Properties

Label 630.4.a.o.1.1
Level $630$
Weight $4$
Character 630.1
Self dual yes
Analytic conductor $37.171$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,4,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1712033036\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -5.00000 q^{5} +7.00000 q^{7} +8.00000 q^{8} -10.0000 q^{10} -60.0000 q^{11} +38.0000 q^{13} +14.0000 q^{14} +16.0000 q^{16} -42.0000 q^{17} -52.0000 q^{19} -20.0000 q^{20} -120.000 q^{22} -120.000 q^{23} +25.0000 q^{25} +76.0000 q^{26} +28.0000 q^{28} +234.000 q^{29} -304.000 q^{31} +32.0000 q^{32} -84.0000 q^{34} -35.0000 q^{35} -106.000 q^{37} -104.000 q^{38} -40.0000 q^{40} +54.0000 q^{41} -196.000 q^{43} -240.000 q^{44} -240.000 q^{46} -336.000 q^{47} +49.0000 q^{49} +50.0000 q^{50} +152.000 q^{52} -438.000 q^{53} +300.000 q^{55} +56.0000 q^{56} +468.000 q^{58} +444.000 q^{59} +38.0000 q^{61} -608.000 q^{62} +64.0000 q^{64} -190.000 q^{65} -988.000 q^{67} -168.000 q^{68} -70.0000 q^{70} +720.000 q^{71} +146.000 q^{73} -212.000 q^{74} -208.000 q^{76} -420.000 q^{77} -808.000 q^{79} -80.0000 q^{80} +108.000 q^{82} -612.000 q^{83} +210.000 q^{85} -392.000 q^{86} -480.000 q^{88} -1146.00 q^{89} +266.000 q^{91} -480.000 q^{92} -672.000 q^{94} +260.000 q^{95} -70.0000 q^{97} +98.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −60.0000 −1.64461 −0.822304 0.569049i \(-0.807311\pi\)
−0.822304 + 0.569049i \(0.807311\pi\)
\(12\) 0 0
\(13\) 38.0000 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −42.0000 −0.599206 −0.299603 0.954064i \(-0.596854\pi\)
−0.299603 + 0.954064i \(0.596854\pi\)
\(18\) 0 0
\(19\) −52.0000 −0.627875 −0.313937 0.949444i \(-0.601648\pi\)
−0.313937 + 0.949444i \(0.601648\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) −120.000 −1.16291
\(23\) −120.000 −1.08790 −0.543951 0.839117i \(-0.683072\pi\)
−0.543951 + 0.839117i \(0.683072\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 76.0000 0.573263
\(27\) 0 0
\(28\) 28.0000 0.188982
\(29\) 234.000 1.49837 0.749185 0.662361i \(-0.230446\pi\)
0.749185 + 0.662361i \(0.230446\pi\)
\(30\) 0 0
\(31\) −304.000 −1.76129 −0.880645 0.473776i \(-0.842891\pi\)
−0.880645 + 0.473776i \(0.842891\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −84.0000 −0.423702
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −106.000 −0.470981 −0.235490 0.971877i \(-0.575670\pi\)
−0.235490 + 0.971877i \(0.575670\pi\)
\(38\) −104.000 −0.443974
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) 54.0000 0.205692 0.102846 0.994697i \(-0.467205\pi\)
0.102846 + 0.994697i \(0.467205\pi\)
\(42\) 0 0
\(43\) −196.000 −0.695110 −0.347555 0.937660i \(-0.612988\pi\)
−0.347555 + 0.937660i \(0.612988\pi\)
\(44\) −240.000 −0.822304
\(45\) 0 0
\(46\) −240.000 −0.769262
\(47\) −336.000 −1.04278 −0.521390 0.853319i \(-0.674586\pi\)
−0.521390 + 0.853319i \(0.674586\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 152.000 0.405358
\(53\) −438.000 −1.13517 −0.567584 0.823315i \(-0.692122\pi\)
−0.567584 + 0.823315i \(0.692122\pi\)
\(54\) 0 0
\(55\) 300.000 0.735491
\(56\) 56.0000 0.133631
\(57\) 0 0
\(58\) 468.000 1.05951
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 0 0
\(61\) 38.0000 0.0797607 0.0398803 0.999204i \(-0.487302\pi\)
0.0398803 + 0.999204i \(0.487302\pi\)
\(62\) −608.000 −1.24542
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −190.000 −0.362563
\(66\) 0 0
\(67\) −988.000 −1.80154 −0.900772 0.434293i \(-0.856998\pi\)
−0.900772 + 0.434293i \(0.856998\pi\)
\(68\) −168.000 −0.299603
\(69\) 0 0
\(70\) −70.0000 −0.119523
\(71\) 720.000 1.20350 0.601748 0.798686i \(-0.294471\pi\)
0.601748 + 0.798686i \(0.294471\pi\)
\(72\) 0 0
\(73\) 146.000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −212.000 −0.333034
\(75\) 0 0
\(76\) −208.000 −0.313937
\(77\) −420.000 −0.621603
\(78\) 0 0
\(79\) −808.000 −1.15072 −0.575361 0.817899i \(-0.695139\pi\)
−0.575361 + 0.817899i \(0.695139\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) 108.000 0.145446
\(83\) −612.000 −0.809346 −0.404673 0.914461i \(-0.632615\pi\)
−0.404673 + 0.914461i \(0.632615\pi\)
\(84\) 0 0
\(85\) 210.000 0.267973
\(86\) −392.000 −0.491517
\(87\) 0 0
\(88\) −480.000 −0.581456
\(89\) −1146.00 −1.36490 −0.682448 0.730934i \(-0.739085\pi\)
−0.682448 + 0.730934i \(0.739085\pi\)
\(90\) 0 0
\(91\) 266.000 0.306422
\(92\) −480.000 −0.543951
\(93\) 0 0
\(94\) −672.000 −0.737356
\(95\) 260.000 0.280794
\(96\) 0 0
\(97\) −70.0000 −0.0732724 −0.0366362 0.999329i \(-0.511664\pi\)
−0.0366362 + 0.999329i \(0.511664\pi\)
\(98\) 98.0000 0.101015
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −1950.00 −1.92111 −0.960556 0.278088i \(-0.910299\pi\)
−0.960556 + 0.278088i \(0.910299\pi\)
\(102\) 0 0
\(103\) 488.000 0.466836 0.233418 0.972377i \(-0.425009\pi\)
0.233418 + 0.972377i \(0.425009\pi\)
\(104\) 304.000 0.286631
\(105\) 0 0
\(106\) −876.000 −0.802685
\(107\) 996.000 0.899878 0.449939 0.893059i \(-0.351446\pi\)
0.449939 + 0.893059i \(0.351446\pi\)
\(108\) 0 0
\(109\) 758.000 0.666085 0.333042 0.942912i \(-0.391925\pi\)
0.333042 + 0.942912i \(0.391925\pi\)
\(110\) 600.000 0.520071
\(111\) 0 0
\(112\) 112.000 0.0944911
\(113\) 1422.00 1.18381 0.591905 0.806008i \(-0.298376\pi\)
0.591905 + 0.806008i \(0.298376\pi\)
\(114\) 0 0
\(115\) 600.000 0.486524
\(116\) 936.000 0.749185
\(117\) 0 0
\(118\) 888.000 0.692771
\(119\) −294.000 −0.226478
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 76.0000 0.0563993
\(123\) 0 0
\(124\) −1216.00 −0.880645
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 848.000 0.592503 0.296251 0.955110i \(-0.404263\pi\)
0.296251 + 0.955110i \(0.404263\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) −380.000 −0.256371
\(131\) −588.000 −0.392166 −0.196083 0.980587i \(-0.562822\pi\)
−0.196083 + 0.980587i \(0.562822\pi\)
\(132\) 0 0
\(133\) −364.000 −0.237314
\(134\) −1976.00 −1.27388
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) 1254.00 0.782018 0.391009 0.920387i \(-0.372126\pi\)
0.391009 + 0.920387i \(0.372126\pi\)
\(138\) 0 0
\(139\) −1564.00 −0.954365 −0.477183 0.878804i \(-0.658342\pi\)
−0.477183 + 0.878804i \(0.658342\pi\)
\(140\) −140.000 −0.0845154
\(141\) 0 0
\(142\) 1440.00 0.851001
\(143\) −2280.00 −1.33331
\(144\) 0 0
\(145\) −1170.00 −0.670091
\(146\) 292.000 0.165521
\(147\) 0 0
\(148\) −424.000 −0.235490
\(149\) −1038.00 −0.570713 −0.285357 0.958421i \(-0.592112\pi\)
−0.285357 + 0.958421i \(0.592112\pi\)
\(150\) 0 0
\(151\) 3008.00 1.62111 0.810555 0.585663i \(-0.199166\pi\)
0.810555 + 0.585663i \(0.199166\pi\)
\(152\) −416.000 −0.221987
\(153\) 0 0
\(154\) −840.000 −0.439540
\(155\) 1520.00 0.787673
\(156\) 0 0
\(157\) 3062.00 1.55652 0.778262 0.627940i \(-0.216102\pi\)
0.778262 + 0.627940i \(0.216102\pi\)
\(158\) −1616.00 −0.813684
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) −840.000 −0.411188
\(162\) 0 0
\(163\) −988.000 −0.474762 −0.237381 0.971417i \(-0.576289\pi\)
−0.237381 + 0.971417i \(0.576289\pi\)
\(164\) 216.000 0.102846
\(165\) 0 0
\(166\) −1224.00 −0.572294
\(167\) −1656.00 −0.767336 −0.383668 0.923471i \(-0.625339\pi\)
−0.383668 + 0.923471i \(0.625339\pi\)
\(168\) 0 0
\(169\) −753.000 −0.342740
\(170\) 420.000 0.189485
\(171\) 0 0
\(172\) −784.000 −0.347555
\(173\) 3066.00 1.34742 0.673710 0.738996i \(-0.264700\pi\)
0.673710 + 0.738996i \(0.264700\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −960.000 −0.411152
\(177\) 0 0
\(178\) −2292.00 −0.965127
\(179\) 2028.00 0.846815 0.423407 0.905939i \(-0.360834\pi\)
0.423407 + 0.905939i \(0.360834\pi\)
\(180\) 0 0
\(181\) −4210.00 −1.72888 −0.864439 0.502738i \(-0.832326\pi\)
−0.864439 + 0.502738i \(0.832326\pi\)
\(182\) 532.000 0.216673
\(183\) 0 0
\(184\) −960.000 −0.384631
\(185\) 530.000 0.210629
\(186\) 0 0
\(187\) 2520.00 0.985458
\(188\) −1344.00 −0.521390
\(189\) 0 0
\(190\) 520.000 0.198551
\(191\) 2616.00 0.991032 0.495516 0.868599i \(-0.334979\pi\)
0.495516 + 0.868599i \(0.334979\pi\)
\(192\) 0 0
\(193\) 722.000 0.269278 0.134639 0.990895i \(-0.457012\pi\)
0.134639 + 0.990895i \(0.457012\pi\)
\(194\) −140.000 −0.0518114
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −2934.00 −1.06111 −0.530555 0.847650i \(-0.678017\pi\)
−0.530555 + 0.847650i \(0.678017\pi\)
\(198\) 0 0
\(199\) −520.000 −0.185235 −0.0926176 0.995702i \(-0.529523\pi\)
−0.0926176 + 0.995702i \(0.529523\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) −3900.00 −1.35843
\(203\) 1638.00 0.566330
\(204\) 0 0
\(205\) −270.000 −0.0919884
\(206\) 976.000 0.330103
\(207\) 0 0
\(208\) 608.000 0.202679
\(209\) 3120.00 1.03261
\(210\) 0 0
\(211\) 3476.00 1.13411 0.567056 0.823679i \(-0.308082\pi\)
0.567056 + 0.823679i \(0.308082\pi\)
\(212\) −1752.00 −0.567584
\(213\) 0 0
\(214\) 1992.00 0.636310
\(215\) 980.000 0.310863
\(216\) 0 0
\(217\) −2128.00 −0.665705
\(218\) 1516.00 0.470993
\(219\) 0 0
\(220\) 1200.00 0.367745
\(221\) −1596.00 −0.485785
\(222\) 0 0
\(223\) −1456.00 −0.437224 −0.218612 0.975812i \(-0.570153\pi\)
−0.218612 + 0.975812i \(0.570153\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 2844.00 0.837080
\(227\) 3324.00 0.971901 0.485951 0.873986i \(-0.338473\pi\)
0.485951 + 0.873986i \(0.338473\pi\)
\(228\) 0 0
\(229\) 1694.00 0.488833 0.244416 0.969670i \(-0.421404\pi\)
0.244416 + 0.969670i \(0.421404\pi\)
\(230\) 1200.00 0.344025
\(231\) 0 0
\(232\) 1872.00 0.529754
\(233\) 6198.00 1.74268 0.871340 0.490680i \(-0.163251\pi\)
0.871340 + 0.490680i \(0.163251\pi\)
\(234\) 0 0
\(235\) 1680.00 0.466345
\(236\) 1776.00 0.489863
\(237\) 0 0
\(238\) −588.000 −0.160144
\(239\) −936.000 −0.253326 −0.126663 0.991946i \(-0.540427\pi\)
−0.126663 + 0.991946i \(0.540427\pi\)
\(240\) 0 0
\(241\) 1730.00 0.462403 0.231201 0.972906i \(-0.425734\pi\)
0.231201 + 0.972906i \(0.425734\pi\)
\(242\) 4538.00 1.20543
\(243\) 0 0
\(244\) 152.000 0.0398803
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −1976.00 −0.509028
\(248\) −2432.00 −0.622710
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) 3708.00 0.932458 0.466229 0.884664i \(-0.345612\pi\)
0.466229 + 0.884664i \(0.345612\pi\)
\(252\) 0 0
\(253\) 7200.00 1.78917
\(254\) 1696.00 0.418963
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −4746.00 −1.15194 −0.575968 0.817473i \(-0.695375\pi\)
−0.575968 + 0.817473i \(0.695375\pi\)
\(258\) 0 0
\(259\) −742.000 −0.178014
\(260\) −760.000 −0.181282
\(261\) 0 0
\(262\) −1176.00 −0.277304
\(263\) −4200.00 −0.984727 −0.492363 0.870390i \(-0.663867\pi\)
−0.492363 + 0.870390i \(0.663867\pi\)
\(264\) 0 0
\(265\) 2190.00 0.507663
\(266\) −728.000 −0.167807
\(267\) 0 0
\(268\) −3952.00 −0.900772
\(269\) −8502.00 −1.92705 −0.963524 0.267621i \(-0.913763\pi\)
−0.963524 + 0.267621i \(0.913763\pi\)
\(270\) 0 0
\(271\) −4336.00 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −672.000 −0.149801
\(273\) 0 0
\(274\) 2508.00 0.552970
\(275\) −1500.00 −0.328921
\(276\) 0 0
\(277\) 3350.00 0.726650 0.363325 0.931663i \(-0.381641\pi\)
0.363325 + 0.931663i \(0.381641\pi\)
\(278\) −3128.00 −0.674838
\(279\) 0 0
\(280\) −280.000 −0.0597614
\(281\) 8406.00 1.78455 0.892277 0.451488i \(-0.149106\pi\)
0.892277 + 0.451488i \(0.149106\pi\)
\(282\) 0 0
\(283\) 6284.00 1.31995 0.659974 0.751289i \(-0.270567\pi\)
0.659974 + 0.751289i \(0.270567\pi\)
\(284\) 2880.00 0.601748
\(285\) 0 0
\(286\) −4560.00 −0.942792
\(287\) 378.000 0.0777444
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) −2340.00 −0.473826
\(291\) 0 0
\(292\) 584.000 0.117041
\(293\) −3582.00 −0.714207 −0.357104 0.934065i \(-0.616236\pi\)
−0.357104 + 0.934065i \(0.616236\pi\)
\(294\) 0 0
\(295\) −2220.00 −0.438147
\(296\) −848.000 −0.166517
\(297\) 0 0
\(298\) −2076.00 −0.403555
\(299\) −4560.00 −0.881979
\(300\) 0 0
\(301\) −1372.00 −0.262727
\(302\) 6016.00 1.14630
\(303\) 0 0
\(304\) −832.000 −0.156969
\(305\) −190.000 −0.0356701
\(306\) 0 0
\(307\) 8804.00 1.63671 0.818356 0.574711i \(-0.194886\pi\)
0.818356 + 0.574711i \(0.194886\pi\)
\(308\) −1680.00 −0.310802
\(309\) 0 0
\(310\) 3040.00 0.556969
\(311\) 2424.00 0.441969 0.220985 0.975277i \(-0.429073\pi\)
0.220985 + 0.975277i \(0.429073\pi\)
\(312\) 0 0
\(313\) −9070.00 −1.63791 −0.818956 0.573856i \(-0.805447\pi\)
−0.818956 + 0.573856i \(0.805447\pi\)
\(314\) 6124.00 1.10063
\(315\) 0 0
\(316\) −3232.00 −0.575361
\(317\) 6738.00 1.19383 0.596914 0.802305i \(-0.296393\pi\)
0.596914 + 0.802305i \(0.296393\pi\)
\(318\) 0 0
\(319\) −14040.0 −2.46423
\(320\) −320.000 −0.0559017
\(321\) 0 0
\(322\) −1680.00 −0.290754
\(323\) 2184.00 0.376226
\(324\) 0 0
\(325\) 950.000 0.162143
\(326\) −1976.00 −0.335707
\(327\) 0 0
\(328\) 432.000 0.0727232
\(329\) −2352.00 −0.394134
\(330\) 0 0
\(331\) 7868.00 1.30654 0.653269 0.757125i \(-0.273397\pi\)
0.653269 + 0.757125i \(0.273397\pi\)
\(332\) −2448.00 −0.404673
\(333\) 0 0
\(334\) −3312.00 −0.542589
\(335\) 4940.00 0.805675
\(336\) 0 0
\(337\) 9218.00 1.49002 0.745010 0.667054i \(-0.232445\pi\)
0.745010 + 0.667054i \(0.232445\pi\)
\(338\) −1506.00 −0.242354
\(339\) 0 0
\(340\) 840.000 0.133986
\(341\) 18240.0 2.89663
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −1568.00 −0.245758
\(345\) 0 0
\(346\) 6132.00 0.952770
\(347\) −1212.00 −0.187503 −0.0937515 0.995596i \(-0.529886\pi\)
−0.0937515 + 0.995596i \(0.529886\pi\)
\(348\) 0 0
\(349\) 10118.0 1.55187 0.775937 0.630810i \(-0.217277\pi\)
0.775937 + 0.630810i \(0.217277\pi\)
\(350\) 350.000 0.0534522
\(351\) 0 0
\(352\) −1920.00 −0.290728
\(353\) −1194.00 −0.180029 −0.0900145 0.995940i \(-0.528691\pi\)
−0.0900145 + 0.995940i \(0.528691\pi\)
\(354\) 0 0
\(355\) −3600.00 −0.538220
\(356\) −4584.00 −0.682448
\(357\) 0 0
\(358\) 4056.00 0.598788
\(359\) −2064.00 −0.303437 −0.151718 0.988424i \(-0.548481\pi\)
−0.151718 + 0.988424i \(0.548481\pi\)
\(360\) 0 0
\(361\) −4155.00 −0.605773
\(362\) −8420.00 −1.22250
\(363\) 0 0
\(364\) 1064.00 0.153211
\(365\) −730.000 −0.104685
\(366\) 0 0
\(367\) −7504.00 −1.06732 −0.533659 0.845700i \(-0.679183\pi\)
−0.533659 + 0.845700i \(0.679183\pi\)
\(368\) −1920.00 −0.271975
\(369\) 0 0
\(370\) 1060.00 0.148937
\(371\) −3066.00 −0.429053
\(372\) 0 0
\(373\) 902.000 0.125211 0.0626056 0.998038i \(-0.480059\pi\)
0.0626056 + 0.998038i \(0.480059\pi\)
\(374\) 5040.00 0.696824
\(375\) 0 0
\(376\) −2688.00 −0.368678
\(377\) 8892.00 1.21475
\(378\) 0 0
\(379\) −12004.0 −1.62692 −0.813462 0.581618i \(-0.802420\pi\)
−0.813462 + 0.581618i \(0.802420\pi\)
\(380\) 1040.00 0.140397
\(381\) 0 0
\(382\) 5232.00 0.700765
\(383\) −10848.0 −1.44728 −0.723638 0.690179i \(-0.757532\pi\)
−0.723638 + 0.690179i \(0.757532\pi\)
\(384\) 0 0
\(385\) 2100.00 0.277989
\(386\) 1444.00 0.190408
\(387\) 0 0
\(388\) −280.000 −0.0366362
\(389\) 5538.00 0.721819 0.360910 0.932601i \(-0.382466\pi\)
0.360910 + 0.932601i \(0.382466\pi\)
\(390\) 0 0
\(391\) 5040.00 0.651877
\(392\) 392.000 0.0505076
\(393\) 0 0
\(394\) −5868.00 −0.750319
\(395\) 4040.00 0.514619
\(396\) 0 0
\(397\) 11270.0 1.42475 0.712374 0.701800i \(-0.247620\pi\)
0.712374 + 0.701800i \(0.247620\pi\)
\(398\) −1040.00 −0.130981
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −2802.00 −0.348941 −0.174470 0.984662i \(-0.555821\pi\)
−0.174470 + 0.984662i \(0.555821\pi\)
\(402\) 0 0
\(403\) −11552.0 −1.42791
\(404\) −7800.00 −0.960556
\(405\) 0 0
\(406\) 3276.00 0.400456
\(407\) 6360.00 0.774579
\(408\) 0 0
\(409\) 4106.00 0.496403 0.248201 0.968708i \(-0.420161\pi\)
0.248201 + 0.968708i \(0.420161\pi\)
\(410\) −540.000 −0.0650456
\(411\) 0 0
\(412\) 1952.00 0.233418
\(413\) 3108.00 0.370302
\(414\) 0 0
\(415\) 3060.00 0.361951
\(416\) 1216.00 0.143316
\(417\) 0 0
\(418\) 6240.00 0.730164
\(419\) −4284.00 −0.499492 −0.249746 0.968311i \(-0.580347\pi\)
−0.249746 + 0.968311i \(0.580347\pi\)
\(420\) 0 0
\(421\) 1550.00 0.179436 0.0897178 0.995967i \(-0.471403\pi\)
0.0897178 + 0.995967i \(0.471403\pi\)
\(422\) 6952.00 0.801939
\(423\) 0 0
\(424\) −3504.00 −0.401343
\(425\) −1050.00 −0.119841
\(426\) 0 0
\(427\) 266.000 0.0301467
\(428\) 3984.00 0.449939
\(429\) 0 0
\(430\) 1960.00 0.219813
\(431\) −16584.0 −1.85342 −0.926709 0.375780i \(-0.877375\pi\)
−0.926709 + 0.375780i \(0.877375\pi\)
\(432\) 0 0
\(433\) −8422.00 −0.934724 −0.467362 0.884066i \(-0.654796\pi\)
−0.467362 + 0.884066i \(0.654796\pi\)
\(434\) −4256.00 −0.470725
\(435\) 0 0
\(436\) 3032.00 0.333042
\(437\) 6240.00 0.683066
\(438\) 0 0
\(439\) −2968.00 −0.322676 −0.161338 0.986899i \(-0.551581\pi\)
−0.161338 + 0.986899i \(0.551581\pi\)
\(440\) 2400.00 0.260035
\(441\) 0 0
\(442\) −3192.00 −0.343502
\(443\) 2436.00 0.261259 0.130630 0.991431i \(-0.458300\pi\)
0.130630 + 0.991431i \(0.458300\pi\)
\(444\) 0 0
\(445\) 5730.00 0.610400
\(446\) −2912.00 −0.309164
\(447\) 0 0
\(448\) 448.000 0.0472456
\(449\) −7362.00 −0.773796 −0.386898 0.922123i \(-0.626453\pi\)
−0.386898 + 0.922123i \(0.626453\pi\)
\(450\) 0 0
\(451\) −3240.00 −0.338283
\(452\) 5688.00 0.591905
\(453\) 0 0
\(454\) 6648.00 0.687238
\(455\) −1330.00 −0.137036
\(456\) 0 0
\(457\) 9290.00 0.950914 0.475457 0.879739i \(-0.342283\pi\)
0.475457 + 0.879739i \(0.342283\pi\)
\(458\) 3388.00 0.345657
\(459\) 0 0
\(460\) 2400.00 0.243262
\(461\) −11862.0 −1.19841 −0.599207 0.800594i \(-0.704517\pi\)
−0.599207 + 0.800594i \(0.704517\pi\)
\(462\) 0 0
\(463\) −13264.0 −1.33138 −0.665692 0.746227i \(-0.731863\pi\)
−0.665692 + 0.746227i \(0.731863\pi\)
\(464\) 3744.00 0.374592
\(465\) 0 0
\(466\) 12396.0 1.23226
\(467\) −14628.0 −1.44947 −0.724736 0.689027i \(-0.758038\pi\)
−0.724736 + 0.689027i \(0.758038\pi\)
\(468\) 0 0
\(469\) −6916.00 −0.680919
\(470\) 3360.00 0.329756
\(471\) 0 0
\(472\) 3552.00 0.346386
\(473\) 11760.0 1.14318
\(474\) 0 0
\(475\) −1300.00 −0.125575
\(476\) −1176.00 −0.113239
\(477\) 0 0
\(478\) −1872.00 −0.179128
\(479\) −4416.00 −0.421236 −0.210618 0.977568i \(-0.567548\pi\)
−0.210618 + 0.977568i \(0.567548\pi\)
\(480\) 0 0
\(481\) −4028.00 −0.381832
\(482\) 3460.00 0.326968
\(483\) 0 0
\(484\) 9076.00 0.852367
\(485\) 350.000 0.0327684
\(486\) 0 0
\(487\) −232.000 −0.0215871 −0.0107936 0.999942i \(-0.503436\pi\)
−0.0107936 + 0.999942i \(0.503436\pi\)
\(488\) 304.000 0.0281997
\(489\) 0 0
\(490\) −490.000 −0.0451754
\(491\) 17892.0 1.64451 0.822255 0.569119i \(-0.192716\pi\)
0.822255 + 0.569119i \(0.192716\pi\)
\(492\) 0 0
\(493\) −9828.00 −0.897831
\(494\) −3952.00 −0.359937
\(495\) 0 0
\(496\) −4864.00 −0.440323
\(497\) 5040.00 0.454879
\(498\) 0 0
\(499\) −6316.00 −0.566619 −0.283310 0.959029i \(-0.591432\pi\)
−0.283310 + 0.959029i \(0.591432\pi\)
\(500\) −500.000 −0.0447214
\(501\) 0 0
\(502\) 7416.00 0.659347
\(503\) 12600.0 1.11691 0.558455 0.829534i \(-0.311394\pi\)
0.558455 + 0.829534i \(0.311394\pi\)
\(504\) 0 0
\(505\) 9750.00 0.859147
\(506\) 14400.0 1.26513
\(507\) 0 0
\(508\) 3392.00 0.296251
\(509\) −17094.0 −1.48856 −0.744281 0.667866i \(-0.767208\pi\)
−0.744281 + 0.667866i \(0.767208\pi\)
\(510\) 0 0
\(511\) 1022.00 0.0884748
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −9492.00 −0.814541
\(515\) −2440.00 −0.208775
\(516\) 0 0
\(517\) 20160.0 1.71496
\(518\) −1484.00 −0.125875
\(519\) 0 0
\(520\) −1520.00 −0.128185
\(521\) −14586.0 −1.22653 −0.613267 0.789876i \(-0.710145\pi\)
−0.613267 + 0.789876i \(0.710145\pi\)
\(522\) 0 0
\(523\) −16324.0 −1.36482 −0.682408 0.730972i \(-0.739067\pi\)
−0.682408 + 0.730972i \(0.739067\pi\)
\(524\) −2352.00 −0.196083
\(525\) 0 0
\(526\) −8400.00 −0.696307
\(527\) 12768.0 1.05538
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) 4380.00 0.358972
\(531\) 0 0
\(532\) −1456.00 −0.118657
\(533\) 2052.00 0.166758
\(534\) 0 0
\(535\) −4980.00 −0.402438
\(536\) −7904.00 −0.636942
\(537\) 0 0
\(538\) −17004.0 −1.36263
\(539\) −2940.00 −0.234944
\(540\) 0 0
\(541\) −7162.00 −0.569165 −0.284583 0.958652i \(-0.591855\pi\)
−0.284583 + 0.958652i \(0.591855\pi\)
\(542\) −8672.00 −0.687259
\(543\) 0 0
\(544\) −1344.00 −0.105926
\(545\) −3790.00 −0.297882
\(546\) 0 0
\(547\) 9956.00 0.778223 0.389111 0.921191i \(-0.372782\pi\)
0.389111 + 0.921191i \(0.372782\pi\)
\(548\) 5016.00 0.391009
\(549\) 0 0
\(550\) −3000.00 −0.232583
\(551\) −12168.0 −0.940788
\(552\) 0 0
\(553\) −5656.00 −0.434932
\(554\) 6700.00 0.513819
\(555\) 0 0
\(556\) −6256.00 −0.477183
\(557\) −15342.0 −1.16708 −0.583538 0.812086i \(-0.698332\pi\)
−0.583538 + 0.812086i \(0.698332\pi\)
\(558\) 0 0
\(559\) −7448.00 −0.563536
\(560\) −560.000 −0.0422577
\(561\) 0 0
\(562\) 16812.0 1.26187
\(563\) −3300.00 −0.247031 −0.123515 0.992343i \(-0.539417\pi\)
−0.123515 + 0.992343i \(0.539417\pi\)
\(564\) 0 0
\(565\) −7110.00 −0.529416
\(566\) 12568.0 0.933344
\(567\) 0 0
\(568\) 5760.00 0.425500
\(569\) −2154.00 −0.158700 −0.0793501 0.996847i \(-0.525284\pi\)
−0.0793501 + 0.996847i \(0.525284\pi\)
\(570\) 0 0
\(571\) −1348.00 −0.0987952 −0.0493976 0.998779i \(-0.515730\pi\)
−0.0493976 + 0.998779i \(0.515730\pi\)
\(572\) −9120.00 −0.666654
\(573\) 0 0
\(574\) 756.000 0.0549736
\(575\) −3000.00 −0.217580
\(576\) 0 0
\(577\) −16486.0 −1.18946 −0.594732 0.803924i \(-0.702742\pi\)
−0.594732 + 0.803924i \(0.702742\pi\)
\(578\) −6298.00 −0.453222
\(579\) 0 0
\(580\) −4680.00 −0.335046
\(581\) −4284.00 −0.305904
\(582\) 0 0
\(583\) 26280.0 1.86691
\(584\) 1168.00 0.0827606
\(585\) 0 0
\(586\) −7164.00 −0.505021
\(587\) −9756.00 −0.685985 −0.342993 0.939338i \(-0.611441\pi\)
−0.342993 + 0.939338i \(0.611441\pi\)
\(588\) 0 0
\(589\) 15808.0 1.10587
\(590\) −4440.00 −0.309817
\(591\) 0 0
\(592\) −1696.00 −0.117745
\(593\) −8202.00 −0.567986 −0.283993 0.958826i \(-0.591659\pi\)
−0.283993 + 0.958826i \(0.591659\pi\)
\(594\) 0 0
\(595\) 1470.00 0.101284
\(596\) −4152.00 −0.285357
\(597\) 0 0
\(598\) −9120.00 −0.623653
\(599\) −20544.0 −1.40134 −0.700672 0.713484i \(-0.747116\pi\)
−0.700672 + 0.713484i \(0.747116\pi\)
\(600\) 0 0
\(601\) −5254.00 −0.356598 −0.178299 0.983976i \(-0.557059\pi\)
−0.178299 + 0.983976i \(0.557059\pi\)
\(602\) −2744.00 −0.185776
\(603\) 0 0
\(604\) 12032.0 0.810555
\(605\) −11345.0 −0.762380
\(606\) 0 0
\(607\) −19456.0 −1.30098 −0.650490 0.759515i \(-0.725436\pi\)
−0.650490 + 0.759515i \(0.725436\pi\)
\(608\) −1664.00 −0.110994
\(609\) 0 0
\(610\) −380.000 −0.0252225
\(611\) −12768.0 −0.845398
\(612\) 0 0
\(613\) 3926.00 0.258678 0.129339 0.991600i \(-0.458714\pi\)
0.129339 + 0.991600i \(0.458714\pi\)
\(614\) 17608.0 1.15733
\(615\) 0 0
\(616\) −3360.00 −0.219770
\(617\) −22122.0 −1.44343 −0.721717 0.692189i \(-0.756647\pi\)
−0.721717 + 0.692189i \(0.756647\pi\)
\(618\) 0 0
\(619\) −12796.0 −0.830880 −0.415440 0.909621i \(-0.636372\pi\)
−0.415440 + 0.909621i \(0.636372\pi\)
\(620\) 6080.00 0.393837
\(621\) 0 0
\(622\) 4848.00 0.312519
\(623\) −8022.00 −0.515882
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −18140.0 −1.15818
\(627\) 0 0
\(628\) 12248.0 0.778262
\(629\) 4452.00 0.282214
\(630\) 0 0
\(631\) −16576.0 −1.04577 −0.522884 0.852404i \(-0.675144\pi\)
−0.522884 + 0.852404i \(0.675144\pi\)
\(632\) −6464.00 −0.406842
\(633\) 0 0
\(634\) 13476.0 0.844165
\(635\) −4240.00 −0.264975
\(636\) 0 0
\(637\) 1862.00 0.115817
\(638\) −28080.0 −1.74247
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) −11202.0 −0.690253 −0.345127 0.938556i \(-0.612164\pi\)
−0.345127 + 0.938556i \(0.612164\pi\)
\(642\) 0 0
\(643\) 4052.00 0.248515 0.124258 0.992250i \(-0.460345\pi\)
0.124258 + 0.992250i \(0.460345\pi\)
\(644\) −3360.00 −0.205594
\(645\) 0 0
\(646\) 4368.00 0.266032
\(647\) 17544.0 1.06604 0.533018 0.846104i \(-0.321058\pi\)
0.533018 + 0.846104i \(0.321058\pi\)
\(648\) 0 0
\(649\) −26640.0 −1.61127
\(650\) 1900.00 0.114653
\(651\) 0 0
\(652\) −3952.00 −0.237381
\(653\) 12066.0 0.723092 0.361546 0.932354i \(-0.382249\pi\)
0.361546 + 0.932354i \(0.382249\pi\)
\(654\) 0 0
\(655\) 2940.00 0.175382
\(656\) 864.000 0.0514231
\(657\) 0 0
\(658\) −4704.00 −0.278695
\(659\) 7596.00 0.449011 0.224505 0.974473i \(-0.427923\pi\)
0.224505 + 0.974473i \(0.427923\pi\)
\(660\) 0 0
\(661\) 11630.0 0.684349 0.342174 0.939636i \(-0.388837\pi\)
0.342174 + 0.939636i \(0.388837\pi\)
\(662\) 15736.0 0.923863
\(663\) 0 0
\(664\) −4896.00 −0.286147
\(665\) 1820.00 0.106130
\(666\) 0 0
\(667\) −28080.0 −1.63008
\(668\) −6624.00 −0.383668
\(669\) 0 0
\(670\) 9880.00 0.569698
\(671\) −2280.00 −0.131175
\(672\) 0 0
\(673\) 7778.00 0.445498 0.222749 0.974876i \(-0.428497\pi\)
0.222749 + 0.974876i \(0.428497\pi\)
\(674\) 18436.0 1.05360
\(675\) 0 0
\(676\) −3012.00 −0.171370
\(677\) 28914.0 1.64144 0.820720 0.571330i \(-0.193572\pi\)
0.820720 + 0.571330i \(0.193572\pi\)
\(678\) 0 0
\(679\) −490.000 −0.0276944
\(680\) 1680.00 0.0947427
\(681\) 0 0
\(682\) 36480.0 2.04823
\(683\) −25404.0 −1.42322 −0.711608 0.702576i \(-0.752033\pi\)
−0.711608 + 0.702576i \(0.752033\pi\)
\(684\) 0 0
\(685\) −6270.00 −0.349729
\(686\) 686.000 0.0381802
\(687\) 0 0
\(688\) −3136.00 −0.173777
\(689\) −16644.0 −0.920299
\(690\) 0 0
\(691\) 1244.00 0.0684862 0.0342431 0.999414i \(-0.489098\pi\)
0.0342431 + 0.999414i \(0.489098\pi\)
\(692\) 12264.0 0.673710
\(693\) 0 0
\(694\) −2424.00 −0.132585
\(695\) 7820.00 0.426805
\(696\) 0 0
\(697\) −2268.00 −0.123252
\(698\) 20236.0 1.09734
\(699\) 0 0
\(700\) 700.000 0.0377964
\(701\) −3798.00 −0.204634 −0.102317 0.994752i \(-0.532626\pi\)
−0.102317 + 0.994752i \(0.532626\pi\)
\(702\) 0 0
\(703\) 5512.00 0.295717
\(704\) −3840.00 −0.205576
\(705\) 0 0
\(706\) −2388.00 −0.127300
\(707\) −13650.0 −0.726112
\(708\) 0 0
\(709\) −15154.0 −0.802709 −0.401354 0.915923i \(-0.631460\pi\)
−0.401354 + 0.915923i \(0.631460\pi\)
\(710\) −7200.00 −0.380579
\(711\) 0 0
\(712\) −9168.00 −0.482564
\(713\) 36480.0 1.91611
\(714\) 0 0
\(715\) 11400.0 0.596274
\(716\) 8112.00 0.423407
\(717\) 0 0
\(718\) −4128.00 −0.214562
\(719\) 10032.0 0.520348 0.260174 0.965562i \(-0.416220\pi\)
0.260174 + 0.965562i \(0.416220\pi\)
\(720\) 0 0
\(721\) 3416.00 0.176447
\(722\) −8310.00 −0.428347
\(723\) 0 0
\(724\) −16840.0 −0.864439
\(725\) 5850.00 0.299674
\(726\) 0 0
\(727\) 17768.0 0.906436 0.453218 0.891400i \(-0.350276\pi\)
0.453218 + 0.891400i \(0.350276\pi\)
\(728\) 2128.00 0.108336
\(729\) 0 0
\(730\) −1460.00 −0.0740233
\(731\) 8232.00 0.416514
\(732\) 0 0
\(733\) 9830.00 0.495333 0.247667 0.968845i \(-0.420336\pi\)
0.247667 + 0.968845i \(0.420336\pi\)
\(734\) −15008.0 −0.754708
\(735\) 0 0
\(736\) −3840.00 −0.192316
\(737\) 59280.0 2.96283
\(738\) 0 0
\(739\) −33244.0 −1.65480 −0.827402 0.561610i \(-0.810182\pi\)
−0.827402 + 0.561610i \(0.810182\pi\)
\(740\) 2120.00 0.105315
\(741\) 0 0
\(742\) −6132.00 −0.303387
\(743\) −3672.00 −0.181309 −0.0906545 0.995882i \(-0.528896\pi\)
−0.0906545 + 0.995882i \(0.528896\pi\)
\(744\) 0 0
\(745\) 5190.00 0.255231
\(746\) 1804.00 0.0885377
\(747\) 0 0
\(748\) 10080.0 0.492729
\(749\) 6972.00 0.340122
\(750\) 0 0
\(751\) −6280.00 −0.305140 −0.152570 0.988293i \(-0.548755\pi\)
−0.152570 + 0.988293i \(0.548755\pi\)
\(752\) −5376.00 −0.260695
\(753\) 0 0
\(754\) 17784.0 0.858959
\(755\) −15040.0 −0.724982
\(756\) 0 0
\(757\) −826.000 −0.0396585 −0.0198292 0.999803i \(-0.506312\pi\)
−0.0198292 + 0.999803i \(0.506312\pi\)
\(758\) −24008.0 −1.15041
\(759\) 0 0
\(760\) 2080.00 0.0992757
\(761\) −16842.0 −0.802263 −0.401131 0.916021i \(-0.631383\pi\)
−0.401131 + 0.916021i \(0.631383\pi\)
\(762\) 0 0
\(763\) 5306.00 0.251756
\(764\) 10464.0 0.495516
\(765\) 0 0
\(766\) −21696.0 −1.02338
\(767\) 16872.0 0.794280
\(768\) 0 0
\(769\) −21454.0 −1.00605 −0.503024 0.864272i \(-0.667779\pi\)
−0.503024 + 0.864272i \(0.667779\pi\)
\(770\) 4200.00 0.196568
\(771\) 0 0
\(772\) 2888.00 0.134639
\(773\) −13182.0 −0.613355 −0.306678 0.951813i \(-0.599217\pi\)
−0.306678 + 0.951813i \(0.599217\pi\)
\(774\) 0 0
\(775\) −7600.00 −0.352258
\(776\) −560.000 −0.0259057
\(777\) 0 0
\(778\) 11076.0 0.510403
\(779\) −2808.00 −0.129149
\(780\) 0 0
\(781\) −43200.0 −1.97928
\(782\) 10080.0 0.460946
\(783\) 0 0
\(784\) 784.000 0.0357143
\(785\) −15310.0 −0.696099
\(786\) 0 0
\(787\) 24356.0 1.10317 0.551587 0.834117i \(-0.314023\pi\)
0.551587 + 0.834117i \(0.314023\pi\)
\(788\) −11736.0 −0.530555
\(789\) 0 0
\(790\) 8080.00 0.363891
\(791\) 9954.00 0.447438
\(792\) 0 0
\(793\) 1444.00 0.0646632
\(794\) 22540.0 1.00745
\(795\) 0 0
\(796\) −2080.00 −0.0926176
\(797\) 13194.0 0.586393 0.293197 0.956052i \(-0.405281\pi\)
0.293197 + 0.956052i \(0.405281\pi\)
\(798\) 0 0
\(799\) 14112.0 0.624839
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −5604.00 −0.246738
\(803\) −8760.00 −0.384973
\(804\) 0 0
\(805\) 4200.00 0.183889
\(806\) −23104.0 −1.00968
\(807\) 0 0
\(808\) −15600.0 −0.679215
\(809\) −29274.0 −1.27221 −0.636106 0.771602i \(-0.719456\pi\)
−0.636106 + 0.771602i \(0.719456\pi\)
\(810\) 0 0
\(811\) 9812.00 0.424841 0.212420 0.977178i \(-0.431865\pi\)
0.212420 + 0.977178i \(0.431865\pi\)
\(812\) 6552.00 0.283165
\(813\) 0 0
\(814\) 12720.0 0.547710
\(815\) 4940.00 0.212320
\(816\) 0 0
\(817\) 10192.0 0.436442
\(818\) 8212.00 0.351010
\(819\) 0 0
\(820\) −1080.00 −0.0459942
\(821\) 41154.0 1.74943 0.874717 0.484635i \(-0.161048\pi\)
0.874717 + 0.484635i \(0.161048\pi\)
\(822\) 0 0
\(823\) 37640.0 1.59423 0.797113 0.603830i \(-0.206360\pi\)
0.797113 + 0.603830i \(0.206360\pi\)
\(824\) 3904.00 0.165051
\(825\) 0 0
\(826\) 6216.00 0.261843
\(827\) 13572.0 0.570671 0.285335 0.958428i \(-0.407895\pi\)
0.285335 + 0.958428i \(0.407895\pi\)
\(828\) 0 0
\(829\) 13574.0 0.568691 0.284345 0.958722i \(-0.408224\pi\)
0.284345 + 0.958722i \(0.408224\pi\)
\(830\) 6120.00 0.255938
\(831\) 0 0
\(832\) 2432.00 0.101339
\(833\) −2058.00 −0.0856008
\(834\) 0 0
\(835\) 8280.00 0.343163
\(836\) 12480.0 0.516304
\(837\) 0 0
\(838\) −8568.00 −0.353194
\(839\) 5112.00 0.210353 0.105176 0.994454i \(-0.466459\pi\)
0.105176 + 0.994454i \(0.466459\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) 3100.00 0.126880
\(843\) 0 0
\(844\) 13904.0 0.567056
\(845\) 3765.00 0.153278
\(846\) 0 0
\(847\) 15883.0 0.644329
\(848\) −7008.00 −0.283792
\(849\) 0 0
\(850\) −2100.00 −0.0847405
\(851\) 12720.0 0.512381
\(852\) 0 0
\(853\) 20702.0 0.830977 0.415488 0.909599i \(-0.363611\pi\)
0.415488 + 0.909599i \(0.363611\pi\)
\(854\) 532.000 0.0213169
\(855\) 0 0
\(856\) 7968.00 0.318155
\(857\) 5646.00 0.225045 0.112523 0.993649i \(-0.464107\pi\)
0.112523 + 0.993649i \(0.464107\pi\)
\(858\) 0 0
\(859\) 20756.0 0.824430 0.412215 0.911087i \(-0.364755\pi\)
0.412215 + 0.911087i \(0.364755\pi\)
\(860\) 3920.00 0.155431
\(861\) 0 0
\(862\) −33168.0 −1.31056
\(863\) 24432.0 0.963702 0.481851 0.876253i \(-0.339965\pi\)
0.481851 + 0.876253i \(0.339965\pi\)
\(864\) 0 0
\(865\) −15330.0 −0.602585
\(866\) −16844.0 −0.660950
\(867\) 0 0
\(868\) −8512.00 −0.332853
\(869\) 48480.0 1.89249
\(870\) 0 0
\(871\) −37544.0 −1.46054
\(872\) 6064.00 0.235497
\(873\) 0 0
\(874\) 12480.0 0.483000
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 43166.0 1.66204 0.831022 0.556240i \(-0.187756\pi\)
0.831022 + 0.556240i \(0.187756\pi\)
\(878\) −5936.00 −0.228167
\(879\) 0 0
\(880\) 4800.00 0.183873
\(881\) 1854.00 0.0708999 0.0354500 0.999371i \(-0.488714\pi\)
0.0354500 + 0.999371i \(0.488714\pi\)
\(882\) 0 0
\(883\) −23740.0 −0.904773 −0.452387 0.891822i \(-0.649427\pi\)
−0.452387 + 0.891822i \(0.649427\pi\)
\(884\) −6384.00 −0.242893
\(885\) 0 0
\(886\) 4872.00 0.184738
\(887\) −32088.0 −1.21467 −0.607333 0.794447i \(-0.707761\pi\)
−0.607333 + 0.794447i \(0.707761\pi\)
\(888\) 0 0
\(889\) 5936.00 0.223945
\(890\) 11460.0 0.431618
\(891\) 0 0
\(892\) −5824.00 −0.218612
\(893\) 17472.0 0.654735
\(894\) 0 0
\(895\) −10140.0 −0.378707
\(896\) 896.000 0.0334077
\(897\) 0 0
\(898\) −14724.0 −0.547156
\(899\) −71136.0 −2.63906
\(900\) 0 0
\(901\) 18396.0 0.680199
\(902\) −6480.00 −0.239202
\(903\) 0 0
\(904\) 11376.0 0.418540
\(905\) 21050.0 0.773178
\(906\) 0 0
\(907\) 4268.00 0.156248 0.0781238 0.996944i \(-0.475107\pi\)
0.0781238 + 0.996944i \(0.475107\pi\)
\(908\) 13296.0 0.485951
\(909\) 0 0
\(910\) −2660.00 −0.0968991
\(911\) 19512.0 0.709617 0.354809 0.934939i \(-0.384546\pi\)
0.354809 + 0.934939i \(0.384546\pi\)
\(912\) 0 0
\(913\) 36720.0 1.33106
\(914\) 18580.0 0.672398
\(915\) 0 0
\(916\) 6776.00 0.244416
\(917\) −4116.00 −0.148225
\(918\) 0 0
\(919\) −6496.00 −0.233170 −0.116585 0.993181i \(-0.537195\pi\)
−0.116585 + 0.993181i \(0.537195\pi\)
\(920\) 4800.00 0.172012
\(921\) 0 0
\(922\) −23724.0 −0.847406
\(923\) 27360.0 0.975694
\(924\) 0 0
\(925\) −2650.00 −0.0941962
\(926\) −26528.0 −0.941430
\(927\) 0 0
\(928\) 7488.00 0.264877
\(929\) 16926.0 0.597765 0.298883 0.954290i \(-0.403386\pi\)
0.298883 + 0.954290i \(0.403386\pi\)
\(930\) 0 0
\(931\) −2548.00 −0.0896964
\(932\) 24792.0 0.871340
\(933\) 0 0
\(934\) −29256.0 −1.02493
\(935\) −12600.0 −0.440710
\(936\) 0 0
\(937\) −14686.0 −0.512029 −0.256014 0.966673i \(-0.582409\pi\)
−0.256014 + 0.966673i \(0.582409\pi\)
\(938\) −13832.0 −0.481483
\(939\) 0 0
\(940\) 6720.00 0.233173
\(941\) 33834.0 1.17211 0.586056 0.810271i \(-0.300680\pi\)
0.586056 + 0.810271i \(0.300680\pi\)
\(942\) 0 0
\(943\) −6480.00 −0.223773
\(944\) 7104.00 0.244932
\(945\) 0 0
\(946\) 23520.0 0.808352
\(947\) −17508.0 −0.600775 −0.300387 0.953817i \(-0.597116\pi\)
−0.300387 + 0.953817i \(0.597116\pi\)
\(948\) 0 0
\(949\) 5548.00 0.189774
\(950\) −2600.00 −0.0887949
\(951\) 0 0
\(952\) −2352.00 −0.0800722
\(953\) 12582.0 0.427672 0.213836 0.976870i \(-0.431404\pi\)
0.213836 + 0.976870i \(0.431404\pi\)
\(954\) 0 0
\(955\) −13080.0 −0.443203
\(956\) −3744.00 −0.126663
\(957\) 0 0
\(958\) −8832.00 −0.297859
\(959\) 8778.00 0.295575
\(960\) 0 0
\(961\) 62625.0 2.10214
\(962\) −8056.00 −0.269996
\(963\) 0 0
\(964\) 6920.00 0.231201
\(965\) −3610.00 −0.120425
\(966\) 0 0
\(967\) −19096.0 −0.635042 −0.317521 0.948251i \(-0.602850\pi\)
−0.317521 + 0.948251i \(0.602850\pi\)
\(968\) 18152.0 0.602714
\(969\) 0 0
\(970\) 700.000 0.0231708
\(971\) −50484.0 −1.66850 −0.834248 0.551390i \(-0.814098\pi\)
−0.834248 + 0.551390i \(0.814098\pi\)
\(972\) 0 0
\(973\) −10948.0 −0.360716
\(974\) −464.000 −0.0152644
\(975\) 0 0
\(976\) 608.000 0.0199402
\(977\) −26898.0 −0.880802 −0.440401 0.897801i \(-0.645164\pi\)
−0.440401 + 0.897801i \(0.645164\pi\)
\(978\) 0 0
\(979\) 68760.0 2.24472
\(980\) −980.000 −0.0319438
\(981\) 0 0
\(982\) 35784.0 1.16284
\(983\) 13368.0 0.433747 0.216873 0.976200i \(-0.430414\pi\)
0.216873 + 0.976200i \(0.430414\pi\)
\(984\) 0 0
\(985\) 14670.0 0.474543
\(986\) −19656.0 −0.634863
\(987\) 0 0
\(988\) −7904.00 −0.254514
\(989\) 23520.0 0.756211
\(990\) 0 0
\(991\) −44296.0 −1.41989 −0.709944 0.704258i \(-0.751280\pi\)
−0.709944 + 0.704258i \(0.751280\pi\)
\(992\) −9728.00 −0.311355
\(993\) 0 0
\(994\) 10080.0 0.321648
\(995\) 2600.00 0.0828397
\(996\) 0 0
\(997\) −4354.00 −0.138307 −0.0691537 0.997606i \(-0.522030\pi\)
−0.0691537 + 0.997606i \(0.522030\pi\)
\(998\) −12632.0 −0.400660
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.a.o.1.1 1
3.2 odd 2 70.4.a.d.1.1 1
12.11 even 2 560.4.a.g.1.1 1
15.2 even 4 350.4.c.d.99.1 2
15.8 even 4 350.4.c.d.99.2 2
15.14 odd 2 350.4.a.o.1.1 1
21.2 odd 6 490.4.e.k.361.1 2
21.5 even 6 490.4.e.q.361.1 2
21.11 odd 6 490.4.e.k.471.1 2
21.17 even 6 490.4.e.q.471.1 2
21.20 even 2 490.4.a.b.1.1 1
24.5 odd 2 2240.4.a.m.1.1 1
24.11 even 2 2240.4.a.y.1.1 1
105.104 even 2 2450.4.a.bm.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.a.d.1.1 1 3.2 odd 2
350.4.a.o.1.1 1 15.14 odd 2
350.4.c.d.99.1 2 15.2 even 4
350.4.c.d.99.2 2 15.8 even 4
490.4.a.b.1.1 1 21.20 even 2
490.4.e.k.361.1 2 21.2 odd 6
490.4.e.k.471.1 2 21.11 odd 6
490.4.e.q.361.1 2 21.5 even 6
490.4.e.q.471.1 2 21.17 even 6
560.4.a.g.1.1 1 12.11 even 2
630.4.a.o.1.1 1 1.1 even 1 trivial
2240.4.a.m.1.1 1 24.5 odd 2
2240.4.a.y.1.1 1 24.11 even 2
2450.4.a.bm.1.1 1 105.104 even 2