) 0 0
\(585\) −2090.00 −0.147711
\(586\) 0 0
\(587\) −9756.00 −0.685985 −0.342993 0.939338i \(-0.611441\pi\)
−0.342993 + 0.939338i \(0.611441\pi\)
\(588\) 0 0
\(589\) 15808.0 1.10587
\(590\) 0 0
\(591\) −11736.0 −0.816844
\(592\) 0 0
\(593\) 8202.00 0.567986 0.283993 0.958826i \(-0.408341\pi\)
0.283993 + 0.958826i \(0.408341\pi\)
\(594\) 0 0
\(595\) −1470.00 −0.101284
\(596\) 0 0
\(597\) −2080.00 −0.142594
\(598\) 0 0
\(599\) −20544.0 −1.40134 −0.700672 0.713484i \(-0.747116\pi\)
−0.700672 + 0.713484i \(0.747116\pi\)
\(600\) 0 0
\(601\) −5254.00 −0.356598 −0.178299 0.983976i \(-0.557059\pi\)
−0.178299 + 0.983976i \(0.557059\pi\)
\(602\) 0 0
\(603\) −10868.0 −0.733962
\(604\) 0 0
\(605\) 11345.0 0.762380
\(606\) 0 0
\(607\) 19456.0 1.30098 0.650490 0.759515i \(-0.274564\pi\)
0.650490 + 0.759515i \(0.274564\pi\)
\(608\) 0 0
\(609\) −6552.00 −0.435961
\(610\) 0 0
\(611\) −12768.0 −0.845398
\(612\) 0 0
\(613\) 3926.00 0.258678 0.129339 0.991600i \(-0.458714\pi\)
0.129339 + 0.991600i \(0.458714\pi\)
\(614\) 0 0
\(615\) 1080.00 0.0708127
\(616\) 0 0
\(617\) 22122.0 1.44343 0.721717 0.692189i \(-0.243353\pi\)
0.721717 + 0.692189i \(0.243353\pi\)
\(618\) 0 0
\(619\) 12796.0 0.830880 0.415440 0.909621i \(-0.363628\pi\)
0.415440 + 0.909621i \(0.363628\pi\)
\(620\) 0 0
\(621\) −18240.0 −1.17866
\(622\) 0 0
\(623\) −8022.00 −0.515882
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 12480.0 0.794901
\(628\) 0 0
\(629\) −4452.00 −0.282214
\(630\) 0 0
\(631\) 16576.0 1.04577 0.522884 0.852404i \(-0.324856\pi\)
0.522884 + 0.852404i \(0.324856\pi\)
\(632\) 0 0
\(633\) 13904.0 0.873040
\(634\) 0 0
\(635\) −4240.00 −0.264975
\(636\) 0 0
\(637\) 1862.00 0.115817
\(638\) 0 0
\(639\) −7920.00 −0.490314
\(640\) 0 0
\(641\) 11202.0 0.690253 0.345127 0.938556i \(-0.387836\pi\)
0.345127 + 0.938556i \(0.387836\pi\)
\(642\) 0 0
\(643\) −4052.00 −0.248515 −0.124258 0.992250i \(-0.539655\pi\)
−0.124258 + 0.992250i \(0.539655\pi\)
\(644\) 0 0
\(645\) −3920.00 −0.239302
\(646\) 0 0
\(647\) 17544.0 1.06604 0.533018 0.846104i \(-0.321058\pi\)
0.533018 + 0.846104i \(0.321058\pi\)
\(648\) 0 0
\(649\) −26640.0 −1.61127
\(650\) 0 0
\(651\) 8512.00 0.512460
\(652\) 0 0
\(653\) −12066.0 −0.723092 −0.361546 0.932354i \(-0.617751\pi\)
−0.361546 + 0.932354i \(0.617751\pi\)
\(654\) 0 0
\(655\) −2940.00 −0.175382
\(656\) 0 0
\(657\) −1606.00 −0.0953669
\(658\) 0 0
\(659\) 7596.00 0.449011 0.224505 0.974473i \(-0.427923\pi\)
0.224505 + 0.974473i \(0.427923\pi\)
\(660\) 0 0
\(661\) 11630.0 0.684349 0.342174 0.939636i \(-0.388837\pi\)
0.342174 + 0.939636i \(0.388837\pi\)
\(662\) 0 0
\(663\) −6384.00 −0.373958
\(664\) 0 0
\(665\) −1820.00 −0.106130
\(666\) 0 0
\(667\) 28080.0 1.63008
\(668\) 0 0
\(669\) −5824.00 −0.336575
\(670\) 0 0
\(671\) −2280.00 −0.131175
\(672\) 0 0
\(673\) 7778.00 0.445498 0.222749 0.974876i \(-0.428497\pi\)
0.222749 + 0.974876i \(0.428497\pi\)
\(674\) 0 0
\(675\) 3800.00 0.216685
\(676\) 0 0
\(677\) −28914.0 −1.64144 −0.820720 0.571330i \(-0.806428\pi\)
−0.820720 + 0.571330i \(0.806428\pi\)
\(678\) 0 0
\(679\) 490.000 0.0276944
\(680\) 0 0
\(681\) −13296.0 −0.748170
\(682\) 0 0
\(683\) −25404.0 −1.42322 −0.711608 0.702576i \(-0.752033\pi\)
−0.711608 + 0.702576i \(0.752033\pi\)
\(684\) 0 0
\(685\) −6270.00 −0.349729
\(686\) 0 0
\(687\) −6776.00 −0.376304
\(688\) 0 0
\(689\) 16644.0 0.920299
\(690\) 0 0
\(691\) −1244.00 −0.0684862 −0.0342431 0.999414i \(-0.510902\pi\)
−0.0342431 + 0.999414i \(0.510902\pi\)
\(692\) 0 0
\(693\) −4620.00 −0.253246
\(694\) 0 0
\(695\) 7820.00 0.426805
\(696\) 0 0
\(697\) −2268.00 −0.123252
\(698\) 0 0
\(699\) 24792.0 1.34152
\(700\) 0 0
\(701\) 3798.00 0.204634 0.102317 0.994752i \(-0.467374\pi\)
0.102317 + 0.994752i \(0.467374\pi\)
\(702\) 0 0
\(703\) −5512.00 −0.295717
\(704\) 0 0
\(705\) 6720.00 0.358993
\(706\) 0 0
\(707\) −13650.0 −0.726112
\(708\) 0 0
\(709\) −15154.0 −0.802709 −0.401354 0.915923i \(-0.631460\pi\)
−0.401354 + 0.915923i \(0.631460\pi\)
\(710\) 0 0
\(711\) −8888.00 −0.468813
\(712\) 0 0
\(713\) −36480.0 −1.91611
\(714\) 0 0
\(715\) −11400.0 −0.596274
\(716\) 0 0
\(717\) 3744.00 0.195010
\(718\) 0 0
\(719\) 10032.0 0.520348 0.260174 0.965562i \(-0.416220\pi\)
0.260174 + 0.965562i \(0.416220\pi\)
\(720\) 0 0
\(721\) 3416.00 0.176447
\(722\) 0 0
\(723\) −6920.00 −0.355958
\(724\) 0 0
\(725\) −5850.00 −0.299674
\(726\) 0 0
\(727\) −17768.0 −0.906436 −0.453218 0.891400i \(-0.649724\pi\)
−0.453218 + 0.891400i \(0.649724\pi\)
\(728\) 0 0
\(729\) 19837.0 1.00782
\(730\) 0 0
\(731\) 8232.00 0.416514
\(732\) 0 0
\(733\) 9830.00 0.495333 0.247667 0.968845i \(-0.420336\pi\)
0.247667 + 0.968845i \(0.420336\pi\)
\(734\) 0 0
\(735\) −980.000 −0.0491807
\(736\) 0 0
\(737\) −59280.0 −2.96283
\(738\) 0 0
\(739\) 33244.0 1.65480 0.827402 0.561610i \(-0.189818\pi\)
0.827402 + 0.561610i \(0.189818\pi\)
\(740\) 0 0
\(741\) −7904.00 −0.391850
\(742\) 0 0
\(743\) −3672.00 −0.181309 −0.0906545 0.995882i \(-0.528896\pi\)
−0.0906545 + 0.995882i \(0.528896\pi\)
\(744\) 0 0
\(745\) 5190.00 0.255231
\(746\) 0 0
\(747\) 6732.00 0.329734
\(748\) 0 0
\(749\) −6972.00 −0.340122
\(750\) 0 0
\(751\) 6280.00 0.305140 0.152570 0.988293i \(-0.451245\pi\)
0.152570 + 0.988293i \(0.451245\pi\)
\(752\) 0 0
\(753\) −14832.0 −0.717806
\(754\) 0 0
\(755\) −15040.0 −0.724982
\(756\) 0 0
\(757\) −826.000 −0.0396585 −0.0198292 0.999803i \(-0.506312\pi\)
−0.0198292 + 0.999803i \(0.506312\pi\)
\(758\) 0 0
\(759\) −28800.0 −1.37730
\(760\) 0 0
\(761\) 16842.0 0.802263 0.401131 0.916021i \(-0.368617\pi\)
0.401131 + 0.916021i \(0.368617\pi\)
\(762\) 0 0
\(763\) −5306.00 −0.251756
\(764\) 0 0
\(765\) −2310.00 −0.109174
\(766\) 0 0
\(767\) 16872.0 0.794280
\(768\) 0 0
\(769\) −21454.0 −1.00605 −0.503024 0.864272i \(-0.667779\pi\)
−0.503024 + 0.864272i \(0.667779\pi\)
\(770\) 0 0
\(771\) −18984.0 −0.886760
\(772\) 0 0
\(773\) 13182.0 0.613355 0.306678 0.951813i \(-0.400783\pi\)
0.306678 + 0.951813i \(0.400783\pi\)
\(774\) 0 0
\(775\) 7600.00 0.352258
\(776\) 0 0
\(777\) −2968.00 −0.137035
\(778\) 0 0
\(779\) −2808.00 −0.129149
\(780\) 0 0
\(781\) −43200.0 −1.97928
\(782\) 0 0
\(783\) −35568.0 −1.62337
\(784\) 0 0
\(785\) 15310.0 0.696099
\(786\) 0 0
\(787\) −24356.0 −1.10317 −0.551587 0.834117i \(-0.685977\pi\)
−0.551587 + 0.834117i \(0.685977\pi\)
\(788\) 0 0
\(789\) 16800.0 0.758043
\(790\) 0 0
\(791\) 9954.00 0.447438
\(792\) 0 0
\(793\) 1444.00 0.0646632
\(794\) 0 0
\(795\) −8760.00 −0.390799
\(796\) 0 0
\(797\) −13194.0 −0.586393 −0.293197 0.956052i \(-0.594719\pi\)
−0.293197 + 0.956052i \(0.594719\pi\)
\(798\) 0 0
\(799\) −14112.0 −0.624839
\(800\) 0 0
\(801\) −12606.0 −0.556069
\(802\) 0 0
\(803\) −8760.00 −0.384973
\(804\) 0 0
\(805\) 4200.00 0.183889
\(806\) 0 0
\(807\) −34008.0 −1.48344
\(808\) 0 0
\(809\) 29274.0 1.27221 0.636106 0.771602i \(-0.280544\pi\)
0.636106 + 0.771602i \(0.280544\pi\)
\(810\) 0 0
\(811\) −9812.00 −0.424841 −0.212420 0.977178i \(-0.568135\pi\)
−0.212420 + 0.977178i \(0.568135\pi\)
\(812\) 0 0
\(813\) −17344.0 −0.748193
\(814\) 0 0
\(815\) 4940.00 0.212320
\(816\) 0 0
\(817\) 10192.0 0.436442
\(818\) 0 0
\(819\) 2926.00 0.124838
\(820\) 0 0
\(821\) −41154.0 −1.74943 −0.874717 0.484635i \(-0.838952\pi\)
−0.874717 + 0.484635i \(0.838952\pi\)
\(822\) 0 0
\(823\) −37640.0 −1.59423 −0.797113 0.603830i \(-0.793640\pi\)
−0.797113 + 0.603830i \(0.793640\pi\)
\(824\) 0 0
\(825\) 6000.00 0.253204
\(826\) 0 0
\(827\) 13572.0 0.570671 0.285335 0.958428i \(-0.407895\pi\)
0.285335 + 0.958428i \(0.407895\pi\)
\(828\) 0 0
\(829\) 13574.0 0.568691 0.284345 0.958722i \(-0.408224\pi\)
0.284345 + 0.958722i \(0.408224\pi\)
\(830\) 0 0
\(831\) −13400.0 −0.559375
\(832\) 0 0
\(833\) 2058.00 0.0856008
\(834\) 0 0
\(835\) −8280.00 −0.343163
\(836\) 0 0
\(837\) 46208.0 1.90822
\(838\) 0 0
\(839\) 5112.00 0.210353 0.105176 0.994454i \(-0.466459\pi\)
0.105176 + 0.994454i \(0.466459\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) 0 0
\(843\) 33624.0 1.37375
\(844\) 0 0
\(845\) −3765.00 −0.153278
\(846\) 0 0
\(847\) −15883.0 −0.644329
\(848\) 0 0
\(849\) 25136.0 1.01610
\(850\) 0 0
\(851\) 12720.0 0.512381
\(852\) 0 0
\(853\) 20702.0 0.830977 0.415488 0.909599i \(-0.363611\pi\)
0.415488 + 0.909599i \(0.363611\pi\)
\(854\) 0 0
\(855\) −2860.00 −0.114398
\(856\) 0 0
\(857\) −5646.00 −0.225045 −0.112523 0.993649i \(-0.535893\pi\)
−0.112523 + 0.993649i \(0.535893\pi\)
\(858\) 0 0
\(859\) −20756.0 −0.824430 −0.412215 0.911087i \(-0.635245\pi\)
−0.412215 + 0.911087i \(0.635245\pi\)
\(860\) 0 0
\(861\) −1512.00 −0.0598476
\(862\) 0 0
\(863\) 24432.0 0.963702 0.481851 0.876253i \(-0.339965\pi\)
0.481851 + 0.876253i \(0.339965\pi\)
\(864\) 0 0
\(865\) −15330.0 −0.602585
\(866\) 0 0
\(867\) 12596.0 0.493406
\(868\) 0 0
\(869\) −48480.0 −1.89249
\(870\) 0 0
\(871\) 37544.0 1.46054
\(872\) 0 0
\(873\) 770.000 0.0298517
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 43166.0 1.66204 0.831022 0.556240i \(-0.187756\pi\)
0.831022 + 0.556240i \(0.187756\pi\)
\(878\) 0 0
\(879\) −14328.0 −0.549797
\(880\) 0 0
\(881\) −1854.00 −0.0708999 −0.0354500 0.999371i \(-0.511286\pi\)
−0.0354500 + 0.999371i \(0.511286\pi\)
\(882\) 0 0
\(883\) 23740.0 0.904773 0.452387 0.891822i \(-0.350573\pi\)
0.452387 + 0.891822i \(0.350573\pi\)
\(884\) 0 0
\(885\) −8880.00 −0.337286
\(886\) 0 0
\(887\) −32088.0 −1.21467 −0.607333 0.794447i \(-0.707761\pi\)
−0.607333 + 0.794447i \(0.707761\pi\)
\(888\) 0 0
\(889\) 5936.00 0.223945
\(890\) 0 0
\(891\) 18660.0 0.701609
\(892\) 0 0
\(893\) −17472.0 −0.654735
\(894\) 0 0
\(895\) 10140.0 0.378707
\(896\) 0 0
\(897\) 18240.0 0.678947
\(898\) 0 0
\(899\) −71136.0 −2.63906
\(900\) 0 0
\(901\) 18396.0 0.680199
\(902\) 0 0
\(903\) 5488.00 0.202247
\(904\) 0 0
\(905\) −21050.0 −0.773178
\(906\) 0 0
\(907\) −4268.00 −0.156248 −0.0781238 0.996944i \(-0.524893\pi\)
−0.0781238 + 0.996944i \(0.524893\pi\)
\(908\) 0 0
\(909\) −21450.0 −0.782675
\(910\) 0 0
\(911\) 19512.0 0.709617 0.354809 0.934939i \(-0.384546\pi\)
0.354809 + 0.934939i \(0.384546\pi\)
\(912\) 0 0
\(913\) 36720.0 1.33106
\(914\) 0 0
\(915\) −760.000 −0.0274588
\(916\) 0 0
\(917\) 4116.00 0.148225
\(918\) 0 0
\(919\) 6496.00 0.233170 0.116585 0.993181i \(-0.462805\pi\)
0.116585 + 0.993181i \(0.462805\pi\)
\(920\) 0 0
\(921\) 35216.0 1.25994
\(922\) 0 0
\(923\) 27360.0 0.975694
\(924\) 0 0
\(925\) −2650.00 −0.0941962
\(926\) 0 0
\(927\) 5368.00 0.190192
\(928\) 0 0
\(929\) −16926.0 −0.597765 −0.298883 0.954290i \(-0.596614\pi\)
−0.298883 + 0.954290i \(0.596614\pi\)
\(930\) 0 0
\(931\) 2548.00 0.0896964
\(932\) 0 0
\(933\) −9696.00 −0.340228
\(934\) 0 0
\(935\) −12600.0 −0.440710
\(936\) 0 0
\(937\) −14686.0 −0.512029 −0.256014 0.966673i \(-0.582409\pi\)
−0.256014 + 0.966673i \(0.582409\pi\)
\(938\) 0 0
\(939\) 36280.0 1.26087
\(940\) 0 0
\(941\) −33834.0 −1.17211 −0.586056 0.810271i \(-0.699320\pi\)
−0.586056 + 0.810271i \(0.699320\pi\)
\(942\) 0 0
\(943\) 6480.00 0.223773
\(944\) 0 0
\(945\) −5320.00 −0.183132
\(946\) 0 0
\(947\) −17508.0 −0.600775 −0.300387 0.953817i \(-0.597116\pi\)
−0.300387 + 0.953817i \(0.597116\pi\)
\(948\) 0 0
\(949\) 5548.00 0.189774
\(950\) 0 0
\(951\) 26952.0 0.919010
\(952\) 0 0
\(953\) −12582.0 −0.427672 −0.213836 0.976870i \(-0.568596\pi\)
−0.213836 + 0.976870i \(0.568596\pi\)
\(954\) 0 0
\(955\) 13080.0 0.443203
\(956\) 0 0
\(957\) −56160.0 −1.89696
\(958\) 0 0
\(959\) 8778.00 0.295575
\(960\) 0 0
\(961\) 62625.0 2.10214
\(962\) 0 0
\(963\) −10956.0 −0.366617
\(964\) 0 0
\(965\) 3610.00 0.120425
\(966\) 0 0
\(967\) 19096.0 0.635042 0.317521 0.948251i \(-0.397150\pi\)
0.317521 + 0.948251i \(0.397150\pi\)
\(968\) 0 0
\(969\) −8736.00 −0.289619
\(970\) 0 0
\(971\) −50484.0 −1.66850 −0.834248 0.551390i \(-0.814098\pi\)
−0.834248 + 0.551390i \(0.814098\pi\)
\(972\) 0 0
\(973\) −10948.0 −0.360716
\(974\) 0 0
\(975\) −3800.00 −0.124818
\(976\) 0 0
\(977\) 26898.0 0.880802 0.440401 0.897801i \(-0.354836\pi\)
0.440401 + 0.897801i \(0.354836\pi\)
\(978\) 0 0
\(979\) −68760.0 −2.24472
\(980\) 0 0
\(981\) −8338.00 −0.271368
\(982\) 0 0
\(983\) 13368.0 0.433747 0.216873 0.976200i \(-0.430414\pi\)
0.216873 + 0.976200i \(0.430414\pi\)
\(984\) 0 0
\(985\) 14670.0 0.474543
\(986\) 0 0
\(987\) −9408.00 −0.303404
\(988\) 0 0
\(989\) −23520.0 −0.756211
\(990\) 0 0
\(991\) 44296.0 1.41989 0.709944 0.704258i \(-0.248720\pi\)
0.709944 + 0.704258i \(0.248720\pi\)
\(992\) 0 0
\(993\) 31472.0 1.00577
\(994\) 0 0
\(995\) 2600.00 0.0828397
\(996\) 0 0
\(997\) −4354.00 −0.138307 −0.0691537 0.997606i \(-0.522030\pi\)
−0.0691537 + 0.997606i \(0.522030\pi\)
\(998\) 0 0
\(999\) −16112.0 −0.510271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.a.g.1.1 1
4.3 odd 2 70.4.a.d.1.1 1
8.3 odd 2 2240.4.a.m.1.1 1
8.5 even 2 2240.4.a.y.1.1 1
12.11 even 2 630.4.a.o.1.1 1
20.3 even 4 350.4.c.d.99.2 2
20.7 even 4 350.4.c.d.99.1 2
20.19 odd 2 350.4.a.o.1.1 1
28.3 even 6 490.4.e.q.471.1 2
28.11 odd 6 490.4.e.k.471.1 2
28.19 even 6 490.4.e.q.361.1 2
28.23 odd 6 490.4.e.k.361.1 2
28.27 even 2 490.4.a.b.1.1 1
140.139 even 2 2450.4.a.bm.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.a.d.1.1 1 4.3 odd 2
350.4.a.o.1.1 1 20.19 odd 2
350.4.c.d.99.1 2 20.7 even 4
350.4.c.d.99.2 2 20.3 even 4
490.4.a.b.1.1 1 28.27 even 2
490.4.e.k.361.1 2 28.23 odd 6
490.4.e.k.471.1 2 28.11 odd 6
490.4.e.q.361.1 2 28.19 even 6
490.4.e.q.471.1 2 28.3 even 6
560.4.a.g.1.1 1 1.1 even 1 trivial
630.4.a.o.1.1 1 12.11 even 2
2240.4.a.m.1.1 1 8.3 odd 2
2240.4.a.y.1.1 1 8.5 even 2
2450.4.a.bm.1.1 1 140.139 even 2