Properties

Label 560.6.a.s.1.1
Level $560$
Weight $6$
Character 560.1
Self dual yes
Analytic conductor $89.815$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 463x - 1890 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-19.0769\) of defining polynomial
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.0769 q^{3} -25.0000 q^{5} -49.0000 q^{7} +201.235 q^{9} +286.081 q^{11} -751.545 q^{13} +526.922 q^{15} -845.554 q^{17} +1518.68 q^{19} +1032.77 q^{21} -2468.45 q^{23} +625.000 q^{25} +880.283 q^{27} +895.029 q^{29} +9826.32 q^{31} -6029.69 q^{33} +1225.00 q^{35} -2697.90 q^{37} +15840.2 q^{39} +5770.13 q^{41} -3203.78 q^{43} -5030.87 q^{45} +21898.9 q^{47} +2401.00 q^{49} +17821.6 q^{51} +18207.6 q^{53} -7152.02 q^{55} -32009.1 q^{57} +5021.37 q^{59} +22688.3 q^{61} -9860.50 q^{63} +18788.6 q^{65} -15653.8 q^{67} +52027.2 q^{69} +21027.2 q^{71} -52797.0 q^{73} -13173.0 q^{75} -14018.0 q^{77} -80685.6 q^{79} -67453.6 q^{81} +64197.4 q^{83} +21138.9 q^{85} -18864.4 q^{87} -72078.1 q^{89} +36825.7 q^{91} -207108. q^{93} -37967.1 q^{95} +42008.8 q^{97} +57569.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{3} - 75 q^{5} - 147 q^{7} + 209 q^{9} + 578 q^{11} + 80 q^{13} + 150 q^{15} - 1244 q^{17} - 944 q^{19} + 294 q^{21} - 1096 q^{23} + 1875 q^{25} + 3006 q^{27} + 1868 q^{29} + 6620 q^{31} + 2662 q^{33}+ \cdots + 156568 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −21.0769 −1.35208 −0.676041 0.736864i \(-0.736306\pi\)
−0.676041 + 0.736864i \(0.736306\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) 201.235 0.828126
\(10\) 0 0
\(11\) 286.081 0.712865 0.356432 0.934321i \(-0.383993\pi\)
0.356432 + 0.934321i \(0.383993\pi\)
\(12\) 0 0
\(13\) −751.545 −1.23338 −0.616690 0.787206i \(-0.711527\pi\)
−0.616690 + 0.787206i \(0.711527\pi\)
\(14\) 0 0
\(15\) 526.922 0.604670
\(16\) 0 0
\(17\) −845.554 −0.709609 −0.354805 0.934940i \(-0.615453\pi\)
−0.354805 + 0.934940i \(0.615453\pi\)
\(18\) 0 0
\(19\) 1518.68 0.965124 0.482562 0.875862i \(-0.339706\pi\)
0.482562 + 0.875862i \(0.339706\pi\)
\(20\) 0 0
\(21\) 1032.77 0.511039
\(22\) 0 0
\(23\) −2468.45 −0.972982 −0.486491 0.873685i \(-0.661723\pi\)
−0.486491 + 0.873685i \(0.661723\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 880.283 0.232387
\(28\) 0 0
\(29\) 895.029 0.197625 0.0988125 0.995106i \(-0.468496\pi\)
0.0988125 + 0.995106i \(0.468496\pi\)
\(30\) 0 0
\(31\) 9826.32 1.83648 0.918241 0.396023i \(-0.129610\pi\)
0.918241 + 0.396023i \(0.129610\pi\)
\(32\) 0 0
\(33\) −6029.69 −0.963852
\(34\) 0 0
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) −2697.90 −0.323982 −0.161991 0.986792i \(-0.551792\pi\)
−0.161991 + 0.986792i \(0.551792\pi\)
\(38\) 0 0
\(39\) 15840.2 1.66763
\(40\) 0 0
\(41\) 5770.13 0.536075 0.268038 0.963408i \(-0.413625\pi\)
0.268038 + 0.963408i \(0.413625\pi\)
\(42\) 0 0
\(43\) −3203.78 −0.264236 −0.132118 0.991234i \(-0.542178\pi\)
−0.132118 + 0.991234i \(0.542178\pi\)
\(44\) 0 0
\(45\) −5030.87 −0.370349
\(46\) 0 0
\(47\) 21898.9 1.44603 0.723016 0.690831i \(-0.242755\pi\)
0.723016 + 0.690831i \(0.242755\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 17821.6 0.959450
\(52\) 0 0
\(53\) 18207.6 0.890353 0.445177 0.895443i \(-0.353141\pi\)
0.445177 + 0.895443i \(0.353141\pi\)
\(54\) 0 0
\(55\) −7152.02 −0.318803
\(56\) 0 0
\(57\) −32009.1 −1.30493
\(58\) 0 0
\(59\) 5021.37 0.187798 0.0938992 0.995582i \(-0.470067\pi\)
0.0938992 + 0.995582i \(0.470067\pi\)
\(60\) 0 0
\(61\) 22688.3 0.780689 0.390345 0.920669i \(-0.372356\pi\)
0.390345 + 0.920669i \(0.372356\pi\)
\(62\) 0 0
\(63\) −9860.50 −0.313002
\(64\) 0 0
\(65\) 18788.6 0.551584
\(66\) 0 0
\(67\) −15653.8 −0.426024 −0.213012 0.977050i \(-0.568327\pi\)
−0.213012 + 0.977050i \(0.568327\pi\)
\(68\) 0 0
\(69\) 52027.2 1.31555
\(70\) 0 0
\(71\) 21027.2 0.495035 0.247518 0.968883i \(-0.420385\pi\)
0.247518 + 0.968883i \(0.420385\pi\)
\(72\) 0 0
\(73\) −52797.0 −1.15958 −0.579792 0.814764i \(-0.696866\pi\)
−0.579792 + 0.814764i \(0.696866\pi\)
\(74\) 0 0
\(75\) −13173.0 −0.270416
\(76\) 0 0
\(77\) −14018.0 −0.269438
\(78\) 0 0
\(79\) −80685.6 −1.45455 −0.727275 0.686347i \(-0.759213\pi\)
−0.727275 + 0.686347i \(0.759213\pi\)
\(80\) 0 0
\(81\) −67453.6 −1.14233
\(82\) 0 0
\(83\) 64197.4 1.02287 0.511437 0.859321i \(-0.329113\pi\)
0.511437 + 0.859321i \(0.329113\pi\)
\(84\) 0 0
\(85\) 21138.9 0.317347
\(86\) 0 0
\(87\) −18864.4 −0.267205
\(88\) 0 0
\(89\) −72078.1 −0.964558 −0.482279 0.876018i \(-0.660191\pi\)
−0.482279 + 0.876018i \(0.660191\pi\)
\(90\) 0 0
\(91\) 36825.7 0.466173
\(92\) 0 0
\(93\) −207108. −2.48307
\(94\) 0 0
\(95\) −37967.1 −0.431617
\(96\) 0 0
\(97\) 42008.8 0.453326 0.226663 0.973973i \(-0.427218\pi\)
0.226663 + 0.973973i \(0.427218\pi\)
\(98\) 0 0
\(99\) 57569.4 0.590342
\(100\) 0 0
\(101\) 46466.6 0.453249 0.226625 0.973982i \(-0.427231\pi\)
0.226625 + 0.973982i \(0.427231\pi\)
\(102\) 0 0
\(103\) 127580. 1.18493 0.592463 0.805598i \(-0.298156\pi\)
0.592463 + 0.805598i \(0.298156\pi\)
\(104\) 0 0
\(105\) −25819.2 −0.228544
\(106\) 0 0
\(107\) −81394.7 −0.687285 −0.343642 0.939101i \(-0.611661\pi\)
−0.343642 + 0.939101i \(0.611661\pi\)
\(108\) 0 0
\(109\) 43842.4 0.353450 0.176725 0.984260i \(-0.443450\pi\)
0.176725 + 0.984260i \(0.443450\pi\)
\(110\) 0 0
\(111\) 56863.3 0.438051
\(112\) 0 0
\(113\) −182786. −1.34663 −0.673313 0.739358i \(-0.735129\pi\)
−0.673313 + 0.739358i \(0.735129\pi\)
\(114\) 0 0
\(115\) 61711.3 0.435131
\(116\) 0 0
\(117\) −151237. −1.02139
\(118\) 0 0
\(119\) 41432.2 0.268207
\(120\) 0 0
\(121\) −79208.7 −0.491824
\(122\) 0 0
\(123\) −121616. −0.724818
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 79395.4 0.436804 0.218402 0.975859i \(-0.429916\pi\)
0.218402 + 0.975859i \(0.429916\pi\)
\(128\) 0 0
\(129\) 67525.7 0.357268
\(130\) 0 0
\(131\) 146610. 0.746422 0.373211 0.927747i \(-0.378257\pi\)
0.373211 + 0.927747i \(0.378257\pi\)
\(132\) 0 0
\(133\) −74415.5 −0.364783
\(134\) 0 0
\(135\) −22007.1 −0.103927
\(136\) 0 0
\(137\) −292940. −1.33345 −0.666726 0.745303i \(-0.732305\pi\)
−0.666726 + 0.745303i \(0.732305\pi\)
\(138\) 0 0
\(139\) −227589. −0.999110 −0.499555 0.866282i \(-0.666503\pi\)
−0.499555 + 0.866282i \(0.666503\pi\)
\(140\) 0 0
\(141\) −461561. −1.95515
\(142\) 0 0
\(143\) −215003. −0.879233
\(144\) 0 0
\(145\) −22375.7 −0.0883806
\(146\) 0 0
\(147\) −50605.6 −0.193155
\(148\) 0 0
\(149\) −210681. −0.777426 −0.388713 0.921359i \(-0.627080\pi\)
−0.388713 + 0.921359i \(0.627080\pi\)
\(150\) 0 0
\(151\) −530330. −1.89279 −0.946397 0.323004i \(-0.895307\pi\)
−0.946397 + 0.323004i \(0.895307\pi\)
\(152\) 0 0
\(153\) −170155. −0.587646
\(154\) 0 0
\(155\) −245658. −0.821299
\(156\) 0 0
\(157\) 467511. 1.51371 0.756855 0.653582i \(-0.226735\pi\)
0.756855 + 0.653582i \(0.226735\pi\)
\(158\) 0 0
\(159\) −383759. −1.20383
\(160\) 0 0
\(161\) 120954. 0.367753
\(162\) 0 0
\(163\) 346889. 1.02264 0.511319 0.859391i \(-0.329157\pi\)
0.511319 + 0.859391i \(0.329157\pi\)
\(164\) 0 0
\(165\) 150742. 0.431048
\(166\) 0 0
\(167\) −483668. −1.34201 −0.671006 0.741452i \(-0.734137\pi\)
−0.671006 + 0.741452i \(0.734137\pi\)
\(168\) 0 0
\(169\) 193527. 0.521224
\(170\) 0 0
\(171\) 305612. 0.799245
\(172\) 0 0
\(173\) −417227. −1.05988 −0.529940 0.848035i \(-0.677786\pi\)
−0.529940 + 0.848035i \(0.677786\pi\)
\(174\) 0 0
\(175\) −30625.0 −0.0755929
\(176\) 0 0
\(177\) −105835. −0.253919
\(178\) 0 0
\(179\) −553314. −1.29074 −0.645371 0.763869i \(-0.723297\pi\)
−0.645371 + 0.763869i \(0.723297\pi\)
\(180\) 0 0
\(181\) 188698. 0.428125 0.214062 0.976820i \(-0.431330\pi\)
0.214062 + 0.976820i \(0.431330\pi\)
\(182\) 0 0
\(183\) −478199. −1.05556
\(184\) 0 0
\(185\) 67447.5 0.144889
\(186\) 0 0
\(187\) −241897. −0.505855
\(188\) 0 0
\(189\) −43133.8 −0.0878342
\(190\) 0 0
\(191\) −273571. −0.542608 −0.271304 0.962494i \(-0.587455\pi\)
−0.271304 + 0.962494i \(0.587455\pi\)
\(192\) 0 0
\(193\) 312739. 0.604350 0.302175 0.953252i \(-0.402287\pi\)
0.302175 + 0.953252i \(0.402287\pi\)
\(194\) 0 0
\(195\) −396005. −0.745787
\(196\) 0 0
\(197\) 125978. 0.231274 0.115637 0.993292i \(-0.463109\pi\)
0.115637 + 0.993292i \(0.463109\pi\)
\(198\) 0 0
\(199\) −701921. −1.25648 −0.628240 0.778019i \(-0.716225\pi\)
−0.628240 + 0.778019i \(0.716225\pi\)
\(200\) 0 0
\(201\) 329934. 0.576019
\(202\) 0 0
\(203\) −43856.4 −0.0746953
\(204\) 0 0
\(205\) −144253. −0.239740
\(206\) 0 0
\(207\) −496738. −0.805752
\(208\) 0 0
\(209\) 434466. 0.688003
\(210\) 0 0
\(211\) 1.01585e6 1.57081 0.785403 0.618985i \(-0.212456\pi\)
0.785403 + 0.618985i \(0.212456\pi\)
\(212\) 0 0
\(213\) −443188. −0.669328
\(214\) 0 0
\(215\) 80094.5 0.118170
\(216\) 0 0
\(217\) −481490. −0.694125
\(218\) 0 0
\(219\) 1.11280e6 1.56785
\(220\) 0 0
\(221\) 635472. 0.875217
\(222\) 0 0
\(223\) −1.02507e6 −1.38035 −0.690177 0.723641i \(-0.742467\pi\)
−0.690177 + 0.723641i \(0.742467\pi\)
\(224\) 0 0
\(225\) 125772. 0.165625
\(226\) 0 0
\(227\) 501667. 0.646177 0.323088 0.946369i \(-0.395279\pi\)
0.323088 + 0.946369i \(0.395279\pi\)
\(228\) 0 0
\(229\) 1.09069e6 1.37440 0.687200 0.726468i \(-0.258840\pi\)
0.687200 + 0.726468i \(0.258840\pi\)
\(230\) 0 0
\(231\) 295455. 0.364302
\(232\) 0 0
\(233\) −115383. −0.139237 −0.0696183 0.997574i \(-0.522178\pi\)
−0.0696183 + 0.997574i \(0.522178\pi\)
\(234\) 0 0
\(235\) −547473. −0.646685
\(236\) 0 0
\(237\) 1.70060e6 1.96667
\(238\) 0 0
\(239\) 755233. 0.855236 0.427618 0.903960i \(-0.359353\pi\)
0.427618 + 0.903960i \(0.359353\pi\)
\(240\) 0 0
\(241\) −1.19575e6 −1.32616 −0.663082 0.748547i \(-0.730752\pi\)
−0.663082 + 0.748547i \(0.730752\pi\)
\(242\) 0 0
\(243\) 1.20780e6 1.31214
\(244\) 0 0
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) −1.14136e6 −1.19036
\(248\) 0 0
\(249\) −1.35308e6 −1.38301
\(250\) 0 0
\(251\) −1.43265e6 −1.43535 −0.717673 0.696381i \(-0.754793\pi\)
−0.717673 + 0.696381i \(0.754793\pi\)
\(252\) 0 0
\(253\) −706177. −0.693605
\(254\) 0 0
\(255\) −445541. −0.429079
\(256\) 0 0
\(257\) 978660. 0.924270 0.462135 0.886810i \(-0.347084\pi\)
0.462135 + 0.886810i \(0.347084\pi\)
\(258\) 0 0
\(259\) 132197. 0.122454
\(260\) 0 0
\(261\) 180111. 0.163659
\(262\) 0 0
\(263\) −662781. −0.590854 −0.295427 0.955365i \(-0.595462\pi\)
−0.295427 + 0.955365i \(0.595462\pi\)
\(264\) 0 0
\(265\) −455189. −0.398178
\(266\) 0 0
\(267\) 1.51918e6 1.30416
\(268\) 0 0
\(269\) −522166. −0.439975 −0.219988 0.975503i \(-0.570602\pi\)
−0.219988 + 0.975503i \(0.570602\pi\)
\(270\) 0 0
\(271\) 999234. 0.826502 0.413251 0.910617i \(-0.364393\pi\)
0.413251 + 0.910617i \(0.364393\pi\)
\(272\) 0 0
\(273\) −776171. −0.630305
\(274\) 0 0
\(275\) 178801. 0.142573
\(276\) 0 0
\(277\) 1.41873e6 1.11097 0.555484 0.831527i \(-0.312533\pi\)
0.555484 + 0.831527i \(0.312533\pi\)
\(278\) 0 0
\(279\) 1.97740e6 1.52084
\(280\) 0 0
\(281\) 1.42688e6 1.07800 0.539002 0.842305i \(-0.318802\pi\)
0.539002 + 0.842305i \(0.318802\pi\)
\(282\) 0 0
\(283\) −2.54018e6 −1.88538 −0.942689 0.333674i \(-0.891712\pi\)
−0.942689 + 0.333674i \(0.891712\pi\)
\(284\) 0 0
\(285\) 800228. 0.583581
\(286\) 0 0
\(287\) −282736. −0.202617
\(288\) 0 0
\(289\) −704895. −0.496455
\(290\) 0 0
\(291\) −885413. −0.612934
\(292\) 0 0
\(293\) −2.55139e6 −1.73623 −0.868117 0.496359i \(-0.834670\pi\)
−0.868117 + 0.496359i \(0.834670\pi\)
\(294\) 0 0
\(295\) −125534. −0.0839860
\(296\) 0 0
\(297\) 251832. 0.165661
\(298\) 0 0
\(299\) 1.85515e6 1.20006
\(300\) 0 0
\(301\) 156985. 0.0998717
\(302\) 0 0
\(303\) −979370. −0.612830
\(304\) 0 0
\(305\) −567209. −0.349135
\(306\) 0 0
\(307\) 1.82818e6 1.10707 0.553534 0.832827i \(-0.313279\pi\)
0.553534 + 0.832827i \(0.313279\pi\)
\(308\) 0 0
\(309\) −2.68900e6 −1.60212
\(310\) 0 0
\(311\) 2.15857e6 1.26551 0.632754 0.774353i \(-0.281925\pi\)
0.632754 + 0.774353i \(0.281925\pi\)
\(312\) 0 0
\(313\) 151212. 0.0872421 0.0436210 0.999048i \(-0.486111\pi\)
0.0436210 + 0.999048i \(0.486111\pi\)
\(314\) 0 0
\(315\) 246512. 0.139979
\(316\) 0 0
\(317\) 2.59481e6 1.45030 0.725148 0.688593i \(-0.241771\pi\)
0.725148 + 0.688593i \(0.241771\pi\)
\(318\) 0 0
\(319\) 256051. 0.140880
\(320\) 0 0
\(321\) 1.71555e6 0.929265
\(322\) 0 0
\(323\) −1.28413e6 −0.684861
\(324\) 0 0
\(325\) −469716. −0.246676
\(326\) 0 0
\(327\) −924060. −0.477893
\(328\) 0 0
\(329\) −1.07305e6 −0.546549
\(330\) 0 0
\(331\) 351723. 0.176453 0.0882267 0.996100i \(-0.471880\pi\)
0.0882267 + 0.996100i \(0.471880\pi\)
\(332\) 0 0
\(333\) −542911. −0.268298
\(334\) 0 0
\(335\) 391346. 0.190524
\(336\) 0 0
\(337\) 666107. 0.319499 0.159749 0.987158i \(-0.448931\pi\)
0.159749 + 0.987158i \(0.448931\pi\)
\(338\) 0 0
\(339\) 3.85256e6 1.82075
\(340\) 0 0
\(341\) 2.81112e6 1.30916
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) −1.30068e6 −0.588333
\(346\) 0 0
\(347\) −428588. −0.191080 −0.0955402 0.995426i \(-0.530458\pi\)
−0.0955402 + 0.995426i \(0.530458\pi\)
\(348\) 0 0
\(349\) 233734. 0.102721 0.0513603 0.998680i \(-0.483644\pi\)
0.0513603 + 0.998680i \(0.483644\pi\)
\(350\) 0 0
\(351\) −661572. −0.286622
\(352\) 0 0
\(353\) 730202. 0.311893 0.155947 0.987765i \(-0.450157\pi\)
0.155947 + 0.987765i \(0.450157\pi\)
\(354\) 0 0
\(355\) −525681. −0.221386
\(356\) 0 0
\(357\) −873260. −0.362638
\(358\) 0 0
\(359\) 1.27637e6 0.522684 0.261342 0.965246i \(-0.415835\pi\)
0.261342 + 0.965246i \(0.415835\pi\)
\(360\) 0 0
\(361\) −169699. −0.0685350
\(362\) 0 0
\(363\) 1.66947e6 0.664986
\(364\) 0 0
\(365\) 1.31993e6 0.518582
\(366\) 0 0
\(367\) −4.92829e6 −1.90999 −0.954995 0.296623i \(-0.904139\pi\)
−0.954995 + 0.296623i \(0.904139\pi\)
\(368\) 0 0
\(369\) 1.16115e6 0.443938
\(370\) 0 0
\(371\) −892171. −0.336522
\(372\) 0 0
\(373\) −2.33084e6 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(374\) 0 0
\(375\) 329326. 0.120934
\(376\) 0 0
\(377\) −672655. −0.243747
\(378\) 0 0
\(379\) −96821.4 −0.0346237 −0.0173119 0.999850i \(-0.505511\pi\)
−0.0173119 + 0.999850i \(0.505511\pi\)
\(380\) 0 0
\(381\) −1.67341e6 −0.590594
\(382\) 0 0
\(383\) −1.02936e6 −0.358566 −0.179283 0.983798i \(-0.557378\pi\)
−0.179283 + 0.983798i \(0.557378\pi\)
\(384\) 0 0
\(385\) 350449. 0.120496
\(386\) 0 0
\(387\) −644711. −0.218820
\(388\) 0 0
\(389\) −1.81126e6 −0.606885 −0.303443 0.952850i \(-0.598136\pi\)
−0.303443 + 0.952850i \(0.598136\pi\)
\(390\) 0 0
\(391\) 2.08721e6 0.690437
\(392\) 0 0
\(393\) −3.09007e6 −1.00922
\(394\) 0 0
\(395\) 2.01714e6 0.650494
\(396\) 0 0
\(397\) 1.80750e6 0.575576 0.287788 0.957694i \(-0.407080\pi\)
0.287788 + 0.957694i \(0.407080\pi\)
\(398\) 0 0
\(399\) 1.56845e6 0.493216
\(400\) 0 0
\(401\) −3.13485e6 −0.973545 −0.486773 0.873529i \(-0.661826\pi\)
−0.486773 + 0.873529i \(0.661826\pi\)
\(402\) 0 0
\(403\) −7.38492e6 −2.26508
\(404\) 0 0
\(405\) 1.68634e6 0.510867
\(406\) 0 0
\(407\) −771817. −0.230956
\(408\) 0 0
\(409\) −6.02204e6 −1.78006 −0.890031 0.455900i \(-0.849317\pi\)
−0.890031 + 0.455900i \(0.849317\pi\)
\(410\) 0 0
\(411\) 6.17426e6 1.80294
\(412\) 0 0
\(413\) −246047. −0.0709811
\(414\) 0 0
\(415\) −1.60494e6 −0.457443
\(416\) 0 0
\(417\) 4.79686e6 1.35088
\(418\) 0 0
\(419\) 6.77548e6 1.88541 0.942704 0.333631i \(-0.108274\pi\)
0.942704 + 0.333631i \(0.108274\pi\)
\(420\) 0 0
\(421\) 765395. 0.210465 0.105233 0.994448i \(-0.466441\pi\)
0.105233 + 0.994448i \(0.466441\pi\)
\(422\) 0 0
\(423\) 4.40682e6 1.19750
\(424\) 0 0
\(425\) −528471. −0.141922
\(426\) 0 0
\(427\) −1.11173e6 −0.295073
\(428\) 0 0
\(429\) 4.53158e6 1.18879
\(430\) 0 0
\(431\) 3.94945e6 1.02410 0.512052 0.858955i \(-0.328886\pi\)
0.512052 + 0.858955i \(0.328886\pi\)
\(432\) 0 0
\(433\) −4.14225e6 −1.06174 −0.530868 0.847454i \(-0.678134\pi\)
−0.530868 + 0.847454i \(0.678134\pi\)
\(434\) 0 0
\(435\) 471610. 0.119498
\(436\) 0 0
\(437\) −3.74880e6 −0.939049
\(438\) 0 0
\(439\) 6.06844e6 1.50285 0.751425 0.659818i \(-0.229367\pi\)
0.751425 + 0.659818i \(0.229367\pi\)
\(440\) 0 0
\(441\) 483164. 0.118304
\(442\) 0 0
\(443\) 1.61019e6 0.389823 0.194912 0.980821i \(-0.437558\pi\)
0.194912 + 0.980821i \(0.437558\pi\)
\(444\) 0 0
\(445\) 1.80195e6 0.431363
\(446\) 0 0
\(447\) 4.44049e6 1.05114
\(448\) 0 0
\(449\) 740602. 0.173368 0.0866841 0.996236i \(-0.472373\pi\)
0.0866841 + 0.996236i \(0.472373\pi\)
\(450\) 0 0
\(451\) 1.65072e6 0.382149
\(452\) 0 0
\(453\) 1.11777e7 2.55921
\(454\) 0 0
\(455\) −920643. −0.208479
\(456\) 0 0
\(457\) −44871.6 −0.0100504 −0.00502518 0.999987i \(-0.501600\pi\)
−0.00502518 + 0.999987i \(0.501600\pi\)
\(458\) 0 0
\(459\) −744327. −0.164904
\(460\) 0 0
\(461\) −6.14817e6 −1.34739 −0.673695 0.739009i \(-0.735294\pi\)
−0.673695 + 0.739009i \(0.735294\pi\)
\(462\) 0 0
\(463\) 5.91399e6 1.28212 0.641059 0.767492i \(-0.278496\pi\)
0.641059 + 0.767492i \(0.278496\pi\)
\(464\) 0 0
\(465\) 5.17770e6 1.11046
\(466\) 0 0
\(467\) −4.46680e6 −0.947772 −0.473886 0.880586i \(-0.657149\pi\)
−0.473886 + 0.880586i \(0.657149\pi\)
\(468\) 0 0
\(469\) 767038. 0.161022
\(470\) 0 0
\(471\) −9.85368e6 −2.04666
\(472\) 0 0
\(473\) −916540. −0.188364
\(474\) 0 0
\(475\) 949177. 0.193025
\(476\) 0 0
\(477\) 3.66399e6 0.737325
\(478\) 0 0
\(479\) 3.58911e6 0.714740 0.357370 0.933963i \(-0.383674\pi\)
0.357370 + 0.933963i \(0.383674\pi\)
\(480\) 0 0
\(481\) 2.02759e6 0.399593
\(482\) 0 0
\(483\) −2.54933e6 −0.497232
\(484\) 0 0
\(485\) −1.05022e6 −0.202734
\(486\) 0 0
\(487\) −3.77868e6 −0.721968 −0.360984 0.932572i \(-0.617559\pi\)
−0.360984 + 0.932572i \(0.617559\pi\)
\(488\) 0 0
\(489\) −7.31134e6 −1.38269
\(490\) 0 0
\(491\) −1.51375e6 −0.283369 −0.141684 0.989912i \(-0.545252\pi\)
−0.141684 + 0.989912i \(0.545252\pi\)
\(492\) 0 0
\(493\) −756796. −0.140237
\(494\) 0 0
\(495\) −1.43924e6 −0.264009
\(496\) 0 0
\(497\) −1.03033e6 −0.187106
\(498\) 0 0
\(499\) −2.20454e6 −0.396338 −0.198169 0.980168i \(-0.563500\pi\)
−0.198169 + 0.980168i \(0.563500\pi\)
\(500\) 0 0
\(501\) 1.01942e7 1.81451
\(502\) 0 0
\(503\) 9.13351e6 1.60960 0.804799 0.593547i \(-0.202273\pi\)
0.804799 + 0.593547i \(0.202273\pi\)
\(504\) 0 0
\(505\) −1.16166e6 −0.202699
\(506\) 0 0
\(507\) −4.07894e6 −0.704738
\(508\) 0 0
\(509\) 5.86974e6 1.00421 0.502105 0.864807i \(-0.332559\pi\)
0.502105 + 0.864807i \(0.332559\pi\)
\(510\) 0 0
\(511\) 2.58705e6 0.438282
\(512\) 0 0
\(513\) 1.33687e6 0.224283
\(514\) 0 0
\(515\) −3.18951e6 −0.529915
\(516\) 0 0
\(517\) 6.26486e6 1.03083
\(518\) 0 0
\(519\) 8.79383e6 1.43305
\(520\) 0 0
\(521\) −4.28621e6 −0.691797 −0.345899 0.938272i \(-0.612426\pi\)
−0.345899 + 0.938272i \(0.612426\pi\)
\(522\) 0 0
\(523\) 412959. 0.0660165 0.0330082 0.999455i \(-0.489491\pi\)
0.0330082 + 0.999455i \(0.489491\pi\)
\(524\) 0 0
\(525\) 645479. 0.102208
\(526\) 0 0
\(527\) −8.30869e6 −1.30318
\(528\) 0 0
\(529\) −343091. −0.0533053
\(530\) 0 0
\(531\) 1.01047e6 0.155521
\(532\) 0 0
\(533\) −4.33651e6 −0.661184
\(534\) 0 0
\(535\) 2.03487e6 0.307363
\(536\) 0 0
\(537\) 1.16621e7 1.74519
\(538\) 0 0
\(539\) 686880. 0.101838
\(540\) 0 0
\(541\) 5.93333e6 0.871576 0.435788 0.900049i \(-0.356470\pi\)
0.435788 + 0.900049i \(0.356470\pi\)
\(542\) 0 0
\(543\) −3.97716e6 −0.578860
\(544\) 0 0
\(545\) −1.09606e6 −0.158068
\(546\) 0 0
\(547\) −3.77825e6 −0.539912 −0.269956 0.962873i \(-0.587009\pi\)
−0.269956 + 0.962873i \(0.587009\pi\)
\(548\) 0 0
\(549\) 4.56568e6 0.646509
\(550\) 0 0
\(551\) 1.35927e6 0.190733
\(552\) 0 0
\(553\) 3.95360e6 0.549768
\(554\) 0 0
\(555\) −1.42158e6 −0.195902
\(556\) 0 0
\(557\) 2.28752e6 0.312412 0.156206 0.987724i \(-0.450074\pi\)
0.156206 + 0.987724i \(0.450074\pi\)
\(558\) 0 0
\(559\) 2.40778e6 0.325903
\(560\) 0 0
\(561\) 5.09843e6 0.683958
\(562\) 0 0
\(563\) 393869. 0.0523698 0.0261849 0.999657i \(-0.491664\pi\)
0.0261849 + 0.999657i \(0.491664\pi\)
\(564\) 0 0
\(565\) 4.56965e6 0.602229
\(566\) 0 0
\(567\) 3.30523e6 0.431761
\(568\) 0 0
\(569\) 1.15221e7 1.49194 0.745972 0.665977i \(-0.231985\pi\)
0.745972 + 0.665977i \(0.231985\pi\)
\(570\) 0 0
\(571\) −8.55465e6 −1.09802 −0.549012 0.835814i \(-0.684996\pi\)
−0.549012 + 0.835814i \(0.684996\pi\)
\(572\) 0 0
\(573\) 5.76602e6 0.733651
\(574\) 0 0
\(575\) −1.54278e6 −0.194596
\(576\) 0 0
\(577\) −2.89933e6 −0.362542 −0.181271 0.983433i \(-0.558021\pi\)
−0.181271 + 0.983433i \(0.558021\pi\)
\(578\) 0 0
\(579\) −6.59156e6 −0.817131
\(580\) 0 0
\(581\) −3.14567e6 −0.386610
\(582\) 0 0
\(583\) 5.20884e6 0.634701
\(584\) 0 0
\(585\) 3.78092e6 0.456781
\(586\) 0 0
\(587\) 1.03041e7 1.23428 0.617140 0.786854i \(-0.288291\pi\)
0.617140 + 0.786854i \(0.288291\pi\)
\(588\) 0 0
\(589\) 1.49231e7 1.77243
\(590\) 0 0
\(591\) −2.65521e6 −0.312702
\(592\) 0 0
\(593\) −6.25856e6 −0.730866 −0.365433 0.930838i \(-0.619079\pi\)
−0.365433 + 0.930838i \(0.619079\pi\)
\(594\) 0 0
\(595\) −1.03580e6 −0.119946
\(596\) 0 0
\(597\) 1.47943e7 1.69887
\(598\) 0 0
\(599\) −5.46416e6 −0.622238 −0.311119 0.950371i \(-0.600704\pi\)
−0.311119 + 0.950371i \(0.600704\pi\)
\(600\) 0 0
\(601\) −8.28445e6 −0.935572 −0.467786 0.883842i \(-0.654948\pi\)
−0.467786 + 0.883842i \(0.654948\pi\)
\(602\) 0 0
\(603\) −3.15010e6 −0.352802
\(604\) 0 0
\(605\) 1.98022e6 0.219950
\(606\) 0 0
\(607\) 3.06212e6 0.337326 0.168663 0.985674i \(-0.446055\pi\)
0.168663 + 0.985674i \(0.446055\pi\)
\(608\) 0 0
\(609\) 924356. 0.100994
\(610\) 0 0
\(611\) −1.64580e7 −1.78351
\(612\) 0 0
\(613\) −1.19291e7 −1.28220 −0.641100 0.767457i \(-0.721522\pi\)
−0.641100 + 0.767457i \(0.721522\pi\)
\(614\) 0 0
\(615\) 3.04041e6 0.324148
\(616\) 0 0
\(617\) −4.51435e6 −0.477400 −0.238700 0.971093i \(-0.576721\pi\)
−0.238700 + 0.971093i \(0.576721\pi\)
\(618\) 0 0
\(619\) −1.41481e7 −1.48412 −0.742062 0.670331i \(-0.766152\pi\)
−0.742062 + 0.670331i \(0.766152\pi\)
\(620\) 0 0
\(621\) −2.17293e6 −0.226109
\(622\) 0 0
\(623\) 3.53183e6 0.364569
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −9.15719e6 −0.930237
\(628\) 0 0
\(629\) 2.28122e6 0.229901
\(630\) 0 0
\(631\) −3.95815e6 −0.395748 −0.197874 0.980227i \(-0.563404\pi\)
−0.197874 + 0.980227i \(0.563404\pi\)
\(632\) 0 0
\(633\) −2.14109e7 −2.12386
\(634\) 0 0
\(635\) −1.98489e6 −0.195345
\(636\) 0 0
\(637\) −1.80446e6 −0.176197
\(638\) 0 0
\(639\) 4.23141e6 0.409952
\(640\) 0 0
\(641\) −1.87473e7 −1.80217 −0.901083 0.433647i \(-0.857226\pi\)
−0.901083 + 0.433647i \(0.857226\pi\)
\(642\) 0 0
\(643\) −3.25738e6 −0.310700 −0.155350 0.987860i \(-0.549650\pi\)
−0.155350 + 0.987860i \(0.549650\pi\)
\(644\) 0 0
\(645\) −1.68814e6 −0.159775
\(646\) 0 0
\(647\) 5.76628e6 0.541546 0.270773 0.962643i \(-0.412721\pi\)
0.270773 + 0.962643i \(0.412721\pi\)
\(648\) 0 0
\(649\) 1.43652e6 0.133875
\(650\) 0 0
\(651\) 1.01483e7 0.938514
\(652\) 0 0
\(653\) −9.30278e6 −0.853748 −0.426874 0.904311i \(-0.640385\pi\)
−0.426874 + 0.904311i \(0.640385\pi\)
\(654\) 0 0
\(655\) −3.66524e6 −0.333810
\(656\) 0 0
\(657\) −1.06246e7 −0.960282
\(658\) 0 0
\(659\) 1.05250e7 0.944081 0.472040 0.881577i \(-0.343518\pi\)
0.472040 + 0.881577i \(0.343518\pi\)
\(660\) 0 0
\(661\) −1.73879e7 −1.54790 −0.773950 0.633246i \(-0.781722\pi\)
−0.773950 + 0.633246i \(0.781722\pi\)
\(662\) 0 0
\(663\) −1.33938e7 −1.18337
\(664\) 0 0
\(665\) 1.86039e6 0.163136
\(666\) 0 0
\(667\) −2.20934e6 −0.192286
\(668\) 0 0
\(669\) 2.16052e7 1.86635
\(670\) 0 0
\(671\) 6.49070e6 0.556526
\(672\) 0 0
\(673\) −1.08486e7 −0.923282 −0.461641 0.887067i \(-0.652739\pi\)
−0.461641 + 0.887067i \(0.652739\pi\)
\(674\) 0 0
\(675\) 550177. 0.0464775
\(676\) 0 0
\(677\) −1.83721e7 −1.54059 −0.770294 0.637689i \(-0.779890\pi\)
−0.770294 + 0.637689i \(0.779890\pi\)
\(678\) 0 0
\(679\) −2.05843e6 −0.171341
\(680\) 0 0
\(681\) −1.05736e7 −0.873684
\(682\) 0 0
\(683\) −6.45618e6 −0.529571 −0.264785 0.964307i \(-0.585301\pi\)
−0.264785 + 0.964307i \(0.585301\pi\)
\(684\) 0 0
\(685\) 7.32350e6 0.596338
\(686\) 0 0
\(687\) −2.29884e7 −1.85830
\(688\) 0 0
\(689\) −1.36838e7 −1.09814
\(690\) 0 0
\(691\) −1.09563e7 −0.872913 −0.436456 0.899725i \(-0.643767\pi\)
−0.436456 + 0.899725i \(0.643767\pi\)
\(692\) 0 0
\(693\) −2.82090e6 −0.223128
\(694\) 0 0
\(695\) 5.68971e6 0.446816
\(696\) 0 0
\(697\) −4.87896e6 −0.380404
\(698\) 0 0
\(699\) 2.43192e6 0.188259
\(700\) 0 0
\(701\) −2.50941e7 −1.92875 −0.964375 0.264538i \(-0.914781\pi\)
−0.964375 + 0.264538i \(0.914781\pi\)
\(702\) 0 0
\(703\) −4.09725e6 −0.312683
\(704\) 0 0
\(705\) 1.15390e7 0.874371
\(706\) 0 0
\(707\) −2.27686e6 −0.171312
\(708\) 0 0
\(709\) −1.52164e7 −1.13683 −0.568416 0.822741i \(-0.692444\pi\)
−0.568416 + 0.822741i \(0.692444\pi\)
\(710\) 0 0
\(711\) −1.62367e7 −1.20455
\(712\) 0 0
\(713\) −2.42558e7 −1.78686
\(714\) 0 0
\(715\) 5.37507e6 0.393205
\(716\) 0 0
\(717\) −1.59179e7 −1.15635
\(718\) 0 0
\(719\) 2.44444e7 1.76342 0.881712 0.471788i \(-0.156391\pi\)
0.881712 + 0.471788i \(0.156391\pi\)
\(720\) 0 0
\(721\) −6.25144e6 −0.447860
\(722\) 0 0
\(723\) 2.52026e7 1.79308
\(724\) 0 0
\(725\) 559393. 0.0395250
\(726\) 0 0
\(727\) −2.58767e7 −1.81582 −0.907912 0.419161i \(-0.862324\pi\)
−0.907912 + 0.419161i \(0.862324\pi\)
\(728\) 0 0
\(729\) −9.06548e6 −0.631789
\(730\) 0 0
\(731\) 2.70897e6 0.187504
\(732\) 0 0
\(733\) 2.63428e7 1.81093 0.905467 0.424416i \(-0.139521\pi\)
0.905467 + 0.424416i \(0.139521\pi\)
\(734\) 0 0
\(735\) 1.26514e6 0.0863814
\(736\) 0 0
\(737\) −4.47827e6 −0.303697
\(738\) 0 0
\(739\) −1.67769e7 −1.13006 −0.565029 0.825071i \(-0.691135\pi\)
−0.565029 + 0.825071i \(0.691135\pi\)
\(740\) 0 0
\(741\) 2.40563e7 1.60947
\(742\) 0 0
\(743\) 9.59030e6 0.637324 0.318662 0.947868i \(-0.396767\pi\)
0.318662 + 0.947868i \(0.396767\pi\)
\(744\) 0 0
\(745\) 5.26701e6 0.347675
\(746\) 0 0
\(747\) 1.29187e7 0.847069
\(748\) 0 0
\(749\) 3.98834e6 0.259769
\(750\) 0 0
\(751\) −1.08659e7 −0.703020 −0.351510 0.936184i \(-0.614332\pi\)
−0.351510 + 0.936184i \(0.614332\pi\)
\(752\) 0 0
\(753\) 3.01958e7 1.94070
\(754\) 0 0
\(755\) 1.32582e7 0.846484
\(756\) 0 0
\(757\) −1.88916e7 −1.19820 −0.599098 0.800676i \(-0.704474\pi\)
−0.599098 + 0.800676i \(0.704474\pi\)
\(758\) 0 0
\(759\) 1.48840e7 0.937811
\(760\) 0 0
\(761\) −2.38282e7 −1.49152 −0.745761 0.666214i \(-0.767914\pi\)
−0.745761 + 0.666214i \(0.767914\pi\)
\(762\) 0 0
\(763\) −2.14828e6 −0.133592
\(764\) 0 0
\(765\) 4.25387e6 0.262803
\(766\) 0 0
\(767\) −3.77378e6 −0.231627
\(768\) 0 0
\(769\) −1.44907e7 −0.883638 −0.441819 0.897104i \(-0.645667\pi\)
−0.441819 + 0.897104i \(0.645667\pi\)
\(770\) 0 0
\(771\) −2.06271e7 −1.24969
\(772\) 0 0
\(773\) 3.26526e7 1.96548 0.982739 0.184995i \(-0.0592269\pi\)
0.982739 + 0.184995i \(0.0592269\pi\)
\(774\) 0 0
\(775\) 6.14145e6 0.367296
\(776\) 0 0
\(777\) −2.78630e6 −0.165568
\(778\) 0 0
\(779\) 8.76300e6 0.517379
\(780\) 0 0
\(781\) 6.01549e6 0.352893
\(782\) 0 0
\(783\) 787878. 0.0459256
\(784\) 0 0
\(785\) −1.16878e7 −0.676952
\(786\) 0 0
\(787\) 3.95371e6 0.227545 0.113773 0.993507i \(-0.463706\pi\)
0.113773 + 0.993507i \(0.463706\pi\)
\(788\) 0 0
\(789\) 1.39693e7 0.798884
\(790\) 0 0
\(791\) 8.95651e6 0.508976
\(792\) 0 0
\(793\) −1.70513e7 −0.962886
\(794\) 0 0
\(795\) 9.59397e6 0.538369
\(796\) 0 0
\(797\) 2.69614e7 1.50348 0.751738 0.659462i \(-0.229216\pi\)
0.751738 + 0.659462i \(0.229216\pi\)
\(798\) 0 0
\(799\) −1.85167e7 −1.02612
\(800\) 0 0
\(801\) −1.45046e7 −0.798776
\(802\) 0 0
\(803\) −1.51042e7 −0.826627
\(804\) 0 0
\(805\) −3.02385e6 −0.164464
\(806\) 0 0
\(807\) 1.10056e7 0.594883
\(808\) 0 0
\(809\) 4.71873e6 0.253486 0.126743 0.991936i \(-0.459548\pi\)
0.126743 + 0.991936i \(0.459548\pi\)
\(810\) 0 0
\(811\) 1.31852e7 0.703938 0.351969 0.936012i \(-0.385512\pi\)
0.351969 + 0.936012i \(0.385512\pi\)
\(812\) 0 0
\(813\) −2.10607e7 −1.11750
\(814\) 0 0
\(815\) −8.67223e6 −0.457338
\(816\) 0 0
\(817\) −4.86553e6 −0.255020
\(818\) 0 0
\(819\) 7.41061e6 0.386050
\(820\) 0 0
\(821\) 5.15697e6 0.267015 0.133508 0.991048i \(-0.457376\pi\)
0.133508 + 0.991048i \(0.457376\pi\)
\(822\) 0 0
\(823\) −2.37615e7 −1.22286 −0.611428 0.791300i \(-0.709404\pi\)
−0.611428 + 0.791300i \(0.709404\pi\)
\(824\) 0 0
\(825\) −3.76856e6 −0.192770
\(826\) 0 0
\(827\) 5.40811e6 0.274968 0.137484 0.990504i \(-0.456098\pi\)
0.137484 + 0.990504i \(0.456098\pi\)
\(828\) 0 0
\(829\) −8.68373e6 −0.438854 −0.219427 0.975629i \(-0.570419\pi\)
−0.219427 + 0.975629i \(0.570419\pi\)
\(830\) 0 0
\(831\) −2.99025e7 −1.50212
\(832\) 0 0
\(833\) −2.03018e6 −0.101373
\(834\) 0 0
\(835\) 1.20917e7 0.600166
\(836\) 0 0
\(837\) 8.64994e6 0.426775
\(838\) 0 0
\(839\) −8.19162e6 −0.401759 −0.200879 0.979616i \(-0.564380\pi\)
−0.200879 + 0.979616i \(0.564380\pi\)
\(840\) 0 0
\(841\) −1.97101e7 −0.960944
\(842\) 0 0
\(843\) −3.00741e7 −1.45755
\(844\) 0 0
\(845\) −4.83817e6 −0.233098
\(846\) 0 0
\(847\) 3.88123e6 0.185892
\(848\) 0 0
\(849\) 5.35390e7 2.54919
\(850\) 0 0
\(851\) 6.65963e6 0.315229
\(852\) 0 0
\(853\) −1.03765e7 −0.488292 −0.244146 0.969738i \(-0.578508\pi\)
−0.244146 + 0.969738i \(0.578508\pi\)
\(854\) 0 0
\(855\) −7.64029e6 −0.357433
\(856\) 0 0
\(857\) −2.83309e7 −1.31768 −0.658838 0.752285i \(-0.728952\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(858\) 0 0
\(859\) −7.91250e6 −0.365874 −0.182937 0.983125i \(-0.558560\pi\)
−0.182937 + 0.983125i \(0.558560\pi\)
\(860\) 0 0
\(861\) 5.95920e6 0.273955
\(862\) 0 0
\(863\) 3.56407e7 1.62899 0.814495 0.580170i \(-0.197014\pi\)
0.814495 + 0.580170i \(0.197014\pi\)
\(864\) 0 0
\(865\) 1.04307e7 0.473993
\(866\) 0 0
\(867\) 1.48570e7 0.671248
\(868\) 0 0
\(869\) −2.30826e7 −1.03690
\(870\) 0 0
\(871\) 1.17646e7 0.525449
\(872\) 0 0
\(873\) 8.45362e6 0.375411
\(874\) 0 0
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) 2.22712e6 0.0977789 0.0488895 0.998804i \(-0.484432\pi\)
0.0488895 + 0.998804i \(0.484432\pi\)
\(878\) 0 0
\(879\) 5.37754e7 2.34753
\(880\) 0 0
\(881\) 2.71435e7 1.17822 0.589110 0.808053i \(-0.299479\pi\)
0.589110 + 0.808053i \(0.299479\pi\)
\(882\) 0 0
\(883\) −8.65272e6 −0.373466 −0.186733 0.982411i \(-0.559790\pi\)
−0.186733 + 0.982411i \(0.559790\pi\)
\(884\) 0 0
\(885\) 2.64587e6 0.113556
\(886\) 0 0
\(887\) −2.48135e7 −1.05896 −0.529480 0.848323i \(-0.677613\pi\)
−0.529480 + 0.848323i \(0.677613\pi\)
\(888\) 0 0
\(889\) −3.89038e6 −0.165096
\(890\) 0 0
\(891\) −1.92972e7 −0.814329
\(892\) 0 0
\(893\) 3.32575e7 1.39560
\(894\) 0 0
\(895\) 1.38329e7 0.577237
\(896\) 0 0
\(897\) −3.91008e7 −1.62257
\(898\) 0 0
\(899\) 8.79484e6 0.362935
\(900\) 0 0
\(901\) −1.53955e7 −0.631803
\(902\) 0 0
\(903\) −3.30876e6 −0.135035
\(904\) 0 0
\(905\) −4.71744e6 −0.191463
\(906\) 0 0
\(907\) 3.85211e7 1.55482 0.777411 0.628993i \(-0.216533\pi\)
0.777411 + 0.628993i \(0.216533\pi\)
\(908\) 0 0
\(909\) 9.35068e6 0.375348
\(910\) 0 0
\(911\) 1.96525e7 0.784554 0.392277 0.919847i \(-0.371687\pi\)
0.392277 + 0.919847i \(0.371687\pi\)
\(912\) 0 0
\(913\) 1.83657e7 0.729171
\(914\) 0 0
\(915\) 1.19550e7 0.472059
\(916\) 0 0
\(917\) −7.18387e6 −0.282121
\(918\) 0 0
\(919\) 2.65362e7 1.03646 0.518228 0.855243i \(-0.326592\pi\)
0.518228 + 0.855243i \(0.326592\pi\)
\(920\) 0 0
\(921\) −3.85324e7 −1.49685
\(922\) 0 0
\(923\) −1.58029e7 −0.610566
\(924\) 0 0
\(925\) −1.68619e6 −0.0647965
\(926\) 0 0
\(927\) 2.56736e7 0.981268
\(928\) 0 0
\(929\) −6.33956e6 −0.241002 −0.120501 0.992713i \(-0.538450\pi\)
−0.120501 + 0.992713i \(0.538450\pi\)
\(930\) 0 0
\(931\) 3.64636e6 0.137875
\(932\) 0 0
\(933\) −4.54959e7 −1.71107
\(934\) 0 0
\(935\) 6.04742e6 0.226225
\(936\) 0 0
\(937\) 2.07109e7 0.770639 0.385320 0.922783i \(-0.374091\pi\)
0.385320 + 0.922783i \(0.374091\pi\)
\(938\) 0 0
\(939\) −3.18708e6 −0.117958
\(940\) 0 0
\(941\) 4.32264e7 1.59138 0.795692 0.605702i \(-0.207108\pi\)
0.795692 + 0.605702i \(0.207108\pi\)
\(942\) 0 0
\(943\) −1.42433e7 −0.521592
\(944\) 0 0
\(945\) 1.07835e6 0.0392807
\(946\) 0 0
\(947\) 3.25763e6 0.118039 0.0590197 0.998257i \(-0.481203\pi\)
0.0590197 + 0.998257i \(0.481203\pi\)
\(948\) 0 0
\(949\) 3.96793e7 1.43021
\(950\) 0 0
\(951\) −5.46904e7 −1.96092
\(952\) 0 0
\(953\) −1.58737e7 −0.566168 −0.283084 0.959095i \(-0.591358\pi\)
−0.283084 + 0.959095i \(0.591358\pi\)
\(954\) 0 0
\(955\) 6.83927e6 0.242662
\(956\) 0 0
\(957\) −5.39675e6 −0.190481
\(958\) 0 0
\(959\) 1.43541e7 0.503998
\(960\) 0 0
\(961\) 6.79274e7 2.37266
\(962\) 0 0
\(963\) −1.63794e7 −0.569158
\(964\) 0 0
\(965\) −7.81847e6 −0.270274
\(966\) 0 0
\(967\) −3.78998e7 −1.30338 −0.651690 0.758486i \(-0.725940\pi\)
−0.651690 + 0.758486i \(0.725940\pi\)
\(968\) 0 0
\(969\) 2.70654e7 0.925988
\(970\) 0 0
\(971\) 4.44989e7 1.51461 0.757306 0.653061i \(-0.226515\pi\)
0.757306 + 0.653061i \(0.226515\pi\)
\(972\) 0 0
\(973\) 1.11518e7 0.377628
\(974\) 0 0
\(975\) 9.90014e6 0.333526
\(976\) 0 0
\(977\) 3.58249e7 1.20074 0.600369 0.799723i \(-0.295020\pi\)
0.600369 + 0.799723i \(0.295020\pi\)
\(978\) 0 0
\(979\) −2.06202e7 −0.687599
\(980\) 0 0
\(981\) 8.82261e6 0.292701
\(982\) 0 0
\(983\) −2.97430e7 −0.981749 −0.490874 0.871230i \(-0.663323\pi\)
−0.490874 + 0.871230i \(0.663323\pi\)
\(984\) 0 0
\(985\) −3.14944e6 −0.103429
\(986\) 0 0
\(987\) 2.26165e7 0.738979
\(988\) 0 0
\(989\) 7.90837e6 0.257097
\(990\) 0 0
\(991\) −4.84017e7 −1.56558 −0.782792 0.622284i \(-0.786205\pi\)
−0.782792 + 0.622284i \(0.786205\pi\)
\(992\) 0 0
\(993\) −7.41321e6 −0.238580
\(994\) 0 0
\(995\) 1.75480e7 0.561915
\(996\) 0 0
\(997\) −2.75881e7 −0.878991 −0.439495 0.898245i \(-0.644843\pi\)
−0.439495 + 0.898245i \(0.644843\pi\)
\(998\) 0 0
\(999\) −2.37491e6 −0.0752894
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.a.s.1.1 3
4.3 odd 2 280.6.a.e.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.6.a.e.1.3 3 4.3 odd 2
560.6.a.s.1.1 3 1.1 even 1 trivial