Properties

Label 560.6.g.f.449.2
Level $560$
Weight $6$
Character 560.449
Analytic conductor $89.815$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(449,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.449");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2727 x^{14} + 2931087 x^{12} + 1572724517 x^{10} + 437533757892 x^{8} + 58220937475176 x^{6} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{2}\cdot 5^{8}\cdot 7^{10} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(-27.3503i\) of defining polynomial
Character \(\chi\) \(=\) 560.449
Dual form 560.6.g.f.449.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.3503i q^{3} +(-55.3209 + 8.03755i) q^{5} -49.0000i q^{7} -399.638 q^{9} +141.450 q^{11} -297.641i q^{13} +(203.754 + 1402.40i) q^{15} +1226.74i q^{17} +1777.30 q^{19} -1242.16 q^{21} +3158.14i q^{23} +(2995.80 - 889.288i) q^{25} +3970.81i q^{27} +7419.42 q^{29} -970.605 q^{31} -3585.80i q^{33} +(393.840 + 2710.72i) q^{35} +2337.19i q^{37} -7545.29 q^{39} -561.020 q^{41} +1974.49i q^{43} +(22108.3 - 3212.11i) q^{45} +10976.5i q^{47} -2401.00 q^{49} +31098.1 q^{51} -33500.0i q^{53} +(-7825.14 + 1136.91i) q^{55} -45055.2i q^{57} +32227.0 q^{59} -34441.8 q^{61} +19582.2i q^{63} +(2392.30 + 16465.8i) q^{65} +12670.3i q^{67} +80059.9 q^{69} +83271.0 q^{71} +89632.0i q^{73} +(-22543.7 - 75944.3i) q^{75} -6931.05i q^{77} +4871.34 q^{79} +3549.22 q^{81} +67688.7i q^{83} +(-9859.95 - 67864.1i) q^{85} -188085. i q^{87} +86637.4 q^{89} -14584.4 q^{91} +24605.1i q^{93} +(-98322.0 + 14285.2i) q^{95} +6607.75i q^{97} -56528.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{5} - 1606 q^{9} - 294 q^{11} - 754 q^{15} + 3512 q^{19} + 1274 q^{21} + 7500 q^{25} - 20870 q^{29} - 4028 q^{31} - 3038 q^{35} + 25358 q^{39} + 24952 q^{41} - 10650 q^{45} - 38416 q^{49} + 12302 q^{51}+ \cdots - 293964 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 25.3503i 1.62622i −0.582108 0.813111i \(-0.697772\pi\)
0.582108 0.813111i \(-0.302228\pi\)
\(4\) 0 0
\(5\) −55.3209 + 8.03755i −0.989610 + 0.143780i
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 0 0
\(9\) −399.638 −1.64460
\(10\) 0 0
\(11\) 141.450 0.352469 0.176235 0.984348i \(-0.443608\pi\)
0.176235 + 0.984348i \(0.443608\pi\)
\(12\) 0 0
\(13\) 297.641i 0.488466i −0.969717 0.244233i \(-0.921464\pi\)
0.969717 0.244233i \(-0.0785362\pi\)
\(14\) 0 0
\(15\) 203.754 + 1402.40i 0.233818 + 1.60933i
\(16\) 0 0
\(17\) 1226.74i 1.02951i 0.857339 + 0.514753i \(0.172116\pi\)
−0.857339 + 0.514753i \(0.827884\pi\)
\(18\) 0 0
\(19\) 1777.30 1.12948 0.564739 0.825270i \(-0.308977\pi\)
0.564739 + 0.825270i \(0.308977\pi\)
\(20\) 0 0
\(21\) −1242.16 −0.614654
\(22\) 0 0
\(23\) 3158.14i 1.24484i 0.782685 + 0.622418i \(0.213850\pi\)
−0.782685 + 0.622418i \(0.786150\pi\)
\(24\) 0 0
\(25\) 2995.80 889.288i 0.958655 0.284572i
\(26\) 0 0
\(27\) 3970.81i 1.04826i
\(28\) 0 0
\(29\) 7419.42 1.63823 0.819115 0.573629i \(-0.194465\pi\)
0.819115 + 0.573629i \(0.194465\pi\)
\(30\) 0 0
\(31\) −970.605 −0.181400 −0.0907002 0.995878i \(-0.528910\pi\)
−0.0907002 + 0.995878i \(0.528910\pi\)
\(32\) 0 0
\(33\) 3585.80i 0.573193i
\(34\) 0 0
\(35\) 393.840 + 2710.72i 0.0543438 + 0.374037i
\(36\) 0 0
\(37\) 2337.19i 0.280666i 0.990104 + 0.140333i \(0.0448173\pi\)
−0.990104 + 0.140333i \(0.955183\pi\)
\(38\) 0 0
\(39\) −7545.29 −0.794354
\(40\) 0 0
\(41\) −561.020 −0.0521217 −0.0260609 0.999660i \(-0.508296\pi\)
−0.0260609 + 0.999660i \(0.508296\pi\)
\(42\) 0 0
\(43\) 1974.49i 0.162848i 0.996680 + 0.0814242i \(0.0259469\pi\)
−0.996680 + 0.0814242i \(0.974053\pi\)
\(44\) 0 0
\(45\) 22108.3 3212.11i 1.62751 0.236461i
\(46\) 0 0
\(47\) 10976.5i 0.724802i 0.932022 + 0.362401i \(0.118043\pi\)
−0.932022 + 0.362401i \(0.881957\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 31098.1 1.67421
\(52\) 0 0
\(53\) 33500.0i 1.63816i −0.573681 0.819079i \(-0.694485\pi\)
0.573681 0.819079i \(-0.305515\pi\)
\(54\) 0 0
\(55\) −7825.14 + 1136.91i −0.348807 + 0.0506781i
\(56\) 0 0
\(57\) 45055.2i 1.83678i
\(58\) 0 0
\(59\) 32227.0 1.20529 0.602643 0.798011i \(-0.294114\pi\)
0.602643 + 0.798011i \(0.294114\pi\)
\(60\) 0 0
\(61\) −34441.8 −1.18512 −0.592558 0.805528i \(-0.701882\pi\)
−0.592558 + 0.805528i \(0.701882\pi\)
\(62\) 0 0
\(63\) 19582.2i 0.621600i
\(64\) 0 0
\(65\) 2392.30 + 16465.8i 0.0702316 + 0.483391i
\(66\) 0 0
\(67\) 12670.3i 0.344827i 0.985025 + 0.172413i \(0.0551565\pi\)
−0.985025 + 0.172413i \(0.944844\pi\)
\(68\) 0 0
\(69\) 80059.9 2.02438
\(70\) 0 0
\(71\) 83271.0 1.96042 0.980208 0.197972i \(-0.0634355\pi\)
0.980208 + 0.197972i \(0.0634355\pi\)
\(72\) 0 0
\(73\) 89632.0i 1.96859i 0.176521 + 0.984297i \(0.443516\pi\)
−0.176521 + 0.984297i \(0.556484\pi\)
\(74\) 0 0
\(75\) −22543.7 75944.3i −0.462778 1.55899i
\(76\) 0 0
\(77\) 6931.05i 0.133221i
\(78\) 0 0
\(79\) 4871.34 0.0878174 0.0439087 0.999036i \(-0.486019\pi\)
0.0439087 + 0.999036i \(0.486019\pi\)
\(80\) 0 0
\(81\) 3549.22 0.0601064
\(82\) 0 0
\(83\) 67688.7i 1.07850i 0.842145 + 0.539251i \(0.181293\pi\)
−0.842145 + 0.539251i \(0.818707\pi\)
\(84\) 0 0
\(85\) −9859.95 67864.1i −0.148022 1.01881i
\(86\) 0 0
\(87\) 188085.i 2.66413i
\(88\) 0 0
\(89\) 86637.4 1.15939 0.579696 0.814833i \(-0.303171\pi\)
0.579696 + 0.814833i \(0.303171\pi\)
\(90\) 0 0
\(91\) −14584.4 −0.184623
\(92\) 0 0
\(93\) 24605.1i 0.294997i
\(94\) 0 0
\(95\) −98322.0 + 14285.2i −1.11774 + 0.162396i
\(96\) 0 0
\(97\) 6607.75i 0.0713057i 0.999364 + 0.0356528i \(0.0113511\pi\)
−0.999364 + 0.0356528i \(0.988649\pi\)
\(98\) 0 0
\(99\) −56528.7 −0.579671
\(100\) 0 0
\(101\) −38774.9 −0.378223 −0.189111 0.981956i \(-0.560561\pi\)
−0.189111 + 0.981956i \(0.560561\pi\)
\(102\) 0 0
\(103\) 1658.22i 0.0154010i −0.999970 0.00770049i \(-0.997549\pi\)
0.999970 0.00770049i \(-0.00245117\pi\)
\(104\) 0 0
\(105\) 68717.6 9983.96i 0.608268 0.0883750i
\(106\) 0 0
\(107\) 192852.i 1.62842i −0.580573 0.814208i \(-0.697171\pi\)
0.580573 0.814208i \(-0.302829\pi\)
\(108\) 0 0
\(109\) −125324. −1.01034 −0.505171 0.863019i \(-0.668571\pi\)
−0.505171 + 0.863019i \(0.668571\pi\)
\(110\) 0 0
\(111\) 59248.4 0.456425
\(112\) 0 0
\(113\) 118360.i 0.871984i −0.899951 0.435992i \(-0.856398\pi\)
0.899951 0.435992i \(-0.143602\pi\)
\(114\) 0 0
\(115\) −25383.7 174711.i −0.178983 1.23190i
\(116\) 0 0
\(117\) 118948.i 0.803330i
\(118\) 0 0
\(119\) 60110.1 0.389117
\(120\) 0 0
\(121\) −141043. −0.875765
\(122\) 0 0
\(123\) 14222.0i 0.0847615i
\(124\) 0 0
\(125\) −158582. + 73275.1i −0.907778 + 0.419451i
\(126\) 0 0
\(127\) 78506.1i 0.431911i −0.976403 0.215955i \(-0.930713\pi\)
0.976403 0.215955i \(-0.0692866\pi\)
\(128\) 0 0
\(129\) 50053.9 0.264828
\(130\) 0 0
\(131\) 21998.0 0.111996 0.0559982 0.998431i \(-0.482166\pi\)
0.0559982 + 0.998431i \(0.482166\pi\)
\(132\) 0 0
\(133\) 87087.9i 0.426902i
\(134\) 0 0
\(135\) −31915.6 219668.i −0.150719 1.03737i
\(136\) 0 0
\(137\) 330457.i 1.50423i −0.659034 0.752113i \(-0.729035\pi\)
0.659034 0.752113i \(-0.270965\pi\)
\(138\) 0 0
\(139\) 403251. 1.77027 0.885133 0.465337i \(-0.154067\pi\)
0.885133 + 0.465337i \(0.154067\pi\)
\(140\) 0 0
\(141\) 278258. 1.17869
\(142\) 0 0
\(143\) 42101.3i 0.172169i
\(144\) 0 0
\(145\) −410449. + 59634.0i −1.62121 + 0.235545i
\(146\) 0 0
\(147\) 60866.1i 0.232317i
\(148\) 0 0
\(149\) −441499. −1.62916 −0.814581 0.580050i \(-0.803033\pi\)
−0.814581 + 0.580050i \(0.803033\pi\)
\(150\) 0 0
\(151\) −424395. −1.51471 −0.757353 0.653006i \(-0.773508\pi\)
−0.757353 + 0.653006i \(0.773508\pi\)
\(152\) 0 0
\(153\) 490250.i 1.69312i
\(154\) 0 0
\(155\) 53694.7 7801.28i 0.179516 0.0260817i
\(156\) 0 0
\(157\) 154250.i 0.499431i 0.968319 + 0.249715i \(0.0803371\pi\)
−0.968319 + 0.249715i \(0.919663\pi\)
\(158\) 0 0
\(159\) −849236. −2.66401
\(160\) 0 0
\(161\) 154749. 0.470504
\(162\) 0 0
\(163\) 156114.i 0.460227i 0.973164 + 0.230113i \(0.0739097\pi\)
−0.973164 + 0.230113i \(0.926090\pi\)
\(164\) 0 0
\(165\) 28821.0 + 198370.i 0.0824138 + 0.567238i
\(166\) 0 0
\(167\) 84036.3i 0.233172i 0.993181 + 0.116586i \(0.0371950\pi\)
−0.993181 + 0.116586i \(0.962805\pi\)
\(168\) 0 0
\(169\) 282703. 0.761401
\(170\) 0 0
\(171\) −710277. −1.85754
\(172\) 0 0
\(173\) 155939.i 0.396133i −0.980189 0.198066i \(-0.936534\pi\)
0.980189 0.198066i \(-0.0634661\pi\)
\(174\) 0 0
\(175\) −43575.1 146794.i −0.107558 0.362337i
\(176\) 0 0
\(177\) 816965.i 1.96006i
\(178\) 0 0
\(179\) 485375. 1.13226 0.566129 0.824317i \(-0.308440\pi\)
0.566129 + 0.824317i \(0.308440\pi\)
\(180\) 0 0
\(181\) 9996.05 0.0226794 0.0113397 0.999936i \(-0.496390\pi\)
0.0113397 + 0.999936i \(0.496390\pi\)
\(182\) 0 0
\(183\) 873109.i 1.92726i
\(184\) 0 0
\(185\) −18785.3 129295.i −0.0403542 0.277750i
\(186\) 0 0
\(187\) 173522.i 0.362869i
\(188\) 0 0
\(189\) 194570. 0.396205
\(190\) 0 0
\(191\) −398572. −0.790540 −0.395270 0.918565i \(-0.629349\pi\)
−0.395270 + 0.918565i \(0.629349\pi\)
\(192\) 0 0
\(193\) 669914.i 1.29457i −0.762248 0.647286i \(-0.775904\pi\)
0.762248 0.647286i \(-0.224096\pi\)
\(194\) 0 0
\(195\) 417412. 60645.6i 0.786100 0.114212i
\(196\) 0 0
\(197\) 937695.i 1.72146i 0.509065 + 0.860728i \(0.329991\pi\)
−0.509065 + 0.860728i \(0.670009\pi\)
\(198\) 0 0
\(199\) 104138. 0.186413 0.0932066 0.995647i \(-0.470288\pi\)
0.0932066 + 0.995647i \(0.470288\pi\)
\(200\) 0 0
\(201\) 321197. 0.560765
\(202\) 0 0
\(203\) 363552.i 0.619193i
\(204\) 0 0
\(205\) 31036.1 4509.22i 0.0515801 0.00749406i
\(206\) 0 0
\(207\) 1.26211e6i 2.04726i
\(208\) 0 0
\(209\) 251400. 0.398106
\(210\) 0 0
\(211\) 1.11877e6 1.72995 0.864975 0.501815i \(-0.167334\pi\)
0.864975 + 0.501815i \(0.167334\pi\)
\(212\) 0 0
\(213\) 2.11095e6i 3.18807i
\(214\) 0 0
\(215\) −15870.1 109230.i −0.0234144 0.161156i
\(216\) 0 0
\(217\) 47559.6i 0.0685629i
\(218\) 0 0
\(219\) 2.27220e6 3.20137
\(220\) 0 0
\(221\) 365127. 0.502879
\(222\) 0 0
\(223\) 972345.i 1.30936i −0.755907 0.654679i \(-0.772804\pi\)
0.755907 0.654679i \(-0.227196\pi\)
\(224\) 0 0
\(225\) −1.19723e6 + 355393.i −1.57660 + 0.468007i
\(226\) 0 0
\(227\) 378096.i 0.487010i 0.969900 + 0.243505i \(0.0782972\pi\)
−0.969900 + 0.243505i \(0.921703\pi\)
\(228\) 0 0
\(229\) 1.18847e6 1.49761 0.748807 0.662788i \(-0.230627\pi\)
0.748807 + 0.662788i \(0.230627\pi\)
\(230\) 0 0
\(231\) −175704. −0.216647
\(232\) 0 0
\(233\) 1.18457e6i 1.42946i −0.699402 0.714729i \(-0.746550\pi\)
0.699402 0.714729i \(-0.253450\pi\)
\(234\) 0 0
\(235\) −88224.2 607230.i −0.104212 0.717271i
\(236\) 0 0
\(237\) 123490.i 0.142811i
\(238\) 0 0
\(239\) 803487. 0.909880 0.454940 0.890522i \(-0.349661\pi\)
0.454940 + 0.890522i \(0.349661\pi\)
\(240\) 0 0
\(241\) 344716. 0.382313 0.191156 0.981560i \(-0.438776\pi\)
0.191156 + 0.981560i \(0.438776\pi\)
\(242\) 0 0
\(243\) 874932.i 0.950515i
\(244\) 0 0
\(245\) 132825. 19298.2i 0.141373 0.0205400i
\(246\) 0 0
\(247\) 528998.i 0.551711i
\(248\) 0 0
\(249\) 1.71593e6 1.75388
\(250\) 0 0
\(251\) 76632.3 0.0767764 0.0383882 0.999263i \(-0.487778\pi\)
0.0383882 + 0.999263i \(0.487778\pi\)
\(252\) 0 0
\(253\) 446719.i 0.438766i
\(254\) 0 0
\(255\) −1.72037e6 + 249953.i −1.65681 + 0.240717i
\(256\) 0 0
\(257\) 734767.i 0.693931i −0.937878 0.346966i \(-0.887212\pi\)
0.937878 0.346966i \(-0.112788\pi\)
\(258\) 0 0
\(259\) 114522. 0.106082
\(260\) 0 0
\(261\) −2.96508e6 −2.69423
\(262\) 0 0
\(263\) 448950.i 0.400229i −0.979772 0.200115i \(-0.935869\pi\)
0.979772 0.200115i \(-0.0641315\pi\)
\(264\) 0 0
\(265\) 269258. + 1.85325e6i 0.235534 + 1.62114i
\(266\) 0 0
\(267\) 2.19628e6i 1.88543i
\(268\) 0 0
\(269\) 1.66975e6 1.40692 0.703462 0.710733i \(-0.251637\pi\)
0.703462 + 0.710733i \(0.251637\pi\)
\(270\) 0 0
\(271\) −466892. −0.386183 −0.193092 0.981181i \(-0.561851\pi\)
−0.193092 + 0.981181i \(0.561851\pi\)
\(272\) 0 0
\(273\) 369719.i 0.300238i
\(274\) 0 0
\(275\) 423755. 125790.i 0.337896 0.100303i
\(276\) 0 0
\(277\) 1.86028e6i 1.45673i 0.685190 + 0.728364i \(0.259719\pi\)
−0.685190 + 0.728364i \(0.740281\pi\)
\(278\) 0 0
\(279\) 387890. 0.298331
\(280\) 0 0
\(281\) 384958. 0.290836 0.145418 0.989370i \(-0.453547\pi\)
0.145418 + 0.989370i \(0.453547\pi\)
\(282\) 0 0
\(283\) 255926.i 0.189954i −0.995479 0.0949769i \(-0.969722\pi\)
0.995479 0.0949769i \(-0.0302777\pi\)
\(284\) 0 0
\(285\) 362133. + 2.49249e6i 0.264093 + 1.81770i
\(286\) 0 0
\(287\) 27490.0i 0.0197002i
\(288\) 0 0
\(289\) −85024.4 −0.0598824
\(290\) 0 0
\(291\) 167508. 0.115959
\(292\) 0 0
\(293\) 345511.i 0.235122i 0.993066 + 0.117561i \(0.0375075\pi\)
−0.993066 + 0.117561i \(0.962492\pi\)
\(294\) 0 0
\(295\) −1.78283e6 + 259026.i −1.19276 + 0.173296i
\(296\) 0 0
\(297\) 561671.i 0.369480i
\(298\) 0 0
\(299\) 939992. 0.608060
\(300\) 0 0
\(301\) 96750.0 0.0615509
\(302\) 0 0
\(303\) 982956.i 0.615074i
\(304\) 0 0
\(305\) 1.90535e6 276828.i 1.17280 0.170396i
\(306\) 0 0
\(307\) 1.38493e6i 0.838651i 0.907836 + 0.419326i \(0.137733\pi\)
−0.907836 + 0.419326i \(0.862267\pi\)
\(308\) 0 0
\(309\) −42036.3 −0.0250454
\(310\) 0 0
\(311\) −900004. −0.527647 −0.263824 0.964571i \(-0.584984\pi\)
−0.263824 + 0.964571i \(0.584984\pi\)
\(312\) 0 0
\(313\) 2.80649e6i 1.61921i 0.586978 + 0.809603i \(0.300318\pi\)
−0.586978 + 0.809603i \(0.699682\pi\)
\(314\) 0 0
\(315\) −157393. 1.08331e6i −0.0893737 0.615141i
\(316\) 0 0
\(317\) 2.45481e6i 1.37205i −0.727579 0.686024i \(-0.759355\pi\)
0.727579 0.686024i \(-0.240645\pi\)
\(318\) 0 0
\(319\) 1.04948e6 0.577426
\(320\) 0 0
\(321\) −4.88886e6 −2.64817
\(322\) 0 0
\(323\) 2.18028e6i 1.16280i
\(324\) 0 0
\(325\) −264689. 891671.i −0.139004 0.468270i
\(326\) 0 0
\(327\) 3.17700e6i 1.64304i
\(328\) 0 0
\(329\) 537849. 0.273949
\(330\) 0 0
\(331\) 3.87397e6 1.94351 0.971755 0.235993i \(-0.0758341\pi\)
0.971755 + 0.235993i \(0.0758341\pi\)
\(332\) 0 0
\(333\) 934029.i 0.461583i
\(334\) 0 0
\(335\) −101838. 700934.i −0.0495792 0.341244i
\(336\) 0 0
\(337\) 3.04334e6i 1.45974i 0.683584 + 0.729871i \(0.260420\pi\)
−0.683584 + 0.729871i \(0.739580\pi\)
\(338\) 0 0
\(339\) −3.00046e6 −1.41804
\(340\) 0 0
\(341\) −137292. −0.0639380
\(342\) 0 0
\(343\) 117649.i 0.0539949i
\(344\) 0 0
\(345\) −4.42898e6 + 643485.i −2.00335 + 0.291065i
\(346\) 0 0
\(347\) 1.78331e6i 0.795068i −0.917587 0.397534i \(-0.869866\pi\)
0.917587 0.397534i \(-0.130134\pi\)
\(348\) 0 0
\(349\) −1.76269e6 −0.774661 −0.387330 0.921941i \(-0.626603\pi\)
−0.387330 + 0.921941i \(0.626603\pi\)
\(350\) 0 0
\(351\) 1.18187e6 0.512040
\(352\) 0 0
\(353\) 675787.i 0.288651i −0.989530 0.144325i \(-0.953899\pi\)
0.989530 0.144325i \(-0.0461012\pi\)
\(354\) 0 0
\(355\) −4.60663e6 + 669295.i −1.94005 + 0.281869i
\(356\) 0 0
\(357\) 1.52381e6i 0.632790i
\(358\) 0 0
\(359\) −1.77828e6 −0.728223 −0.364111 0.931355i \(-0.618627\pi\)
−0.364111 + 0.931355i \(0.618627\pi\)
\(360\) 0 0
\(361\) 682710. 0.275720
\(362\) 0 0
\(363\) 3.57548e6i 1.42419i
\(364\) 0 0
\(365\) −720422. 4.95852e6i −0.283044 1.94814i
\(366\) 0 0
\(367\) 4.35734e6i 1.68871i −0.535781 0.844357i \(-0.679983\pi\)
0.535781 0.844357i \(-0.320017\pi\)
\(368\) 0 0
\(369\) 224205. 0.0857193
\(370\) 0 0
\(371\) −1.64150e6 −0.619166
\(372\) 0 0
\(373\) 2.87221e6i 1.06892i 0.845195 + 0.534458i \(0.179484\pi\)
−0.845195 + 0.534458i \(0.820516\pi\)
\(374\) 0 0
\(375\) 1.85754e6 + 4.02011e6i 0.682120 + 1.47625i
\(376\) 0 0
\(377\) 2.20832e6i 0.800220i
\(378\) 0 0
\(379\) 2.11884e6 0.757705 0.378853 0.925457i \(-0.376319\pi\)
0.378853 + 0.925457i \(0.376319\pi\)
\(380\) 0 0
\(381\) −1.99015e6 −0.702383
\(382\) 0 0
\(383\) 3.78103e6i 1.31708i 0.752544 + 0.658542i \(0.228826\pi\)
−0.752544 + 0.658542i \(0.771174\pi\)
\(384\) 0 0
\(385\) 55708.7 + 383432.i 0.0191545 + 0.131837i
\(386\) 0 0
\(387\) 789080.i 0.267820i
\(388\) 0 0
\(389\) 3.66654e6 1.22852 0.614261 0.789103i \(-0.289454\pi\)
0.614261 + 0.789103i \(0.289454\pi\)
\(390\) 0 0
\(391\) −3.87421e6 −1.28157
\(392\) 0 0
\(393\) 557655.i 0.182131i
\(394\) 0 0
\(395\) −269487. + 39153.6i −0.0869049 + 0.0126264i
\(396\) 0 0
\(397\) 2.32579e6i 0.740618i 0.928909 + 0.370309i \(0.120748\pi\)
−0.928909 + 0.370309i \(0.879252\pi\)
\(398\) 0 0
\(399\) −2.20770e6 −0.694238
\(400\) 0 0
\(401\) 1.74464e6 0.541807 0.270904 0.962607i \(-0.412678\pi\)
0.270904 + 0.962607i \(0.412678\pi\)
\(402\) 0 0
\(403\) 288892.i 0.0886079i
\(404\) 0 0
\(405\) −196346. + 28527.1i −0.0594819 + 0.00864211i
\(406\) 0 0
\(407\) 330595.i 0.0989261i
\(408\) 0 0
\(409\) 669116. 0.197785 0.0988924 0.995098i \(-0.468470\pi\)
0.0988924 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) −8.37718e6 −2.44621
\(412\) 0 0
\(413\) 1.57912e6i 0.455555i
\(414\) 0 0
\(415\) −544051. 3.74460e6i −0.155067 1.06730i
\(416\) 0 0
\(417\) 1.02225e7i 2.87885i
\(418\) 0 0
\(419\) 4.67106e6 1.29981 0.649906 0.760014i \(-0.274808\pi\)
0.649906 + 0.760014i \(0.274808\pi\)
\(420\) 0 0
\(421\) 4.55778e6 1.25328 0.626640 0.779309i \(-0.284430\pi\)
0.626640 + 0.779309i \(0.284430\pi\)
\(422\) 0 0
\(423\) 4.38662e6i 1.19201i
\(424\) 0 0
\(425\) 1.09092e6 + 3.67505e6i 0.292969 + 0.986941i
\(426\) 0 0
\(427\) 1.68765e6i 0.447932i
\(428\) 0 0
\(429\) −1.06728e6 −0.279985
\(430\) 0 0
\(431\) −426321. −0.110546 −0.0552731 0.998471i \(-0.517603\pi\)
−0.0552731 + 0.998471i \(0.517603\pi\)
\(432\) 0 0
\(433\) 3.32358e6i 0.851896i 0.904748 + 0.425948i \(0.140059\pi\)
−0.904748 + 0.425948i \(0.859941\pi\)
\(434\) 0 0
\(435\) 1.51174e6 + 1.04050e7i 0.383048 + 2.63645i
\(436\) 0 0
\(437\) 5.61298e6i 1.40601i
\(438\) 0 0
\(439\) 4.11543e6 1.01919 0.509594 0.860415i \(-0.329796\pi\)
0.509594 + 0.860415i \(0.329796\pi\)
\(440\) 0 0
\(441\) 959530. 0.234943
\(442\) 0 0
\(443\) 2.88152e6i 0.697610i −0.937195 0.348805i \(-0.886588\pi\)
0.937195 0.348805i \(-0.113412\pi\)
\(444\) 0 0
\(445\) −4.79286e6 + 696353.i −1.14735 + 0.166698i
\(446\) 0 0
\(447\) 1.11921e7i 2.64938i
\(448\) 0 0
\(449\) −4.35526e6 −1.01952 −0.509762 0.860315i \(-0.670267\pi\)
−0.509762 + 0.860315i \(0.670267\pi\)
\(450\) 0 0
\(451\) −79356.3 −0.0183713
\(452\) 0 0
\(453\) 1.07585e7i 2.46325i
\(454\) 0 0
\(455\) 806822. 117223.i 0.182704 0.0265451i
\(456\) 0 0
\(457\) 7.79301e6i 1.74548i −0.488186 0.872739i \(-0.662341\pi\)
0.488186 0.872739i \(-0.337659\pi\)
\(458\) 0 0
\(459\) −4.87113e6 −1.07919
\(460\) 0 0
\(461\) −2.48971e6 −0.545627 −0.272814 0.962067i \(-0.587954\pi\)
−0.272814 + 0.962067i \(0.587954\pi\)
\(462\) 0 0
\(463\) 6.12486e6i 1.32783i 0.747807 + 0.663917i \(0.231107\pi\)
−0.747807 + 0.663917i \(0.768893\pi\)
\(464\) 0 0
\(465\) −197765. 1.36118e6i −0.0424147 0.291932i
\(466\) 0 0
\(467\) 6.48662e6i 1.37634i 0.725549 + 0.688171i \(0.241586\pi\)
−0.725549 + 0.688171i \(0.758414\pi\)
\(468\) 0 0
\(469\) 620846. 0.130332
\(470\) 0 0
\(471\) 3.91028e6 0.812186
\(472\) 0 0
\(473\) 279291.i 0.0573991i
\(474\) 0 0
\(475\) 5.32444e6 1.58054e6i 1.08278 0.321418i
\(476\) 0 0
\(477\) 1.33879e7i 2.69411i
\(478\) 0 0
\(479\) 4.61538e6 0.919112 0.459556 0.888149i \(-0.348009\pi\)
0.459556 + 0.888149i \(0.348009\pi\)
\(480\) 0 0
\(481\) 695643. 0.137096
\(482\) 0 0
\(483\) 3.92293e6i 0.765144i
\(484\) 0 0
\(485\) −53110.1 365546.i −0.0102523 0.0705648i
\(486\) 0 0
\(487\) 8.66187e6i 1.65497i −0.561490 0.827484i \(-0.689772\pi\)
0.561490 0.827484i \(-0.310228\pi\)
\(488\) 0 0
\(489\) 3.95753e6 0.748431
\(490\) 0 0
\(491\) −1.87139e6 −0.350316 −0.175158 0.984540i \(-0.556044\pi\)
−0.175158 + 0.984540i \(0.556044\pi\)
\(492\) 0 0
\(493\) 9.10167e6i 1.68657i
\(494\) 0 0
\(495\) 3.12722e6 454352.i 0.573648 0.0833451i
\(496\) 0 0
\(497\) 4.08028e6i 0.740967i
\(498\) 0 0
\(499\) 6.42247e6 1.15465 0.577325 0.816514i \(-0.304096\pi\)
0.577325 + 0.816514i \(0.304096\pi\)
\(500\) 0 0
\(501\) 2.13034e6 0.379189
\(502\) 0 0
\(503\) 6.83277e6i 1.20414i −0.798443 0.602070i \(-0.794343\pi\)
0.798443 0.602070i \(-0.205657\pi\)
\(504\) 0 0
\(505\) 2.14506e6 311655.i 0.374293 0.0543809i
\(506\) 0 0
\(507\) 7.16660e6i 1.23821i
\(508\) 0 0
\(509\) −9.16537e6 −1.56803 −0.784017 0.620740i \(-0.786832\pi\)
−0.784017 + 0.620740i \(0.786832\pi\)
\(510\) 0 0
\(511\) 4.39197e6 0.744058
\(512\) 0 0
\(513\) 7.05733e6i 1.18399i
\(514\) 0 0
\(515\) 13328.0 + 91734.0i 0.00221435 + 0.0152410i
\(516\) 0 0
\(517\) 1.55263e6i 0.255470i
\(518\) 0 0
\(519\) −3.95311e6 −0.644200
\(520\) 0 0
\(521\) 6.71054e6 1.08309 0.541543 0.840673i \(-0.317840\pi\)
0.541543 + 0.840673i \(0.317840\pi\)
\(522\) 0 0
\(523\) 3.31400e6i 0.529783i −0.964278 0.264892i \(-0.914664\pi\)
0.964278 0.264892i \(-0.0853362\pi\)
\(524\) 0 0
\(525\) −3.72127e6 + 1.10464e6i −0.589241 + 0.174914i
\(526\) 0 0
\(527\) 1.19068e6i 0.186753i
\(528\) 0 0
\(529\) −3.53752e6 −0.549617
\(530\) 0 0
\(531\) −1.28791e7 −1.98221
\(532\) 0 0
\(533\) 166982.i 0.0254597i
\(534\) 0 0
\(535\) 1.55006e6 + 1.06688e7i 0.234134 + 1.61150i
\(536\) 0 0
\(537\) 1.23044e7i 1.84130i
\(538\) 0 0
\(539\) −339621. −0.0503528
\(540\) 0 0
\(541\) 4.39605e6 0.645757 0.322879 0.946440i \(-0.395349\pi\)
0.322879 + 0.946440i \(0.395349\pi\)
\(542\) 0 0
\(543\) 253403.i 0.0368818i
\(544\) 0 0
\(545\) 6.93304e6 1.00730e6i 0.999845 0.145267i
\(546\) 0 0
\(547\) 1.03221e7i 1.47503i −0.675331 0.737515i \(-0.735999\pi\)
0.675331 0.737515i \(-0.264001\pi\)
\(548\) 0 0
\(549\) 1.37642e7 1.94904
\(550\) 0 0
\(551\) 1.31866e7 1.85035
\(552\) 0 0
\(553\) 238695.i 0.0331918i
\(554\) 0 0
\(555\) −3.27768e6 + 476212.i −0.451683 + 0.0656248i
\(556\) 0 0
\(557\) 4.02433e6i 0.549611i 0.961500 + 0.274805i \(0.0886134\pi\)
−0.961500 + 0.274805i \(0.911387\pi\)
\(558\) 0 0
\(559\) 587689. 0.0795459
\(560\) 0 0
\(561\) 4.39883e6 0.590106
\(562\) 0 0
\(563\) 7.76463e6i 1.03240i 0.856467 + 0.516202i \(0.172655\pi\)
−0.856467 + 0.516202i \(0.827345\pi\)
\(564\) 0 0
\(565\) 951324. + 6.54777e6i 0.125374 + 0.862924i
\(566\) 0 0
\(567\) 173912.i 0.0227181i
\(568\) 0 0
\(569\) −962147. −0.124584 −0.0622918 0.998058i \(-0.519841\pi\)
−0.0622918 + 0.998058i \(0.519841\pi\)
\(570\) 0 0
\(571\) −7.97240e6 −1.02329 −0.511645 0.859197i \(-0.670964\pi\)
−0.511645 + 0.859197i \(0.670964\pi\)
\(572\) 0 0
\(573\) 1.01039e7i 1.28559i
\(574\) 0 0
\(575\) 2.80850e6 + 9.46115e6i 0.354246 + 1.19337i
\(576\) 0 0
\(577\) 3.13108e6i 0.391521i −0.980652 0.195761i \(-0.937282\pi\)
0.980652 0.195761i \(-0.0627175\pi\)
\(578\) 0 0
\(579\) −1.69825e7 −2.10526
\(580\) 0 0
\(581\) 3.31675e6 0.407635
\(582\) 0 0
\(583\) 4.73858e6i 0.577400i
\(584\) 0 0
\(585\) −956054. 6.58033e6i −0.115503 0.794984i
\(586\) 0 0
\(587\) 5.27415e6i 0.631767i −0.948798 0.315884i \(-0.897699\pi\)
0.948798 0.315884i \(-0.102301\pi\)
\(588\) 0 0
\(589\) −1.72506e6 −0.204888
\(590\) 0 0
\(591\) 2.37708e7 2.79947
\(592\) 0 0
\(593\) 4.94938e6i 0.577981i 0.957332 + 0.288991i \(0.0933196\pi\)
−0.957332 + 0.288991i \(0.906680\pi\)
\(594\) 0 0
\(595\) −3.32534e6 + 483138.i −0.385074 + 0.0559472i
\(596\) 0 0
\(597\) 2.63993e6i 0.303149i
\(598\) 0 0
\(599\) 2.70972e6 0.308573 0.154286 0.988026i \(-0.450692\pi\)
0.154286 + 0.988026i \(0.450692\pi\)
\(600\) 0 0
\(601\) −992330. −0.112065 −0.0560325 0.998429i \(-0.517845\pi\)
−0.0560325 + 0.998429i \(0.517845\pi\)
\(602\) 0 0
\(603\) 5.06354e6i 0.567102i
\(604\) 0 0
\(605\) 7.80261e6 1.13364e6i 0.866666 0.125918i
\(606\) 0 0
\(607\) 1.35542e7i 1.49315i 0.665302 + 0.746574i \(0.268303\pi\)
−0.665302 + 0.746574i \(0.731697\pi\)
\(608\) 0 0
\(609\) −9.21614e6 −1.00695
\(610\) 0 0
\(611\) 3.26706e6 0.354041
\(612\) 0 0
\(613\) 8.37239e6i 0.899908i 0.893052 + 0.449954i \(0.148560\pi\)
−0.893052 + 0.449954i \(0.851440\pi\)
\(614\) 0 0
\(615\) −114310. 786774.i −0.0121870 0.0838808i
\(616\) 0 0
\(617\) 6.49138e6i 0.686474i 0.939249 + 0.343237i \(0.111523\pi\)
−0.939249 + 0.343237i \(0.888477\pi\)
\(618\) 0 0
\(619\) 8.98202e6 0.942210 0.471105 0.882077i \(-0.343855\pi\)
0.471105 + 0.882077i \(0.343855\pi\)
\(620\) 0 0
\(621\) −1.25404e7 −1.30491
\(622\) 0 0
\(623\) 4.24523e6i 0.438209i
\(624\) 0 0
\(625\) 8.18396e6 5.32825e6i 0.838037 0.545613i
\(626\) 0 0
\(627\) 6.37306e6i 0.647409i
\(628\) 0 0
\(629\) −2.86711e6 −0.288947
\(630\) 0 0
\(631\) 1.68639e7 1.68611 0.843053 0.537831i \(-0.180756\pi\)
0.843053 + 0.537831i \(0.180756\pi\)
\(632\) 0 0
\(633\) 2.83611e7i 2.81328i
\(634\) 0 0
\(635\) 630996. + 4.34302e6i 0.0621001 + 0.427423i
\(636\) 0 0
\(637\) 714636.i 0.0697808i
\(638\) 0 0
\(639\) −3.32782e7 −3.22410
\(640\) 0 0
\(641\) −1.35136e7 −1.29905 −0.649524 0.760341i \(-0.725032\pi\)
−0.649524 + 0.760341i \(0.725032\pi\)
\(642\) 0 0
\(643\) 9.15022e6i 0.872779i −0.899758 0.436390i \(-0.856257\pi\)
0.899758 0.436390i \(-0.143743\pi\)
\(644\) 0 0
\(645\) −2.76902e6 + 402311.i −0.262076 + 0.0380769i
\(646\) 0 0
\(647\) 3.76700e6i 0.353781i 0.984231 + 0.176891i \(0.0566039\pi\)
−0.984231 + 0.176891i \(0.943396\pi\)
\(648\) 0 0
\(649\) 4.55851e6 0.424826
\(650\) 0 0
\(651\) 1.20565e6 0.111498
\(652\) 0 0
\(653\) 1.36182e7i 1.24979i −0.780708 0.624897i \(-0.785141\pi\)
0.780708 0.624897i \(-0.214859\pi\)
\(654\) 0 0
\(655\) −1.21695e6 + 176810.i −0.110833 + 0.0161029i
\(656\) 0 0
\(657\) 3.58203e7i 3.23755i
\(658\) 0 0
\(659\) 1.63668e6 0.146808 0.0734039 0.997302i \(-0.476614\pi\)
0.0734039 + 0.997302i \(0.476614\pi\)
\(660\) 0 0
\(661\) −1.43398e7 −1.27656 −0.638278 0.769806i \(-0.720353\pi\)
−0.638278 + 0.769806i \(0.720353\pi\)
\(662\) 0 0
\(663\) 9.25607e6i 0.817792i
\(664\) 0 0
\(665\) 699973. + 4.81778e6i 0.0613801 + 0.422467i
\(666\) 0 0
\(667\) 2.34316e7i 2.03933i
\(668\) 0 0
\(669\) −2.46492e7 −2.12931
\(670\) 0 0
\(671\) −4.87179e6 −0.417717
\(672\) 0 0
\(673\) 9.54325e6i 0.812192i −0.913830 0.406096i \(-0.866890\pi\)
0.913830 0.406096i \(-0.133110\pi\)
\(674\) 0 0
\(675\) 3.53119e6 + 1.18957e7i 0.298306 + 1.00492i
\(676\) 0 0
\(677\) 1.76523e7i 1.48023i −0.672479 0.740116i \(-0.734771\pi\)
0.672479 0.740116i \(-0.265229\pi\)
\(678\) 0 0
\(679\) 323780. 0.0269510
\(680\) 0 0
\(681\) 9.58485e6 0.791986
\(682\) 0 0
\(683\) 3.15865e6i 0.259089i −0.991574 0.129545i \(-0.958648\pi\)
0.991574 0.129545i \(-0.0413515\pi\)
\(684\) 0 0
\(685\) 2.65606e6 + 1.82812e7i 0.216278 + 1.48860i
\(686\) 0 0
\(687\) 3.01281e7i 2.43545i
\(688\) 0 0
\(689\) −9.97099e6 −0.800184
\(690\) 0 0
\(691\) −624449. −0.0497510 −0.0248755 0.999691i \(-0.507919\pi\)
−0.0248755 + 0.999691i \(0.507919\pi\)
\(692\) 0 0
\(693\) 2.76991e6i 0.219095i
\(694\) 0 0
\(695\) −2.23082e7 + 3.24115e6i −1.75187 + 0.254529i
\(696\) 0 0
\(697\) 688223.i 0.0536596i
\(698\) 0 0
\(699\) −3.00292e7 −2.32462
\(700\) 0 0
\(701\) 1.57395e7 1.20975 0.604875 0.796320i \(-0.293223\pi\)
0.604875 + 0.796320i \(0.293223\pi\)
\(702\) 0 0
\(703\) 4.15390e6i 0.317006i
\(704\) 0 0
\(705\) −1.53935e7 + 2.23651e6i −1.16644 + 0.169472i
\(706\) 0 0
\(707\) 1.89997e6i 0.142955i
\(708\) 0 0
\(709\) 5.74101e6 0.428917 0.214458 0.976733i \(-0.431201\pi\)
0.214458 + 0.976733i \(0.431201\pi\)
\(710\) 0 0
\(711\) −1.94677e6 −0.144424
\(712\) 0 0
\(713\) 3.06531e6i 0.225814i
\(714\) 0 0
\(715\) 338391. + 2.32908e6i 0.0247545 + 0.170380i
\(716\) 0 0
\(717\) 2.03686e7i 1.47967i
\(718\) 0 0
\(719\) −3.79854e6 −0.274028 −0.137014 0.990569i \(-0.543750\pi\)
−0.137014 + 0.990569i \(0.543750\pi\)
\(720\) 0 0
\(721\) −81252.6 −0.00582102
\(722\) 0 0
\(723\) 8.73865e6i 0.621725i
\(724\) 0 0
\(725\) 2.22271e7 6.59801e6i 1.57050 0.466195i
\(726\) 0 0
\(727\) 1.68558e7i 1.18280i −0.806377 0.591402i \(-0.798575\pi\)
0.806377 0.591402i \(-0.201425\pi\)
\(728\) 0 0
\(729\) 2.30423e7 1.60585
\(730\) 0 0
\(731\) −2.42218e6 −0.167653
\(732\) 0 0
\(733\) 2.16490e7i 1.48826i −0.668035 0.744130i \(-0.732864\pi\)
0.668035 0.744130i \(-0.267136\pi\)
\(734\) 0 0
\(735\) −489214. 3.36716e6i −0.0334026 0.229904i
\(736\) 0 0
\(737\) 1.79222e6i 0.121541i
\(738\) 0 0
\(739\) 1.64235e7 1.10625 0.553125 0.833098i \(-0.313435\pi\)
0.553125 + 0.833098i \(0.313435\pi\)
\(740\) 0 0
\(741\) −1.34103e7 −0.897205
\(742\) 0 0
\(743\) 5.84269e6i 0.388276i −0.980974 0.194138i \(-0.937809\pi\)
0.980974 0.194138i \(-0.0621910\pi\)
\(744\) 0 0
\(745\) 2.44241e7 3.54857e6i 1.61223 0.234241i
\(746\) 0 0
\(747\) 2.70509e7i 1.77370i
\(748\) 0 0
\(749\) −9.44977e6 −0.615484
\(750\) 0 0
\(751\) −1.02447e7 −0.662823 −0.331412 0.943486i \(-0.607525\pi\)
−0.331412 + 0.943486i \(0.607525\pi\)
\(752\) 0 0
\(753\) 1.94265e6i 0.124855i
\(754\) 0 0
\(755\) 2.34779e7 3.41110e6i 1.49897 0.217784i
\(756\) 0 0
\(757\) 1.30935e7i 0.830452i −0.909718 0.415226i \(-0.863703\pi\)
0.909718 0.415226i \(-0.136297\pi\)
\(758\) 0 0
\(759\) 1.13245e7 0.713532
\(760\) 0 0
\(761\) −6.99157e6 −0.437636 −0.218818 0.975766i \(-0.570220\pi\)
−0.218818 + 0.975766i \(0.570220\pi\)
\(762\) 0 0
\(763\) 6.14088e6i 0.381874i
\(764\) 0 0
\(765\) 3.94041e6 + 2.71210e7i 0.243437 + 1.67553i
\(766\) 0 0
\(767\) 9.59208e6i 0.588741i
\(768\) 0 0
\(769\) −1.46387e7 −0.892660 −0.446330 0.894868i \(-0.647269\pi\)
−0.446330 + 0.894868i \(0.647269\pi\)
\(770\) 0 0
\(771\) −1.86265e7 −1.12849
\(772\) 0 0
\(773\) 2.11451e7i 1.27280i 0.771357 + 0.636402i \(0.219578\pi\)
−0.771357 + 0.636402i \(0.780422\pi\)
\(774\) 0 0
\(775\) −2.90773e6 + 863147.i −0.173900 + 0.0516215i
\(776\) 0 0
\(777\) 2.90317e6i 0.172512i
\(778\) 0 0
\(779\) −997103. −0.0588703
\(780\) 0 0
\(781\) 1.17787e7 0.690986
\(782\) 0 0
\(783\) 2.94611e7i 1.71729i
\(784\) 0 0
\(785\) −1.23979e6 8.53323e6i −0.0718082 0.494242i
\(786\) 0 0
\(787\) 1.80434e7i 1.03844i −0.854641 0.519219i \(-0.826223\pi\)
0.854641 0.519219i \(-0.173777\pi\)
\(788\) 0 0
\(789\) −1.13810e7 −0.650862
\(790\) 0 0
\(791\) −5.79964e6 −0.329579
\(792\) 0 0
\(793\) 1.02513e7i 0.578889i
\(794\) 0 0
\(795\) 4.69805e7 6.82578e6i 2.63633 0.383031i
\(796\) 0 0
\(797\) 2.14077e7i 1.19378i 0.802323 + 0.596890i \(0.203597\pi\)
−0.802323 + 0.596890i \(0.796403\pi\)
\(798\) 0 0
\(799\) −1.34653e7 −0.746188
\(800\) 0 0
\(801\) −3.46236e7 −1.90674
\(802\) 0 0
\(803\) 1.26785e7i 0.693869i
\(804\) 0 0
\(805\) −8.56085e6 + 1.24380e6i −0.465615 + 0.0676491i
\(806\) 0 0
\(807\) 4.23286e7i 2.28797i
\(808\) 0 0
\(809\) 3.85342e6 0.207002 0.103501 0.994629i \(-0.466995\pi\)
0.103501 + 0.994629i \(0.466995\pi\)
\(810\) 0 0
\(811\) −1.82776e7 −0.975814 −0.487907 0.872896i \(-0.662239\pi\)
−0.487907 + 0.872896i \(0.662239\pi\)
\(812\) 0 0
\(813\) 1.18359e7i 0.628020i
\(814\) 0 0
\(815\) −1.25477e6 8.63634e6i −0.0661714 0.455445i
\(816\) 0 0
\(817\) 3.50927e6i 0.183934i
\(818\) 0 0
\(819\) 5.82848e6 0.303630
\(820\) 0 0
\(821\) 2.63108e7 1.36231 0.681156 0.732138i \(-0.261477\pi\)
0.681156 + 0.732138i \(0.261477\pi\)
\(822\) 0 0
\(823\) 3.23546e7i 1.66509i 0.553960 + 0.832543i \(0.313116\pi\)
−0.553960 + 0.832543i \(0.686884\pi\)
\(824\) 0 0
\(825\) −3.18881e6 1.07423e7i −0.163115 0.549494i
\(826\) 0 0
\(827\) 5.30031e6i 0.269487i −0.990881 0.134743i \(-0.956979\pi\)
0.990881 0.134743i \(-0.0430210\pi\)
\(828\) 0 0
\(829\) −2.12766e7 −1.07526 −0.537632 0.843180i \(-0.680681\pi\)
−0.537632 + 0.843180i \(0.680681\pi\)
\(830\) 0 0
\(831\) 4.71586e7 2.36896
\(832\) 0 0
\(833\) 2.94539e6i 0.147072i
\(834\) 0 0
\(835\) −675446. 4.64896e6i −0.0335254 0.230749i
\(836\) 0 0
\(837\) 3.85408e6i 0.190155i
\(838\) 0 0
\(839\) −2.68060e6 −0.131470 −0.0657350 0.997837i \(-0.520939\pi\)
−0.0657350 + 0.997837i \(0.520939\pi\)
\(840\) 0 0
\(841\) 3.45367e7 1.68380
\(842\) 0 0
\(843\) 9.75881e6i 0.472964i
\(844\) 0 0
\(845\) −1.56394e7 + 2.27224e6i −0.753490 + 0.109474i
\(846\) 0 0
\(847\) 6.91110e6i 0.331008i
\(848\) 0 0
\(849\) −6.48780e6 −0.308907
\(850\) 0 0
\(851\) −7.38118e6 −0.349383
\(852\) 0 0
\(853\) 5.65172e6i 0.265955i 0.991119 + 0.132977i \(0.0424538\pi\)
−0.991119 + 0.132977i \(0.957546\pi\)
\(854\) 0 0
\(855\) 3.92931e7 5.70889e6i 1.83824 0.267077i
\(856\) 0 0
\(857\) 2.76367e7i 1.28539i 0.766123 + 0.642694i \(0.222183\pi\)
−0.766123 + 0.642694i \(0.777817\pi\)
\(858\) 0 0
\(859\) −2.44636e6 −0.113119 −0.0565597 0.998399i \(-0.518013\pi\)
−0.0565597 + 0.998399i \(0.518013\pi\)
\(860\) 0 0
\(861\) 696879. 0.0320368
\(862\) 0 0
\(863\) 3.06078e7i 1.39896i 0.714652 + 0.699481i \(0.246585\pi\)
−0.714652 + 0.699481i \(0.753415\pi\)
\(864\) 0 0
\(865\) 1.25337e6 + 8.62670e6i 0.0569560 + 0.392017i
\(866\) 0 0
\(867\) 2.15539e6i 0.0973821i
\(868\) 0 0
\(869\) 689051. 0.0309529
\(870\) 0 0
\(871\) 3.77121e6 0.168436
\(872\) 0 0
\(873\) 2.64070e6i 0.117269i
\(874\) 0 0
\(875\) 3.59048e6 + 7.77053e6i 0.158538 + 0.343108i
\(876\) 0 0
\(877\) 2.14914e7i 0.943552i −0.881718 0.471776i \(-0.843613\pi\)
0.881718 0.471776i \(-0.156387\pi\)
\(878\) 0 0
\(879\) 8.75881e6 0.382360
\(880\) 0 0
\(881\) 2.79915e7 1.21503 0.607514 0.794309i \(-0.292167\pi\)
0.607514 + 0.794309i \(0.292167\pi\)
\(882\) 0 0
\(883\) 2.40091e7i 1.03627i 0.855298 + 0.518136i \(0.173374\pi\)
−0.855298 + 0.518136i \(0.826626\pi\)
\(884\) 0 0
\(885\) 6.56639e6 + 4.51952e7i 0.281818 + 1.93970i
\(886\) 0 0
\(887\) 4.01622e7i 1.71399i −0.515326 0.856995i \(-0.672329\pi\)
0.515326 0.856995i \(-0.327671\pi\)
\(888\) 0 0
\(889\) −3.84680e6 −0.163247
\(890\) 0 0
\(891\) 502038. 0.0211857
\(892\) 0 0
\(893\) 1.95086e7i 0.818648i
\(894\) 0 0
\(895\) −2.68514e7 + 3.90123e6i −1.12049 + 0.162796i
\(896\) 0 0
\(897\) 2.38291e7i 0.988841i
\(898\) 0 0
\(899\) −7.20132e6 −0.297176
\(900\) 0 0
\(901\) 4.10957e7 1.68649
\(902\) 0 0
\(903\) 2.45264e6i 0.100095i
\(904\) 0 0
\(905\) −552990. + 80343.8i −0.0224438 + 0.00326085i
\(906\) 0 0
\(907\) 2.19331e7i 0.885283i 0.896699 + 0.442641i \(0.145959\pi\)
−0.896699 + 0.442641i \(0.854041\pi\)
\(908\) 0 0
\(909\) 1.54959e7 0.622025
\(910\) 0 0
\(911\) 2.21245e7 0.883236 0.441618 0.897203i \(-0.354405\pi\)
0.441618 + 0.897203i \(0.354405\pi\)
\(912\) 0 0
\(913\) 9.57457e6i 0.380139i
\(914\) 0 0
\(915\) −7.01766e6 4.83012e7i −0.277102 1.90724i
\(916\) 0 0
\(917\) 1.07790e6i 0.0423307i
\(918\) 0 0
\(919\) −1.82158e7 −0.711476 −0.355738 0.934586i \(-0.615770\pi\)
−0.355738 + 0.934586i \(0.615770\pi\)
\(920\) 0 0
\(921\) 3.51084e7 1.36383
\(922\) 0 0
\(923\) 2.47849e7i 0.957596i
\(924\) 0 0
\(925\) 2.07844e6 + 7.00174e6i 0.0798697 + 0.269062i
\(926\) 0 0
\(927\) 662686.i 0.0253284i
\(928\) 0 0
\(929\) −1.48086e7 −0.562958 −0.281479 0.959567i \(-0.590825\pi\)
−0.281479 + 0.959567i \(0.590825\pi\)
\(930\) 0 0
\(931\) −4.26731e6 −0.161354
\(932\) 0 0
\(933\) 2.28154e7i 0.858071i
\(934\) 0 0
\(935\) −1.39469e6 9.59938e6i −0.0521734 0.359099i
\(936\) 0 0
\(937\) 3.96760e7i 1.47631i −0.674629 0.738157i \(-0.735696\pi\)
0.674629 0.738157i \(-0.264304\pi\)
\(938\) 0 0
\(939\) 7.11453e7 2.63319
\(940\) 0 0
\(941\) −2.74007e7 −1.00876 −0.504380 0.863482i \(-0.668279\pi\)
−0.504380 + 0.863482i \(0.668279\pi\)
\(942\) 0 0
\(943\) 1.77178e6i 0.0648830i
\(944\) 0 0
\(945\) −1.07638e7 + 1.56386e6i −0.392089 + 0.0569664i
\(946\) 0 0
\(947\) 3.70369e7i 1.34202i −0.741448 0.671011i \(-0.765860\pi\)
0.741448 0.671011i \(-0.234140\pi\)
\(948\) 0 0
\(949\) 2.66782e7 0.961591
\(950\) 0 0
\(951\) −6.22301e7 −2.23125
\(952\) 0 0
\(953\) 3.01349e7i 1.07482i −0.843320 0.537412i \(-0.819402\pi\)
0.843320 0.537412i \(-0.180598\pi\)
\(954\) 0 0
\(955\) 2.20494e7 3.20354e6i 0.782326 0.113664i
\(956\) 0 0
\(957\) 2.66046e7i 0.939023i
\(958\) 0 0
\(959\) −1.61924e7 −0.568544
\(960\) 0 0
\(961\) −2.76871e7 −0.967094
\(962\) 0 0
\(963\) 7.70710e7i 2.67809i
\(964\) 0 0
\(965\) 5.38447e6 + 3.70602e7i 0.186134 + 1.28112i
\(966\) 0 0
\(967\) 5.27724e7i 1.81485i 0.420213 + 0.907425i \(0.361955\pi\)
−0.420213 + 0.907425i \(0.638045\pi\)
\(968\) 0 0
\(969\) 5.52708e7 1.89098
\(970\) 0 0
\(971\) −2.09055e7 −0.711560 −0.355780 0.934570i \(-0.615785\pi\)
−0.355780 + 0.934570i \(0.615785\pi\)
\(972\) 0 0
\(973\) 1.97593e7i 0.669098i
\(974\) 0 0
\(975\) −2.26041e7 + 6.70993e6i −0.761511 + 0.226051i
\(976\) 0 0
\(977\) 609167.i 0.0204174i 0.999948 + 0.0102087i \(0.00324959\pi\)
−0.999948 + 0.0102087i \(0.996750\pi\)
\(978\) 0 0
\(979\) 1.22549e7 0.408650
\(980\) 0 0
\(981\) 5.00842e7 1.66161
\(982\) 0 0
\(983\) 4.01952e6i 0.132676i 0.997797 + 0.0663378i \(0.0211315\pi\)
−0.997797 + 0.0663378i \(0.978869\pi\)
\(984\) 0 0
\(985\) −7.53677e6 5.18741e7i −0.247511 1.70357i
\(986\) 0 0
\(987\) 1.36346e7i 0.445503i
\(988\) 0 0
\(989\) −6.23572e6 −0.202720
\(990\) 0 0
\(991\) −2.08792e6 −0.0675351 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(992\) 0 0
\(993\) 9.82064e7i 3.16058i
\(994\) 0 0
\(995\) −5.76101e6 + 837014.i −0.184476 + 0.0268025i
\(996\) 0 0
\(997\) 6.09104e6i 0.194068i 0.995281 + 0.0970340i \(0.0309356\pi\)
−0.995281 + 0.0970340i \(0.969064\pi\)
\(998\) 0 0
\(999\) −9.28053e6 −0.294211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.g.f.449.2 16
4.3 odd 2 140.6.e.a.29.15 yes 16
5.4 even 2 inner 560.6.g.f.449.15 16
20.3 even 4 700.6.a.p.1.1 8
20.7 even 4 700.6.a.o.1.8 8
20.19 odd 2 140.6.e.a.29.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.6.e.a.29.2 16 20.19 odd 2
140.6.e.a.29.15 yes 16 4.3 odd 2
560.6.g.f.449.2 16 1.1 even 1 trivial
560.6.g.f.449.15 16 5.4 even 2 inner
700.6.a.o.1.8 8 20.7 even 4
700.6.a.p.1.1 8 20.3 even 4