Properties

Label 567.2.e.a.487.1
Level $567$
Weight $2$
Character 567.487
Analytic conductor $4.528$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.487
Dual form 567.2.e.a.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-2.50000 - 0.866025i) q^{7} -3.00000 q^{8} +(0.500000 - 0.866025i) q^{10} +(-2.50000 + 4.33013i) q^{11} -5.00000 q^{13} +(0.500000 + 2.59808i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.50000 + 2.59808i) q^{17} +(-0.500000 - 0.866025i) q^{19} +1.00000 q^{20} +5.00000 q^{22} +(-1.50000 - 2.59808i) q^{23} +(2.00000 - 3.46410i) q^{25} +(2.50000 + 4.33013i) q^{26} +(-2.00000 + 1.73205i) q^{28} -1.00000 q^{29} +(-2.50000 + 4.33013i) q^{32} +3.00000 q^{34} +(-0.500000 - 2.59808i) q^{35} +(-1.50000 - 2.59808i) q^{37} +(-0.500000 + 0.866025i) q^{38} +(-1.50000 - 2.59808i) q^{40} -5.00000 q^{41} -1.00000 q^{43} +(2.50000 + 4.33013i) q^{44} +(-1.50000 + 2.59808i) q^{46} +(5.50000 + 4.33013i) q^{49} -4.00000 q^{50} +(-2.50000 + 4.33013i) q^{52} +(4.50000 - 7.79423i) q^{53} -5.00000 q^{55} +(7.50000 + 2.59808i) q^{56} +(0.500000 + 0.866025i) q^{58} +(7.00000 + 12.1244i) q^{61} +7.00000 q^{64} +(-2.50000 - 4.33013i) q^{65} +(-2.00000 + 3.46410i) q^{67} +(1.50000 + 2.59808i) q^{68} +(-2.00000 + 1.73205i) q^{70} -12.0000 q^{71} +(-1.50000 + 2.59808i) q^{73} +(-1.50000 + 2.59808i) q^{74} -1.00000 q^{76} +(10.0000 - 8.66025i) q^{77} +(-4.00000 - 6.92820i) q^{79} +(-0.500000 + 0.866025i) q^{80} +(2.50000 + 4.33013i) q^{82} -9.00000 q^{83} -3.00000 q^{85} +(0.500000 + 0.866025i) q^{86} +(7.50000 - 12.9904i) q^{88} +(6.50000 + 11.2583i) q^{89} +(12.5000 + 4.33013i) q^{91} -3.00000 q^{92} +(0.500000 - 0.866025i) q^{95} -9.00000 q^{97} +(1.00000 - 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} + q^{5} - 5 q^{7} - 6 q^{8} + q^{10} - 5 q^{11} - 10 q^{13} + q^{14} + q^{16} - 3 q^{17} - q^{19} + 2 q^{20} + 10 q^{22} - 3 q^{23} + 4 q^{25} + 5 q^{26} - 4 q^{28} - 2 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i 0.955901 0.293691i \(-0.0948835\pi\)
−0.732294 + 0.680989i \(0.761550\pi\)
\(6\) 0 0
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −2.50000 + 4.33013i −0.753778 + 1.30558i 0.192201 + 0.981356i \(0.438437\pi\)
−0.945979 + 0.324227i \(0.894896\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0.500000 + 2.59808i 0.133631 + 0.694365i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 5.00000 1.06600
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 2.50000 + 4.33013i 0.490290 + 0.849208i
\(27\) 0 0
\(28\) −2.00000 + 1.73205i −0.377964 + 0.327327i
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −0.500000 2.59808i −0.0845154 0.439155i
\(36\) 0 0
\(37\) −1.50000 2.59808i −0.246598 0.427121i 0.715981 0.698119i \(-0.245980\pi\)
−0.962580 + 0.270998i \(0.912646\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 0 0
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 2.50000 + 4.33013i 0.376889 + 0.652791i
\(45\) 0 0
\(46\) −1.50000 + 2.59808i −0.221163 + 0.383065i
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) −2.50000 + 4.33013i −0.346688 + 0.600481i
\(53\) 4.50000 7.79423i 0.618123 1.07062i −0.371706 0.928351i \(-0.621227\pi\)
0.989828 0.142269i \(-0.0454398\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 7.50000 + 2.59808i 1.00223 + 0.347183i
\(57\) 0 0
\(58\) 0.500000 + 0.866025i 0.0656532 + 0.113715i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −2.50000 4.33013i −0.310087 0.537086i
\(66\) 0 0
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) 0 0
\(70\) −2.00000 + 1.73205i −0.239046 + 0.207020i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −1.50000 + 2.59808i −0.175562 + 0.304082i −0.940356 0.340193i \(-0.889507\pi\)
0.764794 + 0.644275i \(0.222841\pi\)
\(74\) −1.50000 + 2.59808i −0.174371 + 0.302020i
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 10.0000 8.66025i 1.13961 0.986928i
\(78\) 0 0
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) 0 0
\(82\) 2.50000 + 4.33013i 0.276079 + 0.478183i
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0.500000 + 0.866025i 0.0539164 + 0.0933859i
\(87\) 0 0
\(88\) 7.50000 12.9904i 0.799503 1.38478i
\(89\) 6.50000 + 11.2583i 0.688999 + 1.19338i 0.972162 + 0.234309i \(0.0752827\pi\)
−0.283164 + 0.959072i \(0.591384\pi\)
\(90\) 0 0
\(91\) 12.5000 + 4.33013i 1.31036 + 0.453921i
\(92\) −3.00000 −0.312772
\(93\) 0 0
\(94\) 0 0
\(95\) 0.500000 0.866025i 0.0512989 0.0888523i
\(96\) 0 0
\(97\) −9.00000 −0.913812 −0.456906 0.889515i \(-0.651042\pi\)
−0.456906 + 0.889515i \(0.651042\pi\)
\(98\) 1.00000 6.92820i 0.101015 0.699854i
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) 8.50000 14.7224i 0.845782 1.46494i −0.0391591 0.999233i \(-0.512468\pi\)
0.884941 0.465704i \(-0.154199\pi\)
\(102\) 0 0
\(103\) 0.500000 + 0.866025i 0.0492665 + 0.0853320i 0.889607 0.456727i \(-0.150978\pi\)
−0.840341 + 0.542059i \(0.817645\pi\)
\(104\) 15.0000 1.47087
\(105\) 0 0
\(106\) −9.00000 −0.874157
\(107\) −8.50000 14.7224i −0.821726 1.42327i −0.904396 0.426694i \(-0.859678\pi\)
0.0826699 0.996577i \(-0.473655\pi\)
\(108\) 0 0
\(109\) 4.50000 7.79423i 0.431022 0.746552i −0.565940 0.824447i \(-0.691487\pi\)
0.996962 + 0.0778949i \(0.0248199\pi\)
\(110\) 2.50000 + 4.33013i 0.238366 + 0.412861i
\(111\) 0 0
\(112\) −0.500000 2.59808i −0.0472456 0.245495i
\(113\) −1.00000 −0.0940721 −0.0470360 0.998893i \(-0.514978\pi\)
−0.0470360 + 0.998893i \(0.514978\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) −0.500000 + 0.866025i −0.0464238 + 0.0804084i
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000 5.19615i 0.550019 0.476331i
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) 7.00000 12.1244i 0.633750 1.09769i
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) 0 0
\(130\) −2.50000 + 4.33013i −0.219265 + 0.379777i
\(131\) 0.500000 + 0.866025i 0.0436852 + 0.0756650i 0.887041 0.461690i \(-0.152757\pi\)
−0.843356 + 0.537355i \(0.819423\pi\)
\(132\) 0 0
\(133\) 0.500000 + 2.59808i 0.0433555 + 0.225282i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 4.50000 7.79423i 0.385872 0.668350i
\(137\) 4.50000 7.79423i 0.384461 0.665906i −0.607233 0.794524i \(-0.707721\pi\)
0.991694 + 0.128618i \(0.0410540\pi\)
\(138\) 0 0
\(139\) 9.00000 0.763370 0.381685 0.924292i \(-0.375344\pi\)
0.381685 + 0.924292i \(0.375344\pi\)
\(140\) −2.50000 0.866025i −0.211289 0.0731925i
\(141\) 0 0
\(142\) 6.00000 + 10.3923i 0.503509 + 0.872103i
\(143\) 12.5000 21.6506i 1.04530 1.81052i
\(144\) 0 0
\(145\) −0.500000 0.866025i −0.0415227 0.0719195i
\(146\) 3.00000 0.248282
\(147\) 0 0
\(148\) −3.00000 −0.246598
\(149\) −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i \(-0.205881\pi\)
−0.920904 + 0.389789i \(0.872548\pi\)
\(150\) 0 0
\(151\) −2.50000 + 4.33013i −0.203447 + 0.352381i −0.949637 0.313353i \(-0.898548\pi\)
0.746190 + 0.665733i \(0.231881\pi\)
\(152\) 1.50000 + 2.59808i 0.121666 + 0.210732i
\(153\) 0 0
\(154\) −12.5000 4.33013i −1.00728 0.348932i
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) −4.00000 + 6.92820i −0.318223 + 0.551178i
\(159\) 0 0
\(160\) −5.00000 −0.395285
\(161\) 1.50000 + 7.79423i 0.118217 + 0.614271i
\(162\) 0 0
\(163\) 5.50000 + 9.52628i 0.430793 + 0.746156i 0.996942 0.0781474i \(-0.0249005\pi\)
−0.566149 + 0.824303i \(0.691567\pi\)
\(164\) −2.50000 + 4.33013i −0.195217 + 0.338126i
\(165\) 0 0
\(166\) 4.50000 + 7.79423i 0.349268 + 0.604949i
\(167\) −19.0000 −1.47026 −0.735132 0.677924i \(-0.762880\pi\)
−0.735132 + 0.677924i \(0.762880\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 1.50000 + 2.59808i 0.115045 + 0.199263i
\(171\) 0 0
\(172\) −0.500000 + 0.866025i −0.0381246 + 0.0660338i
\(173\) 7.00000 + 12.1244i 0.532200 + 0.921798i 0.999293 + 0.0375896i \(0.0119679\pi\)
−0.467093 + 0.884208i \(0.654699\pi\)
\(174\) 0 0
\(175\) −8.00000 + 6.92820i −0.604743 + 0.523723i
\(176\) −5.00000 −0.376889
\(177\) 0 0
\(178\) 6.50000 11.2583i 0.487196 0.843848i
\(179\) −9.50000 + 16.4545i −0.710063 + 1.22987i 0.254770 + 0.967002i \(0.418000\pi\)
−0.964833 + 0.262864i \(0.915333\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −2.50000 12.9904i −0.185312 0.962911i
\(183\) 0 0
\(184\) 4.50000 + 7.79423i 0.331744 + 0.574598i
\(185\) 1.50000 2.59808i 0.110282 0.191014i
\(186\) 0 0
\(187\) −7.50000 12.9904i −0.548454 0.949951i
\(188\) 0 0
\(189\) 0 0
\(190\) −1.00000 −0.0725476
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) 0 0
\(193\) 5.00000 8.66025i 0.359908 0.623379i −0.628037 0.778183i \(-0.716141\pi\)
0.987945 + 0.154805i \(0.0494748\pi\)
\(194\) 4.50000 + 7.79423i 0.323081 + 0.559593i
\(195\) 0 0
\(196\) 6.50000 2.59808i 0.464286 0.185577i
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −1.50000 + 2.59808i −0.106332 + 0.184173i −0.914282 0.405079i \(-0.867244\pi\)
0.807950 + 0.589252i \(0.200577\pi\)
\(200\) −6.00000 + 10.3923i −0.424264 + 0.734847i
\(201\) 0 0
\(202\) −17.0000 −1.19612
\(203\) 2.50000 + 0.866025i 0.175466 + 0.0607831i
\(204\) 0 0
\(205\) −2.50000 4.33013i −0.174608 0.302429i
\(206\) 0.500000 0.866025i 0.0348367 0.0603388i
\(207\) 0 0
\(208\) −2.50000 4.33013i −0.173344 0.300240i
\(209\) 5.00000 0.345857
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) −4.50000 7.79423i −0.309061 0.535310i
\(213\) 0 0
\(214\) −8.50000 + 14.7224i −0.581048 + 1.00640i
\(215\) −0.500000 0.866025i −0.0340997 0.0590624i
\(216\) 0 0
\(217\) 0 0
\(218\) −9.00000 −0.609557
\(219\) 0 0
\(220\) −2.50000 + 4.33013i −0.168550 + 0.291937i
\(221\) 7.50000 12.9904i 0.504505 0.873828i
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 10.0000 8.66025i 0.668153 0.578638i
\(225\) 0 0
\(226\) 0.500000 + 0.866025i 0.0332595 + 0.0576072i
\(227\) 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i \(-0.801590\pi\)
0.911502 + 0.411296i \(0.134924\pi\)
\(228\) 0 0
\(229\) 0.500000 + 0.866025i 0.0330409 + 0.0572286i 0.882073 0.471113i \(-0.156147\pi\)
−0.849032 + 0.528341i \(0.822814\pi\)
\(230\) −3.00000 −0.197814
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −1.50000 2.59808i −0.0982683 0.170206i 0.812700 0.582683i \(-0.197997\pi\)
−0.910968 + 0.412477i \(0.864664\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −7.50000 2.59808i −0.486153 0.168408i
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 0 0
\(241\) −5.50000 + 9.52628i −0.354286 + 0.613642i −0.986996 0.160748i \(-0.948609\pi\)
0.632709 + 0.774389i \(0.281943\pi\)
\(242\) −7.00000 + 12.1244i −0.449977 + 0.779383i
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) −1.00000 + 6.92820i −0.0638877 + 0.442627i
\(246\) 0 0
\(247\) 2.50000 + 4.33013i 0.159071 + 0.275519i
\(248\) 0 0
\(249\) 0 0
\(250\) −4.50000 7.79423i −0.284605 0.492950i
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) 15.0000 0.943042
\(254\) 6.00000 + 10.3923i 0.376473 + 0.652071i
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 14.5000 + 25.1147i 0.904485 + 1.56661i 0.821607 + 0.570055i \(0.193078\pi\)
0.0828783 + 0.996560i \(0.473589\pi\)
\(258\) 0 0
\(259\) 1.50000 + 7.79423i 0.0932055 + 0.484310i
\(260\) −5.00000 −0.310087
\(261\) 0 0
\(262\) 0.500000 0.866025i 0.0308901 0.0535032i
\(263\) −2.50000 + 4.33013i −0.154157 + 0.267007i −0.932752 0.360520i \(-0.882599\pi\)
0.778595 + 0.627527i \(0.215933\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 2.00000 1.73205i 0.122628 0.106199i
\(267\) 0 0
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) −1.50000 + 2.59808i −0.0914566 + 0.158408i −0.908124 0.418701i \(-0.862486\pi\)
0.816668 + 0.577108i \(0.195819\pi\)
\(270\) 0 0
\(271\) −0.500000 0.866025i −0.0303728 0.0526073i 0.850439 0.526073i \(-0.176336\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) 10.0000 + 17.3205i 0.603023 + 1.04447i
\(276\) 0 0
\(277\) −9.50000 + 16.4545i −0.570800 + 0.988654i 0.425684 + 0.904872i \(0.360033\pi\)
−0.996484 + 0.0837823i \(0.973300\pi\)
\(278\) −4.50000 7.79423i −0.269892 0.467467i
\(279\) 0 0
\(280\) 1.50000 + 7.79423i 0.0896421 + 0.465794i
\(281\) −29.0000 −1.72999 −0.864997 0.501776i \(-0.832680\pi\)
−0.864997 + 0.501776i \(0.832680\pi\)
\(282\) 0 0
\(283\) −14.0000 + 24.2487i −0.832214 + 1.44144i 0.0640654 + 0.997946i \(0.479593\pi\)
−0.896279 + 0.443491i \(0.853740\pi\)
\(284\) −6.00000 + 10.3923i −0.356034 + 0.616670i
\(285\) 0 0
\(286\) −25.0000 −1.47828
\(287\) 12.5000 + 4.33013i 0.737852 + 0.255599i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −0.500000 + 0.866025i −0.0293610 + 0.0508548i
\(291\) 0 0
\(292\) 1.50000 + 2.59808i 0.0877809 + 0.152041i
\(293\) −5.00000 −0.292103 −0.146052 0.989277i \(-0.546657\pi\)
−0.146052 + 0.989277i \(0.546657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.50000 + 7.79423i 0.261557 + 0.453030i
\(297\) 0 0
\(298\) −1.50000 + 2.59808i −0.0868927 + 0.150503i
\(299\) 7.50000 + 12.9904i 0.433736 + 0.751253i
\(300\) 0 0
\(301\) 2.50000 + 0.866025i 0.144098 + 0.0499169i
\(302\) 5.00000 0.287718
\(303\) 0 0
\(304\) 0.500000 0.866025i 0.0286770 0.0496700i
\(305\) −7.00000 + 12.1244i −0.400819 + 0.694239i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) −2.50000 12.9904i −0.142451 0.740196i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) −7.00000 12.1244i −0.395663 0.685309i 0.597522 0.801852i \(-0.296152\pi\)
−0.993186 + 0.116543i \(0.962819\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 0 0
\(319\) 2.50000 4.33013i 0.139973 0.242441i
\(320\) 3.50000 + 6.06218i 0.195656 + 0.338886i
\(321\) 0 0
\(322\) 6.00000 5.19615i 0.334367 0.289570i
\(323\) 3.00000 0.166924
\(324\) 0 0
\(325\) −10.0000 + 17.3205i −0.554700 + 0.960769i
\(326\) 5.50000 9.52628i 0.304617 0.527612i
\(327\) 0 0
\(328\) 15.0000 0.828236
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 6.92820i −0.219860 0.380808i 0.734905 0.678170i \(-0.237227\pi\)
−0.954765 + 0.297361i \(0.903893\pi\)
\(332\) −4.50000 + 7.79423i −0.246970 + 0.427764i
\(333\) 0 0
\(334\) 9.50000 + 16.4545i 0.519817 + 0.900349i
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) −6.00000 10.3923i −0.326357 0.565267i
\(339\) 0 0
\(340\) −1.50000 + 2.59808i −0.0813489 + 0.140900i
\(341\) 0 0
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 3.00000 0.161749
\(345\) 0 0
\(346\) 7.00000 12.1244i 0.376322 0.651809i
\(347\) −2.00000 + 3.46410i −0.107366 + 0.185963i −0.914702 0.404128i \(-0.867575\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(348\) 0 0
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 10.0000 + 3.46410i 0.534522 + 0.185164i
\(351\) 0 0
\(352\) −12.5000 21.6506i −0.666252 1.15398i
\(353\) −5.50000 + 9.52628i −0.292735 + 0.507033i −0.974456 0.224580i \(-0.927899\pi\)
0.681720 + 0.731613i \(0.261232\pi\)
\(354\) 0 0
\(355\) −6.00000 10.3923i −0.318447 0.551566i
\(356\) 13.0000 0.688999
\(357\) 0 0
\(358\) 19.0000 1.00418
\(359\) 5.50000 + 9.52628i 0.290279 + 0.502778i 0.973876 0.227082i \(-0.0729186\pi\)
−0.683597 + 0.729860i \(0.739585\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 7.00000 + 12.1244i 0.367912 + 0.637242i
\(363\) 0 0
\(364\) 10.0000 8.66025i 0.524142 0.453921i
\(365\) −3.00000 −0.157027
\(366\) 0 0
\(367\) 1.50000 2.59808i 0.0782994 0.135618i −0.824217 0.566274i \(-0.808384\pi\)
0.902516 + 0.430656i \(0.141718\pi\)
\(368\) 1.50000 2.59808i 0.0781929 0.135434i
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) −18.0000 + 15.5885i −0.934513 + 0.809312i
\(372\) 0 0
\(373\) 12.5000 + 21.6506i 0.647225 + 1.12103i 0.983783 + 0.179364i \(0.0574041\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) −7.50000 + 12.9904i −0.387816 + 0.671717i
\(375\) 0 0
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −0.500000 0.866025i −0.0256495 0.0444262i
\(381\) 0 0
\(382\) −4.00000 + 6.92820i −0.204658 + 0.354478i
\(383\) −13.5000 23.3827i −0.689818 1.19480i −0.971897 0.235408i \(-0.924357\pi\)
0.282079 0.959391i \(-0.408976\pi\)
\(384\) 0 0
\(385\) 12.5000 + 4.33013i 0.637059 + 0.220684i
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) −4.50000 + 7.79423i −0.228453 + 0.395692i
\(389\) 4.50000 7.79423i 0.228159 0.395183i −0.729103 0.684403i \(-0.760063\pi\)
0.957263 + 0.289220i \(0.0933960\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) −16.5000 12.9904i −0.833376 0.656113i
\(393\) 0 0
\(394\) −1.00000 1.73205i −0.0503793 0.0872595i
\(395\) 4.00000 6.92820i 0.201262 0.348596i
\(396\) 0 0
\(397\) −7.50000 12.9904i −0.376414 0.651969i 0.614123 0.789210i \(-0.289510\pi\)
−0.990538 + 0.137241i \(0.956176\pi\)
\(398\) 3.00000 0.150376
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −8.50000 14.7224i −0.422891 0.732468i
\(405\) 0 0
\(406\) −0.500000 2.59808i −0.0248146 0.128940i
\(407\) 15.0000 0.743522
\(408\) 0 0
\(409\) −7.00000 + 12.1244i −0.346128 + 0.599511i −0.985558 0.169338i \(-0.945837\pi\)
0.639430 + 0.768849i \(0.279170\pi\)
\(410\) −2.50000 + 4.33013i −0.123466 + 0.213850i
\(411\) 0 0
\(412\) 1.00000 0.0492665
\(413\) 0 0
\(414\) 0 0
\(415\) −4.50000 7.79423i −0.220896 0.382604i
\(416\) 12.5000 21.6506i 0.612863 1.06151i
\(417\) 0 0
\(418\) −2.50000 4.33013i −0.122279 0.211793i
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) −1.00000 −0.0487370 −0.0243685 0.999703i \(-0.507758\pi\)
−0.0243685 + 0.999703i \(0.507758\pi\)
\(422\) −6.50000 11.2583i −0.316415 0.548047i
\(423\) 0 0
\(424\) −13.5000 + 23.3827i −0.655618 + 1.13556i
\(425\) 6.00000 + 10.3923i 0.291043 + 0.504101i
\(426\) 0 0
\(427\) −7.00000 36.3731i −0.338754 1.76022i
\(428\) −17.0000 −0.821726
\(429\) 0 0
\(430\) −0.500000 + 0.866025i −0.0241121 + 0.0417635i
\(431\) 4.50000 7.79423i 0.216757 0.375435i −0.737057 0.675830i \(-0.763785\pi\)
0.953815 + 0.300395i \(0.0971186\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.50000 7.79423i −0.215511 0.373276i
\(437\) −1.50000 + 2.59808i −0.0717547 + 0.124283i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 15.0000 0.715097
\(441\) 0 0
\(442\) −15.0000 −0.713477
\(443\) −18.0000 31.1769i −0.855206 1.48126i −0.876454 0.481486i \(-0.840097\pi\)
0.0212481 0.999774i \(-0.493236\pi\)
\(444\) 0 0
\(445\) −6.50000 + 11.2583i −0.308130 + 0.533696i
\(446\) −9.50000 16.4545i −0.449838 0.779142i
\(447\) 0 0
\(448\) −17.5000 6.06218i −0.826797 0.286411i
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 12.5000 21.6506i 0.588602 1.01949i
\(452\) −0.500000 + 0.866025i −0.0235180 + 0.0407344i
\(453\) 0 0
\(454\) −3.00000 −0.140797
\(455\) 2.50000 + 12.9904i 0.117202 + 0.608998i
\(456\) 0 0
\(457\) −11.0000 19.0526i −0.514558 0.891241i −0.999857 0.0168929i \(-0.994623\pi\)
0.485299 0.874348i \(-0.338711\pi\)
\(458\) 0.500000 0.866025i 0.0233635 0.0404667i
\(459\) 0 0
\(460\) −1.50000 2.59808i −0.0699379 0.121136i
\(461\) 19.0000 0.884918 0.442459 0.896789i \(-0.354106\pi\)
0.442459 + 0.896789i \(0.354106\pi\)
\(462\) 0 0
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) −0.500000 0.866025i −0.0232119 0.0402042i
\(465\) 0 0
\(466\) −1.50000 + 2.59808i −0.0694862 + 0.120354i
\(467\) 13.5000 + 23.3827i 0.624705 + 1.08202i 0.988598 + 0.150581i \(0.0481143\pi\)
−0.363892 + 0.931441i \(0.618552\pi\)
\(468\) 0 0
\(469\) 8.00000 6.92820i 0.369406 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.50000 4.33013i 0.114950 0.199099i
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) −1.50000 7.79423i −0.0687524 0.357248i
\(477\) 0 0
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) −12.5000 + 21.6506i −0.571140 + 0.989243i 0.425310 + 0.905048i \(0.360165\pi\)
−0.996449 + 0.0841949i \(0.973168\pi\)
\(480\) 0 0
\(481\) 7.50000 + 12.9904i 0.341971 + 0.592310i
\(482\) 11.0000 0.501036
\(483\) 0 0
\(484\) −14.0000 −0.636364
\(485\) −4.50000 7.79423i −0.204334 0.353918i
\(486\) 0 0
\(487\) −9.50000 + 16.4545i −0.430486 + 0.745624i −0.996915 0.0784867i \(-0.974991\pi\)
0.566429 + 0.824110i \(0.308325\pi\)
\(488\) −21.0000 36.3731i −0.950625 1.64653i
\(489\) 0 0
\(490\) 6.50000 2.59808i 0.293640 0.117369i
\(491\) 13.0000 0.586682 0.293341 0.956008i \(-0.405233\pi\)
0.293341 + 0.956008i \(0.405233\pi\)
\(492\) 0 0
\(493\) 1.50000 2.59808i 0.0675566 0.117011i
\(494\) 2.50000 4.33013i 0.112480 0.194822i
\(495\) 0 0
\(496\) 0 0
\(497\) 30.0000 + 10.3923i 1.34568 + 0.466159i
\(498\) 0 0
\(499\) −15.5000 26.8468i −0.693875 1.20183i −0.970558 0.240866i \(-0.922569\pi\)
0.276683 0.960961i \(-0.410765\pi\)
\(500\) 4.50000 7.79423i 0.201246 0.348569i
\(501\) 0 0
\(502\) 14.0000 + 24.2487i 0.624851 + 1.08227i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 17.0000 0.756490
\(506\) −7.50000 12.9904i −0.333416 0.577493i
\(507\) 0 0
\(508\) −6.00000 + 10.3923i −0.266207 + 0.461084i
\(509\) 14.5000 + 25.1147i 0.642701 + 1.11319i 0.984827 + 0.173537i \(0.0555197\pi\)
−0.342126 + 0.939654i \(0.611147\pi\)
\(510\) 0 0
\(511\) 6.00000 5.19615i 0.265424 0.229864i
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) 14.5000 25.1147i 0.639568 1.10776i
\(515\) −0.500000 + 0.866025i −0.0220326 + 0.0381616i
\(516\) 0 0
\(517\) 0 0
\(518\) 6.00000 5.19615i 0.263625 0.228306i
\(519\) 0 0
\(520\) 7.50000 + 12.9904i 0.328897 + 0.569666i
\(521\) −1.50000 + 2.59808i −0.0657162 + 0.113824i −0.897011 0.442007i \(-0.854267\pi\)
0.831295 + 0.555831i \(0.187600\pi\)
\(522\) 0 0
\(523\) −0.500000 0.866025i −0.0218635 0.0378686i 0.854887 0.518815i \(-0.173627\pi\)
−0.876750 + 0.480946i \(0.840293\pi\)
\(524\) 1.00000 0.0436852
\(525\) 0 0
\(526\) 5.00000 0.218010
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) −4.50000 7.79423i −0.195468 0.338560i
\(531\) 0 0
\(532\) 2.50000 + 0.866025i 0.108389 + 0.0375470i
\(533\) 25.0000 1.08287
\(534\) 0 0
\(535\) 8.50000 14.7224i 0.367487 0.636506i
\(536\) 6.00000 10.3923i 0.259161 0.448879i
\(537\) 0 0
\(538\) 3.00000 0.129339
\(539\) −32.5000 + 12.9904i −1.39987 + 0.559535i
\(540\) 0 0
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) −0.500000 + 0.866025i −0.0214768 + 0.0371990i
\(543\) 0 0
\(544\) −7.50000 12.9904i −0.321560 0.556958i
\(545\) 9.00000 0.385518
\(546\) 0 0
\(547\) −29.0000 −1.23995 −0.619975 0.784621i \(-0.712857\pi\)
−0.619975 + 0.784621i \(0.712857\pi\)
\(548\) −4.50000 7.79423i −0.192230 0.332953i
\(549\) 0 0
\(550\) 10.0000 17.3205i 0.426401 0.738549i
\(551\) 0.500000 + 0.866025i 0.0213007 + 0.0368939i
\(552\) 0 0
\(553\) 4.00000 + 20.7846i 0.170097 + 0.883852i
\(554\) 19.0000 0.807233
\(555\) 0 0
\(556\) 4.50000 7.79423i 0.190843 0.330549i
\(557\) 18.5000 32.0429i 0.783870 1.35770i −0.145802 0.989314i \(-0.546576\pi\)
0.929672 0.368389i \(-0.120091\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 2.00000 1.73205i 0.0845154 0.0731925i
\(561\) 0 0
\(562\) 14.5000 + 25.1147i 0.611646 + 1.05940i
\(563\) 14.0000 24.2487i 0.590030 1.02196i −0.404198 0.914671i \(-0.632449\pi\)
0.994228 0.107290i \(-0.0342173\pi\)
\(564\) 0 0
\(565\) −0.500000 0.866025i −0.0210352 0.0364340i
\(566\) 28.0000 1.17693
\(567\) 0 0
\(568\) 36.0000 1.51053
\(569\) 17.0000 + 29.4449i 0.712677 + 1.23439i 0.963849 + 0.266450i \(0.0858508\pi\)
−0.251172 + 0.967943i \(0.580816\pi\)
\(570\) 0 0
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) −12.5000 21.6506i −0.522651 0.905259i
\(573\) 0 0
\(574\) −2.50000 12.9904i −0.104348 0.542208i
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) −15.5000 + 26.8468i −0.645273 + 1.11765i 0.338965 + 0.940799i \(0.389923\pi\)
−0.984238 + 0.176847i \(0.943410\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) 0 0
\(580\) −1.00000 −0.0415227
\(581\) 22.5000 + 7.79423i 0.933457 + 0.323359i
\(582\) 0 0
\(583\) 22.5000 + 38.9711i 0.931855 + 1.61402i
\(584\) 4.50000 7.79423i 0.186211 0.322527i
\(585\) 0 0
\(586\) 2.50000 + 4.33013i 0.103274 + 0.178876i
\(587\) −37.0000 −1.52715 −0.763577 0.645717i \(-0.776559\pi\)
−0.763577 + 0.645717i \(0.776559\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.50000 2.59808i 0.0616496 0.106780i
\(593\) −7.50000 12.9904i −0.307988 0.533451i 0.669934 0.742421i \(-0.266322\pi\)
−0.977922 + 0.208970i \(0.932989\pi\)
\(594\) 0 0
\(595\) 7.50000 + 2.59808i 0.307470 + 0.106511i
\(596\) −3.00000 −0.122885
\(597\) 0 0
\(598\) 7.50000 12.9904i 0.306698 0.531216i
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) 0 0
\(601\) −9.00000 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(602\) −0.500000 2.59808i −0.0203785 0.105890i
\(603\) 0 0
\(604\) 2.50000 + 4.33013i 0.101724 + 0.176190i
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) 0.500000 + 0.866025i 0.0202944 + 0.0351509i 0.875994 0.482322i \(-0.160206\pi\)
−0.855700 + 0.517472i \(0.826873\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 0 0
\(612\) 0 0
\(613\) −9.50000 + 16.4545i −0.383701 + 0.664590i −0.991588 0.129433i \(-0.958684\pi\)
0.607887 + 0.794024i \(0.292017\pi\)
\(614\) −14.0000 24.2487i −0.564994 0.978598i
\(615\) 0 0
\(616\) −30.0000 + 25.9808i −1.20873 + 1.04679i
\(617\) 27.0000 1.08698 0.543490 0.839416i \(-0.317103\pi\)
0.543490 + 0.839416i \(0.317103\pi\)
\(618\) 0 0
\(619\) −12.5000 + 21.6506i −0.502417 + 0.870212i 0.497579 + 0.867419i \(0.334223\pi\)
−0.999996 + 0.00279365i \(0.999111\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.50000 33.7750i −0.260417 1.35317i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −7.00000 + 12.1244i −0.279776 + 0.484587i
\(627\) 0 0
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 12.0000 + 20.7846i 0.477334 + 0.826767i
\(633\) 0 0
\(634\) 3.00000 5.19615i 0.119145 0.206366i
\(635\) −6.00000 10.3923i −0.238103 0.412406i
\(636\) 0 0
\(637\) −27.5000 21.6506i −1.08959 0.857829i
\(638\) −5.00000 −0.197952
\(639\) 0 0
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 0 0
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 7.50000 + 2.59808i 0.295541 + 0.102379i
\(645\) 0 0
\(646\) −1.50000 2.59808i −0.0590167 0.102220i
\(647\) −15.5000 + 26.8468i −0.609368 + 1.05546i 0.381977 + 0.924172i \(0.375243\pi\)
−0.991345 + 0.131284i \(0.958090\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 20.0000 0.784465
\(651\) 0 0
\(652\) 11.0000 0.430793
\(653\) −1.50000 2.59808i −0.0586995 0.101671i 0.835182 0.549973i \(-0.185362\pi\)
−0.893882 + 0.448303i \(0.852029\pi\)
\(654\) 0 0
\(655\) −0.500000 + 0.866025i −0.0195366 + 0.0338384i
\(656\) −2.50000 4.33013i −0.0976086 0.169063i
\(657\) 0 0
\(658\) 0 0
\(659\) 27.0000 1.05177 0.525885 0.850555i \(-0.323734\pi\)
0.525885 + 0.850555i \(0.323734\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) −4.00000 + 6.92820i −0.155464 + 0.269272i
\(663\) 0 0
\(664\) 27.0000 1.04780
\(665\) −2.00000 + 1.73205i −0.0775567 + 0.0671660i
\(666\) 0 0
\(667\) 1.50000 + 2.59808i 0.0580802 + 0.100598i
\(668\) −9.50000 + 16.4545i −0.367566 + 0.636643i
\(669\) 0 0
\(670\) 2.00000 + 3.46410i 0.0772667 + 0.133830i
\(671\) −70.0000 −2.70232
\(672\) 0 0
\(673\) −29.0000 −1.11787 −0.558934 0.829212i \(-0.688789\pi\)
−0.558934 + 0.829212i \(0.688789\pi\)
\(674\) 14.5000 + 25.1147i 0.558519 + 0.967384i
\(675\) 0 0
\(676\) 6.00000 10.3923i 0.230769 0.399704i
\(677\) −21.0000 36.3731i −0.807096 1.39793i −0.914867 0.403755i \(-0.867705\pi\)
0.107772 0.994176i \(-0.465628\pi\)
\(678\) 0 0
\(679\) 22.5000 + 7.79423i 0.863471 + 0.299115i
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) 0 0
\(683\) 4.50000 7.79423i 0.172188 0.298238i −0.766997 0.641651i \(-0.778250\pi\)
0.939184 + 0.343413i \(0.111583\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) −8.50000 + 16.4545i −0.324532 + 0.628235i
\(687\) 0 0
\(688\) −0.500000 0.866025i −0.0190623 0.0330169i
\(689\) −22.5000 + 38.9711i −0.857182 + 1.48468i
\(690\) 0 0
\(691\) 14.0000 + 24.2487i 0.532585 + 0.922464i 0.999276 + 0.0380440i \(0.0121127\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 4.50000 + 7.79423i 0.170695 + 0.295652i
\(696\) 0 0
\(697\) 7.50000 12.9904i 0.284083 0.492046i
\(698\) −9.50000 16.4545i −0.359580 0.622811i
\(699\) 0 0
\(700\) 2.00000 + 10.3923i 0.0755929 + 0.392792i
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −1.50000 + 2.59808i −0.0565736 + 0.0979883i
\(704\) −17.5000 + 30.3109i −0.659556 + 1.14238i
\(705\) 0 0
\(706\) 11.0000 0.413990
\(707\) −34.0000 + 29.4449i −1.27870 + 1.10739i
\(708\) 0 0
\(709\) 3.00000 + 5.19615i 0.112667 + 0.195146i 0.916845 0.399244i \(-0.130727\pi\)
−0.804178 + 0.594389i \(0.797394\pi\)
\(710\) −6.00000 + 10.3923i −0.225176 + 0.390016i
\(711\) 0 0
\(712\) −19.5000 33.7750i −0.730793 1.26577i
\(713\) 0 0
\(714\) 0 0
\(715\) 25.0000 0.934947
\(716\) 9.50000 + 16.4545i 0.355032 + 0.614933i
\(717\) 0 0
\(718\) 5.50000 9.52628i 0.205258 0.355518i
\(719\) 13.5000 + 23.3827i 0.503465 + 0.872027i 0.999992 + 0.00400572i \(0.00127506\pi\)
−0.496527 + 0.868021i \(0.665392\pi\)
\(720\) 0 0
\(721\) −0.500000 2.59808i −0.0186210 0.0967574i
\(722\) −18.0000 −0.669891
\(723\) 0 0
\(724\) −7.00000 + 12.1244i −0.260153 + 0.450598i
\(725\) −2.00000 + 3.46410i −0.0742781 + 0.128654i
\(726\) 0 0
\(727\) 47.0000 1.74313 0.871567 0.490277i \(-0.163104\pi\)
0.871567 + 0.490277i \(0.163104\pi\)
\(728\) −37.5000 12.9904i −1.38984 0.481456i
\(729\) 0 0
\(730\) 1.50000 + 2.59808i 0.0555175 + 0.0961591i
\(731\) 1.50000 2.59808i 0.0554795 0.0960933i
\(732\) 0 0
\(733\) −13.5000 23.3827i −0.498634 0.863659i 0.501365 0.865236i \(-0.332831\pi\)
−0.999999 + 0.00157675i \(0.999498\pi\)
\(734\) −3.00000 −0.110732
\(735\) 0 0
\(736\) 15.0000 0.552907
\(737\) −10.0000 17.3205i −0.368355 0.638009i
\(738\) 0 0
\(739\) 4.50000 7.79423i 0.165535 0.286715i −0.771310 0.636460i \(-0.780398\pi\)
0.936845 + 0.349744i \(0.113732\pi\)
\(740\) −1.50000 2.59808i −0.0551411 0.0955072i
\(741\) 0 0
\(742\) 22.5000 + 7.79423i 0.826001 + 0.286135i
\(743\) −15.0000 −0.550297 −0.275148 0.961402i \(-0.588727\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(744\) 0 0
\(745\) 1.50000 2.59808i 0.0549557 0.0951861i
\(746\) 12.5000 21.6506i 0.457658 0.792686i
\(747\) 0 0
\(748\) −15.0000 −0.548454
\(749\) 8.50000 + 44.1673i 0.310583 + 1.61384i
\(750\) 0 0
\(751\) −15.5000 26.8468i −0.565603 0.979653i −0.996993 0.0774878i \(-0.975310\pi\)
0.431390 0.902165i \(-0.358023\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −2.50000 4.33013i −0.0910446 0.157694i
\(755\) −5.00000 −0.181969
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 6.00000 + 10.3923i 0.217930 + 0.377466i
\(759\) 0 0
\(760\) −1.50000 + 2.59808i −0.0544107 + 0.0942421i
\(761\) −13.5000 23.3827i −0.489375 0.847622i 0.510551 0.859848i \(-0.329442\pi\)
−0.999925 + 0.0122260i \(0.996108\pi\)
\(762\) 0 0
\(763\) −18.0000 + 15.5885i −0.651644 + 0.564340i
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) −13.5000 + 23.3827i −0.487775 + 0.844851i
\(767\) 0 0
\(768\) 0 0
\(769\) 23.0000 0.829401 0.414701 0.909958i \(-0.363886\pi\)
0.414701 + 0.909958i \(0.363886\pi\)
\(770\) −2.50000 12.9904i −0.0900937 0.468141i
\(771\) 0 0
\(772\) −5.00000 8.66025i −0.179954 0.311689i
\(773\) −15.5000 + 26.8468i −0.557496 + 0.965612i 0.440208 + 0.897896i \(0.354905\pi\)
−0.997705 + 0.0677162i \(0.978429\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 27.0000 0.969244
\(777\) 0 0
\(778\) −9.00000 −0.322666
\(779\) 2.50000 + 4.33013i 0.0895718 + 0.155143i
\(780\) 0 0
\(781\) 30.0000 51.9615i 1.07348 1.85933i
\(782\) −4.50000 7.79423i −0.160920 0.278721i
\(783\) 0 0
\(784\) −1.00000 + 6.92820i −0.0357143 + 0.247436i
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 1.00000 1.73205i 0.0356235 0.0617018i
\(789\) 0 0
\(790\) −8.00000 −0.284627
\(791\) 2.50000 + 0.866025i 0.0888898 + 0.0307923i
\(792\) 0 0
\(793\) −35.0000 60.6218i −1.24289 2.15274i
\(794\) −7.50000 + 12.9904i −0.266165 + 0.461011i
\(795\) 0 0
\(796\) 1.50000 + 2.59808i 0.0531661 + 0.0920864i
\(797\) 23.0000 0.814702 0.407351 0.913272i \(-0.366453\pi\)
0.407351 + 0.913272i \(0.366453\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 10.0000 + 17.3205i 0.353553 + 0.612372i
\(801\) 0 0
\(802\) −1.50000 + 2.59808i −0.0529668 + 0.0917413i
\(803\) −7.50000 12.9904i −0.264669 0.458421i
\(804\) 0 0
\(805\) −6.00000 + 5.19615i −0.211472 + 0.183140i
\(806\) 0 0
\(807\) 0 0
\(808\) −25.5000 + 44.1673i −0.897087 + 1.55380i
\(809\) 4.50000 7.79423i 0.158212 0.274030i −0.776012 0.630718i \(-0.782761\pi\)
0.934224 + 0.356687i \(0.116094\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 2.00000 1.73205i 0.0701862 0.0607831i
\(813\) 0 0
\(814\) −7.50000 12.9904i −0.262875 0.455313i
\(815\) −5.50000 + 9.52628i −0.192657 + 0.333691i
\(816\) 0 0
\(817\) 0.500000 + 0.866025i 0.0174928 + 0.0302984i
\(818\) 14.0000 0.489499
\(819\) 0 0
\(820\) −5.00000 −0.174608
\(821\) −11.0000 19.0526i −0.383903 0.664939i 0.607714 0.794156i \(-0.292087\pi\)
−0.991616 + 0.129217i \(0.958754\pi\)
\(822\) 0 0
\(823\) 12.0000 20.7846i 0.418294 0.724506i −0.577474 0.816409i \(-0.695962\pi\)
0.995768 + 0.0919029i \(0.0292950\pi\)
\(824\) −1.50000 2.59808i −0.0522550 0.0905083i
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 12.5000 21.6506i 0.434143 0.751958i −0.563082 0.826401i \(-0.690385\pi\)
0.997225 + 0.0744432i \(0.0237179\pi\)
\(830\) −4.50000 + 7.79423i −0.156197 + 0.270542i
\(831\) 0 0
\(832\) −35.0000 −1.21341
\(833\) −19.5000 + 7.79423i −0.675635 + 0.270054i
\(834\) 0 0
\(835\) −9.50000 16.4545i −0.328761 0.569431i
\(836\) 2.50000 4.33013i 0.0864643 0.149761i
\(837\) 0 0
\(838\) −4.50000 7.79423i −0.155450 0.269247i
\(839\) −37.0000 −1.27738 −0.638691 0.769463i \(-0.720524\pi\)
−0.638691 + 0.769463i \(0.720524\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0.500000 + 0.866025i 0.0172311 + 0.0298452i
\(843\) 0 0
\(844\) 6.50000 11.2583i 0.223739 0.387528i
\(845\) 6.00000 + 10.3923i 0.206406 + 0.357506i
\(846\) 0 0
\(847\) 7.00000 + 36.3731i 0.240523 + 1.24979i
\(848\) 9.00000 0.309061
\(849\) 0 0
\(850\) 6.00000 10.3923i 0.205798 0.356453i
\(851\) −4.50000 + 7.79423i −0.154258 + 0.267183i
\(852\) 0 0
\(853\) −37.0000 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(854\) −28.0000 + 24.2487i −0.958140 + 0.829774i
\(855\) 0 0
\(856\) 25.5000 + 44.1673i 0.871572 + 1.50961i
\(857\) −5.50000 + 9.52628i −0.187876 + 0.325412i −0.944542 0.328391i \(-0.893494\pi\)
0.756666 + 0.653802i \(0.226827\pi\)
\(858\) 0 0
\(859\) 0.500000 + 0.866025i 0.0170598 + 0.0295484i 0.874429 0.485153i \(-0.161236\pi\)
−0.857369 + 0.514701i \(0.827903\pi\)
\(860\) −1.00000 −0.0340997
\(861\) 0 0
\(862\) −9.00000 −0.306541
\(863\) 19.5000 + 33.7750i 0.663788 + 1.14971i 0.979612 + 0.200897i \(0.0643855\pi\)
−0.315825 + 0.948818i \(0.602281\pi\)
\(864\) 0 0
\(865\) −7.00000 + 12.1244i −0.238007 + 0.412240i
\(866\) 7.00000 + 12.1244i 0.237870 + 0.412002i
\(867\) 0 0
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) 10.0000 17.3205i 0.338837 0.586883i
\(872\) −13.5000 + 23.3827i −0.457168 + 0.791838i
\(873\) 0 0
\(874\) 3.00000 0.101477
\(875\) −22.5000 7.79423i −0.760639 0.263493i
\(876\) 0 0
\(877\) 26.5000 + 45.8993i 0.894841 + 1.54991i 0.834001 + 0.551763i \(0.186045\pi\)
0.0608407 + 0.998147i \(0.480622\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −2.50000 4.33013i −0.0842750 0.145969i
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) −7.50000 12.9904i −0.252252 0.436914i
\(885\) 0 0
\(886\) −18.0000 + 31.1769i −0.604722 + 1.04741i
\(887\) 14.5000 + 25.1147i 0.486862 + 0.843270i 0.999886 0.0151042i \(-0.00480800\pi\)
−0.513024 + 0.858375i \(0.671475\pi\)
\(888\) 0 0
\(889\) 30.0000 + 10.3923i 1.00617 + 0.348547i
\(890\) 13.0000 0.435761
\(891\) 0 0
\(892\) 9.50000 16.4545i 0.318084 0.550937i
\(893\) 0 0
\(894\) 0 0
\(895\) −19.0000 −0.635100
\(896\) −1.50000 7.79423i −0.0501115 0.260387i
\(897\) 0 0
\(898\) −15.0000 25.9808i −0.500556 0.866989i
\(899\) 0 0
\(900\) 0 0
\(901\) 13.5000 + 23.3827i 0.449750 + 0.778990i
\(902\) −25.0000 −0.832409
\(903\) 0 0
\(904\) 3.00000 0.0997785
\(905\) −7.00000 12.1244i −0.232688 0.403027i
\(906\) 0 0
\(907\) −2.50000 + 4.33013i −0.0830111 + 0.143780i −0.904542 0.426385i \(-0.859787\pi\)
0.821531 + 0.570164i \(0.193120\pi\)
\(908\) −1.50000 2.59808i −0.0497792 0.0862202i
\(909\) 0 0
\(910\) 10.0000 8.66025i 0.331497 0.287085i
\(911\) 27.0000 0.894550 0.447275 0.894397i \(-0.352395\pi\)
0.447275 + 0.894397i \(0.352395\pi\)
\(912\) 0 0
\(913\) 22.5000 38.9711i 0.744641 1.28976i
\(914\) −11.0000 + 19.0526i −0.363848 + 0.630203i
\(915\) 0 0
\(916\) 1.00000 0.0330409
\(917\) −0.500000 2.59808i −0.0165115 0.0857960i
\(918\) 0 0
\(919\) −8.50000 14.7224i −0.280389 0.485648i 0.691091 0.722767i \(-0.257130\pi\)
−0.971481 + 0.237119i \(0.923797\pi\)
\(920\) −4.50000 + 7.79423i −0.148361 + 0.256968i
\(921\) 0 0
\(922\) −9.50000 16.4545i −0.312866 0.541900i
\(923\) 60.0000 1.97492
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) −6.50000 11.2583i −0.213603 0.369972i
\(927\) 0 0
\(928\) 2.50000 4.33013i 0.0820665 0.142143i
\(929\) 7.00000 + 12.1244i 0.229663 + 0.397787i 0.957708 0.287742i \(-0.0929044\pi\)
−0.728046 + 0.685529i \(0.759571\pi\)
\(930\) 0 0
\(931\) 1.00000 6.92820i 0.0327737 0.227063i
\(932\) −3.00000 −0.0982683
\(933\) 0 0
\(934\) 13.5000 23.3827i 0.441733 0.765105i
\(935\) 7.50000 12.9904i 0.245276 0.424831i
\(936\) 0 0
\(937\) 42.0000 1.37208 0.686040 0.727564i \(-0.259347\pi\)
0.686040 + 0.727564i \(0.259347\pi\)
\(938\) −10.0000 3.46410i −0.326512 0.113107i
\(939\) 0 0
\(940\) 0 0
\(941\) 7.00000 12.1244i 0.228193 0.395243i −0.729079 0.684429i \(-0.760051\pi\)
0.957273 + 0.289187i \(0.0933848\pi\)
\(942\) 0 0
\(943\) 7.50000 + 12.9904i 0.244234 + 0.423025i
\(944\) 0 0
\(945\) 0 0
\(946\) −5.00000 −0.162564
\(947\) 10.0000 + 17.3205i 0.324956 + 0.562841i 0.981504 0.191444i \(-0.0613171\pi\)
−0.656547 + 0.754285i \(0.727984\pi\)
\(948\) 0 0
\(949\) 7.50000 12.9904i 0.243460 0.421686i
\(950\) 2.00000 + 3.46410i 0.0648886 + 0.112390i
\(951\) 0 0
\(952\) −18.0000 + 15.5885i −0.583383 + 0.505225i
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) 4.00000 6.92820i 0.129437 0.224191i
\(956\) −7.50000 + 12.9904i −0.242567 + 0.420139i
\(957\) 0 0
\(958\) 25.0000 0.807713
\(959\) −18.0000 + 15.5885i −0.581250 + 0.503378i
\(960\) 0 0
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 7.50000 12.9904i 0.241810 0.418827i
\(963\) 0 0
\(964\) 5.50000 + 9.52628i 0.177143 + 0.306821i
\(965\) 10.0000 0.321911
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 21.0000 + 36.3731i 0.674966 + 1.16907i
\(969\) 0 0
\(970\) −4.50000 + 7.79423i −0.144486 + 0.250258i
\(971\) −28.5000 49.3634i −0.914609 1.58415i −0.807473 0.589904i \(-0.799166\pi\)
−0.107135 0.994244i \(-0.534168\pi\)
\(972\) 0 0
\(973\) −22.5000 7.79423i −0.721317 0.249871i
\(974\) 19.0000 0.608799
\(975\) 0 0
\(976\) −7.00000 + 12.1244i −0.224065 + 0.388091i
\(977\) −9.00000 + 15.5885i −0.287936 + 0.498719i −0.973317 0.229465i \(-0.926302\pi\)
0.685381 + 0.728184i \(0.259636\pi\)
\(978\) 0 0
\(979\) −65.0000 −2.07741
\(980\) 5.50000 + 4.33013i 0.175691 + 0.138321i
\(981\) 0 0
\(982\) −6.50000 11.2583i −0.207423 0.359268i
\(983\) 1.50000 2.59808i 0.0478426 0.0828658i −0.841112 0.540860i \(-0.818099\pi\)
0.888955 + 0.457995i \(0.151432\pi\)
\(984\) 0 0
\(985\) 1.00000 + 1.73205i 0.0318626 + 0.0551877i
\(986\) −3.00000 −0.0955395
\(987\) 0 0
\(988\) 5.00000 0.159071
\(989\) 1.50000 + 2.59808i 0.0476972 + 0.0826140i
\(990\) 0 0
\(991\) 18.5000 32.0429i 0.587672 1.01788i −0.406865 0.913488i \(-0.633378\pi\)
0.994537 0.104389i \(-0.0332887\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −6.00000 31.1769i −0.190308 0.988872i
\(995\) −3.00000 −0.0951064
\(996\) 0 0
\(997\) 8.50000 14.7224i 0.269198 0.466264i −0.699457 0.714675i \(-0.746575\pi\)
0.968655 + 0.248410i \(0.0799082\pi\)
\(998\) −15.5000 + 26.8468i −0.490644 + 0.849820i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.a.487.1 2
3.2 odd 2 567.2.e.b.487.1 2
7.2 even 3 inner 567.2.e.a.163.1 2
7.3 odd 6 3969.2.a.f.1.1 1
7.4 even 3 3969.2.a.d.1.1 1
9.2 odd 6 189.2.g.a.172.1 2
9.4 even 3 63.2.h.a.25.1 yes 2
9.5 odd 6 189.2.h.a.46.1 2
9.7 even 3 63.2.g.a.4.1 2
21.2 odd 6 567.2.e.b.163.1 2
21.11 odd 6 3969.2.a.c.1.1 1
21.17 even 6 3969.2.a.a.1.1 1
36.7 odd 6 1008.2.t.d.193.1 2
36.11 even 6 3024.2.t.d.1873.1 2
36.23 even 6 3024.2.q.b.2881.1 2
36.31 odd 6 1008.2.q.c.529.1 2
63.2 odd 6 189.2.h.a.37.1 2
63.4 even 3 441.2.f.b.295.1 2
63.5 even 6 1323.2.g.a.667.1 2
63.11 odd 6 1323.2.f.a.442.1 2
63.13 odd 6 441.2.h.a.214.1 2
63.16 even 3 63.2.h.a.58.1 yes 2
63.20 even 6 1323.2.g.a.361.1 2
63.23 odd 6 189.2.g.a.100.1 2
63.25 even 3 441.2.f.b.148.1 2
63.31 odd 6 441.2.f.a.295.1 2
63.32 odd 6 1323.2.f.a.883.1 2
63.34 odd 6 441.2.g.a.67.1 2
63.38 even 6 1323.2.f.b.442.1 2
63.40 odd 6 441.2.g.a.79.1 2
63.41 even 6 1323.2.h.a.802.1 2
63.47 even 6 1323.2.h.a.226.1 2
63.52 odd 6 441.2.f.a.148.1 2
63.58 even 3 63.2.g.a.16.1 yes 2
63.59 even 6 1323.2.f.b.883.1 2
63.61 odd 6 441.2.h.a.373.1 2
252.23 even 6 3024.2.t.d.289.1 2
252.79 odd 6 1008.2.q.c.625.1 2
252.191 even 6 3024.2.q.b.2305.1 2
252.247 odd 6 1008.2.t.d.961.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.a.4.1 2 9.7 even 3
63.2.g.a.16.1 yes 2 63.58 even 3
63.2.h.a.25.1 yes 2 9.4 even 3
63.2.h.a.58.1 yes 2 63.16 even 3
189.2.g.a.100.1 2 63.23 odd 6
189.2.g.a.172.1 2 9.2 odd 6
189.2.h.a.37.1 2 63.2 odd 6
189.2.h.a.46.1 2 9.5 odd 6
441.2.f.a.148.1 2 63.52 odd 6
441.2.f.a.295.1 2 63.31 odd 6
441.2.f.b.148.1 2 63.25 even 3
441.2.f.b.295.1 2 63.4 even 3
441.2.g.a.67.1 2 63.34 odd 6
441.2.g.a.79.1 2 63.40 odd 6
441.2.h.a.214.1 2 63.13 odd 6
441.2.h.a.373.1 2 63.61 odd 6
567.2.e.a.163.1 2 7.2 even 3 inner
567.2.e.a.487.1 2 1.1 even 1 trivial
567.2.e.b.163.1 2 21.2 odd 6
567.2.e.b.487.1 2 3.2 odd 2
1008.2.q.c.529.1 2 36.31 odd 6
1008.2.q.c.625.1 2 252.79 odd 6
1008.2.t.d.193.1 2 36.7 odd 6
1008.2.t.d.961.1 2 252.247 odd 6
1323.2.f.a.442.1 2 63.11 odd 6
1323.2.f.a.883.1 2 63.32 odd 6
1323.2.f.b.442.1 2 63.38 even 6
1323.2.f.b.883.1 2 63.59 even 6
1323.2.g.a.361.1 2 63.20 even 6
1323.2.g.a.667.1 2 63.5 even 6
1323.2.h.a.226.1 2 63.47 even 6
1323.2.h.a.802.1 2 63.41 even 6
3024.2.q.b.2305.1 2 252.191 even 6
3024.2.q.b.2881.1 2 36.23 even 6
3024.2.t.d.289.1 2 252.23 even 6
3024.2.t.d.1873.1 2 36.11 even 6
3969.2.a.a.1.1 1 21.17 even 6
3969.2.a.c.1.1 1 21.11 odd 6
3969.2.a.d.1.1 1 7.4 even 3
3969.2.a.f.1.1 1 7.3 odd 6