Properties

Label 700.6.a.p.1.1
Level $700$
Weight $6$
Character 700.1
Self dual yes
Analytic conductor $112.269$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.268673869\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 1359x^{6} + 2771x^{5} + 533790x^{4} + 30024x^{3} - 57192500x^{2} - 308465700x - 415017000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(27.3503\) of defining polynomial
Character \(\chi\) \(=\) 700.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.3503 q^{3} +49.0000 q^{7} +399.638 q^{9} -141.450 q^{11} +297.641 q^{13} +1226.74 q^{17} +1777.30 q^{19} -1242.16 q^{21} +3158.14 q^{23} -3970.81 q^{27} -7419.42 q^{29} +970.605 q^{31} +3585.80 q^{33} +2337.19 q^{37} -7545.29 q^{39} -561.020 q^{41} +1974.49 q^{43} -10976.5 q^{47} +2401.00 q^{49} -31098.1 q^{51} +33500.0 q^{53} -45055.2 q^{57} +32227.0 q^{59} -34441.8 q^{61} +19582.2 q^{63} -12670.3 q^{67} -80059.9 q^{69} -83271.0 q^{71} -89632.0 q^{73} -6931.05 q^{77} +4871.34 q^{79} +3549.22 q^{81} +67688.7 q^{83} +188085. q^{87} -86637.4 q^{89} +14584.4 q^{91} -24605.1 q^{93} +6607.75 q^{97} -56528.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 13 q^{3} + 392 q^{7} + 803 q^{9} + 147 q^{11} + 173 q^{13} + 1755 q^{17} + 1756 q^{19} + 637 q^{21} + 4422 q^{23} + 6127 q^{27} + 10435 q^{29} + 2014 q^{31} - 195 q^{33} + 5986 q^{37} + 12679 q^{39}+ \cdots - 146982 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −25.3503 −1.62622 −0.813111 0.582108i \(-0.802228\pi\)
−0.813111 + 0.582108i \(0.802228\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 399.638 1.64460
\(10\) 0 0
\(11\) −141.450 −0.352469 −0.176235 0.984348i \(-0.556392\pi\)
−0.176235 + 0.984348i \(0.556392\pi\)
\(12\) 0 0
\(13\) 297.641 0.488466 0.244233 0.969717i \(-0.421464\pi\)
0.244233 + 0.969717i \(0.421464\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1226.74 1.02951 0.514753 0.857339i \(-0.327884\pi\)
0.514753 + 0.857339i \(0.327884\pi\)
\(18\) 0 0
\(19\) 1777.30 1.12948 0.564739 0.825270i \(-0.308977\pi\)
0.564739 + 0.825270i \(0.308977\pi\)
\(20\) 0 0
\(21\) −1242.16 −0.614654
\(22\) 0 0
\(23\) 3158.14 1.24484 0.622418 0.782685i \(-0.286150\pi\)
0.622418 + 0.782685i \(0.286150\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3970.81 −1.04826
\(28\) 0 0
\(29\) −7419.42 −1.63823 −0.819115 0.573629i \(-0.805535\pi\)
−0.819115 + 0.573629i \(0.805535\pi\)
\(30\) 0 0
\(31\) 970.605 0.181400 0.0907002 0.995878i \(-0.471090\pi\)
0.0907002 + 0.995878i \(0.471090\pi\)
\(32\) 0 0
\(33\) 3585.80 0.573193
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2337.19 0.280666 0.140333 0.990104i \(-0.455183\pi\)
0.140333 + 0.990104i \(0.455183\pi\)
\(38\) 0 0
\(39\) −7545.29 −0.794354
\(40\) 0 0
\(41\) −561.020 −0.0521217 −0.0260609 0.999660i \(-0.508296\pi\)
−0.0260609 + 0.999660i \(0.508296\pi\)
\(42\) 0 0
\(43\) 1974.49 0.162848 0.0814242 0.996680i \(-0.474053\pi\)
0.0814242 + 0.996680i \(0.474053\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10976.5 −0.724802 −0.362401 0.932022i \(-0.618043\pi\)
−0.362401 + 0.932022i \(0.618043\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −31098.1 −1.67421
\(52\) 0 0
\(53\) 33500.0 1.63816 0.819079 0.573681i \(-0.194485\pi\)
0.819079 + 0.573681i \(0.194485\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −45055.2 −1.83678
\(58\) 0 0
\(59\) 32227.0 1.20529 0.602643 0.798011i \(-0.294114\pi\)
0.602643 + 0.798011i \(0.294114\pi\)
\(60\) 0 0
\(61\) −34441.8 −1.18512 −0.592558 0.805528i \(-0.701882\pi\)
−0.592558 + 0.805528i \(0.701882\pi\)
\(62\) 0 0
\(63\) 19582.2 0.621600
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12670.3 −0.344827 −0.172413 0.985025i \(-0.555156\pi\)
−0.172413 + 0.985025i \(0.555156\pi\)
\(68\) 0 0
\(69\) −80059.9 −2.02438
\(70\) 0 0
\(71\) −83271.0 −1.96042 −0.980208 0.197972i \(-0.936565\pi\)
−0.980208 + 0.197972i \(0.936565\pi\)
\(72\) 0 0
\(73\) −89632.0 −1.96859 −0.984297 0.176521i \(-0.943516\pi\)
−0.984297 + 0.176521i \(0.943516\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6931.05 −0.133221
\(78\) 0 0
\(79\) 4871.34 0.0878174 0.0439087 0.999036i \(-0.486019\pi\)
0.0439087 + 0.999036i \(0.486019\pi\)
\(80\) 0 0
\(81\) 3549.22 0.0601064
\(82\) 0 0
\(83\) 67688.7 1.07850 0.539251 0.842145i \(-0.318707\pi\)
0.539251 + 0.842145i \(0.318707\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 188085. 2.66413
\(88\) 0 0
\(89\) −86637.4 −1.15939 −0.579696 0.814833i \(-0.696829\pi\)
−0.579696 + 0.814833i \(0.696829\pi\)
\(90\) 0 0
\(91\) 14584.4 0.184623
\(92\) 0 0
\(93\) −24605.1 −0.294997
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6607.75 0.0713057 0.0356528 0.999364i \(-0.488649\pi\)
0.0356528 + 0.999364i \(0.488649\pi\)
\(98\) 0 0
\(99\) −56528.7 −0.579671
\(100\) 0 0
\(101\) −38774.9 −0.378223 −0.189111 0.981956i \(-0.560561\pi\)
−0.189111 + 0.981956i \(0.560561\pi\)
\(102\) 0 0
\(103\) −1658.22 −0.0154010 −0.00770049 0.999970i \(-0.502451\pi\)
−0.00770049 + 0.999970i \(0.502451\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 192852. 1.62842 0.814208 0.580573i \(-0.197171\pi\)
0.814208 + 0.580573i \(0.197171\pi\)
\(108\) 0 0
\(109\) 125324. 1.01034 0.505171 0.863019i \(-0.331429\pi\)
0.505171 + 0.863019i \(0.331429\pi\)
\(110\) 0 0
\(111\) −59248.4 −0.456425
\(112\) 0 0
\(113\) 118360. 0.871984 0.435992 0.899951i \(-0.356398\pi\)
0.435992 + 0.899951i \(0.356398\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 118948. 0.803330
\(118\) 0 0
\(119\) 60110.1 0.389117
\(120\) 0 0
\(121\) −141043. −0.875765
\(122\) 0 0
\(123\) 14222.0 0.0847615
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 78506.1 0.431911 0.215955 0.976403i \(-0.430713\pi\)
0.215955 + 0.976403i \(0.430713\pi\)
\(128\) 0 0
\(129\) −50053.9 −0.264828
\(130\) 0 0
\(131\) −21998.0 −0.111996 −0.0559982 0.998431i \(-0.517834\pi\)
−0.0559982 + 0.998431i \(0.517834\pi\)
\(132\) 0 0
\(133\) 87087.9 0.426902
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −330457. −1.50423 −0.752113 0.659034i \(-0.770965\pi\)
−0.752113 + 0.659034i \(0.770965\pi\)
\(138\) 0 0
\(139\) 403251. 1.77027 0.885133 0.465337i \(-0.154067\pi\)
0.885133 + 0.465337i \(0.154067\pi\)
\(140\) 0 0
\(141\) 278258. 1.17869
\(142\) 0 0
\(143\) −42101.3 −0.172169
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −60866.1 −0.232317
\(148\) 0 0
\(149\) 441499. 1.62916 0.814581 0.580050i \(-0.196967\pi\)
0.814581 + 0.580050i \(0.196967\pi\)
\(150\) 0 0
\(151\) 424395. 1.51471 0.757353 0.653006i \(-0.226492\pi\)
0.757353 + 0.653006i \(0.226492\pi\)
\(152\) 0 0
\(153\) 490250. 1.69312
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 154250. 0.499431 0.249715 0.968319i \(-0.419663\pi\)
0.249715 + 0.968319i \(0.419663\pi\)
\(158\) 0 0
\(159\) −849236. −2.66401
\(160\) 0 0
\(161\) 154749. 0.470504
\(162\) 0 0
\(163\) 156114. 0.460227 0.230113 0.973164i \(-0.426090\pi\)
0.230113 + 0.973164i \(0.426090\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −84036.3 −0.233172 −0.116586 0.993181i \(-0.537195\pi\)
−0.116586 + 0.993181i \(0.537195\pi\)
\(168\) 0 0
\(169\) −282703. −0.761401
\(170\) 0 0
\(171\) 710277. 1.85754
\(172\) 0 0
\(173\) 155939. 0.396133 0.198066 0.980189i \(-0.436534\pi\)
0.198066 + 0.980189i \(0.436534\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −816965. −1.96006
\(178\) 0 0
\(179\) 485375. 1.13226 0.566129 0.824317i \(-0.308440\pi\)
0.566129 + 0.824317i \(0.308440\pi\)
\(180\) 0 0
\(181\) 9996.05 0.0226794 0.0113397 0.999936i \(-0.496390\pi\)
0.0113397 + 0.999936i \(0.496390\pi\)
\(182\) 0 0
\(183\) 873109. 1.92726
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −173522. −0.362869
\(188\) 0 0
\(189\) −194570. −0.396205
\(190\) 0 0
\(191\) 398572. 0.790540 0.395270 0.918565i \(-0.370651\pi\)
0.395270 + 0.918565i \(0.370651\pi\)
\(192\) 0 0
\(193\) 669914. 1.29457 0.647286 0.762248i \(-0.275904\pi\)
0.647286 + 0.762248i \(0.275904\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 937695. 1.72146 0.860728 0.509065i \(-0.170009\pi\)
0.860728 + 0.509065i \(0.170009\pi\)
\(198\) 0 0
\(199\) 104138. 0.186413 0.0932066 0.995647i \(-0.470288\pi\)
0.0932066 + 0.995647i \(0.470288\pi\)
\(200\) 0 0
\(201\) 321197. 0.560765
\(202\) 0 0
\(203\) −363552. −0.619193
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.26211e6 2.04726
\(208\) 0 0
\(209\) −251400. −0.398106
\(210\) 0 0
\(211\) −1.11877e6 −1.72995 −0.864975 0.501815i \(-0.832666\pi\)
−0.864975 + 0.501815i \(0.832666\pi\)
\(212\) 0 0
\(213\) 2.11095e6 3.18807
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 47559.6 0.0685629
\(218\) 0 0
\(219\) 2.27220e6 3.20137
\(220\) 0 0
\(221\) 365127. 0.502879
\(222\) 0 0
\(223\) −972345. −1.30936 −0.654679 0.755907i \(-0.727196\pi\)
−0.654679 + 0.755907i \(0.727196\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −378096. −0.487010 −0.243505 0.969900i \(-0.578297\pi\)
−0.243505 + 0.969900i \(0.578297\pi\)
\(228\) 0 0
\(229\) −1.18847e6 −1.49761 −0.748807 0.662788i \(-0.769373\pi\)
−0.748807 + 0.662788i \(0.769373\pi\)
\(230\) 0 0
\(231\) 175704. 0.216647
\(232\) 0 0
\(233\) 1.18457e6 1.42946 0.714729 0.699402i \(-0.246550\pi\)
0.714729 + 0.699402i \(0.246550\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −123490. −0.142811
\(238\) 0 0
\(239\) 803487. 0.909880 0.454940 0.890522i \(-0.349661\pi\)
0.454940 + 0.890522i \(0.349661\pi\)
\(240\) 0 0
\(241\) 344716. 0.382313 0.191156 0.981560i \(-0.438776\pi\)
0.191156 + 0.981560i \(0.438776\pi\)
\(242\) 0 0
\(243\) 874932. 0.950515
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 528998. 0.551711
\(248\) 0 0
\(249\) −1.71593e6 −1.75388
\(250\) 0 0
\(251\) −76632.3 −0.0767764 −0.0383882 0.999263i \(-0.512222\pi\)
−0.0383882 + 0.999263i \(0.512222\pi\)
\(252\) 0 0
\(253\) −446719. −0.438766
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −734767. −0.693931 −0.346966 0.937878i \(-0.612788\pi\)
−0.346966 + 0.937878i \(0.612788\pi\)
\(258\) 0 0
\(259\) 114522. 0.106082
\(260\) 0 0
\(261\) −2.96508e6 −2.69423
\(262\) 0 0
\(263\) −448950. −0.400229 −0.200115 0.979772i \(-0.564131\pi\)
−0.200115 + 0.979772i \(0.564131\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.19628e6 1.88543
\(268\) 0 0
\(269\) −1.66975e6 −1.40692 −0.703462 0.710733i \(-0.748363\pi\)
−0.703462 + 0.710733i \(0.748363\pi\)
\(270\) 0 0
\(271\) 466892. 0.386183 0.193092 0.981181i \(-0.438149\pi\)
0.193092 + 0.981181i \(0.438149\pi\)
\(272\) 0 0
\(273\) −369719. −0.300238
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.86028e6 1.45673 0.728364 0.685190i \(-0.240281\pi\)
0.728364 + 0.685190i \(0.240281\pi\)
\(278\) 0 0
\(279\) 387890. 0.298331
\(280\) 0 0
\(281\) 384958. 0.290836 0.145418 0.989370i \(-0.453547\pi\)
0.145418 + 0.989370i \(0.453547\pi\)
\(282\) 0 0
\(283\) −255926. −0.189954 −0.0949769 0.995479i \(-0.530278\pi\)
−0.0949769 + 0.995479i \(0.530278\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −27490.0 −0.0197002
\(288\) 0 0
\(289\) 85024.4 0.0598824
\(290\) 0 0
\(291\) −167508. −0.115959
\(292\) 0 0
\(293\) −345511. −0.235122 −0.117561 0.993066i \(-0.537508\pi\)
−0.117561 + 0.993066i \(0.537508\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 561671. 0.369480
\(298\) 0 0
\(299\) 939992. 0.608060
\(300\) 0 0
\(301\) 96750.0 0.0615509
\(302\) 0 0
\(303\) 982956. 0.615074
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.38493e6 −0.838651 −0.419326 0.907836i \(-0.637733\pi\)
−0.419326 + 0.907836i \(0.637733\pi\)
\(308\) 0 0
\(309\) 42036.3 0.0250454
\(310\) 0 0
\(311\) 900004. 0.527647 0.263824 0.964571i \(-0.415016\pi\)
0.263824 + 0.964571i \(0.415016\pi\)
\(312\) 0 0
\(313\) −2.80649e6 −1.61921 −0.809603 0.586978i \(-0.800318\pi\)
−0.809603 + 0.586978i \(0.800318\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.45481e6 −1.37205 −0.686024 0.727579i \(-0.740645\pi\)
−0.686024 + 0.727579i \(0.740645\pi\)
\(318\) 0 0
\(319\) 1.04948e6 0.577426
\(320\) 0 0
\(321\) −4.88886e6 −2.64817
\(322\) 0 0
\(323\) 2.18028e6 1.16280
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.17700e6 −1.64304
\(328\) 0 0
\(329\) −537849. −0.273949
\(330\) 0 0
\(331\) −3.87397e6 −1.94351 −0.971755 0.235993i \(-0.924166\pi\)
−0.971755 + 0.235993i \(0.924166\pi\)
\(332\) 0 0
\(333\) 934029. 0.461583
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.04334e6 1.45974 0.729871 0.683584i \(-0.239580\pi\)
0.729871 + 0.683584i \(0.239580\pi\)
\(338\) 0 0
\(339\) −3.00046e6 −1.41804
\(340\) 0 0
\(341\) −137292. −0.0639380
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.78331e6 0.795068 0.397534 0.917587i \(-0.369866\pi\)
0.397534 + 0.917587i \(0.369866\pi\)
\(348\) 0 0
\(349\) 1.76269e6 0.774661 0.387330 0.921941i \(-0.373397\pi\)
0.387330 + 0.921941i \(0.373397\pi\)
\(350\) 0 0
\(351\) −1.18187e6 −0.512040
\(352\) 0 0
\(353\) 675787. 0.288651 0.144325 0.989530i \(-0.453899\pi\)
0.144325 + 0.989530i \(0.453899\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.52381e6 −0.632790
\(358\) 0 0
\(359\) −1.77828e6 −0.728223 −0.364111 0.931355i \(-0.618627\pi\)
−0.364111 + 0.931355i \(0.618627\pi\)
\(360\) 0 0
\(361\) 682710. 0.275720
\(362\) 0 0
\(363\) 3.57548e6 1.42419
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.35734e6 1.68871 0.844357 0.535781i \(-0.179983\pi\)
0.844357 + 0.535781i \(0.179983\pi\)
\(368\) 0 0
\(369\) −224205. −0.0857193
\(370\) 0 0
\(371\) 1.64150e6 0.619166
\(372\) 0 0
\(373\) −2.87221e6 −1.06892 −0.534458 0.845195i \(-0.679484\pi\)
−0.534458 + 0.845195i \(0.679484\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.20832e6 −0.800220
\(378\) 0 0
\(379\) 2.11884e6 0.757705 0.378853 0.925457i \(-0.376319\pi\)
0.378853 + 0.925457i \(0.376319\pi\)
\(380\) 0 0
\(381\) −1.99015e6 −0.702383
\(382\) 0 0
\(383\) 3.78103e6 1.31708 0.658542 0.752544i \(-0.271174\pi\)
0.658542 + 0.752544i \(0.271174\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 789080. 0.267820
\(388\) 0 0
\(389\) −3.66654e6 −1.22852 −0.614261 0.789103i \(-0.710546\pi\)
−0.614261 + 0.789103i \(0.710546\pi\)
\(390\) 0 0
\(391\) 3.87421e6 1.28157
\(392\) 0 0
\(393\) 557655. 0.182131
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.32579e6 0.740618 0.370309 0.928909i \(-0.379252\pi\)
0.370309 + 0.928909i \(0.379252\pi\)
\(398\) 0 0
\(399\) −2.20770e6 −0.694238
\(400\) 0 0
\(401\) 1.74464e6 0.541807 0.270904 0.962607i \(-0.412678\pi\)
0.270904 + 0.962607i \(0.412678\pi\)
\(402\) 0 0
\(403\) 288892. 0.0886079
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −330595. −0.0989261
\(408\) 0 0
\(409\) −669116. −0.197785 −0.0988924 0.995098i \(-0.531530\pi\)
−0.0988924 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) 8.37718e6 2.44621
\(412\) 0 0
\(413\) 1.57912e6 0.455555
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.02225e7 −2.87885
\(418\) 0 0
\(419\) 4.67106e6 1.29981 0.649906 0.760014i \(-0.274808\pi\)
0.649906 + 0.760014i \(0.274808\pi\)
\(420\) 0 0
\(421\) 4.55778e6 1.25328 0.626640 0.779309i \(-0.284430\pi\)
0.626640 + 0.779309i \(0.284430\pi\)
\(422\) 0 0
\(423\) −4.38662e6 −1.19201
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.68765e6 −0.447932
\(428\) 0 0
\(429\) 1.06728e6 0.279985
\(430\) 0 0
\(431\) 426321. 0.110546 0.0552731 0.998471i \(-0.482397\pi\)
0.0552731 + 0.998471i \(0.482397\pi\)
\(432\) 0 0
\(433\) −3.32358e6 −0.851896 −0.425948 0.904748i \(-0.640059\pi\)
−0.425948 + 0.904748i \(0.640059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.61298e6 1.40601
\(438\) 0 0
\(439\) 4.11543e6 1.01919 0.509594 0.860415i \(-0.329796\pi\)
0.509594 + 0.860415i \(0.329796\pi\)
\(440\) 0 0
\(441\) 959530. 0.234943
\(442\) 0 0
\(443\) −2.88152e6 −0.697610 −0.348805 0.937195i \(-0.613412\pi\)
−0.348805 + 0.937195i \(0.613412\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.11921e7 −2.64938
\(448\) 0 0
\(449\) 4.35526e6 1.01952 0.509762 0.860315i \(-0.329733\pi\)
0.509762 + 0.860315i \(0.329733\pi\)
\(450\) 0 0
\(451\) 79356.3 0.0183713
\(452\) 0 0
\(453\) −1.07585e7 −2.46325
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.79301e6 −1.74548 −0.872739 0.488186i \(-0.837659\pi\)
−0.872739 + 0.488186i \(0.837659\pi\)
\(458\) 0 0
\(459\) −4.87113e6 −1.07919
\(460\) 0 0
\(461\) −2.48971e6 −0.545627 −0.272814 0.962067i \(-0.587954\pi\)
−0.272814 + 0.962067i \(0.587954\pi\)
\(462\) 0 0
\(463\) 6.12486e6 1.32783 0.663917 0.747807i \(-0.268893\pi\)
0.663917 + 0.747807i \(0.268893\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.48662e6 −1.37634 −0.688171 0.725549i \(-0.741586\pi\)
−0.688171 + 0.725549i \(0.741586\pi\)
\(468\) 0 0
\(469\) −620846. −0.130332
\(470\) 0 0
\(471\) −3.91028e6 −0.812186
\(472\) 0 0
\(473\) −279291. −0.0573991
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.33879e7 2.69411
\(478\) 0 0
\(479\) 4.61538e6 0.919112 0.459556 0.888149i \(-0.348009\pi\)
0.459556 + 0.888149i \(0.348009\pi\)
\(480\) 0 0
\(481\) 695643. 0.137096
\(482\) 0 0
\(483\) −3.92293e6 −0.765144
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.66187e6 1.65497 0.827484 0.561490i \(-0.189772\pi\)
0.827484 + 0.561490i \(0.189772\pi\)
\(488\) 0 0
\(489\) −3.95753e6 −0.748431
\(490\) 0 0
\(491\) 1.87139e6 0.350316 0.175158 0.984540i \(-0.443956\pi\)
0.175158 + 0.984540i \(0.443956\pi\)
\(492\) 0 0
\(493\) −9.10167e6 −1.68657
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.08028e6 −0.740967
\(498\) 0 0
\(499\) 6.42247e6 1.15465 0.577325 0.816514i \(-0.304096\pi\)
0.577325 + 0.816514i \(0.304096\pi\)
\(500\) 0 0
\(501\) 2.13034e6 0.379189
\(502\) 0 0
\(503\) −6.83277e6 −1.20414 −0.602070 0.798443i \(-0.705657\pi\)
−0.602070 + 0.798443i \(0.705657\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.16660e6 1.23821
\(508\) 0 0
\(509\) 9.16537e6 1.56803 0.784017 0.620740i \(-0.213168\pi\)
0.784017 + 0.620740i \(0.213168\pi\)
\(510\) 0 0
\(511\) −4.39197e6 −0.744058
\(512\) 0 0
\(513\) −7.05733e6 −1.18399
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.55263e6 0.255470
\(518\) 0 0
\(519\) −3.95311e6 −0.644200
\(520\) 0 0
\(521\) 6.71054e6 1.08309 0.541543 0.840673i \(-0.317840\pi\)
0.541543 + 0.840673i \(0.317840\pi\)
\(522\) 0 0
\(523\) −3.31400e6 −0.529783 −0.264892 0.964278i \(-0.585336\pi\)
−0.264892 + 0.964278i \(0.585336\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.19068e6 0.186753
\(528\) 0 0
\(529\) 3.53752e6 0.549617
\(530\) 0 0
\(531\) 1.28791e7 1.98221
\(532\) 0 0
\(533\) −166982. −0.0254597
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.23044e7 −1.84130
\(538\) 0 0
\(539\) −339621. −0.0503528
\(540\) 0 0
\(541\) 4.39605e6 0.645757 0.322879 0.946440i \(-0.395349\pi\)
0.322879 + 0.946440i \(0.395349\pi\)
\(542\) 0 0
\(543\) −253403. −0.0368818
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.03221e7 1.47503 0.737515 0.675331i \(-0.235999\pi\)
0.737515 + 0.675331i \(0.235999\pi\)
\(548\) 0 0
\(549\) −1.37642e7 −1.94904
\(550\) 0 0
\(551\) −1.31866e7 −1.85035
\(552\) 0 0
\(553\) 238695. 0.0331918
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.02433e6 0.549611 0.274805 0.961500i \(-0.411387\pi\)
0.274805 + 0.961500i \(0.411387\pi\)
\(558\) 0 0
\(559\) 587689. 0.0795459
\(560\) 0 0
\(561\) 4.39883e6 0.590106
\(562\) 0 0
\(563\) 7.76463e6 1.03240 0.516202 0.856467i \(-0.327345\pi\)
0.516202 + 0.856467i \(0.327345\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 173912. 0.0227181
\(568\) 0 0
\(569\) 962147. 0.124584 0.0622918 0.998058i \(-0.480159\pi\)
0.0622918 + 0.998058i \(0.480159\pi\)
\(570\) 0 0
\(571\) 7.97240e6 1.02329 0.511645 0.859197i \(-0.329036\pi\)
0.511645 + 0.859197i \(0.329036\pi\)
\(572\) 0 0
\(573\) −1.01039e7 −1.28559
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.13108e6 −0.391521 −0.195761 0.980652i \(-0.562718\pi\)
−0.195761 + 0.980652i \(0.562718\pi\)
\(578\) 0 0
\(579\) −1.69825e7 −2.10526
\(580\) 0 0
\(581\) 3.31675e6 0.407635
\(582\) 0 0
\(583\) −4.73858e6 −0.577400
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.27415e6 0.631767 0.315884 0.948798i \(-0.397699\pi\)
0.315884 + 0.948798i \(0.397699\pi\)
\(588\) 0 0
\(589\) 1.72506e6 0.204888
\(590\) 0 0
\(591\) −2.37708e7 −2.79947
\(592\) 0 0
\(593\) −4.94938e6 −0.577981 −0.288991 0.957332i \(-0.593320\pi\)
−0.288991 + 0.957332i \(0.593320\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.63993e6 −0.303149
\(598\) 0 0
\(599\) 2.70972e6 0.308573 0.154286 0.988026i \(-0.450692\pi\)
0.154286 + 0.988026i \(0.450692\pi\)
\(600\) 0 0
\(601\) −992330. −0.112065 −0.0560325 0.998429i \(-0.517845\pi\)
−0.0560325 + 0.998429i \(0.517845\pi\)
\(602\) 0 0
\(603\) −5.06354e6 −0.567102
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.35542e7 −1.49315 −0.746574 0.665302i \(-0.768303\pi\)
−0.746574 + 0.665302i \(0.768303\pi\)
\(608\) 0 0
\(609\) 9.21614e6 1.00695
\(610\) 0 0
\(611\) −3.26706e6 −0.354041
\(612\) 0 0
\(613\) −8.37239e6 −0.899908 −0.449954 0.893052i \(-0.648560\pi\)
−0.449954 + 0.893052i \(0.648560\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.49138e6 0.686474 0.343237 0.939249i \(-0.388477\pi\)
0.343237 + 0.939249i \(0.388477\pi\)
\(618\) 0 0
\(619\) 8.98202e6 0.942210 0.471105 0.882077i \(-0.343855\pi\)
0.471105 + 0.882077i \(0.343855\pi\)
\(620\) 0 0
\(621\) −1.25404e7 −1.30491
\(622\) 0 0
\(623\) −4.24523e6 −0.438209
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.37306e6 0.647409
\(628\) 0 0
\(629\) 2.86711e6 0.288947
\(630\) 0 0
\(631\) −1.68639e7 −1.68611 −0.843053 0.537831i \(-0.819244\pi\)
−0.843053 + 0.537831i \(0.819244\pi\)
\(632\) 0 0
\(633\) 2.83611e7 2.81328
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 714636. 0.0697808
\(638\) 0 0
\(639\) −3.32782e7 −3.22410
\(640\) 0 0
\(641\) −1.35136e7 −1.29905 −0.649524 0.760341i \(-0.725032\pi\)
−0.649524 + 0.760341i \(0.725032\pi\)
\(642\) 0 0
\(643\) −9.15022e6 −0.872779 −0.436390 0.899758i \(-0.643743\pi\)
−0.436390 + 0.899758i \(0.643743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.76700e6 −0.353781 −0.176891 0.984231i \(-0.556604\pi\)
−0.176891 + 0.984231i \(0.556604\pi\)
\(648\) 0 0
\(649\) −4.55851e6 −0.424826
\(650\) 0 0
\(651\) −1.20565e6 −0.111498
\(652\) 0 0
\(653\) 1.36182e7 1.24979 0.624897 0.780708i \(-0.285141\pi\)
0.624897 + 0.780708i \(0.285141\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.58203e7 −3.23755
\(658\) 0 0
\(659\) 1.63668e6 0.146808 0.0734039 0.997302i \(-0.476614\pi\)
0.0734039 + 0.997302i \(0.476614\pi\)
\(660\) 0 0
\(661\) −1.43398e7 −1.27656 −0.638278 0.769806i \(-0.720353\pi\)
−0.638278 + 0.769806i \(0.720353\pi\)
\(662\) 0 0
\(663\) −9.25607e6 −0.817792
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.34316e7 −2.03933
\(668\) 0 0
\(669\) 2.46492e7 2.12931
\(670\) 0 0
\(671\) 4.87179e6 0.417717
\(672\) 0 0
\(673\) 9.54325e6 0.812192 0.406096 0.913830i \(-0.366890\pi\)
0.406096 + 0.913830i \(0.366890\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.76523e7 −1.48023 −0.740116 0.672479i \(-0.765229\pi\)
−0.740116 + 0.672479i \(0.765229\pi\)
\(678\) 0 0
\(679\) 323780. 0.0269510
\(680\) 0 0
\(681\) 9.58485e6 0.791986
\(682\) 0 0
\(683\) −3.15865e6 −0.259089 −0.129545 0.991574i \(-0.541352\pi\)
−0.129545 + 0.991574i \(0.541352\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.01281e7 2.43545
\(688\) 0 0
\(689\) 9.97099e6 0.800184
\(690\) 0 0
\(691\) 624449. 0.0497510 0.0248755 0.999691i \(-0.492081\pi\)
0.0248755 + 0.999691i \(0.492081\pi\)
\(692\) 0 0
\(693\) −2.76991e6 −0.219095
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −688223. −0.0536596
\(698\) 0 0
\(699\) −3.00292e7 −2.32462
\(700\) 0 0
\(701\) 1.57395e7 1.20975 0.604875 0.796320i \(-0.293223\pi\)
0.604875 + 0.796320i \(0.293223\pi\)
\(702\) 0 0
\(703\) 4.15390e6 0.317006
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.89997e6 −0.142955
\(708\) 0 0
\(709\) −5.74101e6 −0.428917 −0.214458 0.976733i \(-0.568799\pi\)
−0.214458 + 0.976733i \(0.568799\pi\)
\(710\) 0 0
\(711\) 1.94677e6 0.144424
\(712\) 0 0
\(713\) 3.06531e6 0.225814
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.03686e7 −1.47967
\(718\) 0 0
\(719\) −3.79854e6 −0.274028 −0.137014 0.990569i \(-0.543750\pi\)
−0.137014 + 0.990569i \(0.543750\pi\)
\(720\) 0 0
\(721\) −81252.6 −0.00582102
\(722\) 0 0
\(723\) −8.73865e6 −0.621725
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.68558e7 1.18280 0.591402 0.806377i \(-0.298575\pi\)
0.591402 + 0.806377i \(0.298575\pi\)
\(728\) 0 0
\(729\) −2.30423e7 −1.60585
\(730\) 0 0
\(731\) 2.42218e6 0.167653
\(732\) 0 0
\(733\) 2.16490e7 1.48826 0.744130 0.668035i \(-0.232864\pi\)
0.744130 + 0.668035i \(0.232864\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.79222e6 0.121541
\(738\) 0 0
\(739\) 1.64235e7 1.10625 0.553125 0.833098i \(-0.313435\pi\)
0.553125 + 0.833098i \(0.313435\pi\)
\(740\) 0 0
\(741\) −1.34103e7 −0.897205
\(742\) 0 0
\(743\) −5.84269e6 −0.388276 −0.194138 0.980974i \(-0.562191\pi\)
−0.194138 + 0.980974i \(0.562191\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.70509e7 1.77370
\(748\) 0 0
\(749\) 9.44977e6 0.615484
\(750\) 0 0
\(751\) 1.02447e7 0.662823 0.331412 0.943486i \(-0.392475\pi\)
0.331412 + 0.943486i \(0.392475\pi\)
\(752\) 0 0
\(753\) 1.94265e6 0.124855
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.30935e7 −0.830452 −0.415226 0.909718i \(-0.636297\pi\)
−0.415226 + 0.909718i \(0.636297\pi\)
\(758\) 0 0
\(759\) 1.13245e7 0.713532
\(760\) 0 0
\(761\) −6.99157e6 −0.437636 −0.218818 0.975766i \(-0.570220\pi\)
−0.218818 + 0.975766i \(0.570220\pi\)
\(762\) 0 0
\(763\) 6.14088e6 0.381874
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.59208e6 0.588741
\(768\) 0 0
\(769\) 1.46387e7 0.892660 0.446330 0.894868i \(-0.352731\pi\)
0.446330 + 0.894868i \(0.352731\pi\)
\(770\) 0 0
\(771\) 1.86265e7 1.12849
\(772\) 0 0
\(773\) −2.11451e7 −1.27280 −0.636402 0.771357i \(-0.719578\pi\)
−0.636402 + 0.771357i \(0.719578\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2.90317e6 −0.172512
\(778\) 0 0
\(779\) −997103. −0.0588703
\(780\) 0 0
\(781\) 1.17787e7 0.690986
\(782\) 0 0
\(783\) 2.94611e7 1.71729
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.80434e7 1.03844 0.519219 0.854641i \(-0.326223\pi\)
0.519219 + 0.854641i \(0.326223\pi\)
\(788\) 0 0
\(789\) 1.13810e7 0.650862
\(790\) 0 0
\(791\) 5.79964e6 0.329579
\(792\) 0 0
\(793\) −1.02513e7 −0.578889
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.14077e7 1.19378 0.596890 0.802323i \(-0.296403\pi\)
0.596890 + 0.802323i \(0.296403\pi\)
\(798\) 0 0
\(799\) −1.34653e7 −0.746188
\(800\) 0 0
\(801\) −3.46236e7 −1.90674
\(802\) 0 0
\(803\) 1.26785e7 0.693869
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.23286e7 2.28797
\(808\) 0 0
\(809\) −3.85342e6 −0.207002 −0.103501 0.994629i \(-0.533005\pi\)
−0.103501 + 0.994629i \(0.533005\pi\)
\(810\) 0 0
\(811\) 1.82776e7 0.975814 0.487907 0.872896i \(-0.337761\pi\)
0.487907 + 0.872896i \(0.337761\pi\)
\(812\) 0 0
\(813\) −1.18359e7 −0.628020
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.50927e6 0.183934
\(818\) 0 0
\(819\) 5.82848e6 0.303630
\(820\) 0 0
\(821\) 2.63108e7 1.36231 0.681156 0.732138i \(-0.261477\pi\)
0.681156 + 0.732138i \(0.261477\pi\)
\(822\) 0 0
\(823\) 3.23546e7 1.66509 0.832543 0.553960i \(-0.186884\pi\)
0.832543 + 0.553960i \(0.186884\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.30031e6 0.269487 0.134743 0.990881i \(-0.456979\pi\)
0.134743 + 0.990881i \(0.456979\pi\)
\(828\) 0 0
\(829\) 2.12766e7 1.07526 0.537632 0.843180i \(-0.319319\pi\)
0.537632 + 0.843180i \(0.319319\pi\)
\(830\) 0 0
\(831\) −4.71586e7 −2.36896
\(832\) 0 0
\(833\) 2.94539e6 0.147072
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.85408e6 −0.190155
\(838\) 0 0
\(839\) −2.68060e6 −0.131470 −0.0657350 0.997837i \(-0.520939\pi\)
−0.0657350 + 0.997837i \(0.520939\pi\)
\(840\) 0 0
\(841\) 3.45367e7 1.68380
\(842\) 0 0
\(843\) −9.75881e6 −0.472964
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.91110e6 −0.331008
\(848\) 0 0
\(849\) 6.48780e6 0.308907
\(850\) 0 0
\(851\) 7.38118e6 0.349383
\(852\) 0 0
\(853\) −5.65172e6 −0.265955 −0.132977 0.991119i \(-0.542454\pi\)
−0.132977 + 0.991119i \(0.542454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.76367e7 1.28539 0.642694 0.766123i \(-0.277817\pi\)
0.642694 + 0.766123i \(0.277817\pi\)
\(858\) 0 0
\(859\) −2.44636e6 −0.113119 −0.0565597 0.998399i \(-0.518013\pi\)
−0.0565597 + 0.998399i \(0.518013\pi\)
\(860\) 0 0
\(861\) 696879. 0.0320368
\(862\) 0 0
\(863\) 3.06078e7 1.39896 0.699481 0.714652i \(-0.253415\pi\)
0.699481 + 0.714652i \(0.253415\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.15539e6 −0.0973821
\(868\) 0 0
\(869\) −689051. −0.0309529
\(870\) 0 0
\(871\) −3.77121e6 −0.168436
\(872\) 0 0
\(873\) 2.64070e6 0.117269
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.14914e7 −0.943552 −0.471776 0.881718i \(-0.656387\pi\)
−0.471776 + 0.881718i \(0.656387\pi\)
\(878\) 0 0
\(879\) 8.75881e6 0.382360
\(880\) 0 0
\(881\) 2.79915e7 1.21503 0.607514 0.794309i \(-0.292167\pi\)
0.607514 + 0.794309i \(0.292167\pi\)
\(882\) 0 0
\(883\) 2.40091e7 1.03627 0.518136 0.855298i \(-0.326626\pi\)
0.518136 + 0.855298i \(0.326626\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.01622e7 1.71399 0.856995 0.515326i \(-0.172329\pi\)
0.856995 + 0.515326i \(0.172329\pi\)
\(888\) 0 0
\(889\) 3.84680e6 0.163247
\(890\) 0 0
\(891\) −502038. −0.0211857
\(892\) 0 0
\(893\) −1.95086e7 −0.818648
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −2.38291e7 −0.988841
\(898\) 0 0
\(899\) −7.20132e6 −0.297176
\(900\) 0 0
\(901\) 4.10957e7 1.68649
\(902\) 0 0
\(903\) −2.45264e6 −0.100095
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.19331e7 −0.885283 −0.442641 0.896699i \(-0.645959\pi\)
−0.442641 + 0.896699i \(0.645959\pi\)
\(908\) 0 0
\(909\) −1.54959e7 −0.622025
\(910\) 0 0
\(911\) −2.21245e7 −0.883236 −0.441618 0.897203i \(-0.645595\pi\)
−0.441618 + 0.897203i \(0.645595\pi\)
\(912\) 0 0
\(913\) −9.57457e6 −0.380139
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.07790e6 −0.0423307
\(918\) 0 0
\(919\) −1.82158e7 −0.711476 −0.355738 0.934586i \(-0.615770\pi\)
−0.355738 + 0.934586i \(0.615770\pi\)
\(920\) 0 0
\(921\) 3.51084e7 1.36383
\(922\) 0 0
\(923\) −2.47849e7 −0.957596
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −662686. −0.0253284
\(928\) 0 0
\(929\) 1.48086e7 0.562958 0.281479 0.959567i \(-0.409175\pi\)
0.281479 + 0.959567i \(0.409175\pi\)
\(930\) 0 0
\(931\) 4.26731e6 0.161354
\(932\) 0 0
\(933\) −2.28154e7 −0.858071
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.96760e7 −1.47631 −0.738157 0.674629i \(-0.764304\pi\)
−0.738157 + 0.674629i \(0.764304\pi\)
\(938\) 0 0
\(939\) 7.11453e7 2.63319
\(940\) 0 0
\(941\) −2.74007e7 −1.00876 −0.504380 0.863482i \(-0.668279\pi\)
−0.504380 + 0.863482i \(0.668279\pi\)
\(942\) 0 0
\(943\) −1.77178e6 −0.0648830
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.70369e7 1.34202 0.671011 0.741448i \(-0.265860\pi\)
0.671011 + 0.741448i \(0.265860\pi\)
\(948\) 0 0
\(949\) −2.66782e7 −0.961591
\(950\) 0 0
\(951\) 6.22301e7 2.23125
\(952\) 0 0
\(953\) 3.01349e7 1.07482 0.537412 0.843320i \(-0.319402\pi\)
0.537412 + 0.843320i \(0.319402\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.66046e7 −0.939023
\(958\) 0 0
\(959\) −1.61924e7 −0.568544
\(960\) 0 0
\(961\) −2.76871e7 −0.967094
\(962\) 0 0
\(963\) 7.70710e7 2.67809
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −5.27724e7 −1.81485 −0.907425 0.420213i \(-0.861955\pi\)
−0.907425 + 0.420213i \(0.861955\pi\)
\(968\) 0 0
\(969\) −5.52708e7 −1.89098
\(970\) 0 0
\(971\) 2.09055e7 0.711560 0.355780 0.934570i \(-0.384215\pi\)
0.355780 + 0.934570i \(0.384215\pi\)
\(972\) 0 0
\(973\) 1.97593e7 0.669098
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 609167. 0.0204174 0.0102087 0.999948i \(-0.496750\pi\)
0.0102087 + 0.999948i \(0.496750\pi\)
\(978\) 0 0
\(979\) 1.22549e7 0.408650
\(980\) 0 0
\(981\) 5.00842e7 1.66161
\(982\) 0 0
\(983\) 4.01952e6 0.132676 0.0663378 0.997797i \(-0.478869\pi\)
0.0663378 + 0.997797i \(0.478869\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.36346e7 0.445503
\(988\) 0 0
\(989\) 6.23572e6 0.202720
\(990\) 0 0
\(991\) 2.08792e6 0.0675351 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(992\) 0 0
\(993\) 9.82064e7 3.16058
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6.09104e6 0.194068 0.0970340 0.995281i \(-0.469064\pi\)
0.0970340 + 0.995281i \(0.469064\pi\)
\(998\) 0 0
\(999\) −9.28053e6 −0.294211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.a.p.1.1 8
5.2 odd 4 140.6.e.a.29.15 yes 16
5.3 odd 4 140.6.e.a.29.2 16
5.4 even 2 700.6.a.o.1.8 8
20.3 even 4 560.6.g.f.449.15 16
20.7 even 4 560.6.g.f.449.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.6.e.a.29.2 16 5.3 odd 4
140.6.e.a.29.15 yes 16 5.2 odd 4
560.6.g.f.449.2 16 20.7 even 4
560.6.g.f.449.15 16 20.3 even 4
700.6.a.o.1.8 8 5.4 even 2
700.6.a.p.1.1 8 1.1 even 1 trivial