Properties

Label 567.2.f.l.379.2
Level $567$
Weight $2$
Character 567.379
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1156923.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 12x^{4} - 19x^{3} + 27x^{2} - 18x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 379.2
Root \(0.500000 - 2.43956i\) of defining polynomial
Character \(\chi\) \(=\) 567.379
Dual form 567.2.f.l.190.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.261988 + 0.453777i) q^{2} +(0.862724 + 1.49428i) q^{4} +(1.10074 + 1.90653i) q^{5} +(-0.500000 + 0.866025i) q^{7} -1.95205 q^{8} +O(q^{10})\) \(q+(-0.261988 + 0.453777i) q^{2} +(0.862724 + 1.49428i) q^{4} +(1.10074 + 1.90653i) q^{5} +(-0.500000 + 0.866025i) q^{7} -1.95205 q^{8} -1.15352 q^{10} +(-2.60074 + 4.50461i) q^{11} +(-1.57676 - 2.73103i) q^{13} +(-0.261988 - 0.453777i) q^{14} +(-1.21404 + 2.10277i) q^{16} -3.24943 q^{17} +7.45090 q^{19} +(-1.89926 + 3.28962i) q^{20} +(-1.36272 - 2.36031i) q^{22} +(-2.20147 - 3.81306i) q^{23} +(0.0767598 - 0.132952i) q^{25} +1.65237 q^{26} -1.72545 q^{28} +(0.576760 - 0.998977i) q^{29} +(-1.00000 - 1.73205i) q^{31} +(-2.58817 - 4.48285i) q^{32} +(0.851311 - 1.47451i) q^{34} -2.20147 q^{35} +5.00000 q^{37} +(-1.95205 + 3.38104i) q^{38} +(-2.14869 - 3.72164i) q^{40} +(5.72545 + 9.91677i) q^{41} +(-4.64869 + 8.05177i) q^{43} -8.97487 q^{44} +2.30704 q^{46} +(0.523976 - 0.907554i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(0.0402203 + 0.0696636i) q^{50} +(2.72062 - 4.71225i) q^{52} -0.249425 q^{53} -11.4509 q^{55} +(0.976024 - 1.69052i) q^{56} +(0.302209 + 0.523440i) q^{58} +(4.04795 + 7.01126i) q^{59} +(-4.30221 + 7.45164i) q^{61} +1.04795 q^{62} -2.14386 q^{64} +(3.47119 - 6.01228i) q^{65} +(3.80221 + 6.58562i) q^{67} +(-2.80336 - 4.85556i) q^{68} +(0.576760 - 0.998977i) q^{70} +9.60442 q^{71} +0.846480 q^{73} +(-1.30994 + 2.26888i) q^{74} +(6.42807 + 11.1337i) q^{76} +(-2.60074 - 4.50461i) q^{77} +(3.80221 - 6.58562i) q^{79} -5.34533 q^{80} -6.00000 q^{82} +(-5.72545 + 9.91677i) q^{83} +(-3.57676 - 6.19513i) q^{85} +(-2.43580 - 4.21894i) q^{86} +(5.07676 - 8.79321i) q^{88} +9.24943 q^{89} +3.15352 q^{91} +(3.79853 - 6.57924i) q^{92} +(0.274551 + 0.475537i) q^{94} +(8.20147 + 14.2054i) q^{95} +(1.72545 - 2.98856i) q^{97} +0.523976 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 3 q^{5} - 3 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 3 q^{5} - 3 q^{7} - 18 q^{8} + 6 q^{10} - 6 q^{11} - 3 q^{13} - 12 q^{16} + 6 q^{17} - 21 q^{20} + 3 q^{22} + 6 q^{23} - 6 q^{25} - 54 q^{26} + 12 q^{28} - 3 q^{29} - 6 q^{31} + 18 q^{32} + 21 q^{34} + 6 q^{35} + 30 q^{37} - 18 q^{38} + 3 q^{40} + 12 q^{41} - 12 q^{43} - 6 q^{44} - 12 q^{46} - 3 q^{49} - 27 q^{50} - 9 q^{52} + 24 q^{53} - 24 q^{55} + 9 q^{56} - 27 q^{58} + 18 q^{59} + 3 q^{61} + 6 q^{64} + 21 q^{65} - 6 q^{67} - 39 q^{68} - 3 q^{70} + 18 q^{73} + 48 q^{76} - 6 q^{77} - 6 q^{79} + 6 q^{80} - 36 q^{82} - 12 q^{83} - 15 q^{85} - 45 q^{86} + 24 q^{88} + 30 q^{89} + 6 q^{91} + 42 q^{92} + 24 q^{94} + 30 q^{95} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.261988 + 0.453777i −0.185254 + 0.320869i −0.943662 0.330911i \(-0.892644\pi\)
0.758408 + 0.651780i \(0.225977\pi\)
\(3\) 0 0
\(4\) 0.862724 + 1.49428i 0.431362 + 0.747141i
\(5\) 1.10074 + 1.90653i 0.492264 + 0.852627i 0.999960 0.00890964i \(-0.00283606\pi\)
−0.507696 + 0.861536i \(0.669503\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) −1.95205 −0.690153
\(9\) 0 0
\(10\) −1.15352 −0.364775
\(11\) −2.60074 + 4.50461i −0.784151 + 1.35819i 0.145353 + 0.989380i \(0.453568\pi\)
−0.929505 + 0.368810i \(0.879765\pi\)
\(12\) 0 0
\(13\) −1.57676 2.73103i −0.437314 0.757451i 0.560167 0.828380i \(-0.310737\pi\)
−0.997481 + 0.0709289i \(0.977404\pi\)
\(14\) −0.261988 0.453777i −0.0700193 0.121277i
\(15\) 0 0
\(16\) −1.21404 + 2.10277i −0.303509 + 0.525693i
\(17\) −3.24943 −0.788101 −0.394051 0.919089i \(-0.628927\pi\)
−0.394051 + 0.919089i \(0.628927\pi\)
\(18\) 0 0
\(19\) 7.45090 1.70935 0.854677 0.519161i \(-0.173755\pi\)
0.854677 + 0.519161i \(0.173755\pi\)
\(20\) −1.89926 + 3.28962i −0.424688 + 0.735582i
\(21\) 0 0
\(22\) −1.36272 2.36031i −0.290534 0.503219i
\(23\) −2.20147 3.81306i −0.459039 0.795078i 0.539872 0.841747i \(-0.318473\pi\)
−0.998910 + 0.0466689i \(0.985139\pi\)
\(24\) 0 0
\(25\) 0.0767598 0.132952i 0.0153520 0.0265904i
\(26\) 1.65237 0.324056
\(27\) 0 0
\(28\) −1.72545 −0.326079
\(29\) 0.576760 0.998977i 0.107102 0.185505i −0.807493 0.589877i \(-0.799176\pi\)
0.914595 + 0.404371i \(0.132510\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) −2.58817 4.48285i −0.457529 0.792463i
\(33\) 0 0
\(34\) 0.851311 1.47451i 0.145999 0.252877i
\(35\) −2.20147 −0.372117
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) −1.95205 + 3.38104i −0.316664 + 0.548478i
\(39\) 0 0
\(40\) −2.14869 3.72164i −0.339738 0.588443i
\(41\) 5.72545 + 9.91677i 0.894165 + 1.54874i 0.834835 + 0.550501i \(0.185563\pi\)
0.0593301 + 0.998238i \(0.481104\pi\)
\(42\) 0 0
\(43\) −4.64869 + 8.05177i −0.708918 + 1.22788i 0.256340 + 0.966587i \(0.417483\pi\)
−0.965259 + 0.261296i \(0.915850\pi\)
\(44\) −8.97487 −1.35301
\(45\) 0 0
\(46\) 2.30704 0.340154
\(47\) 0.523976 0.907554i 0.0764298 0.132380i −0.825277 0.564728i \(-0.808981\pi\)
0.901707 + 0.432347i \(0.142315\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0.0402203 + 0.0696636i 0.00568801 + 0.00985192i
\(51\) 0 0
\(52\) 2.72062 4.71225i 0.377282 0.653471i
\(53\) −0.249425 −0.0342612 −0.0171306 0.999853i \(-0.505453\pi\)
−0.0171306 + 0.999853i \(0.505453\pi\)
\(54\) 0 0
\(55\) −11.4509 −1.54404
\(56\) 0.976024 1.69052i 0.130427 0.225906i
\(57\) 0 0
\(58\) 0.302209 + 0.523440i 0.0396819 + 0.0687311i
\(59\) 4.04795 + 7.01126i 0.526999 + 0.912788i 0.999505 + 0.0314611i \(0.0100160\pi\)
−0.472506 + 0.881327i \(0.656651\pi\)
\(60\) 0 0
\(61\) −4.30221 + 7.45164i −0.550841 + 0.954085i 0.447373 + 0.894348i \(0.352360\pi\)
−0.998214 + 0.0597376i \(0.980974\pi\)
\(62\) 1.04795 0.133090
\(63\) 0 0
\(64\) −2.14386 −0.267982
\(65\) 3.47119 6.01228i 0.430549 0.745732i
\(66\) 0 0
\(67\) 3.80221 + 6.58562i 0.464514 + 0.804561i 0.999179 0.0405023i \(-0.0128958\pi\)
−0.534666 + 0.845064i \(0.679562\pi\)
\(68\) −2.80336 4.85556i −0.339957 0.588823i
\(69\) 0 0
\(70\) 0.576760 0.998977i 0.0689360 0.119401i
\(71\) 9.60442 1.13983 0.569917 0.821702i \(-0.306975\pi\)
0.569917 + 0.821702i \(0.306975\pi\)
\(72\) 0 0
\(73\) 0.846480 0.0990730 0.0495365 0.998772i \(-0.484226\pi\)
0.0495365 + 0.998772i \(0.484226\pi\)
\(74\) −1.30994 + 2.26888i −0.152278 + 0.263752i
\(75\) 0 0
\(76\) 6.42807 + 11.1337i 0.737350 + 1.27713i
\(77\) −2.60074 4.50461i −0.296381 0.513348i
\(78\) 0 0
\(79\) 3.80221 6.58562i 0.427782 0.740940i −0.568894 0.822411i \(-0.692628\pi\)
0.996676 + 0.0814710i \(0.0259618\pi\)
\(80\) −5.34533 −0.597626
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) −5.72545 + 9.91677i −0.628450 + 1.08851i 0.359413 + 0.933178i \(0.382977\pi\)
−0.987863 + 0.155328i \(0.950356\pi\)
\(84\) 0 0
\(85\) −3.57676 6.19513i −0.387954 0.671956i
\(86\) −2.43580 4.21894i −0.262659 0.454939i
\(87\) 0 0
\(88\) 5.07676 8.79321i 0.541184 0.937359i
\(89\) 9.24943 0.980437 0.490219 0.871600i \(-0.336917\pi\)
0.490219 + 0.871600i \(0.336917\pi\)
\(90\) 0 0
\(91\) 3.15352 0.330579
\(92\) 3.79853 6.57924i 0.396024 0.685933i
\(93\) 0 0
\(94\) 0.274551 + 0.475537i 0.0283178 + 0.0490479i
\(95\) 8.20147 + 14.2054i 0.841453 + 1.45744i
\(96\) 0 0
\(97\) 1.72545 2.98856i 0.175193 0.303443i −0.765035 0.643988i \(-0.777278\pi\)
0.940228 + 0.340546i \(0.110612\pi\)
\(98\) 0.523976 0.0529296
\(99\) 0 0
\(100\) 0.264890 0.0264890
\(101\) 8.20147 14.2054i 0.816077 1.41349i −0.0924750 0.995715i \(-0.529478\pi\)
0.908552 0.417772i \(-0.137189\pi\)
\(102\) 0 0
\(103\) 0.571929 + 0.990610i 0.0563539 + 0.0976077i 0.892826 0.450402i \(-0.148719\pi\)
−0.836472 + 0.548009i \(0.815386\pi\)
\(104\) 3.07791 + 5.33110i 0.301814 + 0.522757i
\(105\) 0 0
\(106\) 0.0653464 0.113183i 0.00634701 0.0109933i
\(107\) 9.10557 0.880268 0.440134 0.897932i \(-0.354931\pi\)
0.440134 + 0.897932i \(0.354931\pi\)
\(108\) 0 0
\(109\) −13.7483 −1.31685 −0.658423 0.752648i \(-0.728776\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(110\) 3.00000 5.19615i 0.286039 0.495434i
\(111\) 0 0
\(112\) −1.21404 2.10277i −0.114716 0.198693i
\(113\) −9.95090 17.2355i −0.936102 1.62138i −0.772658 0.634823i \(-0.781073\pi\)
−0.163444 0.986553i \(-0.552260\pi\)
\(114\) 0 0
\(115\) 4.84648 8.39435i 0.451937 0.782777i
\(116\) 1.99034 0.184798
\(117\) 0 0
\(118\) −4.24206 −0.390514
\(119\) 1.62471 2.81408i 0.148937 0.257967i
\(120\) 0 0
\(121\) −8.02766 13.9043i −0.729787 1.26403i
\(122\) −2.25426 3.90449i −0.204091 0.353496i
\(123\) 0 0
\(124\) 1.72545 2.98856i 0.154950 0.268381i
\(125\) 11.3453 1.01476
\(126\) 0 0
\(127\) 9.29738 0.825009 0.412504 0.910956i \(-0.364654\pi\)
0.412504 + 0.910956i \(0.364654\pi\)
\(128\) 5.73801 9.93853i 0.507173 0.878450i
\(129\) 0 0
\(130\) 1.81882 + 3.15029i 0.159521 + 0.276299i
\(131\) −3.77340 6.53572i −0.329684 0.571029i 0.652765 0.757560i \(-0.273609\pi\)
−0.982449 + 0.186531i \(0.940275\pi\)
\(132\) 0 0
\(133\) −3.72545 + 6.45267i −0.323037 + 0.559517i
\(134\) −3.98454 −0.344211
\(135\) 0 0
\(136\) 6.34303 0.543910
\(137\) 0.701472 1.21499i 0.0599308 0.103803i −0.834503 0.551003i \(-0.814245\pi\)
0.894434 + 0.447200i \(0.147579\pi\)
\(138\) 0 0
\(139\) 7.72545 + 13.3809i 0.655264 + 1.13495i 0.981828 + 0.189775i \(0.0607760\pi\)
−0.326564 + 0.945175i \(0.605891\pi\)
\(140\) −1.89926 3.28962i −0.160517 0.278024i
\(141\) 0 0
\(142\) −2.51624 + 4.35826i −0.211158 + 0.365737i
\(143\) 16.4029 1.37168
\(144\) 0 0
\(145\) 2.53944 0.210889
\(146\) −0.221768 + 0.384113i −0.0183536 + 0.0317894i
\(147\) 0 0
\(148\) 4.31362 + 7.47141i 0.354578 + 0.614146i
\(149\) −6.70147 11.6073i −0.549006 0.950906i −0.998343 0.0575439i \(-0.981673\pi\)
0.449337 0.893362i \(-0.351660\pi\)
\(150\) 0 0
\(151\) −5.80221 + 10.0497i −0.472177 + 0.817835i −0.999493 0.0318346i \(-0.989865\pi\)
0.527316 + 0.849669i \(0.323198\pi\)
\(152\) −14.5445 −1.17972
\(153\) 0 0
\(154\) 2.72545 0.219623
\(155\) 2.20147 3.81306i 0.176827 0.306273i
\(156\) 0 0
\(157\) 12.1812 + 21.0984i 0.972164 + 1.68384i 0.688994 + 0.724767i \(0.258053\pi\)
0.283170 + 0.959070i \(0.408614\pi\)
\(158\) 1.99227 + 3.45071i 0.158496 + 0.274524i
\(159\) 0 0
\(160\) 5.69779 9.86886i 0.450450 0.780202i
\(161\) 4.40294 0.347001
\(162\) 0 0
\(163\) 5.60442 0.438972 0.219486 0.975616i \(-0.429562\pi\)
0.219486 + 0.975616i \(0.429562\pi\)
\(164\) −9.87897 + 17.1109i −0.771418 + 1.33613i
\(165\) 0 0
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) 11.7254 + 20.3091i 0.907342 + 1.57156i 0.817742 + 0.575585i \(0.195226\pi\)
0.0896009 + 0.995978i \(0.471441\pi\)
\(168\) 0 0
\(169\) 1.52766 2.64598i 0.117512 0.203537i
\(170\) 3.74828 0.287480
\(171\) 0 0
\(172\) −16.0421 −1.22320
\(173\) 11.2543 19.4929i 0.855645 1.48202i −0.0203999 0.999792i \(-0.506494\pi\)
0.876045 0.482229i \(-0.160173\pi\)
\(174\) 0 0
\(175\) 0.0767598 + 0.132952i 0.00580249 + 0.0100502i
\(176\) −6.31477 10.9375i −0.475994 0.824445i
\(177\) 0 0
\(178\) −2.42324 + 4.19718i −0.181630 + 0.314592i
\(179\) 6.49885 0.485747 0.242873 0.970058i \(-0.421910\pi\)
0.242873 + 0.970058i \(0.421910\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −0.826185 + 1.43099i −0.0612409 + 0.106072i
\(183\) 0 0
\(184\) 4.29738 + 7.44328i 0.316807 + 0.548726i
\(185\) 5.50368 + 9.53265i 0.404639 + 0.700855i
\(186\) 0 0
\(187\) 8.45090 14.6374i 0.617991 1.07039i
\(188\) 1.80819 0.131876
\(189\) 0 0
\(190\) −8.59476 −0.623529
\(191\) 6.75426 11.6987i 0.488721 0.846489i −0.511195 0.859465i \(-0.670797\pi\)
0.999916 + 0.0129755i \(0.00413035\pi\)
\(192\) 0 0
\(193\) −8.87414 15.3705i −0.638774 1.10639i −0.985702 0.168498i \(-0.946108\pi\)
0.346928 0.937892i \(-0.387225\pi\)
\(194\) 0.904094 + 1.56594i 0.0649102 + 0.112428i
\(195\) 0 0
\(196\) 0.862724 1.49428i 0.0616232 0.106734i
\(197\) −16.2088 −1.15483 −0.577416 0.816450i \(-0.695939\pi\)
−0.577416 + 0.816450i \(0.695939\pi\)
\(198\) 0 0
\(199\) −7.14386 −0.506415 −0.253207 0.967412i \(-0.581485\pi\)
−0.253207 + 0.967412i \(0.581485\pi\)
\(200\) −0.149839 + 0.259528i −0.0105952 + 0.0183514i
\(201\) 0 0
\(202\) 4.29738 + 7.44328i 0.302362 + 0.523707i
\(203\) 0.576760 + 0.998977i 0.0404806 + 0.0701145i
\(204\) 0 0
\(205\) −12.6044 + 21.8315i −0.880331 + 1.52478i
\(206\) −0.599355 −0.0417590
\(207\) 0 0
\(208\) 7.65697 0.530915
\(209\) −19.3778 + 33.5634i −1.34039 + 2.32163i
\(210\) 0 0
\(211\) −1.64869 2.85561i −0.113500 0.196589i 0.803679 0.595063i \(-0.202873\pi\)
−0.917179 + 0.398475i \(0.869540\pi\)
\(212\) −0.215185 0.372712i −0.0147790 0.0255979i
\(213\) 0 0
\(214\) −2.38555 + 4.13190i −0.163073 + 0.282451i
\(215\) −20.4679 −1.39590
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 3.60189 6.23865i 0.243950 0.422535i
\(219\) 0 0
\(220\) −9.87897 17.1109i −0.666040 1.15361i
\(221\) 5.12356 + 8.87427i 0.344648 + 0.596948i
\(222\) 0 0
\(223\) 11.6044 20.0994i 0.777089 1.34596i −0.156523 0.987674i \(-0.550029\pi\)
0.933613 0.358284i \(-0.116638\pi\)
\(224\) 5.17635 0.345859
\(225\) 0 0
\(226\) 10.4281 0.693665
\(227\) −5.83102 + 10.0996i −0.387018 + 0.670335i −0.992047 0.125869i \(-0.959828\pi\)
0.605029 + 0.796204i \(0.293162\pi\)
\(228\) 0 0
\(229\) −0.697791 1.20861i −0.0461114 0.0798672i 0.842049 0.539402i \(-0.181350\pi\)
−0.888160 + 0.459535i \(0.848016\pi\)
\(230\) 2.53944 + 4.39844i 0.167446 + 0.290025i
\(231\) 0 0
\(232\) −1.12586 + 1.95005i −0.0739165 + 0.128027i
\(233\) −8.75057 −0.573269 −0.286635 0.958040i \(-0.592537\pi\)
−0.286635 + 0.958040i \(0.592537\pi\)
\(234\) 0 0
\(235\) 2.30704 0.150495
\(236\) −6.98454 + 12.0976i −0.454655 + 0.787485i
\(237\) 0 0
\(238\) 0.851311 + 1.47451i 0.0551823 + 0.0955785i
\(239\) 2.35131 + 4.07259i 0.152094 + 0.263434i 0.931997 0.362466i \(-0.118065\pi\)
−0.779903 + 0.625900i \(0.784732\pi\)
\(240\) 0 0
\(241\) 2.30221 3.98754i 0.148298 0.256860i −0.782300 0.622901i \(-0.785954\pi\)
0.930599 + 0.366041i \(0.119287\pi\)
\(242\) 8.41261 0.540783
\(243\) 0 0
\(244\) −14.8465 −0.950449
\(245\) 1.10074 1.90653i 0.0703235 0.121804i
\(246\) 0 0
\(247\) −11.7483 20.3486i −0.747525 1.29475i
\(248\) 1.95205 + 3.38104i 0.123955 + 0.214697i
\(249\) 0 0
\(250\) −2.97234 + 5.14825i −0.187987 + 0.325604i
\(251\) −3.14386 −0.198439 −0.0992193 0.995066i \(-0.531635\pi\)
−0.0992193 + 0.995066i \(0.531635\pi\)
\(252\) 0 0
\(253\) 22.9018 1.43982
\(254\) −2.43580 + 4.21894i −0.152836 + 0.264720i
\(255\) 0 0
\(256\) 0.862724 + 1.49428i 0.0539203 + 0.0933927i
\(257\) −10.0756 17.4515i −0.628499 1.08859i −0.987853 0.155391i \(-0.950336\pi\)
0.359354 0.933201i \(-0.382997\pi\)
\(258\) 0 0
\(259\) −2.50000 + 4.33013i −0.155342 + 0.269061i
\(260\) 11.9787 0.742889
\(261\) 0 0
\(262\) 3.95435 0.244300
\(263\) −8.60074 + 14.8969i −0.530344 + 0.918583i 0.469029 + 0.883183i \(0.344604\pi\)
−0.999373 + 0.0354002i \(0.988729\pi\)
\(264\) 0 0
\(265\) −0.274551 0.475537i −0.0168656 0.0292120i
\(266\) −1.95205 3.38104i −0.119688 0.207305i
\(267\) 0 0
\(268\) −6.56052 + 11.3631i −0.400747 + 0.694115i
\(269\) 2.75057 0.167706 0.0838528 0.996478i \(-0.473277\pi\)
0.0838528 + 0.996478i \(0.473277\pi\)
\(270\) 0 0
\(271\) −12.8561 −0.780955 −0.390477 0.920612i \(-0.627690\pi\)
−0.390477 + 0.920612i \(0.627690\pi\)
\(272\) 3.94492 6.83280i 0.239196 0.414299i
\(273\) 0 0
\(274\) 0.367555 + 0.636624i 0.0222048 + 0.0384599i
\(275\) 0.399264 + 0.691545i 0.0240765 + 0.0417017i
\(276\) 0 0
\(277\) 8.37414 14.5044i 0.503153 0.871487i −0.496840 0.867842i \(-0.665506\pi\)
0.999993 0.00364480i \(-0.00116018\pi\)
\(278\) −8.09591 −0.485560
\(279\) 0 0
\(280\) 4.29738 0.256817
\(281\) −2.65352 + 4.59603i −0.158296 + 0.274176i −0.934254 0.356608i \(-0.883933\pi\)
0.775958 + 0.630784i \(0.217267\pi\)
\(282\) 0 0
\(283\) −6.17635 10.6977i −0.367146 0.635915i 0.621972 0.783039i \(-0.286332\pi\)
−0.989118 + 0.147124i \(0.952998\pi\)
\(284\) 8.28596 + 14.3517i 0.491682 + 0.851617i
\(285\) 0 0
\(286\) −4.29738 + 7.44328i −0.254109 + 0.440130i
\(287\) −11.4509 −0.675925
\(288\) 0 0
\(289\) −6.44124 −0.378896
\(290\) −0.665304 + 1.15234i −0.0390680 + 0.0676677i
\(291\) 0 0
\(292\) 0.730279 + 1.26488i 0.0427364 + 0.0740216i
\(293\) −5.14869 8.91779i −0.300790 0.520983i 0.675525 0.737337i \(-0.263917\pi\)
−0.976315 + 0.216354i \(0.930584\pi\)
\(294\) 0 0
\(295\) −8.91146 + 15.4351i −0.518845 + 0.898666i
\(296\) −9.76024 −0.567302
\(297\) 0 0
\(298\) 7.02283 0.406821
\(299\) −6.94239 + 12.0246i −0.401489 + 0.695399i
\(300\) 0 0
\(301\) −4.64869 8.05177i −0.267946 0.464096i
\(302\) −3.04022 5.26582i −0.174945 0.303014i
\(303\) 0 0
\(304\) −9.04565 + 15.6675i −0.518804 + 0.898595i
\(305\) −18.9424 −1.08464
\(306\) 0 0
\(307\) −0.307039 −0.0175236 −0.00876182 0.999962i \(-0.502789\pi\)
−0.00876182 + 0.999962i \(0.502789\pi\)
\(308\) 4.48744 7.77247i 0.255695 0.442878i
\(309\) 0 0
\(310\) 1.15352 + 1.99795i 0.0655155 + 0.113476i
\(311\) −0.523976 0.907554i −0.0297120 0.0514627i 0.850787 0.525511i \(-0.176126\pi\)
−0.880499 + 0.474048i \(0.842792\pi\)
\(312\) 0 0
\(313\) −16.0277 + 27.7607i −0.905937 + 1.56913i −0.0862819 + 0.996271i \(0.527499\pi\)
−0.819655 + 0.572858i \(0.805835\pi\)
\(314\) −12.7653 −0.720387
\(315\) 0 0
\(316\) 13.1210 0.738116
\(317\) 3.22177 5.58027i 0.180953 0.313419i −0.761253 0.648455i \(-0.775415\pi\)
0.942205 + 0.335036i \(0.108749\pi\)
\(318\) 0 0
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) −2.35982 4.08733i −0.131918 0.228489i
\(321\) 0 0
\(322\) −1.15352 + 1.99795i −0.0642831 + 0.111342i
\(323\) −24.2111 −1.34714
\(324\) 0 0
\(325\) −0.484127 −0.0268545
\(326\) −1.46829 + 2.54315i −0.0813211 + 0.140852i
\(327\) 0 0
\(328\) −11.1763 19.3580i −0.617110 1.06887i
\(329\) 0.523976 + 0.907554i 0.0288878 + 0.0500351i
\(330\) 0 0
\(331\) 10.3070 17.8523i 0.566526 0.981252i −0.430380 0.902648i \(-0.641620\pi\)
0.996906 0.0786041i \(-0.0250463\pi\)
\(332\) −19.7579 −1.08436
\(333\) 0 0
\(334\) −12.2877 −0.672354
\(335\) −8.37046 + 14.4981i −0.457327 + 0.792113i
\(336\) 0 0
\(337\) −13.2303 22.9155i −0.720699 1.24829i −0.960720 0.277520i \(-0.910488\pi\)
0.240021 0.970768i \(-0.422846\pi\)
\(338\) 0.800456 + 1.38643i 0.0435391 + 0.0754119i
\(339\) 0 0
\(340\) 6.17152 10.6894i 0.334697 0.579713i
\(341\) 10.4029 0.563351
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 9.07446 15.7174i 0.489262 0.847427i
\(345\) 0 0
\(346\) 5.89696 + 10.2138i 0.317023 + 0.549100i
\(347\) 2.24574 + 3.88974i 0.120558 + 0.208812i 0.919988 0.391947i \(-0.128198\pi\)
−0.799430 + 0.600759i \(0.794865\pi\)
\(348\) 0 0
\(349\) −1.87897 + 3.25447i −0.100579 + 0.174208i −0.911923 0.410361i \(-0.865403\pi\)
0.811344 + 0.584568i \(0.198736\pi\)
\(350\) −0.0804406 −0.00429973
\(351\) 0 0
\(352\) 26.9246 1.43509
\(353\) 9.62954 16.6789i 0.512529 0.887726i −0.487366 0.873198i \(-0.662042\pi\)
0.999894 0.0145280i \(-0.00462458\pi\)
\(354\) 0 0
\(355\) 10.5719 + 18.3111i 0.561100 + 0.971853i
\(356\) 7.97970 + 13.8213i 0.422923 + 0.732525i
\(357\) 0 0
\(358\) −1.70262 + 2.94903i −0.0899864 + 0.155861i
\(359\) 9.10557 0.480573 0.240287 0.970702i \(-0.422759\pi\)
0.240287 + 0.970702i \(0.422759\pi\)
\(360\) 0 0
\(361\) 36.5159 1.92189
\(362\) −0.523976 + 0.907554i −0.0275396 + 0.0477000i
\(363\) 0 0
\(364\) 2.72062 + 4.71225i 0.142599 + 0.246989i
\(365\) 0.931752 + 1.61384i 0.0487701 + 0.0844723i
\(366\) 0 0
\(367\) −2.29738 + 3.97918i −0.119922 + 0.207711i −0.919737 0.392536i \(-0.871598\pi\)
0.799814 + 0.600247i \(0.204931\pi\)
\(368\) 10.6907 0.557289
\(369\) 0 0
\(370\) −5.76760 −0.299843
\(371\) 0.124713 0.216009i 0.00647475 0.0112146i
\(372\) 0 0
\(373\) 10.6812 + 18.5003i 0.553050 + 0.957911i 0.998052 + 0.0623818i \(0.0198696\pi\)
−0.445002 + 0.895530i \(0.646797\pi\)
\(374\) 4.42807 + 7.66964i 0.228970 + 0.396588i
\(375\) 0 0
\(376\) −1.02283 + 1.77159i −0.0527483 + 0.0913627i
\(377\) −3.63765 −0.187348
\(378\) 0 0
\(379\) −35.1203 −1.80401 −0.902004 0.431728i \(-0.857904\pi\)
−0.902004 + 0.431728i \(0.857904\pi\)
\(380\) −14.1512 + 24.5106i −0.725942 + 1.25737i
\(381\) 0 0
\(382\) 3.53907 + 6.12985i 0.181075 + 0.313630i
\(383\) −1.59706 2.76618i −0.0816057 0.141345i 0.822334 0.569005i \(-0.192671\pi\)
−0.903940 + 0.427660i \(0.859338\pi\)
\(384\) 0 0
\(385\) 5.72545 9.91677i 0.291796 0.505405i
\(386\) 9.29968 0.473341
\(387\) 0 0
\(388\) 5.95435 0.302286
\(389\) −7.40294 + 12.8223i −0.375344 + 0.650115i −0.990378 0.138385i \(-0.955809\pi\)
0.615034 + 0.788500i \(0.289142\pi\)
\(390\) 0 0
\(391\) 7.15352 + 12.3903i 0.361769 + 0.626602i
\(392\) 0.976024 + 1.69052i 0.0492966 + 0.0853843i
\(393\) 0 0
\(394\) 4.24652 7.35519i 0.213937 0.370549i
\(395\) 16.7409 0.842327
\(396\) 0 0
\(397\) 26.8921 1.34968 0.674839 0.737965i \(-0.264213\pi\)
0.674839 + 0.737965i \(0.264213\pi\)
\(398\) 1.87161 3.24172i 0.0938152 0.162493i
\(399\) 0 0
\(400\) 0.186378 + 0.322816i 0.00931891 + 0.0161408i
\(401\) −9.70147 16.8034i −0.484468 0.839124i 0.515372 0.856966i \(-0.327654\pi\)
−0.999841 + 0.0178424i \(0.994320\pi\)
\(402\) 0 0
\(403\) −3.15352 + 5.46206i −0.157088 + 0.272084i
\(404\) 28.3024 1.40810
\(405\) 0 0
\(406\) −0.604417 −0.0299967
\(407\) −13.0037 + 22.5230i −0.644569 + 1.11643i
\(408\) 0 0
\(409\) 4.69779 + 8.13681i 0.232291 + 0.402340i 0.958482 0.285153i \(-0.0920446\pi\)
−0.726191 + 0.687493i \(0.758711\pi\)
\(410\) −6.60442 11.4392i −0.326169 0.564941i
\(411\) 0 0
\(412\) −0.986834 + 1.70925i −0.0486178 + 0.0842086i
\(413\) −8.09591 −0.398373
\(414\) 0 0
\(415\) −25.2088 −1.23745
\(416\) −8.16185 + 14.1367i −0.400168 + 0.693111i
\(417\) 0 0
\(418\) −10.1535 17.5864i −0.496625 0.860180i
\(419\) 12.3299 + 21.3560i 0.602353 + 1.04331i 0.992464 + 0.122539i \(0.0391035\pi\)
−0.390110 + 0.920768i \(0.627563\pi\)
\(420\) 0 0
\(421\) 7.10442 12.3052i 0.346248 0.599719i −0.639332 0.768931i \(-0.720789\pi\)
0.985580 + 0.169212i \(0.0541222\pi\)
\(422\) 1.72775 0.0841055
\(423\) 0 0
\(424\) 0.486890 0.0236455
\(425\) −0.249425 + 0.432017i −0.0120989 + 0.0209559i
\(426\) 0 0
\(427\) −4.30221 7.45164i −0.208198 0.360610i
\(428\) 7.85559 + 13.6063i 0.379714 + 0.657685i
\(429\) 0 0
\(430\) 5.36235 9.28787i 0.258596 0.447901i
\(431\) −12.9977 −0.626077 −0.313039 0.949740i \(-0.601347\pi\)
−0.313039 + 0.949740i \(0.601347\pi\)
\(432\) 0 0
\(433\) −0.911456 −0.0438018 −0.0219009 0.999760i \(-0.506972\pi\)
−0.0219009 + 0.999760i \(0.506972\pi\)
\(434\) −0.523976 + 0.907554i −0.0251517 + 0.0435640i
\(435\) 0 0
\(436\) −11.8610 20.5438i −0.568038 0.983870i
\(437\) −16.4029 28.4107i −0.784659 1.35907i
\(438\) 0 0
\(439\) 5.27455 9.13579i 0.251741 0.436028i −0.712265 0.701911i \(-0.752330\pi\)
0.964005 + 0.265884i \(0.0856637\pi\)
\(440\) 22.3527 1.06562
\(441\) 0 0
\(442\) −5.36925 −0.255389
\(443\) 8.70032 15.0694i 0.413365 0.715969i −0.581890 0.813267i \(-0.697687\pi\)
0.995255 + 0.0972983i \(0.0310201\pi\)
\(444\) 0 0
\(445\) 10.1812 + 17.6343i 0.482634 + 0.835947i
\(446\) 6.08044 + 10.5316i 0.287917 + 0.498687i
\(447\) 0 0
\(448\) 1.07193 1.85664i 0.0506439 0.0877178i
\(449\) 0.748275 0.0353133 0.0176566 0.999844i \(-0.494379\pi\)
0.0176566 + 0.999844i \(0.494379\pi\)
\(450\) 0 0
\(451\) −59.5615 −2.80464
\(452\) 17.1698 29.7389i 0.807598 1.39880i
\(453\) 0 0
\(454\) −3.05531 5.29196i −0.143393 0.248364i
\(455\) 3.47119 + 6.01228i 0.162732 + 0.281860i
\(456\) 0 0
\(457\) 0.500000 0.866025i 0.0233890 0.0405110i −0.854094 0.520119i \(-0.825888\pi\)
0.877483 + 0.479608i \(0.159221\pi\)
\(458\) 0.731253 0.0341692
\(459\) 0 0
\(460\) 16.7247 0.779793
\(461\) 19.0228 32.9485i 0.885981 1.53456i 0.0413967 0.999143i \(-0.486819\pi\)
0.844585 0.535422i \(-0.179847\pi\)
\(462\) 0 0
\(463\) 12.9461 + 22.4232i 0.601655 + 1.04210i 0.992571 + 0.121670i \(0.0388250\pi\)
−0.390916 + 0.920426i \(0.627842\pi\)
\(464\) 1.40041 + 2.42559i 0.0650126 + 0.112605i
\(465\) 0 0
\(466\) 2.29255 3.97081i 0.106200 0.183944i
\(467\) 17.0627 0.789566 0.394783 0.918774i \(-0.370820\pi\)
0.394783 + 0.918774i \(0.370820\pi\)
\(468\) 0 0
\(469\) −7.60442 −0.351139
\(470\) −0.604417 + 1.04688i −0.0278797 + 0.0482890i
\(471\) 0 0
\(472\) −7.90179 13.6863i −0.363710 0.629963i
\(473\) −24.1800 41.8810i −1.11180 1.92569i
\(474\) 0 0
\(475\) 0.571929 0.990610i 0.0262419 0.0454523i
\(476\) 5.60672 0.256983
\(477\) 0 0
\(478\) −2.46406 −0.112704
\(479\) −1.40294 + 2.42997i −0.0641022 + 0.111028i −0.896295 0.443458i \(-0.853752\pi\)
0.832193 + 0.554486i \(0.187085\pi\)
\(480\) 0 0
\(481\) −7.88380 13.6551i −0.359470 0.622621i
\(482\) 1.20630 + 2.08938i 0.0549456 + 0.0951686i
\(483\) 0 0
\(484\) 13.8513 23.9912i 0.629605 1.09051i
\(485\) 7.59706 0.344965
\(486\) 0 0
\(487\) −6.50621 −0.294825 −0.147412 0.989075i \(-0.547094\pi\)
−0.147412 + 0.989075i \(0.547094\pi\)
\(488\) 8.39811 14.5460i 0.380165 0.658465i
\(489\) 0 0
\(490\) 0.576760 + 0.998977i 0.0260554 + 0.0451292i
\(491\) −2.30704 3.99591i −0.104115 0.180333i 0.809261 0.587449i \(-0.199868\pi\)
−0.913376 + 0.407116i \(0.866534\pi\)
\(492\) 0 0
\(493\) −1.87414 + 3.24610i −0.0844069 + 0.146197i
\(494\) 12.3116 0.553927
\(495\) 0 0
\(496\) 4.85614 0.218047
\(497\) −4.80221 + 8.31767i −0.215408 + 0.373098i
\(498\) 0 0
\(499\) 17.7483 + 30.7409i 0.794522 + 1.37615i 0.923142 + 0.384458i \(0.125612\pi\)
−0.128620 + 0.991694i \(0.541055\pi\)
\(500\) 9.78789 + 16.9531i 0.437728 + 0.758167i
\(501\) 0 0
\(502\) 0.823654 1.42661i 0.0367615 0.0636727i
\(503\) −18.9211 −0.843651 −0.421825 0.906677i \(-0.638611\pi\)
−0.421825 + 0.906677i \(0.638611\pi\)
\(504\) 0 0
\(505\) 36.1106 1.60690
\(506\) −6.00000 + 10.3923i −0.266733 + 0.461994i
\(507\) 0 0
\(508\) 8.02107 + 13.8929i 0.355878 + 0.616398i
\(509\) 7.40294 + 12.8223i 0.328130 + 0.568337i 0.982141 0.188148i \(-0.0602483\pi\)
−0.654011 + 0.756485i \(0.726915\pi\)
\(510\) 0 0
\(511\) −0.423240 + 0.733074i −0.0187230 + 0.0324293i
\(512\) 22.0480 0.974391
\(513\) 0 0
\(514\) 10.5588 0.465727
\(515\) −1.25909 + 2.18080i −0.0554820 + 0.0960976i
\(516\) 0 0
\(517\) 2.72545 + 4.72062i 0.119865 + 0.207612i
\(518\) −1.30994 2.26888i −0.0575555 0.0996891i
\(519\) 0 0
\(520\) −6.77593 + 11.7363i −0.297144 + 0.514669i
\(521\) −12.7100 −0.556834 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(522\) 0 0
\(523\) 0.352692 0.0154222 0.00771108 0.999970i \(-0.497545\pi\)
0.00771108 + 0.999970i \(0.497545\pi\)
\(524\) 6.51081 11.2771i 0.284426 0.492640i
\(525\) 0 0
\(526\) −4.50658 7.80563i −0.196496 0.340342i
\(527\) 3.24943 + 5.62817i 0.141547 + 0.245167i
\(528\) 0 0
\(529\) 1.80704 3.12988i 0.0785669 0.136082i
\(530\) 0.287717 0.0124976
\(531\) 0 0
\(532\) −12.8561 −0.557384
\(533\) 18.0553 31.2727i 0.782062 1.35457i
\(534\) 0 0
\(535\) 10.0228 + 17.3600i 0.433325 + 0.750540i
\(536\) −7.42209 12.8554i −0.320585 0.555270i
\(537\) 0 0
\(538\) −0.720618 + 1.24815i −0.0310681 + 0.0538114i
\(539\) 5.20147 0.224043
\(540\) 0 0
\(541\) −22.6930 −0.975647 −0.487823 0.872942i \(-0.662209\pi\)
−0.487823 + 0.872942i \(0.662209\pi\)
\(542\) 3.36816 5.83382i 0.144675 0.250584i
\(543\) 0 0
\(544\) 8.41007 + 14.5667i 0.360579 + 0.624541i
\(545\) −15.1332 26.2115i −0.648236 1.12278i
\(546\) 0 0
\(547\) 0.746894 1.29366i 0.0319349 0.0553128i −0.849616 0.527401i \(-0.823166\pi\)
0.881551 + 0.472089i \(0.156500\pi\)
\(548\) 2.42071 0.103408
\(549\) 0 0
\(550\) −0.418410 −0.0178410
\(551\) 4.29738 7.44328i 0.183074 0.317094i
\(552\) 0 0
\(553\) 3.80221 + 6.58562i 0.161686 + 0.280049i
\(554\) 4.38785 + 7.59998i 0.186422 + 0.322892i
\(555\) 0 0
\(556\) −13.3299 + 23.0880i −0.565312 + 0.979150i
\(557\) −8.50115 −0.360205 −0.180103 0.983648i \(-0.557643\pi\)
−0.180103 + 0.983648i \(0.557643\pi\)
\(558\) 0 0
\(559\) 29.3195 1.24008
\(560\) 2.67267 4.62919i 0.112941 0.195619i
\(561\) 0 0
\(562\) −1.39038 2.40821i −0.0586497 0.101584i
\(563\) −11.7003 20.2656i −0.493110 0.854091i 0.506859 0.862029i \(-0.330807\pi\)
−0.999968 + 0.00793792i \(0.997473\pi\)
\(564\) 0 0
\(565\) 21.9066 37.9434i 0.921619 1.59629i
\(566\) 6.47252 0.272060
\(567\) 0 0
\(568\) −18.7483 −0.786660
\(569\) 4.05646 7.02600i 0.170056 0.294545i −0.768383 0.639990i \(-0.778939\pi\)
0.938439 + 0.345445i \(0.112272\pi\)
\(570\) 0 0
\(571\) −8.29738 14.3715i −0.347234 0.601428i 0.638523 0.769603i \(-0.279546\pi\)
−0.985757 + 0.168175i \(0.946213\pi\)
\(572\) 14.1512 + 24.5106i 0.591692 + 1.02484i
\(573\) 0 0
\(574\) 3.00000 5.19615i 0.125218 0.216883i
\(575\) −0.675938 −0.0281886
\(576\) 0 0
\(577\) −10.8921 −0.453445 −0.226723 0.973959i \(-0.572801\pi\)
−0.226723 + 0.973959i \(0.572801\pi\)
\(578\) 1.68753 2.92288i 0.0701919 0.121576i
\(579\) 0 0
\(580\) 2.19084 + 3.79464i 0.0909696 + 0.157564i
\(581\) −5.72545 9.91677i −0.237532 0.411417i
\(582\) 0 0
\(583\) 0.648689 1.12356i 0.0268660 0.0465332i
\(584\) −1.65237 −0.0683755
\(585\) 0 0
\(586\) 5.39558 0.222889
\(587\) 21.6597 37.5158i 0.893993 1.54844i 0.0589466 0.998261i \(-0.481226\pi\)
0.835046 0.550180i \(-0.185441\pi\)
\(588\) 0 0
\(589\) −7.45090 12.9053i −0.307009 0.531755i
\(590\) −4.66939 8.08763i −0.192236 0.332962i
\(591\) 0 0
\(592\) −6.07018 + 10.5139i −0.249483 + 0.432117i
\(593\) 28.4583 1.16864 0.584320 0.811523i \(-0.301361\pi\)
0.584320 + 0.811523i \(0.301361\pi\)
\(594\) 0 0
\(595\) 7.15352 0.293266
\(596\) 11.5630 20.0278i 0.473641 0.820370i
\(597\) 0 0
\(598\) −3.63765 6.30059i −0.148754 0.257650i
\(599\) 14.8502 + 25.7212i 0.606761 + 1.05094i 0.991770 + 0.128028i \(0.0408649\pi\)
−0.385009 + 0.922913i \(0.625802\pi\)
\(600\) 0 0
\(601\) −18.7531 + 32.4813i −0.764955 + 1.32494i 0.175315 + 0.984512i \(0.443906\pi\)
−0.940270 + 0.340429i \(0.889428\pi\)
\(602\) 4.87161 0.198552
\(603\) 0 0
\(604\) −20.0228 −0.814717
\(605\) 17.6727 30.6100i 0.718496 1.24447i
\(606\) 0 0
\(607\) −1.32987 2.30340i −0.0539776 0.0934919i 0.837774 0.546017i \(-0.183857\pi\)
−0.891752 + 0.452525i \(0.850523\pi\)
\(608\) −19.2842 33.4012i −0.782078 1.35460i
\(609\) 0 0
\(610\) 4.96268 8.59562i 0.200933 0.348026i
\(611\) −3.30474 −0.133695
\(612\) 0 0
\(613\) −41.6694 −1.68301 −0.841505 0.540249i \(-0.818330\pi\)
−0.841505 + 0.540249i \(0.818330\pi\)
\(614\) 0.0804406 0.139327i 0.00324632 0.00562279i
\(615\) 0 0
\(616\) 5.07676 + 8.79321i 0.204548 + 0.354288i
\(617\) 21.7759 + 37.7170i 0.876666 + 1.51843i 0.854977 + 0.518665i \(0.173571\pi\)
0.0216887 + 0.999765i \(0.493096\pi\)
\(618\) 0 0
\(619\) 7.03249 12.1806i 0.282660 0.489581i −0.689379 0.724401i \(-0.742117\pi\)
0.972039 + 0.234820i \(0.0754500\pi\)
\(620\) 7.59706 0.305105
\(621\) 0 0
\(622\) 0.549103 0.0220170
\(623\) −4.62471 + 8.01024i −0.185285 + 0.320923i
\(624\) 0 0
\(625\) 12.1044 + 20.9655i 0.484177 + 0.838619i
\(626\) −8.39811 14.5460i −0.335656 0.581373i
\(627\) 0 0
\(628\) −21.0180 + 36.4042i −0.838709 + 1.45269i
\(629\) −16.2471 −0.647815
\(630\) 0 0
\(631\) −0.594756 −0.0236769 −0.0118384 0.999930i \(-0.503768\pi\)
−0.0118384 + 0.999930i \(0.503768\pi\)
\(632\) −7.42209 + 12.8554i −0.295235 + 0.511362i
\(633\) 0 0
\(634\) 1.68813 + 2.92393i 0.0670442 + 0.116124i
\(635\) 10.2340 + 17.7257i 0.406122 + 0.703424i
\(636\) 0 0
\(637\) −1.57676 + 2.73103i −0.0624735 + 0.108207i
\(638\) −3.14386 −0.124467
\(639\) 0 0
\(640\) 25.2641 0.998653
\(641\) 3.84533 6.66031i 0.151881 0.263066i −0.780038 0.625733i \(-0.784800\pi\)
0.931919 + 0.362666i \(0.118133\pi\)
\(642\) 0 0
\(643\) −24.9115 43.1479i −0.982412 1.70159i −0.652916 0.757430i \(-0.726455\pi\)
−0.329496 0.944157i \(-0.606879\pi\)
\(644\) 3.79853 + 6.57924i 0.149683 + 0.259258i
\(645\) 0 0
\(646\) 6.34303 10.9865i 0.249563 0.432256i
\(647\) 28.2761 1.11165 0.555824 0.831300i \(-0.312403\pi\)
0.555824 + 0.831300i \(0.312403\pi\)
\(648\) 0 0
\(649\) −42.1106 −1.65299
\(650\) 0.126836 0.219686i 0.00497490 0.00861678i
\(651\) 0 0
\(652\) 4.83507 + 8.37458i 0.189356 + 0.327974i
\(653\) 4.77708 + 8.27415i 0.186942 + 0.323792i 0.944229 0.329289i \(-0.106809\pi\)
−0.757287 + 0.653082i \(0.773476\pi\)
\(654\) 0 0
\(655\) 8.30704 14.3882i 0.324583 0.562194i
\(656\) −27.8036 −1.08555
\(657\) 0 0
\(658\) −0.549103 −0.0214062
\(659\) −24.0996 + 41.7417i −0.938787 + 1.62603i −0.171048 + 0.985263i \(0.554715\pi\)
−0.767738 + 0.640763i \(0.778618\pi\)
\(660\) 0 0
\(661\) −1.02766 1.77995i −0.0399712 0.0692322i 0.845348 0.534217i \(-0.179393\pi\)
−0.885319 + 0.464984i \(0.846060\pi\)
\(662\) 5.40065 + 9.35419i 0.209902 + 0.363561i
\(663\) 0 0
\(664\) 11.1763 19.3580i 0.433726 0.751236i
\(665\) −16.4029 −0.636079
\(666\) 0 0
\(667\) −5.07888 −0.196655
\(668\) −20.2317 + 35.0423i −0.782786 + 1.35583i
\(669\) 0 0
\(670\) −4.38592 7.59664i −0.169443 0.293484i
\(671\) −22.3778 38.7595i −0.863886 1.49629i
\(672\) 0 0
\(673\) −1.89558 + 3.28325i −0.0730694 + 0.126560i −0.900245 0.435384i \(-0.856613\pi\)
0.827176 + 0.561943i \(0.189946\pi\)
\(674\) 13.8647 0.534049
\(675\) 0 0
\(676\) 5.27179 0.202761
\(677\) −11.2568 + 19.4973i −0.432633 + 0.749343i −0.997099 0.0761134i \(-0.975749\pi\)
0.564466 + 0.825457i \(0.309082\pi\)
\(678\) 0 0
\(679\) 1.72545 + 2.98856i 0.0662166 + 0.114691i
\(680\) 6.98200 + 12.0932i 0.267748 + 0.463752i
\(681\) 0 0
\(682\) −2.72545 + 4.72062i −0.104363 + 0.180762i
\(683\) −15.3933 −0.589008 −0.294504 0.955650i \(-0.595154\pi\)
−0.294504 + 0.955650i \(0.595154\pi\)
\(684\) 0 0
\(685\) 3.08854 0.118007
\(686\) −0.261988 + 0.453777i −0.0100028 + 0.0173253i
\(687\) 0 0
\(688\) −11.2873 19.5503i −0.430326 0.745347i
\(689\) 0.393284 + 0.681187i 0.0149829 + 0.0259512i
\(690\) 0 0
\(691\) 11.6044 20.0994i 0.441453 0.764619i −0.556345 0.830952i \(-0.687797\pi\)
0.997798 + 0.0663329i \(0.0211299\pi\)
\(692\) 38.8373 1.47637
\(693\) 0 0
\(694\) −2.35343 −0.0893351
\(695\) −17.0074 + 29.4576i −0.645126 + 1.11739i
\(696\) 0 0
\(697\) −18.6044 32.2238i −0.704693 1.22056i
\(698\) −0.984535 1.70526i −0.0372652 0.0645452i
\(699\) 0 0
\(700\) −0.132445 + 0.229402i −0.00500595 + 0.00867056i
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) 37.2545 1.40508
\(704\) 5.57561 9.65724i 0.210139 0.363971i
\(705\) 0 0
\(706\) 5.04565 + 8.73933i 0.189896 + 0.328909i
\(707\) 8.20147 + 14.2054i 0.308448 + 0.534248i
\(708\) 0 0
\(709\) 15.5000 26.8468i 0.582115 1.00825i −0.413114 0.910679i \(-0.635559\pi\)
0.995228 0.0975728i \(-0.0311079\pi\)
\(710\) −11.0789 −0.415783
\(711\) 0 0
\(712\) −18.0553 −0.676652
\(713\) −4.40294 + 7.62612i −0.164892 + 0.285601i
\(714\) 0 0
\(715\) 18.0553 + 31.2727i 0.675230 + 1.16953i
\(716\) 5.60672 + 9.71112i 0.209533 + 0.362922i
\(717\) 0 0
\(718\) −2.38555 + 4.13190i −0.0890280 + 0.154201i
\(719\) −18.2111 −0.679161 −0.339580 0.940577i \(-0.610285\pi\)
−0.339580 + 0.940577i \(0.610285\pi\)
\(720\) 0 0
\(721\) −1.14386 −0.0425995
\(722\) −9.56673 + 16.5701i −0.356037 + 0.616674i
\(723\) 0 0
\(724\) 1.72545 + 2.98856i 0.0641258 + 0.111069i
\(725\) −0.0885439 0.153363i −0.00328844 0.00569574i
\(726\) 0 0
\(727\) −4.41841 + 7.65291i −0.163870 + 0.283831i −0.936253 0.351326i \(-0.885731\pi\)
0.772384 + 0.635156i \(0.219064\pi\)
\(728\) −6.15582 −0.228150
\(729\) 0 0
\(730\) −0.976432 −0.0361394
\(731\) 15.1056 26.1636i 0.558700 0.967696i
\(732\) 0 0
\(733\) 22.3202 + 38.6597i 0.824416 + 1.42793i 0.902365 + 0.430972i \(0.141829\pi\)
−0.0779496 + 0.996957i \(0.524837\pi\)
\(734\) −1.20377 2.08499i −0.0444320 0.0769585i
\(735\) 0 0
\(736\) −11.3956 + 19.7377i −0.420047 + 0.727542i
\(737\) −39.5542 −1.45700
\(738\) 0 0
\(739\) 11.6044 0.426875 0.213438 0.976957i \(-0.431534\pi\)
0.213438 + 0.976957i \(0.431534\pi\)
\(740\) −9.49632 + 16.4481i −0.349092 + 0.604644i
\(741\) 0 0
\(742\) 0.0653464 + 0.113183i 0.00239894 + 0.00415509i
\(743\) −13.3970 23.2042i −0.491487 0.851280i 0.508465 0.861083i \(-0.330213\pi\)
−0.999952 + 0.00980228i \(0.996880\pi\)
\(744\) 0 0
\(745\) 14.7531 25.5531i 0.540512 0.936194i
\(746\) −11.1934 −0.409818
\(747\) 0 0
\(748\) 29.1632 1.06631
\(749\) −4.55278 + 7.88565i −0.166355 + 0.288135i
\(750\) 0 0
\(751\) 9.10925 + 15.7777i 0.332401 + 0.575736i 0.982982 0.183701i \(-0.0588079\pi\)
−0.650581 + 0.759437i \(0.725475\pi\)
\(752\) 1.27225 + 2.20360i 0.0463942 + 0.0803572i
\(753\) 0 0
\(754\) 0.953020 1.65068i 0.0347070 0.0601142i
\(755\) −25.5468 −0.929743
\(756\) 0 0
\(757\) 12.9018 0.468924 0.234462 0.972125i \(-0.424667\pi\)
0.234462 + 0.972125i \(0.424667\pi\)
\(758\) 9.20110 15.9368i 0.334199 0.578850i
\(759\) 0 0
\(760\) −16.0097 27.7295i −0.580731 1.00586i
\(761\) −9.10810 15.7757i −0.330168 0.571868i 0.652376 0.757895i \(-0.273772\pi\)
−0.982545 + 0.186027i \(0.940439\pi\)
\(762\) 0 0
\(763\) 6.87414 11.9064i 0.248860 0.431039i
\(764\) 23.3082 0.843263
\(765\) 0 0
\(766\) 1.67364 0.0604710
\(767\) 12.7653 22.1101i 0.460928 0.798351i
\(768\) 0 0
\(769\) −19.3022 33.4324i −0.696055 1.20560i −0.969824 0.243808i \(-0.921603\pi\)
0.273768 0.961796i \(-0.411730\pi\)
\(770\) 3.00000 + 5.19615i 0.108112 + 0.187256i
\(771\) 0 0
\(772\) 15.3119 26.5209i 0.551086 0.954509i
\(773\) 33.9594 1.22144 0.610718 0.791849i \(-0.290881\pi\)
0.610718 + 0.791849i \(0.290881\pi\)
\(774\) 0 0
\(775\) −0.307039 −0.0110292
\(776\) −3.36816 + 5.83382i −0.120910 + 0.209422i
\(777\) 0 0
\(778\) −3.87897 6.71857i −0.139068 0.240872i
\(779\) 42.6597 + 73.8888i 1.52844 + 2.64734i
\(780\) 0 0
\(781\) −24.9786 + 43.2641i −0.893803 + 1.54811i
\(782\) −7.49655 −0.268076
\(783\) 0 0
\(784\) 2.42807 0.0867168
\(785\) −26.8165 + 46.4476i −0.957123 + 1.65779i
\(786\) 0 0
\(787\) 3.42807 + 5.93759i 0.122198 + 0.211652i 0.920634 0.390427i \(-0.127673\pi\)
−0.798436 + 0.602079i \(0.794339\pi\)
\(788\) −13.9838 24.2206i −0.498151 0.862822i
\(789\) 0 0
\(790\) −4.38592 + 7.59664i −0.156044 + 0.270276i
\(791\) 19.9018 0.707626
\(792\) 0 0
\(793\) 27.1342 0.963564
\(794\) −7.04542 + 12.2030i −0.250033 + 0.433069i
\(795\) 0 0
\(796\) −6.16318 10.6749i −0.218448 0.378363i
\(797\) −13.3250 23.0796i −0.471997 0.817523i 0.527490 0.849561i \(-0.323133\pi\)
−0.999487 + 0.0320387i \(0.989800\pi\)
\(798\) 0 0
\(799\) −1.70262 + 2.94903i −0.0602344 + 0.104329i
\(800\) −0.794670 −0.0280958
\(801\) 0 0
\(802\) 10.1667 0.358998
\(803\) −2.20147 + 3.81306i −0.0776883 + 0.134560i
\(804\) 0 0
\(805\) 4.84648 + 8.39435i 0.170816 + 0.295862i
\(806\) −1.65237 2.86199i −0.0582022 0.100809i
\(807\) 0 0
\(808\) −16.0097 + 27.7295i −0.563218 + 0.975522i
\(809\) −45.7100 −1.60708 −0.803539 0.595252i \(-0.797052\pi\)
−0.803539 + 0.595252i \(0.797052\pi\)
\(810\) 0 0
\(811\) 33.2088 1.16612 0.583060 0.812429i \(-0.301855\pi\)
0.583060 + 0.812429i \(0.301855\pi\)
\(812\) −0.995169 + 1.72368i −0.0349236 + 0.0604894i
\(813\) 0 0
\(814\) −6.81362 11.8015i −0.238817 0.413644i
\(815\) 6.16898 + 10.6850i 0.216090 + 0.374279i
\(816\) 0 0
\(817\) −34.6369 + 59.9929i −1.21179 + 2.09889i
\(818\) −4.92306 −0.172131
\(819\) 0 0
\(820\) −43.4966 −1.51897
\(821\) −0.152370 + 0.263912i −0.00531774 + 0.00921060i −0.868672 0.495388i \(-0.835026\pi\)
0.863354 + 0.504598i \(0.168359\pi\)
\(822\) 0 0
\(823\) −23.2088 40.1989i −0.809009 1.40124i −0.913551 0.406724i \(-0.866671\pi\)
0.104542 0.994520i \(-0.466662\pi\)
\(824\) −1.11643 1.93372i −0.0388928 0.0673643i
\(825\) 0 0
\(826\) 2.12103 3.67373i 0.0738001 0.127826i
\(827\) −40.8133 −1.41922 −0.709608 0.704597i \(-0.751128\pi\)
−0.709608 + 0.704597i \(0.751128\pi\)
\(828\) 0 0
\(829\) −7.40524 −0.257195 −0.128597 0.991697i \(-0.541047\pi\)
−0.128597 + 0.991697i \(0.541047\pi\)
\(830\) 6.60442 11.4392i 0.229243 0.397060i
\(831\) 0 0
\(832\) 3.38035 + 5.85494i 0.117193 + 0.202983i
\(833\) 1.62471 + 2.81408i 0.0562930 + 0.0975023i
\(834\) 0 0
\(835\) −25.8133 + 44.7099i −0.893304 + 1.54725i
\(836\) −66.8709 −2.31278
\(837\) 0 0
\(838\) −12.9211 −0.446353
\(839\) −9.18601 + 15.9106i −0.317136 + 0.549296i −0.979889 0.199542i \(-0.936055\pi\)
0.662753 + 0.748838i \(0.269388\pi\)
\(840\) 0 0
\(841\) 13.8347 + 23.9624i 0.477058 + 0.826290i
\(842\) 3.72255 + 6.44764i 0.128287 + 0.222200i
\(843\) 0 0
\(844\) 2.84473 4.92721i 0.0979196 0.169602i
\(845\) 6.72619 0.231388
\(846\) 0 0
\(847\) 16.0553 0.551667
\(848\) 0.302811 0.524484i 0.0103986 0.0180109i
\(849\) 0 0
\(850\) −0.130693 0.226367i −0.00448273 0.00776431i
\(851\) −11.0074 19.0653i −0.377327 0.653550i
\(852\) 0 0
\(853\) −18.7808 + 32.5292i −0.643041 + 1.11378i 0.341709 + 0.939806i \(0.388994\pi\)
−0.984750 + 0.173974i \(0.944339\pi\)
\(854\) 4.50851 0.154278
\(855\) 0 0
\(856\) −17.7745 −0.607520
\(857\) 1.07561 1.86301i 0.0367421 0.0636393i −0.847070 0.531482i \(-0.821635\pi\)
0.883812 + 0.467843i \(0.154969\pi\)
\(858\) 0 0
\(859\) −7.14386 12.3735i −0.243745 0.422179i 0.718033 0.696009i \(-0.245043\pi\)
−0.961778 + 0.273830i \(0.911709\pi\)
\(860\) −17.6582 30.5849i −0.602139 1.04293i
\(861\) 0 0
\(862\) 3.40524 5.89806i 0.115983 0.200889i
\(863\) 27.6810 0.942272 0.471136 0.882061i \(-0.343844\pi\)
0.471136 + 0.882061i \(0.343844\pi\)
\(864\) 0 0
\(865\) 49.5519 1.68481
\(866\) 0.238791 0.413598i 0.00811444 0.0140546i
\(867\) 0 0
\(868\) 1.72545 + 2.98856i 0.0585655 + 0.101439i
\(869\) 19.7771 + 34.2549i 0.670892 + 1.16202i
\(870\) 0 0
\(871\) 11.9903 20.7679i 0.406277 0.703693i
\(872\) 26.8373 0.908825
\(873\) 0 0
\(874\) 17.1895 0.581444
\(875\) −5.67267 + 9.82534i −0.191771 + 0.332157i
\(876\) 0 0
\(877\) 9.50000 + 16.4545i 0.320792 + 0.555628i 0.980652 0.195761i \(-0.0627176\pi\)
−0.659860 + 0.751389i \(0.729384\pi\)
\(878\) 2.76374 + 4.78694i 0.0932717 + 0.161551i
\(879\) 0 0
\(880\) 13.9018 24.0786i 0.468629 0.811690i
\(881\) −4.06498 −0.136953 −0.0684763 0.997653i \(-0.521814\pi\)
−0.0684763 + 0.997653i \(0.521814\pi\)
\(882\) 0 0
\(883\) −20.5255 −0.690739 −0.345370 0.938467i \(-0.612246\pi\)
−0.345370 + 0.938467i \(0.612246\pi\)
\(884\) −8.84045 + 15.3121i −0.297336 + 0.515002i
\(885\) 0 0
\(886\) 4.55876 + 7.89601i 0.153155 + 0.265272i
\(887\) −5.05761 8.76004i −0.169818 0.294134i 0.768538 0.639804i \(-0.220985\pi\)
−0.938356 + 0.345671i \(0.887651\pi\)
\(888\) 0 0
\(889\) −4.64869 + 8.05177i −0.155912 + 0.270048i
\(890\) −10.6694 −0.357639
\(891\) 0 0
\(892\) 40.0457 1.34083
\(893\) 3.90409 6.76209i 0.130646 0.226285i
\(894\) 0 0
\(895\) 7.15352 + 12.3903i 0.239116 + 0.414161i
\(896\) 5.73801 + 9.93853i 0.191694 + 0.332023i
\(897\) 0 0
\(898\) −0.196039 + 0.339550i −0.00654192 + 0.0113309i
\(899\) −2.30704 −0.0769441
\(900\) 0 0
\(901\) 0.810488 0.0270013
\(902\) 15.6044 27.0276i 0.519570 0.899922i
\(903\) 0 0
\(904\) 19.4246 + 33.6444i 0.646053 + 1.11900i
\(905\) 2.20147 + 3.81306i 0.0731794 + 0.126750i
\(906\) 0 0
\(907\) −11.1978 + 19.3951i −0.371817 + 0.644005i −0.989845 0.142151i \(-0.954598\pi\)
0.618028 + 0.786156i \(0.287932\pi\)
\(908\) −20.1222 −0.667780
\(909\) 0 0
\(910\) −3.63765 −0.120587
\(911\) −16.9018 + 29.2748i −0.559981 + 0.969916i 0.437516 + 0.899211i \(0.355858\pi\)
−0.997497 + 0.0707056i \(0.977475\pi\)
\(912\) 0 0
\(913\) −29.7808 51.5818i −0.985599 1.70711i
\(914\) 0.261988 + 0.453777i 0.00866580 + 0.0150096i
\(915\) 0 0
\(916\) 1.20400 2.08540i 0.0397814 0.0689034i
\(917\) 7.54680 0.249217
\(918\) 0 0
\(919\) 35.6044 1.17448 0.587241 0.809412i \(-0.300214\pi\)
0.587241 + 0.809412i \(0.300214\pi\)
\(920\) −9.46056 + 16.3862i −0.311905 + 0.540236i
\(921\) 0 0
\(922\) 9.96751 + 17.2642i 0.328263 + 0.568567i
\(923\) −15.1439 26.2299i −0.498466 0.863369i
\(924\) 0 0
\(925\) 0.383799 0.664759i 0.0126192 0.0218571i
\(926\) −13.5669 −0.445835
\(927\) 0 0
\(928\) −5.97102 −0.196008
\(929\) −16.2063 + 28.0701i −0.531712 + 0.920951i 0.467603 + 0.883938i \(0.345118\pi\)
−0.999315 + 0.0370130i \(0.988216\pi\)
\(930\) 0 0
\(931\) −3.72545 6.45267i −0.122097 0.211478i
\(932\) −7.54933 13.0758i −0.247287 0.428313i
\(933\) 0 0
\(934\) −4.47022 + 7.74265i −0.146270 + 0.253347i
\(935\) 37.2088 1.21686
\(936\) 0 0
\(937\) −4.34303 −0.141881 −0.0709403 0.997481i \(-0.522600\pi\)
−0.0709403 + 0.997481i \(0.522600\pi\)
\(938\) 1.99227 3.45071i 0.0650498 0.112670i
\(939\) 0 0
\(940\) 1.99034 + 3.44737i 0.0649177 + 0.112441i
\(941\) −15.9700 27.6609i −0.520609 0.901720i −0.999713 0.0239625i \(-0.992372\pi\)
0.479104 0.877758i \(-0.340962\pi\)
\(942\) 0 0
\(943\) 25.2088 43.6630i 0.820913 1.42186i
\(944\) −19.6574 −0.639795
\(945\) 0 0
\(946\) 25.3395 0.823859
\(947\) −20.2568 + 35.0858i −0.658257 + 1.14013i 0.322809 + 0.946464i \(0.395373\pi\)
−0.981067 + 0.193671i \(0.937961\pi\)
\(948\) 0 0
\(949\) −1.33470 2.31176i −0.0433261 0.0750430i
\(950\) 0.299677 + 0.519056i 0.00972282 + 0.0168404i
\(951\) 0 0
\(952\) −3.17152 + 5.49323i −0.102789 + 0.178036i
\(953\) −9.74828 −0.315778 −0.157889 0.987457i \(-0.550469\pi\)
−0.157889 + 0.987457i \(0.550469\pi\)
\(954\) 0 0
\(955\) 29.7386 0.962319
\(956\) −4.05707 + 7.02705i −0.131215 + 0.227271i
\(957\) 0 0
\(958\) −0.735110 1.27325i −0.0237503 0.0411368i
\(959\) 0.701472 + 1.21499i 0.0226517 + 0.0392339i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 8.26185 0.266373
\(963\) 0 0
\(964\) 7.94469 0.255881
\(965\) 19.5362 33.8376i 0.628892 1.08927i
\(966\) 0 0
\(967\) −14.8465 25.7149i −0.477431 0.826934i 0.522235 0.852802i \(-0.325098\pi\)
−0.999665 + 0.0258677i \(0.991765\pi\)
\(968\) 15.6704 + 27.1419i 0.503665 + 0.872373i
\(969\) 0 0
\(970\) −1.99034 + 3.44737i −0.0639059 + 0.110688i
\(971\) −31.9954 −1.02678 −0.513391 0.858155i \(-0.671611\pi\)
−0.513391 + 0.858155i \(0.671611\pi\)
\(972\) 0 0
\(973\) −15.4509 −0.495333
\(974\) 1.70455 2.95237i 0.0546173 0.0946000i
\(975\) 0 0
\(976\) −10.4461 18.0931i −0.334370 0.579147i
\(977\) 0.904094 + 1.56594i 0.0289245 + 0.0500988i 0.880125 0.474741i \(-0.157458\pi\)
−0.851201 + 0.524840i \(0.824125\pi\)
\(978\) 0 0
\(979\) −24.0553 + 41.6650i −0.768811 + 1.33162i
\(980\) 3.79853 0.121340
\(981\) 0 0
\(982\) 2.41767 0.0771509
\(983\) 21.7734 37.7126i 0.694464 1.20285i −0.275898 0.961187i \(-0.588975\pi\)
0.970361 0.241659i \(-0.0776916\pi\)
\(984\) 0 0
\(985\) −17.8416 30.9026i −0.568482 0.984640i
\(986\) −0.982004 1.70088i −0.0312734 0.0541671i
\(987\) 0 0
\(988\) 20.2710 35.1105i 0.644908 1.11701i
\(989\) 40.9358 1.30168
\(990\) 0 0
\(991\) −33.1010 −1.05149 −0.525743 0.850643i \(-0.676213\pi\)
−0.525743 + 0.850643i \(0.676213\pi\)
\(992\) −5.17635 + 8.96569i −0.164349 + 0.284661i
\(993\) 0 0
\(994\) −2.51624 4.35826i −0.0798104 0.138236i
\(995\) −7.86350 13.6200i −0.249290 0.431783i
\(996\) 0 0
\(997\) 0.269721 0.467170i 0.00854214 0.0147954i −0.861723 0.507379i \(-0.830614\pi\)
0.870265 + 0.492584i \(0.163948\pi\)
\(998\) −18.5994 −0.588752
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.l.379.2 6
3.2 odd 2 567.2.f.m.379.2 6
9.2 odd 6 567.2.a.e.1.2 3
9.4 even 3 inner 567.2.f.l.190.2 6
9.5 odd 6 567.2.f.m.190.2 6
9.7 even 3 567.2.a.f.1.2 yes 3
36.7 odd 6 9072.2.a.cb.1.1 3
36.11 even 6 9072.2.a.bu.1.3 3
63.20 even 6 3969.2.a.o.1.2 3
63.34 odd 6 3969.2.a.n.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.e.1.2 3 9.2 odd 6
567.2.a.f.1.2 yes 3 9.7 even 3
567.2.f.l.190.2 6 9.4 even 3 inner
567.2.f.l.379.2 6 1.1 even 1 trivial
567.2.f.m.190.2 6 9.5 odd 6
567.2.f.m.379.2 6 3.2 odd 2
3969.2.a.n.1.2 3 63.34 odd 6
3969.2.a.o.1.2 3 63.20 even 6
9072.2.a.bu.1.3 3 36.11 even 6
9072.2.a.cb.1.1 3 36.7 odd 6