Properties

Label 560.4.q.n.81.1
Level $560$
Weight $4$
Character 560.81
Analytic conductor $33.041$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 38 x^{8} - 5 x^{7} + 1102 x^{6} - 137 x^{5} + 11161 x^{4} + 10784 x^{3} + 81600 x^{2} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(1.92311 - 3.33093i\) of defining polynomial
Character \(\chi\) \(=\) 560.81
Dual form 560.4.q.n.401.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.48397 + 7.76647i) q^{3} +(2.50000 + 4.33013i) q^{5} +(-12.3509 - 13.8005i) q^{7} +(-26.7120 - 46.2666i) q^{9} +(11.5560 - 20.0155i) q^{11} +61.0473 q^{13} -44.8397 q^{15} +(-0.344154 + 0.596093i) q^{17} +(31.6124 + 54.7542i) q^{19} +(162.563 - 34.0419i) q^{21} +(62.2508 + 107.822i) q^{23} +(-12.5000 + 21.6506i) q^{25} +236.970 q^{27} +104.167 q^{29} +(140.011 - 242.506i) q^{31} +(103.633 + 179.498i) q^{33} +(28.8807 - 87.9824i) q^{35} +(131.936 + 228.519i) q^{37} +(-273.735 + 474.122i) q^{39} -243.366 q^{41} -172.541 q^{43} +(133.560 - 231.333i) q^{45} +(-53.6907 - 92.9951i) q^{47} +(-37.9094 + 340.899i) q^{49} +(-3.08636 - 5.34573i) q^{51} +(-22.4043 + 38.8054i) q^{53} +115.560 q^{55} -566.996 q^{57} +(228.623 - 395.986i) q^{59} +(-236.901 - 410.324i) q^{61} +(-308.586 + 940.076i) q^{63} +(152.618 + 264.343i) q^{65} +(-114.727 + 198.713i) q^{67} -1116.52 q^{69} -407.688 q^{71} +(174.238 - 301.789i) q^{73} +(-112.099 - 194.162i) q^{75} +(-418.952 + 87.7317i) q^{77} +(420.068 + 727.579i) q^{79} +(-341.342 + 591.221i) q^{81} +885.652 q^{83} -3.44154 q^{85} +(-467.082 + 809.010i) q^{87} +(428.048 + 741.401i) q^{89} +(-753.991 - 842.486i) q^{91} +(1255.61 + 2174.78i) q^{93} +(-158.062 + 273.771i) q^{95} +189.436 q^{97} -1234.74 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{3} + 25 q^{5} + 62 q^{7} - 81 q^{9} + 47 q^{11} + 2 q^{13} - 80 q^{15} + 2 q^{17} - 21 q^{19} + 178 q^{21} + 201 q^{23} - 125 q^{25} + 1036 q^{27} + 380 q^{29} + 388 q^{31} + 262 q^{33} + 95 q^{35}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.48397 + 7.76647i −0.862941 + 1.49466i 0.00613580 + 0.999981i \(0.498047\pi\)
−0.869077 + 0.494677i \(0.835286\pi\)
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −12.3509 13.8005i −0.666887 0.745159i
\(8\) 0 0
\(9\) −26.7120 46.2666i −0.989335 1.71358i
\(10\) 0 0
\(11\) 11.5560 20.0155i 0.316751 0.548628i −0.663057 0.748569i \(-0.730741\pi\)
0.979808 + 0.199940i \(0.0640748\pi\)
\(12\) 0 0
\(13\) 61.0473 1.30242 0.651211 0.758897i \(-0.274261\pi\)
0.651211 + 0.758897i \(0.274261\pi\)
\(14\) 0 0
\(15\) −44.8397 −0.771838
\(16\) 0 0
\(17\) −0.344154 + 0.596093i −0.00490998 + 0.00850434i −0.868470 0.495742i \(-0.834896\pi\)
0.863560 + 0.504246i \(0.168230\pi\)
\(18\) 0 0
\(19\) 31.6124 + 54.7542i 0.381704 + 0.661130i 0.991306 0.131577i \(-0.0420041\pi\)
−0.609602 + 0.792707i \(0.708671\pi\)
\(20\) 0 0
\(21\) 162.563 34.0419i 1.68924 0.353740i
\(22\) 0 0
\(23\) 62.2508 + 107.822i 0.564356 + 0.977493i 0.997109 + 0.0759809i \(0.0242088\pi\)
−0.432753 + 0.901512i \(0.642458\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 236.970 1.68907
\(28\) 0 0
\(29\) 104.167 0.667011 0.333506 0.942748i \(-0.391768\pi\)
0.333506 + 0.942748i \(0.391768\pi\)
\(30\) 0 0
\(31\) 140.011 242.506i 0.811185 1.40501i −0.100850 0.994902i \(-0.532156\pi\)
0.912035 0.410112i \(-0.134510\pi\)
\(32\) 0 0
\(33\) 103.633 + 179.498i 0.546674 + 0.946868i
\(34\) 0 0
\(35\) 28.8807 87.9824i 0.139478 0.424907i
\(36\) 0 0
\(37\) 131.936 + 228.519i 0.586219 + 1.01536i 0.994722 + 0.102604i \(0.0327174\pi\)
−0.408504 + 0.912757i \(0.633949\pi\)
\(38\) 0 0
\(39\) −273.735 + 474.122i −1.12391 + 1.94668i
\(40\) 0 0
\(41\) −243.366 −0.927009 −0.463505 0.886095i \(-0.653408\pi\)
−0.463505 + 0.886095i \(0.653408\pi\)
\(42\) 0 0
\(43\) −172.541 −0.611913 −0.305956 0.952046i \(-0.598976\pi\)
−0.305956 + 0.952046i \(0.598976\pi\)
\(44\) 0 0
\(45\) 133.560 231.333i 0.442444 0.766336i
\(46\) 0 0
\(47\) −53.6907 92.9951i −0.166630 0.288611i 0.770603 0.637315i \(-0.219955\pi\)
−0.937233 + 0.348704i \(0.886622\pi\)
\(48\) 0 0
\(49\) −37.9094 + 340.899i −0.110523 + 0.993874i
\(50\) 0 0
\(51\) −3.08636 5.34573i −0.00847405 0.0146775i
\(52\) 0 0
\(53\) −22.4043 + 38.8054i −0.0580654 + 0.100572i −0.893597 0.448870i \(-0.851827\pi\)
0.835532 + 0.549443i \(0.185160\pi\)
\(54\) 0 0
\(55\) 115.560 0.283310
\(56\) 0 0
\(57\) −566.996 −1.31755
\(58\) 0 0
\(59\) 228.623 395.986i 0.504477 0.873780i −0.495509 0.868603i \(-0.665019\pi\)
0.999987 0.00517746i \(-0.00164804\pi\)
\(60\) 0 0
\(61\) −236.901 410.324i −0.497247 0.861256i 0.502748 0.864433i \(-0.332322\pi\)
−0.999995 + 0.00317642i \(0.998989\pi\)
\(62\) 0 0
\(63\) −308.586 + 940.076i −0.617113 + 1.87998i
\(64\) 0 0
\(65\) 152.618 + 264.343i 0.291230 + 0.504426i
\(66\) 0 0
\(67\) −114.727 + 198.713i −0.209196 + 0.362338i −0.951461 0.307768i \(-0.900418\pi\)
0.742266 + 0.670106i \(0.233751\pi\)
\(68\) 0 0
\(69\) −1116.52 −1.94802
\(70\) 0 0
\(71\) −407.688 −0.681460 −0.340730 0.940161i \(-0.610674\pi\)
−0.340730 + 0.940161i \(0.610674\pi\)
\(72\) 0 0
\(73\) 174.238 301.789i 0.279356 0.483859i −0.691869 0.722023i \(-0.743212\pi\)
0.971225 + 0.238165i \(0.0765457\pi\)
\(74\) 0 0
\(75\) −112.099 194.162i −0.172588 0.298932i
\(76\) 0 0
\(77\) −418.952 + 87.7317i −0.620052 + 0.129844i
\(78\) 0 0
\(79\) 420.068 + 727.579i 0.598244 + 1.03619i 0.993080 + 0.117438i \(0.0374682\pi\)
−0.394836 + 0.918752i \(0.629199\pi\)
\(80\) 0 0
\(81\) −341.342 + 591.221i −0.468233 + 0.811003i
\(82\) 0 0
\(83\) 885.652 1.17124 0.585620 0.810586i \(-0.300851\pi\)
0.585620 + 0.810586i \(0.300851\pi\)
\(84\) 0 0
\(85\) −3.44154 −0.00439162
\(86\) 0 0
\(87\) −467.082 + 809.010i −0.575592 + 0.996954i
\(88\) 0 0
\(89\) 428.048 + 741.401i 0.509809 + 0.883015i 0.999935 + 0.0113636i \(0.00361722\pi\)
−0.490127 + 0.871651i \(0.663049\pi\)
\(90\) 0 0
\(91\) −753.991 842.486i −0.868569 0.970511i
\(92\) 0 0
\(93\) 1255.61 + 2174.78i 1.40001 + 2.42489i
\(94\) 0 0
\(95\) −158.062 + 273.771i −0.170703 + 0.295666i
\(96\) 0 0
\(97\) 189.436 0.198292 0.0991459 0.995073i \(-0.468389\pi\)
0.0991459 + 0.995073i \(0.468389\pi\)
\(98\) 0 0
\(99\) −1234.74 −1.25349
\(100\) 0 0
\(101\) −397.902 + 689.186i −0.392007 + 0.678976i −0.992714 0.120493i \(-0.961552\pi\)
0.600707 + 0.799469i \(0.294886\pi\)
\(102\) 0 0
\(103\) 970.353 + 1680.70i 0.928269 + 1.60781i 0.786218 + 0.617950i \(0.212037\pi\)
0.142052 + 0.989859i \(0.454630\pi\)
\(104\) 0 0
\(105\) 553.812 + 618.812i 0.514729 + 0.575142i
\(106\) 0 0
\(107\) 244.344 + 423.217i 0.220763 + 0.382373i 0.955040 0.296477i \(-0.0958119\pi\)
−0.734277 + 0.678850i \(0.762479\pi\)
\(108\) 0 0
\(109\) −815.027 + 1411.67i −0.716197 + 1.24049i 0.246300 + 0.969194i \(0.420785\pi\)
−0.962496 + 0.271295i \(0.912548\pi\)
\(110\) 0 0
\(111\) −2366.38 −2.02349
\(112\) 0 0
\(113\) 345.925 0.287981 0.143991 0.989579i \(-0.454007\pi\)
0.143991 + 0.989579i \(0.454007\pi\)
\(114\) 0 0
\(115\) −311.254 + 539.108i −0.252388 + 0.437148i
\(116\) 0 0
\(117\) −1630.70 2824.45i −1.28853 2.23180i
\(118\) 0 0
\(119\) 12.4770 2.61278i 0.00961149 0.00201272i
\(120\) 0 0
\(121\) 398.419 + 690.082i 0.299338 + 0.518469i
\(122\) 0 0
\(123\) 1091.25 1890.09i 0.799954 1.38556i
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1665.24 1.16351 0.581757 0.813362i \(-0.302365\pi\)
0.581757 + 0.813362i \(0.302365\pi\)
\(128\) 0 0
\(129\) 773.669 1340.03i 0.528045 0.914601i
\(130\) 0 0
\(131\) 338.374 + 586.080i 0.225678 + 0.390886i 0.956523 0.291658i \(-0.0942069\pi\)
−0.730844 + 0.682544i \(0.760874\pi\)
\(132\) 0 0
\(133\) 365.195 1112.53i 0.238094 0.725329i
\(134\) 0 0
\(135\) 592.425 + 1026.11i 0.377687 + 0.654174i
\(136\) 0 0
\(137\) 517.117 895.673i 0.322484 0.558558i −0.658516 0.752567i \(-0.728816\pi\)
0.981000 + 0.194008i \(0.0621489\pi\)
\(138\) 0 0
\(139\) −435.826 −0.265944 −0.132972 0.991120i \(-0.542452\pi\)
−0.132972 + 0.991120i \(0.542452\pi\)
\(140\) 0 0
\(141\) 962.992 0.575167
\(142\) 0 0
\(143\) 705.462 1221.90i 0.412543 0.714546i
\(144\) 0 0
\(145\) 260.418 + 451.056i 0.149148 + 0.258332i
\(146\) 0 0
\(147\) −2477.59 1823.00i −1.39013 1.02285i
\(148\) 0 0
\(149\) −1059.97 1835.93i −0.582795 1.00943i −0.995146 0.0984057i \(-0.968626\pi\)
0.412351 0.911025i \(-0.364708\pi\)
\(150\) 0 0
\(151\) −1200.20 + 2078.81i −0.646827 + 1.12034i 0.337050 + 0.941487i \(0.390571\pi\)
−0.983876 + 0.178850i \(0.942762\pi\)
\(152\) 0 0
\(153\) 36.7723 0.0194305
\(154\) 0 0
\(155\) 1400.11 0.725546
\(156\) 0 0
\(157\) 253.094 438.372i 0.128657 0.222840i −0.794500 0.607265i \(-0.792267\pi\)
0.923156 + 0.384425i \(0.125600\pi\)
\(158\) 0 0
\(159\) −200.921 348.005i −0.100214 0.173576i
\(160\) 0 0
\(161\) 719.140 2190.79i 0.352026 1.07241i
\(162\) 0 0
\(163\) 1300.47 + 2252.49i 0.624913 + 1.08238i 0.988558 + 0.150844i \(0.0481991\pi\)
−0.363644 + 0.931538i \(0.618468\pi\)
\(164\) 0 0
\(165\) −518.167 + 897.491i −0.244480 + 0.423452i
\(166\) 0 0
\(167\) −546.077 −0.253034 −0.126517 0.991964i \(-0.540380\pi\)
−0.126517 + 0.991964i \(0.540380\pi\)
\(168\) 0 0
\(169\) 1529.78 0.696303
\(170\) 0 0
\(171\) 1688.86 2925.19i 0.755266 1.30816i
\(172\) 0 0
\(173\) 1510.16 + 2615.67i 0.663673 + 1.14951i 0.979643 + 0.200746i \(0.0643365\pi\)
−0.315971 + 0.948769i \(0.602330\pi\)
\(174\) 0 0
\(175\) 453.177 94.8987i 0.195754 0.0409924i
\(176\) 0 0
\(177\) 2050.28 + 3551.18i 0.870668 + 1.50804i
\(178\) 0 0
\(179\) 999.583 1731.33i 0.417387 0.722936i −0.578288 0.815832i \(-0.696279\pi\)
0.995676 + 0.0928961i \(0.0296125\pi\)
\(180\) 0 0
\(181\) −681.145 −0.279719 −0.139859 0.990171i \(-0.544665\pi\)
−0.139859 + 0.990171i \(0.544665\pi\)
\(182\) 0 0
\(183\) 4249.03 1.71638
\(184\) 0 0
\(185\) −659.678 + 1142.60i −0.262165 + 0.454083i
\(186\) 0 0
\(187\) 7.95408 + 13.7769i 0.00311048 + 0.00538751i
\(188\) 0 0
\(189\) −2926.80 3270.31i −1.12642 1.25862i
\(190\) 0 0
\(191\) −806.381 1396.69i −0.305485 0.529116i 0.671884 0.740656i \(-0.265485\pi\)
−0.977369 + 0.211541i \(0.932152\pi\)
\(192\) 0 0
\(193\) −404.461 + 700.547i −0.150848 + 0.261277i −0.931540 0.363640i \(-0.881534\pi\)
0.780691 + 0.624917i \(0.214867\pi\)
\(194\) 0 0
\(195\) −2737.35 −1.00526
\(196\) 0 0
\(197\) 3704.23 1.33967 0.669836 0.742509i \(-0.266364\pi\)
0.669836 + 0.742509i \(0.266364\pi\)
\(198\) 0 0
\(199\) −183.964 + 318.635i −0.0655319 + 0.113505i −0.896930 0.442173i \(-0.854208\pi\)
0.831398 + 0.555678i \(0.187541\pi\)
\(200\) 0 0
\(201\) −1028.87 1782.05i −0.361047 0.625353i
\(202\) 0 0
\(203\) −1286.56 1437.56i −0.444821 0.497029i
\(204\) 0 0
\(205\) −608.415 1053.81i −0.207286 0.359029i
\(206\) 0 0
\(207\) 3325.69 5760.27i 1.11667 1.93414i
\(208\) 0 0
\(209\) 1461.25 0.483620
\(210\) 0 0
\(211\) 1073.36 0.350205 0.175102 0.984550i \(-0.443974\pi\)
0.175102 + 0.984550i \(0.443974\pi\)
\(212\) 0 0
\(213\) 1828.06 3166.30i 0.588060 1.01855i
\(214\) 0 0
\(215\) −431.352 747.124i −0.136828 0.236993i
\(216\) 0 0
\(217\) −5075.98 + 1062.95i −1.58793 + 0.332524i
\(218\) 0 0
\(219\) 1562.55 + 2706.42i 0.482135 + 0.835083i
\(220\) 0 0
\(221\) −21.0097 + 36.3899i −0.00639487 + 0.0110762i
\(222\) 0 0
\(223\) 1725.16 0.518050 0.259025 0.965871i \(-0.416599\pi\)
0.259025 + 0.965871i \(0.416599\pi\)
\(224\) 0 0
\(225\) 1335.60 0.395734
\(226\) 0 0
\(227\) −1808.49 + 3132.40i −0.528784 + 0.915880i 0.470653 + 0.882318i \(0.344018\pi\)
−0.999437 + 0.0335619i \(0.989315\pi\)
\(228\) 0 0
\(229\) −730.893 1265.94i −0.210912 0.365309i 0.741089 0.671407i \(-0.234310\pi\)
−0.952000 + 0.306098i \(0.900977\pi\)
\(230\) 0 0
\(231\) 1197.20 3647.17i 0.340997 1.03881i
\(232\) 0 0
\(233\) −1067.66 1849.24i −0.300192 0.519947i 0.675988 0.736913i \(-0.263717\pi\)
−0.976179 + 0.216966i \(0.930384\pi\)
\(234\) 0 0
\(235\) 268.454 464.976i 0.0745191 0.129071i
\(236\) 0 0
\(237\) −7534.29 −2.06500
\(238\) 0 0
\(239\) −5952.35 −1.61099 −0.805493 0.592605i \(-0.798100\pi\)
−0.805493 + 0.592605i \(0.798100\pi\)
\(240\) 0 0
\(241\) 1923.78 3332.08i 0.514197 0.890615i −0.485668 0.874144i \(-0.661423\pi\)
0.999864 0.0164713i \(-0.00524321\pi\)
\(242\) 0 0
\(243\) 137.960 + 238.954i 0.0364203 + 0.0630819i
\(244\) 0 0
\(245\) −1570.91 + 688.094i −0.409639 + 0.179432i
\(246\) 0 0
\(247\) 1929.85 + 3342.60i 0.497139 + 0.861071i
\(248\) 0 0
\(249\) −3971.24 + 6878.39i −1.01071 + 1.75060i
\(250\) 0 0
\(251\) 1731.69 0.435470 0.217735 0.976008i \(-0.430133\pi\)
0.217735 + 0.976008i \(0.430133\pi\)
\(252\) 0 0
\(253\) 2877.47 0.715041
\(254\) 0 0
\(255\) 15.4318 26.7287i 0.00378971 0.00656397i
\(256\) 0 0
\(257\) 2027.21 + 3511.24i 0.492039 + 0.852237i 0.999958 0.00916808i \(-0.00291833\pi\)
−0.507919 + 0.861405i \(0.669585\pi\)
\(258\) 0 0
\(259\) 1524.16 4643.21i 0.365663 1.11396i
\(260\) 0 0
\(261\) −2782.51 4819.46i −0.659898 1.14298i
\(262\) 0 0
\(263\) −3167.91 + 5486.98i −0.742744 + 1.28647i 0.208498 + 0.978023i \(0.433143\pi\)
−0.951242 + 0.308447i \(0.900191\pi\)
\(264\) 0 0
\(265\) −224.043 −0.0519353
\(266\) 0 0
\(267\) −7677.42 −1.75974
\(268\) 0 0
\(269\) 660.817 1144.57i 0.149780 0.259426i −0.781366 0.624073i \(-0.785477\pi\)
0.931146 + 0.364647i \(0.118810\pi\)
\(270\) 0 0
\(271\) −1168.00 2023.04i −0.261812 0.453471i 0.704912 0.709295i \(-0.250987\pi\)
−0.966723 + 0.255824i \(0.917653\pi\)
\(272\) 0 0
\(273\) 9924.02 2078.16i 2.20011 0.460719i
\(274\) 0 0
\(275\) 288.899 + 500.388i 0.0633501 + 0.109726i
\(276\) 0 0
\(277\) 3542.61 6135.99i 0.768430 1.33096i −0.169984 0.985447i \(-0.554372\pi\)
0.938414 0.345513i \(-0.112295\pi\)
\(278\) 0 0
\(279\) −14959.9 −3.21013
\(280\) 0 0
\(281\) 2123.17 0.450738 0.225369 0.974273i \(-0.427641\pi\)
0.225369 + 0.974273i \(0.427641\pi\)
\(282\) 0 0
\(283\) 2945.82 5102.30i 0.618765 1.07173i −0.370946 0.928654i \(-0.620967\pi\)
0.989711 0.143078i \(-0.0457001\pi\)
\(284\) 0 0
\(285\) −1417.49 2455.16i −0.294613 0.510286i
\(286\) 0 0
\(287\) 3005.79 + 3358.58i 0.618210 + 0.690769i
\(288\) 0 0
\(289\) 2456.26 + 4254.37i 0.499952 + 0.865942i
\(290\) 0 0
\(291\) −849.426 + 1471.25i −0.171114 + 0.296378i
\(292\) 0 0
\(293\) −8137.75 −1.62257 −0.811284 0.584652i \(-0.801231\pi\)
−0.811284 + 0.584652i \(0.801231\pi\)
\(294\) 0 0
\(295\) 2286.23 0.451218
\(296\) 0 0
\(297\) 2738.42 4743.08i 0.535014 0.926671i
\(298\) 0 0
\(299\) 3800.25 + 6582.22i 0.735030 + 1.27311i
\(300\) 0 0
\(301\) 2131.04 + 2381.16i 0.408077 + 0.455972i
\(302\) 0 0
\(303\) −3568.36 6180.58i −0.676558 1.17183i
\(304\) 0 0
\(305\) 1184.50 2051.62i 0.222375 0.385166i
\(306\) 0 0
\(307\) 4797.24 0.891833 0.445917 0.895075i \(-0.352878\pi\)
0.445917 + 0.895075i \(0.352878\pi\)
\(308\) 0 0
\(309\) −17404.1 −3.20417
\(310\) 0 0
\(311\) 2594.76 4494.26i 0.473105 0.819442i −0.526421 0.850224i \(-0.676467\pi\)
0.999526 + 0.0307823i \(0.00979987\pi\)
\(312\) 0 0
\(313\) 1122.62 + 1944.44i 0.202729 + 0.351138i 0.949407 0.314049i \(-0.101686\pi\)
−0.746678 + 0.665186i \(0.768352\pi\)
\(314\) 0 0
\(315\) −4842.11 + 1013.98i −0.866102 + 0.181368i
\(316\) 0 0
\(317\) 4871.13 + 8437.05i 0.863060 + 1.49486i 0.868961 + 0.494881i \(0.164788\pi\)
−0.00590040 + 0.999983i \(0.501878\pi\)
\(318\) 0 0
\(319\) 1203.75 2084.96i 0.211276 0.365941i
\(320\) 0 0
\(321\) −4382.53 −0.762022
\(322\) 0 0
\(323\) −43.5181 −0.00749663
\(324\) 0 0
\(325\) −763.092 + 1321.71i −0.130242 + 0.225586i
\(326\) 0 0
\(327\) −7309.12 12659.8i −1.23607 2.14094i
\(328\) 0 0
\(329\) −620.252 + 1889.54i −0.103938 + 0.316637i
\(330\) 0 0
\(331\) 5665.38 + 9812.73i 0.940778 + 1.62948i 0.763992 + 0.645226i \(0.223237\pi\)
0.176786 + 0.984249i \(0.443430\pi\)
\(332\) 0 0
\(333\) 7048.54 12208.4i 1.15993 2.00906i
\(334\) 0 0
\(335\) −1147.27 −0.187110
\(336\) 0 0
\(337\) 3637.35 0.587950 0.293975 0.955813i \(-0.405022\pi\)
0.293975 + 0.955813i \(0.405022\pi\)
\(338\) 0 0
\(339\) −1551.12 + 2686.61i −0.248511 + 0.430433i
\(340\) 0 0
\(341\) −3235.93 5604.79i −0.513887 0.890078i
\(342\) 0 0
\(343\) 5172.80 3687.24i 0.814300 0.580444i
\(344\) 0 0
\(345\) −2791.31 4834.69i −0.435591 0.754467i
\(346\) 0 0
\(347\) −2015.06 + 3490.19i −0.311741 + 0.539951i −0.978739 0.205108i \(-0.934245\pi\)
0.666998 + 0.745059i \(0.267579\pi\)
\(348\) 0 0
\(349\) 2887.69 0.442906 0.221453 0.975171i \(-0.428920\pi\)
0.221453 + 0.975171i \(0.428920\pi\)
\(350\) 0 0
\(351\) 14466.4 2.19988
\(352\) 0 0
\(353\) 262.459 454.592i 0.0395731 0.0685425i −0.845561 0.533880i \(-0.820734\pi\)
0.885134 + 0.465337i \(0.154067\pi\)
\(354\) 0 0
\(355\) −1019.22 1765.34i −0.152379 0.263928i
\(356\) 0 0
\(357\) −35.6545 + 108.618i −0.00528582 + 0.0161027i
\(358\) 0 0
\(359\) −1642.66 2845.17i −0.241493 0.418279i 0.719646 0.694341i \(-0.244304\pi\)
−0.961140 + 0.276062i \(0.910971\pi\)
\(360\) 0 0
\(361\) 1430.82 2478.25i 0.208605 0.361314i
\(362\) 0 0
\(363\) −7146.00 −1.03324
\(364\) 0 0
\(365\) 1742.38 0.249864
\(366\) 0 0
\(367\) 4526.98 7840.95i 0.643886 1.11524i −0.340671 0.940182i \(-0.610654\pi\)
0.984558 0.175061i \(-0.0560123\pi\)
\(368\) 0 0
\(369\) 6500.80 + 11259.7i 0.917122 + 1.58850i
\(370\) 0 0
\(371\) 812.249 170.091i 0.113665 0.0238024i
\(372\) 0 0
\(373\) 2604.55 + 4511.22i 0.361551 + 0.626225i 0.988216 0.153064i \(-0.0489139\pi\)
−0.626665 + 0.779289i \(0.715581\pi\)
\(374\) 0 0
\(375\) 560.497 970.809i 0.0771838 0.133686i
\(376\) 0 0
\(377\) 6359.12 0.868730
\(378\) 0 0
\(379\) −3200.68 −0.433794 −0.216897 0.976194i \(-0.569594\pi\)
−0.216897 + 0.976194i \(0.569594\pi\)
\(380\) 0 0
\(381\) −7466.90 + 12933.1i −1.00404 + 1.73906i
\(382\) 0 0
\(383\) −1101.40 1907.69i −0.146943 0.254513i 0.783153 0.621829i \(-0.213610\pi\)
−0.930096 + 0.367316i \(0.880277\pi\)
\(384\) 0 0
\(385\) −1427.27 1594.79i −0.188936 0.211111i
\(386\) 0 0
\(387\) 4608.92 + 7982.89i 0.605387 + 1.04856i
\(388\) 0 0
\(389\) 3120.79 5405.38i 0.406762 0.704533i −0.587762 0.809034i \(-0.699991\pi\)
0.994525 + 0.104500i \(0.0333244\pi\)
\(390\) 0 0
\(391\) −85.6955 −0.0110839
\(392\) 0 0
\(393\) −6069.04 −0.778988
\(394\) 0 0
\(395\) −2100.34 + 3637.89i −0.267543 + 0.463398i
\(396\) 0 0
\(397\) −5203.58 9012.87i −0.657834 1.13940i −0.981175 0.193120i \(-0.938139\pi\)
0.323341 0.946283i \(-0.395194\pi\)
\(398\) 0 0
\(399\) 7002.92 + 7824.84i 0.878658 + 0.981785i
\(400\) 0 0
\(401\) 7486.63 + 12967.2i 0.932330 + 1.61484i 0.779327 + 0.626618i \(0.215561\pi\)
0.153003 + 0.988226i \(0.451105\pi\)
\(402\) 0 0
\(403\) 8547.30 14804.4i 1.05651 1.82992i
\(404\) 0 0
\(405\) −3413.42 −0.418800
\(406\) 0 0
\(407\) 6098.58 0.742741
\(408\) 0 0
\(409\) 3529.55 6113.36i 0.426711 0.739086i −0.569867 0.821737i \(-0.693005\pi\)
0.996579 + 0.0826512i \(0.0263387\pi\)
\(410\) 0 0
\(411\) 4637.48 + 8032.35i 0.556569 + 0.964006i
\(412\) 0 0
\(413\) −8288.52 + 1735.68i −0.987534 + 0.206797i
\(414\) 0 0
\(415\) 2214.13 + 3834.99i 0.261897 + 0.453619i
\(416\) 0 0
\(417\) 1954.23 3384.83i 0.229494 0.397496i
\(418\) 0 0
\(419\) −928.543 −0.108263 −0.0541316 0.998534i \(-0.517239\pi\)
−0.0541316 + 0.998534i \(0.517239\pi\)
\(420\) 0 0
\(421\) 7105.06 0.822517 0.411258 0.911519i \(-0.365089\pi\)
0.411258 + 0.911519i \(0.365089\pi\)
\(422\) 0 0
\(423\) −2868.38 + 4968.18i −0.329705 + 0.571066i
\(424\) 0 0
\(425\) −8.60386 14.9023i −0.000981996 0.00170087i
\(426\) 0 0
\(427\) −2736.75 + 8337.24i −0.310165 + 0.944888i
\(428\) 0 0
\(429\) 6326.54 + 10957.9i 0.712001 + 1.23322i
\(430\) 0 0
\(431\) −2159.64 + 3740.60i −0.241360 + 0.418047i −0.961102 0.276194i \(-0.910927\pi\)
0.719742 + 0.694241i \(0.244260\pi\)
\(432\) 0 0
\(433\) 4600.60 0.510602 0.255301 0.966862i \(-0.417825\pi\)
0.255301 + 0.966862i \(0.417825\pi\)
\(434\) 0 0
\(435\) −4670.82 −0.514825
\(436\) 0 0
\(437\) −3935.79 + 6816.99i −0.430834 + 0.746226i
\(438\) 0 0
\(439\) 961.868 + 1666.00i 0.104573 + 0.181125i 0.913564 0.406696i \(-0.133319\pi\)
−0.808991 + 0.587821i \(0.799986\pi\)
\(440\) 0 0
\(441\) 16784.9 7352.16i 1.81242 0.793884i
\(442\) 0 0
\(443\) −2267.44 3927.32i −0.243181 0.421202i 0.718438 0.695591i \(-0.244858\pi\)
−0.961619 + 0.274390i \(0.911524\pi\)
\(444\) 0 0
\(445\) −2140.24 + 3707.00i −0.227993 + 0.394896i
\(446\) 0 0
\(447\) 19011.6 2.01167
\(448\) 0 0
\(449\) −17431.9 −1.83221 −0.916105 0.400937i \(-0.868684\pi\)
−0.916105 + 0.400937i \(0.868684\pi\)
\(450\) 0 0
\(451\) −2812.33 + 4871.10i −0.293631 + 0.508583i
\(452\) 0 0
\(453\) −10763.3 18642.6i −1.11635 1.93357i
\(454\) 0 0
\(455\) 1763.09 5371.09i 0.181660 0.553408i
\(456\) 0 0
\(457\) 981.162 + 1699.42i 0.100431 + 0.173951i 0.911862 0.410496i \(-0.134645\pi\)
−0.811431 + 0.584448i \(0.801311\pi\)
\(458\) 0 0
\(459\) −81.5542 + 141.256i −0.00829330 + 0.0143644i
\(460\) 0 0
\(461\) 14344.4 1.44920 0.724602 0.689167i \(-0.242024\pi\)
0.724602 + 0.689167i \(0.242024\pi\)
\(462\) 0 0
\(463\) −11657.8 −1.17016 −0.585081 0.810975i \(-0.698937\pi\)
−0.585081 + 0.810975i \(0.698937\pi\)
\(464\) 0 0
\(465\) −6278.06 + 10873.9i −0.626103 + 1.08444i
\(466\) 0 0
\(467\) −8256.88 14301.3i −0.818164 1.41710i −0.907033 0.421059i \(-0.861659\pi\)
0.0888691 0.996043i \(-0.471675\pi\)
\(468\) 0 0
\(469\) 4159.33 870.995i 0.409509 0.0857544i
\(470\) 0 0
\(471\) 2269.73 + 3931.30i 0.222046 + 0.384596i
\(472\) 0 0
\(473\) −1993.88 + 3453.50i −0.193824 + 0.335713i
\(474\) 0 0
\(475\) −1580.62 −0.152681
\(476\) 0 0
\(477\) 2393.86 0.229785
\(478\) 0 0
\(479\) −7810.03 + 13527.4i −0.744988 + 1.29036i 0.205212 + 0.978718i \(0.434212\pi\)
−0.950200 + 0.311640i \(0.899122\pi\)
\(480\) 0 0
\(481\) 8054.32 + 13950.5i 0.763504 + 1.32243i
\(482\) 0 0
\(483\) 13790.1 + 15408.6i 1.29911 + 1.45159i
\(484\) 0 0
\(485\) 473.590 + 820.282i 0.0443394 + 0.0767981i
\(486\) 0 0
\(487\) 950.691 1646.65i 0.0884598 0.153217i −0.818400 0.574648i \(-0.805139\pi\)
0.906860 + 0.421431i \(0.138472\pi\)
\(488\) 0 0
\(489\) −23325.1 −2.15705
\(490\) 0 0
\(491\) 15964.1 1.46731 0.733654 0.679524i \(-0.237814\pi\)
0.733654 + 0.679524i \(0.237814\pi\)
\(492\) 0 0
\(493\) −35.8495 + 62.0932i −0.00327501 + 0.00567249i
\(494\) 0 0
\(495\) −3086.84 5346.56i −0.280289 0.485475i
\(496\) 0 0
\(497\) 5035.33 + 5626.31i 0.454457 + 0.507796i
\(498\) 0 0
\(499\) −3424.59 5931.56i −0.307226 0.532130i 0.670529 0.741884i \(-0.266067\pi\)
−0.977754 + 0.209753i \(0.932734\pi\)
\(500\) 0 0
\(501\) 2448.59 4241.09i 0.218354 0.378199i
\(502\) 0 0
\(503\) 766.190 0.0679179 0.0339590 0.999423i \(-0.489188\pi\)
0.0339590 + 0.999423i \(0.489188\pi\)
\(504\) 0 0
\(505\) −3979.02 −0.350621
\(506\) 0 0
\(507\) −6859.49 + 11881.0i −0.600869 + 1.04074i
\(508\) 0 0
\(509\) −6802.36 11782.0i −0.592356 1.02599i −0.993914 0.110157i \(-0.964865\pi\)
0.401558 0.915834i \(-0.368469\pi\)
\(510\) 0 0
\(511\) −6316.84 + 1322.79i −0.546850 + 0.114515i
\(512\) 0 0
\(513\) 7491.18 + 12975.1i 0.644724 + 1.11669i
\(514\) 0 0
\(515\) −4851.76 + 8403.50i −0.415135 + 0.719034i
\(516\) 0 0
\(517\) −2481.80 −0.211120
\(518\) 0 0
\(519\) −27086.1 −2.29084
\(520\) 0 0
\(521\) −9214.16 + 15959.4i −0.774817 + 1.34202i 0.160080 + 0.987104i \(0.448825\pi\)
−0.934897 + 0.354919i \(0.884509\pi\)
\(522\) 0 0
\(523\) 2170.06 + 3758.66i 0.181435 + 0.314254i 0.942369 0.334575i \(-0.108593\pi\)
−0.760935 + 0.648828i \(0.775259\pi\)
\(524\) 0 0
\(525\) −1295.01 + 3945.11i −0.107655 + 0.327959i
\(526\) 0 0
\(527\) 96.3708 + 166.919i 0.00796581 + 0.0137972i
\(528\) 0 0
\(529\) −1666.82 + 2887.03i −0.136996 + 0.237283i
\(530\) 0 0
\(531\) −24427.9 −1.99639
\(532\) 0 0
\(533\) −14856.8 −1.20736
\(534\) 0 0
\(535\) −1221.72 + 2116.08i −0.0987282 + 0.171002i
\(536\) 0 0
\(537\) 8964.21 + 15526.5i 0.720362 + 1.24770i
\(538\) 0 0
\(539\) 6385.19 + 4698.19i 0.510259 + 0.375446i
\(540\) 0 0
\(541\) −6308.12 10926.0i −0.501308 0.868290i −0.999999 0.00151060i \(-0.999519\pi\)
0.498691 0.866780i \(-0.333814\pi\)
\(542\) 0 0
\(543\) 3054.24 5290.09i 0.241381 0.418084i
\(544\) 0 0
\(545\) −8150.27 −0.640586
\(546\) 0 0
\(547\) −20677.8 −1.61630 −0.808151 0.588975i \(-0.799532\pi\)
−0.808151 + 0.588975i \(0.799532\pi\)
\(548\) 0 0
\(549\) −12656.2 + 21921.2i −0.983887 + 1.70414i
\(550\) 0 0
\(551\) 3292.96 + 5703.58i 0.254601 + 0.440981i
\(552\) 0 0
\(553\) 4852.75 14783.4i 0.373164 1.13681i
\(554\) 0 0
\(555\) −5915.96 10246.7i −0.452466 0.783694i
\(556\) 0 0
\(557\) 507.586 879.164i 0.0386124 0.0668786i −0.846073 0.533066i \(-0.821040\pi\)
0.884686 + 0.466188i \(0.154373\pi\)
\(558\) 0 0
\(559\) −10533.2 −0.796969
\(560\) 0 0
\(561\) −142.664 −0.0107366
\(562\) 0 0
\(563\) 2648.32 4587.03i 0.198248 0.343375i −0.749713 0.661763i \(-0.769808\pi\)
0.947960 + 0.318388i \(0.103142\pi\)
\(564\) 0 0
\(565\) 864.812 + 1497.90i 0.0643945 + 0.111535i
\(566\) 0 0
\(567\) 12375.0 2591.43i 0.916584 0.191940i
\(568\) 0 0
\(569\) −7370.61 12766.3i −0.543044 0.940580i −0.998727 0.0504381i \(-0.983938\pi\)
0.455683 0.890142i \(-0.349395\pi\)
\(570\) 0 0
\(571\) 6830.70 11831.1i 0.500624 0.867105i −0.499376 0.866385i \(-0.666437\pi\)
1.00000 0.000720144i \(-0.000229229\pi\)
\(572\) 0 0
\(573\) 14463.2 1.05446
\(574\) 0 0
\(575\) −3112.54 −0.225742
\(576\) 0 0
\(577\) −539.307 + 934.107i −0.0389110 + 0.0673958i −0.884825 0.465923i \(-0.845722\pi\)
0.845914 + 0.533319i \(0.179056\pi\)
\(578\) 0 0
\(579\) −3627.18 6282.46i −0.260346 0.450933i
\(580\) 0 0
\(581\) −10938.6 12222.5i −0.781085 0.872760i
\(582\) 0 0
\(583\) 517.807 + 896.868i 0.0367845 + 0.0637126i
\(584\) 0 0
\(585\) 8153.50 14122.3i 0.576249 0.998092i
\(586\) 0 0
\(587\) −3863.36 −0.271649 −0.135824 0.990733i \(-0.543368\pi\)
−0.135824 + 0.990733i \(0.543368\pi\)
\(588\) 0 0
\(589\) 17704.3 1.23853
\(590\) 0 0
\(591\) −16609.7 + 28768.8i −1.15606 + 2.00235i
\(592\) 0 0
\(593\) 4720.41 + 8175.98i 0.326887 + 0.566185i 0.981892 0.189439i \(-0.0606671\pi\)
−0.655006 + 0.755624i \(0.727334\pi\)
\(594\) 0 0
\(595\) 42.5062 + 47.4951i 0.00292872 + 0.00327246i
\(596\) 0 0
\(597\) −1649.78 2857.50i −0.113100 0.195896i
\(598\) 0 0
\(599\) −10684.5 + 18506.0i −0.728807 + 1.26233i 0.228581 + 0.973525i \(0.426592\pi\)
−0.957388 + 0.288806i \(0.906742\pi\)
\(600\) 0 0
\(601\) 5801.37 0.393748 0.196874 0.980429i \(-0.436921\pi\)
0.196874 + 0.980429i \(0.436921\pi\)
\(602\) 0 0
\(603\) 12258.4 0.827859
\(604\) 0 0
\(605\) −1992.09 + 3450.41i −0.133868 + 0.231866i
\(606\) 0 0
\(607\) 13370.0 + 23157.5i 0.894023 + 1.54849i 0.835009 + 0.550236i \(0.185462\pi\)
0.0590141 + 0.998257i \(0.481204\pi\)
\(608\) 0 0
\(609\) 16933.7 3546.04i 1.12674 0.235949i
\(610\) 0 0
\(611\) −3277.68 5677.10i −0.217022 0.375894i
\(612\) 0 0
\(613\) 4169.87 7222.43i 0.274746 0.475875i −0.695325 0.718696i \(-0.744739\pi\)
0.970071 + 0.242821i \(0.0780728\pi\)
\(614\) 0 0
\(615\) 10912.5 0.715501
\(616\) 0 0
\(617\) −26639.2 −1.73818 −0.869088 0.494658i \(-0.835293\pi\)
−0.869088 + 0.494658i \(0.835293\pi\)
\(618\) 0 0
\(619\) 13930.2 24127.7i 0.904523 1.56668i 0.0829678 0.996552i \(-0.473560\pi\)
0.821556 0.570128i \(-0.193107\pi\)
\(620\) 0 0
\(621\) 14751.6 + 25550.5i 0.953237 + 1.65105i
\(622\) 0 0
\(623\) 4944.94 15064.3i 0.318001 0.968760i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −6552.19 + 11348.7i −0.417335 + 0.722846i
\(628\) 0 0
\(629\) −181.625 −0.0115133
\(630\) 0 0
\(631\) 10886.7 0.686833 0.343417 0.939183i \(-0.388416\pi\)
0.343417 + 0.939183i \(0.388416\pi\)
\(632\) 0 0
\(633\) −4812.92 + 8336.23i −0.302206 + 0.523437i
\(634\) 0 0
\(635\) 4163.11 + 7210.71i 0.260170 + 0.450627i
\(636\) 0 0
\(637\) −2314.27 + 20811.0i −0.143948 + 1.29444i
\(638\) 0 0
\(639\) 10890.2 + 18862.4i 0.674193 + 1.16774i
\(640\) 0 0
\(641\) 8425.73 14593.8i 0.519183 0.899251i −0.480568 0.876957i \(-0.659570\pi\)
0.999751 0.0222942i \(-0.00709704\pi\)
\(642\) 0 0
\(643\) −4793.72 −0.294006 −0.147003 0.989136i \(-0.546963\pi\)
−0.147003 + 0.989136i \(0.546963\pi\)
\(644\) 0 0
\(645\) 7736.69 0.472298
\(646\) 0 0
\(647\) −13342.3 + 23109.5i −0.810725 + 1.40422i 0.101633 + 0.994822i \(0.467593\pi\)
−0.912358 + 0.409394i \(0.865740\pi\)
\(648\) 0 0
\(649\) −5283.92 9152.01i −0.319587 0.553541i
\(650\) 0 0
\(651\) 14505.2 44188.7i 0.873278 2.66036i
\(652\) 0 0
\(653\) −8770.94 15191.7i −0.525625 0.910409i −0.999554 0.0298466i \(-0.990498\pi\)
0.473929 0.880563i \(-0.342835\pi\)
\(654\) 0 0
\(655\) −1691.87 + 2930.40i −0.100926 + 0.174810i
\(656\) 0 0
\(657\) −18617.0 −1.10551
\(658\) 0 0
\(659\) 26285.3 1.55377 0.776883 0.629645i \(-0.216800\pi\)
0.776883 + 0.629645i \(0.216800\pi\)
\(660\) 0 0
\(661\) −12522.1 + 21689.0i −0.736845 + 1.27625i 0.217064 + 0.976157i \(0.430352\pi\)
−0.953909 + 0.300096i \(0.902981\pi\)
\(662\) 0 0
\(663\) −188.414 326.343i −0.0110368 0.0191163i
\(664\) 0 0
\(665\) 5730.39 1199.99i 0.334158 0.0699753i
\(666\) 0 0
\(667\) 6484.48 + 11231.4i 0.376432 + 0.651999i
\(668\) 0 0
\(669\) −7735.57 + 13398.4i −0.447047 + 0.774308i
\(670\) 0 0
\(671\) −10950.5 −0.630013
\(672\) 0 0
\(673\) 20799.4 1.19132 0.595658 0.803238i \(-0.296891\pi\)
0.595658 + 0.803238i \(0.296891\pi\)
\(674\) 0 0
\(675\) −2962.12 + 5130.55i −0.168907 + 0.292555i
\(676\) 0 0
\(677\) −14886.3 25783.8i −0.845089 1.46374i −0.885543 0.464556i \(-0.846214\pi\)
0.0404540 0.999181i \(-0.487120\pi\)
\(678\) 0 0
\(679\) −2339.71 2614.32i −0.132238 0.147759i
\(680\) 0 0
\(681\) −16218.5 28091.2i −0.912619 1.58070i
\(682\) 0 0
\(683\) 11945.2 20689.6i 0.669208 1.15910i −0.308918 0.951089i \(-0.599967\pi\)
0.978126 0.208014i \(-0.0666999\pi\)
\(684\) 0 0
\(685\) 5171.17 0.288438
\(686\) 0 0
\(687\) 13109.2 0.728017
\(688\) 0 0
\(689\) −1367.72 + 2368.97i −0.0756257 + 0.130987i
\(690\) 0 0
\(691\) −12648.8 21908.3i −0.696356 1.20612i −0.969721 0.244214i \(-0.921470\pi\)
0.273365 0.961910i \(-0.411863\pi\)
\(692\) 0 0
\(693\) 15250.1 + 17040.0i 0.835937 + 0.934049i
\(694\) 0 0
\(695\) −1089.56 1887.18i −0.0594670 0.103000i
\(696\) 0 0
\(697\) 83.7554 145.069i 0.00455160 0.00788360i
\(698\) 0 0
\(699\) 19149.4 1.03619
\(700\) 0 0
\(701\) 18659.1 1.00534 0.502670 0.864478i \(-0.332351\pi\)
0.502670 + 0.864478i \(0.332351\pi\)
\(702\) 0 0
\(703\) −8341.59 + 14448.1i −0.447524 + 0.775134i
\(704\) 0 0
\(705\) 2407.48 + 4169.88i 0.128611 + 0.222761i
\(706\) 0 0
\(707\) 14425.6 3020.83i 0.767369 0.160693i
\(708\) 0 0
\(709\) 12847.4 + 22252.3i 0.680528 + 1.17871i 0.974820 + 0.222993i \(0.0715828\pi\)
−0.294292 + 0.955715i \(0.595084\pi\)
\(710\) 0 0
\(711\) 22441.7 38870.2i 1.18373 2.05028i
\(712\) 0 0
\(713\) 34863.2 1.83119
\(714\) 0 0
\(715\) 7054.62 0.368990
\(716\) 0 0
\(717\) 26690.2 46228.8i 1.39019 2.40787i
\(718\) 0 0
\(719\) −13627.3 23603.2i −0.706834 1.22427i −0.966025 0.258447i \(-0.916789\pi\)
0.259191 0.965826i \(-0.416544\pi\)
\(720\) 0 0
\(721\) 11209.8 34149.6i 0.579022 1.76394i
\(722\) 0 0
\(723\) 17252.3 + 29881.9i 0.887443 + 1.53710i
\(724\) 0 0
\(725\) −1302.09 + 2255.28i −0.0667011 + 0.115530i
\(726\) 0 0
\(727\) 13194.3 0.673110 0.336555 0.941664i \(-0.390738\pi\)
0.336555 + 0.941664i \(0.390738\pi\)
\(728\) 0 0
\(729\) −20906.9 −1.06218
\(730\) 0 0
\(731\) 59.3807 102.850i 0.00300448 0.00520391i
\(732\) 0 0
\(733\) −2904.47 5030.70i −0.146356 0.253497i 0.783522 0.621364i \(-0.213421\pi\)
−0.929878 + 0.367868i \(0.880088\pi\)
\(734\) 0 0
\(735\) 1699.85 15285.8i 0.0853059 0.767109i
\(736\) 0 0
\(737\) 2651.56 + 4592.64i 0.132526 + 0.229542i
\(738\) 0 0
\(739\) 6968.34 12069.5i 0.346867 0.600791i −0.638824 0.769353i \(-0.720579\pi\)
0.985691 + 0.168562i \(0.0539122\pi\)
\(740\) 0 0
\(741\) −34613.6 −1.71601
\(742\) 0 0
\(743\) −32424.2 −1.60098 −0.800489 0.599347i \(-0.795427\pi\)
−0.800489 + 0.599347i \(0.795427\pi\)
\(744\) 0 0
\(745\) 5299.87 9179.65i 0.260634 0.451431i
\(746\) 0 0
\(747\) −23657.6 40976.1i −1.15875 2.00701i
\(748\) 0 0
\(749\) 2822.74 8599.19i 0.137704 0.419503i
\(750\) 0 0
\(751\) −17644.2 30560.6i −0.857316 1.48491i −0.874480 0.485062i \(-0.838797\pi\)
0.0171639 0.999853i \(-0.494536\pi\)
\(752\) 0 0
\(753\) −7764.83 + 13449.1i −0.375785 + 0.650879i
\(754\) 0 0
\(755\) −12002.0 −0.578539
\(756\) 0 0
\(757\) 2079.86 0.0998595 0.0499298 0.998753i \(-0.484100\pi\)
0.0499298 + 0.998753i \(0.484100\pi\)
\(758\) 0 0
\(759\) −12902.5 + 22347.8i −0.617038 + 1.06874i
\(760\) 0 0
\(761\) −6125.72 10610.1i −0.291797 0.505407i 0.682438 0.730944i \(-0.260920\pi\)
−0.974235 + 0.225537i \(0.927586\pi\)
\(762\) 0 0
\(763\) 29548.1 6187.60i 1.40198 0.293586i
\(764\) 0 0
\(765\) 91.9307 + 159.229i 0.00434479 + 0.00752539i
\(766\) 0 0
\(767\) 13956.8 24173.9i 0.657042 1.13803i
\(768\) 0 0
\(769\) 4335.87 0.203323 0.101661 0.994819i \(-0.467584\pi\)
0.101661 + 0.994819i \(0.467584\pi\)
\(770\) 0 0
\(771\) −36359.9 −1.69840
\(772\) 0 0
\(773\) −15199.7 + 26326.7i −0.707240 + 1.22498i 0.258637 + 0.965975i \(0.416727\pi\)
−0.965877 + 0.259001i \(0.916607\pi\)
\(774\) 0 0
\(775\) 3500.28 + 6062.66i 0.162237 + 0.281003i
\(776\) 0 0
\(777\) 29227.0 + 32657.4i 1.34944 + 1.50782i
\(778\) 0 0
\(779\) −7693.37 13325.3i −0.353843 0.612874i
\(780\) 0 0
\(781\) −4711.23 + 8160.10i −0.215853 + 0.373868i
\(782\) 0 0
\(783\) 24684.4 1.12663
\(784\) 0 0
\(785\) 2530.94 0.115074
\(786\) 0 0
\(787\) 17637.1 30548.4i 0.798850 1.38365i −0.121515 0.992590i \(-0.538775\pi\)
0.920365 0.391059i \(-0.127891\pi\)
\(788\) 0 0
\(789\) −28409.6 49206.9i −1.28189 2.22030i
\(790\) 0 0
\(791\) −4272.49 4773.94i −0.192051 0.214592i
\(792\) 0 0
\(793\) −14462.2 25049.2i −0.647625 1.12172i
\(794\) 0 0
\(795\) 1004.60 1740.02i 0.0448171 0.0776255i
\(796\) 0 0
\(797\) −27524.0 −1.22328 −0.611638 0.791138i \(-0.709489\pi\)
−0.611638 + 0.791138i \(0.709489\pi\)
\(798\) 0 0
\(799\) 73.9116 0.00327260
\(800\) 0 0
\(801\) 22868.1 39608.7i 1.00874 1.74720i
\(802\) 0 0
\(803\) −4026.97 6974.92i −0.176972 0.306525i
\(804\) 0 0
\(805\) 11284.2 2363.01i 0.494059 0.103460i
\(806\) 0 0
\(807\) 5926.17 + 10264.4i 0.258502 + 0.447739i
\(808\) 0 0
\(809\) 3533.68 6120.51i 0.153569 0.265990i −0.778968 0.627064i \(-0.784257\pi\)
0.932537 + 0.361074i \(0.117590\pi\)
\(810\) 0 0
\(811\) 37757.5 1.63483 0.817413 0.576052i \(-0.195407\pi\)
0.817413 + 0.576052i \(0.195407\pi\)
\(812\) 0 0
\(813\) 20949.1 0.903713
\(814\) 0 0
\(815\) −6502.36 + 11262.4i −0.279470 + 0.484056i
\(816\) 0 0
\(817\) −5454.43 9447.34i −0.233569 0.404554i
\(818\) 0 0
\(819\) −18838.3 + 57389.1i −0.803742 + 2.44852i
\(820\) 0 0
\(821\) 12653.7 + 21916.9i 0.537902 + 0.931673i 0.999017 + 0.0443325i \(0.0141161\pi\)
−0.461115 + 0.887340i \(0.652551\pi\)
\(822\) 0 0
\(823\) −12742.4 + 22070.5i −0.539699 + 0.934786i 0.459221 + 0.888322i \(0.348129\pi\)
−0.998920 + 0.0464643i \(0.985205\pi\)
\(824\) 0 0
\(825\) −5181.67 −0.218670
\(826\) 0 0
\(827\) −34985.7 −1.47107 −0.735534 0.677488i \(-0.763069\pi\)
−0.735534 + 0.677488i \(0.763069\pi\)
\(828\) 0 0
\(829\) −1949.04 + 3375.84i −0.0816564 + 0.141433i −0.903962 0.427614i \(-0.859354\pi\)
0.822305 + 0.569047i \(0.192688\pi\)
\(830\) 0 0
\(831\) 31770.0 + 55027.2i 1.32622 + 2.29708i
\(832\) 0 0
\(833\) −190.161 139.919i −0.00790957 0.00581983i
\(834\) 0 0
\(835\) −1365.19 2364.58i −0.0565802 0.0979997i
\(836\) 0 0
\(837\) 33178.4 57466.7i 1.37015 2.37317i
\(838\) 0 0
\(839\) −22118.8 −0.910161 −0.455081 0.890450i \(-0.650390\pi\)
−0.455081 + 0.890450i \(0.650390\pi\)
\(840\) 0 0
\(841\) −13538.2 −0.555096
\(842\) 0 0
\(843\) −9520.22 + 16489.5i −0.388961 + 0.673699i
\(844\) 0 0
\(845\) 3824.45 + 6624.13i 0.155698 + 0.269677i
\(846\) 0 0
\(847\) 4602.65 14021.5i 0.186717 0.568814i
\(848\) 0 0
\(849\) 26417.9 + 45757.2i 1.06792 + 1.84968i
\(850\) 0 0
\(851\) −16426.2 + 28451.0i −0.661672 + 1.14605i
\(852\) 0 0
\(853\) 33152.4 1.33074 0.665368 0.746516i \(-0.268275\pi\)
0.665368 + 0.746516i \(0.268275\pi\)
\(854\) 0 0
\(855\) 16888.6 0.675530
\(856\) 0 0
\(857\) 5173.12 8960.11i 0.206197 0.357143i −0.744317 0.667827i \(-0.767225\pi\)
0.950513 + 0.310684i \(0.100558\pi\)
\(858\) 0 0
\(859\) −5952.82 10310.6i −0.236447 0.409538i 0.723245 0.690591i \(-0.242650\pi\)
−0.959692 + 0.281053i \(0.909316\pi\)
\(860\) 0 0
\(861\) −39562.2 + 8284.63i −1.56594 + 0.327920i
\(862\) 0 0
\(863\) 15401.2 + 26675.6i 0.607487 + 1.05220i 0.991653 + 0.128935i \(0.0411558\pi\)
−0.384166 + 0.923264i \(0.625511\pi\)
\(864\) 0 0
\(865\) −7550.80 + 13078.4i −0.296803 + 0.514079i
\(866\) 0 0
\(867\) −44055.3 −1.72572
\(868\) 0 0
\(869\) 19417.2 0.757977
\(870\) 0 0
\(871\) −7003.77 + 12130.9i −0.272461 + 0.471917i
\(872\) 0 0
\(873\) −5060.22 8764.56i −0.196177 0.339789i
\(874\) 0 0
\(875\) 1543.87 + 1725.07i 0.0596482 + 0.0666490i
\(876\) 0 0
\(877\) 10846.6 + 18786.9i 0.417634 + 0.723363i 0.995701 0.0926262i \(-0.0295262\pi\)
−0.578067 + 0.815989i \(0.696193\pi\)
\(878\) 0 0
\(879\) 36489.5 63201.6i 1.40018 2.42518i
\(880\) 0 0
\(881\) −29963.1 −1.14584 −0.572918 0.819612i \(-0.694189\pi\)
−0.572918 + 0.819612i \(0.694189\pi\)
\(882\) 0 0
\(883\) 4090.61 0.155900 0.0779501 0.996957i \(-0.475163\pi\)
0.0779501 + 0.996957i \(0.475163\pi\)
\(884\) 0 0
\(885\) −10251.4 + 17755.9i −0.389375 + 0.674417i
\(886\) 0 0
\(887\) −14409.7 24958.3i −0.545468 0.944778i −0.998577 0.0533229i \(-0.983019\pi\)
0.453110 0.891455i \(-0.350315\pi\)
\(888\) 0 0
\(889\) −20567.3 22981.2i −0.775933 0.867003i
\(890\) 0 0
\(891\) 7889.07 + 13664.3i 0.296626 + 0.513771i
\(892\) 0 0
\(893\) 3394.58 5879.59i 0.127206 0.220328i
\(894\) 0 0
\(895\) 9995.83 0.373323
\(896\) 0 0
\(897\) −68160.8 −2.53715
\(898\) 0 0
\(899\) 14584.5 25261.2i 0.541070 0.937160i
\(900\) 0 0
\(901\) −15.4211 26.7101i −0.000570200 0.000987616i
\(902\) 0 0
\(903\) −28048.7 + 5873.62i −1.03367 + 0.216458i
\(904\) 0 0
\(905\) −1702.86 2949.44i −0.0625470 0.108335i
\(906\) 0 0
\(907\) −10319.4 + 17873.7i −0.377784 + 0.654340i −0.990739 0.135777i \(-0.956647\pi\)
0.612956 + 0.790117i \(0.289980\pi\)
\(908\) 0 0
\(909\) 42515.1 1.55130
\(910\) 0 0
\(911\) 15080.1 0.548435 0.274218 0.961668i \(-0.411581\pi\)
0.274218 + 0.961668i \(0.411581\pi\)
\(912\) 0 0
\(913\) 10234.6 17726.8i 0.370991 0.642576i
\(914\) 0 0
\(915\) 10622.6 + 18398.8i 0.383794 + 0.664750i
\(916\) 0 0
\(917\) 3908.99 11908.4i 0.140770 0.428843i
\(918\) 0 0
\(919\) −1082.14 1874.33i −0.0388429 0.0672778i 0.845950 0.533262i \(-0.179034\pi\)
−0.884793 + 0.465984i \(0.845701\pi\)
\(920\) 0 0
\(921\) −21510.7 + 37257.6i −0.769600 + 1.33299i
\(922\) 0 0
\(923\) −24888.3 −0.887549
\(924\) 0 0
\(925\) −6596.78 −0.234487
\(926\) 0 0
\(927\) 51840.2 89789.9i 1.83674 3.18132i
\(928\) 0 0
\(929\) −6819.56 11811.8i −0.240842 0.417151i 0.720112 0.693858i \(-0.244090\pi\)
−0.960954 + 0.276707i \(0.910757\pi\)
\(930\) 0 0
\(931\) −19864.0 + 8700.91i −0.699267 + 0.306295i
\(932\) 0 0
\(933\) 23269.7 + 40304.3i 0.816523 + 1.41426i
\(934\) 0 0
\(935\) −39.7704 + 68.8843i −0.00139105 + 0.00240937i
\(936\) 0 0
\(937\) 6568.49 0.229011 0.114505 0.993423i \(-0.463472\pi\)
0.114505 + 0.993423i \(0.463472\pi\)
\(938\) 0 0
\(939\) −20135.2 −0.699774
\(940\) 0 0
\(941\) −4727.25 + 8187.84i −0.163766 + 0.283652i −0.936216 0.351424i \(-0.885698\pi\)
0.772450 + 0.635075i \(0.219031\pi\)
\(942\) 0 0
\(943\) −15149.7 26240.1i −0.523163 0.906145i
\(944\) 0 0
\(945\) 6843.87 20849.2i 0.235588 0.717697i
\(946\) 0 0
\(947\) 17038.4 + 29511.3i 0.584660 + 1.01266i 0.994918 + 0.100691i \(0.0321053\pi\)
−0.410258 + 0.911969i \(0.634561\pi\)
\(948\) 0 0
\(949\) 10636.7 18423.4i 0.363839 0.630188i
\(950\) 0 0
\(951\) −87368.1 −2.97908
\(952\) 0 0
\(953\) −32862.3 −1.11702 −0.558508 0.829499i \(-0.688626\pi\)
−0.558508 + 0.829499i \(0.688626\pi\)
\(954\) 0 0
\(955\) 4031.90 6983.46i 0.136617 0.236628i
\(956\) 0 0
\(957\) 10795.2 + 18697.8i 0.364638 + 0.631572i
\(958\) 0 0
\(959\) −18747.6 + 3925.90i −0.631275 + 0.132194i
\(960\) 0 0
\(961\) −24310.7 42107.4i −0.816042 1.41343i
\(962\) 0 0
\(963\) 13053.9 22610.0i 0.436817 0.756590i
\(964\) 0 0
\(965\) −4044.61 −0.134923
\(966\) 0 0
\(967\) −57597.8 −1.91543 −0.957715 0.287720i \(-0.907103\pi\)
−0.957715 + 0.287720i \(0.907103\pi\)
\(968\) 0 0
\(969\) 195.134 337.982i 0.00646915 0.0112049i
\(970\) 0 0
\(971\) −14092.8 24409.5i −0.465768 0.806734i 0.533468 0.845820i \(-0.320889\pi\)
−0.999236 + 0.0390865i \(0.987555\pi\)
\(972\) 0 0
\(973\) 5382.85 + 6014.63i 0.177355 + 0.198171i
\(974\) 0 0
\(975\) −6843.37 11853.1i −0.224783 0.389335i
\(976\) 0 0
\(977\) −22131.8 + 38333.4i −0.724727 + 1.25526i 0.234359 + 0.972150i \(0.424701\pi\)
−0.959086 + 0.283114i \(0.908633\pi\)
\(978\) 0 0
\(979\) 19786.0 0.645929
\(980\) 0 0
\(981\) 87084.1 2.83423
\(982\) 0 0
\(983\) 73.6999 127.652i 0.00239131 0.00414187i −0.864827 0.502070i \(-0.832572\pi\)
0.867219 + 0.497928i \(0.165905\pi\)
\(984\) 0 0
\(985\) 9260.57 + 16039.8i 0.299560 + 0.518853i
\(986\) 0 0
\(987\) −11893.8 13289.8i −0.383571 0.428591i
\(988\) 0 0
\(989\) −10740.8 18603.6i −0.345337 0.598141i
\(990\) 0 0
\(991\) 6243.42 10813.9i 0.200130 0.346635i −0.748440 0.663202i \(-0.769197\pi\)
0.948570 + 0.316567i \(0.102530\pi\)
\(992\) 0 0
\(993\) −101614. −3.24734
\(994\) 0 0
\(995\) −1839.64 −0.0586135
\(996\) 0 0
\(997\) 3310.57 5734.08i 0.105162 0.182147i −0.808642 0.588301i \(-0.799797\pi\)
0.913805 + 0.406154i \(0.133130\pi\)
\(998\) 0 0
\(999\) 31264.8 + 54152.2i 0.990164 + 1.71501i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.q.n.81.1 10
4.3 odd 2 35.4.e.c.11.2 10
7.2 even 3 inner 560.4.q.n.401.1 10
12.11 even 2 315.4.j.g.46.4 10
20.3 even 4 175.4.k.d.74.3 20
20.7 even 4 175.4.k.d.74.8 20
20.19 odd 2 175.4.e.d.151.4 10
28.3 even 6 245.4.a.n.1.4 5
28.11 odd 6 245.4.a.m.1.4 5
28.19 even 6 245.4.e.o.226.2 10
28.23 odd 6 35.4.e.c.16.2 yes 10
28.27 even 2 245.4.e.o.116.2 10
84.11 even 6 2205.4.a.bu.1.2 5
84.23 even 6 315.4.j.g.226.4 10
84.59 odd 6 2205.4.a.bt.1.2 5
140.23 even 12 175.4.k.d.149.8 20
140.39 odd 6 1225.4.a.bg.1.2 5
140.59 even 6 1225.4.a.bf.1.2 5
140.79 odd 6 175.4.e.d.51.4 10
140.107 even 12 175.4.k.d.149.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.e.c.11.2 10 4.3 odd 2
35.4.e.c.16.2 yes 10 28.23 odd 6
175.4.e.d.51.4 10 140.79 odd 6
175.4.e.d.151.4 10 20.19 odd 2
175.4.k.d.74.3 20 20.3 even 4
175.4.k.d.74.8 20 20.7 even 4
175.4.k.d.149.3 20 140.107 even 12
175.4.k.d.149.8 20 140.23 even 12
245.4.a.m.1.4 5 28.11 odd 6
245.4.a.n.1.4 5 28.3 even 6
245.4.e.o.116.2 10 28.27 even 2
245.4.e.o.226.2 10 28.19 even 6
315.4.j.g.46.4 10 12.11 even 2
315.4.j.g.226.4 10 84.23 even 6
560.4.q.n.81.1 10 1.1 even 1 trivial
560.4.q.n.401.1 10 7.2 even 3 inner
1225.4.a.bf.1.2 5 140.59 even 6
1225.4.a.bg.1.2 5 140.39 odd 6
2205.4.a.bt.1.2 5 84.59 odd 6
2205.4.a.bu.1.2 5 84.11 even 6