Properties

Label 567.2.h.g.298.2
Level $567$
Weight $2$
Character 567.298
Analytic conductor $4.528$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(298,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 298.2
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 567.298
Dual form 567.2.h.g.352.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44949 q^{2} +4.00000 q^{4} +(-1.22474 + 2.12132i) q^{5} +(2.50000 + 0.866025i) q^{7} +4.89898 q^{8} +O(q^{10})\) \(q+2.44949 q^{2} +4.00000 q^{4} +(-1.22474 + 2.12132i) q^{5} +(2.50000 + 0.866025i) q^{7} +4.89898 q^{8} +(-3.00000 + 5.19615i) q^{10} +(-2.44949 - 4.24264i) q^{11} +(2.00000 + 3.46410i) q^{13} +(6.12372 + 2.12132i) q^{14} +4.00000 q^{16} +(1.22474 - 2.12132i) q^{17} +(0.500000 + 0.866025i) q^{19} +(-4.89898 + 8.48528i) q^{20} +(-6.00000 - 10.3923i) q^{22} +(-1.22474 + 2.12132i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(4.89898 + 8.48528i) q^{26} +(10.0000 + 3.46410i) q^{28} +(3.67423 - 6.36396i) q^{29} -7.00000 q^{31} +(3.00000 - 5.19615i) q^{34} +(-4.89898 + 4.24264i) q^{35} +(-4.00000 - 6.92820i) q^{37} +(1.22474 + 2.12132i) q^{38} +(-6.00000 + 10.3923i) q^{40} +(-3.67423 - 6.36396i) q^{41} +(0.500000 - 0.866025i) q^{43} +(-9.79796 - 16.9706i) q^{44} +(-3.00000 + 5.19615i) q^{46} +2.44949 q^{47} +(5.50000 + 4.33013i) q^{49} +(-1.22474 - 2.12132i) q^{50} +(8.00000 + 13.8564i) q^{52} +(1.22474 - 2.12132i) q^{53} +12.0000 q^{55} +(12.2474 + 4.24264i) q^{56} +(9.00000 - 15.5885i) q^{58} -9.79796 q^{59} +5.00000 q^{61} -17.1464 q^{62} -8.00000 q^{64} -9.79796 q^{65} +2.00000 q^{67} +(4.89898 - 8.48528i) q^{68} +(-12.0000 + 10.3923i) q^{70} +(0.500000 - 0.866025i) q^{73} +(-9.79796 - 16.9706i) q^{74} +(2.00000 + 3.46410i) q^{76} +(-2.44949 - 12.7279i) q^{77} -4.00000 q^{79} +(-4.89898 + 8.48528i) q^{80} +(-9.00000 - 15.5885i) q^{82} +(-7.34847 + 12.7279i) q^{83} +(3.00000 + 5.19615i) q^{85} +(1.22474 - 2.12132i) q^{86} +(-12.0000 - 20.7846i) q^{88} +(-1.22474 - 2.12132i) q^{89} +(2.00000 + 10.3923i) q^{91} +(-4.89898 + 8.48528i) q^{92} +6.00000 q^{94} -2.44949 q^{95} +(0.500000 - 0.866025i) q^{97} +(13.4722 + 10.6066i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 10 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 16 q^{4} + 10 q^{7} - 12 q^{10} + 8 q^{13} + 16 q^{16} + 2 q^{19} - 24 q^{22} - 2 q^{25} + 40 q^{28} - 28 q^{31} + 12 q^{34} - 16 q^{37} - 24 q^{40} + 2 q^{43} - 12 q^{46} + 22 q^{49} + 32 q^{52} + 48 q^{55} + 36 q^{58} + 20 q^{61} - 32 q^{64} + 8 q^{67} - 48 q^{70} + 2 q^{73} + 8 q^{76} - 16 q^{79} - 36 q^{82} + 12 q^{85} - 48 q^{88} + 8 q^{91} + 24 q^{94} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44949 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 4.00000 2.00000
\(5\) −1.22474 + 2.12132i −0.547723 + 0.948683i 0.450708 + 0.892672i \(0.351172\pi\)
−0.998430 + 0.0560116i \(0.982162\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 4.89898 1.73205
\(9\) 0 0
\(10\) −3.00000 + 5.19615i −0.948683 + 1.64317i
\(11\) −2.44949 4.24264i −0.738549 1.27920i −0.953149 0.302502i \(-0.902178\pi\)
0.214600 0.976702i \(-0.431155\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 6.12372 + 2.12132i 1.63663 + 0.566947i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 1.22474 2.12132i 0.297044 0.514496i −0.678414 0.734680i \(-0.737332\pi\)
0.975458 + 0.220184i \(0.0706658\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −4.89898 + 8.48528i −1.09545 + 1.89737i
\(21\) 0 0
\(22\) −6.00000 10.3923i −1.27920 2.21565i
\(23\) −1.22474 + 2.12132i −0.255377 + 0.442326i −0.964998 0.262258i \(-0.915533\pi\)
0.709621 + 0.704584i \(0.248866\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 4.89898 + 8.48528i 0.960769 + 1.66410i
\(27\) 0 0
\(28\) 10.0000 + 3.46410i 1.88982 + 0.654654i
\(29\) 3.67423 6.36396i 0.682288 1.18176i −0.291993 0.956421i \(-0.594318\pi\)
0.974281 0.225337i \(-0.0723484\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 3.00000 5.19615i 0.514496 0.891133i
\(35\) −4.89898 + 4.24264i −0.828079 + 0.717137i
\(36\) 0 0
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) 1.22474 + 2.12132i 0.198680 + 0.344124i
\(39\) 0 0
\(40\) −6.00000 + 10.3923i −0.948683 + 1.64317i
\(41\) −3.67423 6.36396i −0.573819 0.993884i −0.996169 0.0874508i \(-0.972128\pi\)
0.422350 0.906433i \(-0.361205\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) −9.79796 16.9706i −1.47710 2.55841i
\(45\) 0 0
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) 2.44949 0.357295 0.178647 0.983913i \(-0.442828\pi\)
0.178647 + 0.983913i \(0.442828\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) −1.22474 2.12132i −0.173205 0.300000i
\(51\) 0 0
\(52\) 8.00000 + 13.8564i 1.10940 + 1.92154i
\(53\) 1.22474 2.12132i 0.168232 0.291386i −0.769567 0.638567i \(-0.779528\pi\)
0.937798 + 0.347181i \(0.112861\pi\)
\(54\) 0 0
\(55\) 12.0000 1.61808
\(56\) 12.2474 + 4.24264i 1.63663 + 0.566947i
\(57\) 0 0
\(58\) 9.00000 15.5885i 1.18176 2.04686i
\(59\) −9.79796 −1.27559 −0.637793 0.770208i \(-0.720152\pi\)
−0.637793 + 0.770208i \(0.720152\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) −17.1464 −2.17760
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −9.79796 −1.21529
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 4.89898 8.48528i 0.594089 1.02899i
\(69\) 0 0
\(70\) −12.0000 + 10.3923i −1.43427 + 1.24212i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0.500000 0.866025i 0.0585206 0.101361i −0.835281 0.549823i \(-0.814695\pi\)
0.893801 + 0.448463i \(0.148028\pi\)
\(74\) −9.79796 16.9706i −1.13899 1.97279i
\(75\) 0 0
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) −2.44949 12.7279i −0.279145 1.45048i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −4.89898 + 8.48528i −0.547723 + 0.948683i
\(81\) 0 0
\(82\) −9.00000 15.5885i −0.993884 1.72146i
\(83\) −7.34847 + 12.7279i −0.806599 + 1.39707i 0.108607 + 0.994085i \(0.465361\pi\)
−0.915206 + 0.402986i \(0.867972\pi\)
\(84\) 0 0
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 1.22474 2.12132i 0.132068 0.228748i
\(87\) 0 0
\(88\) −12.0000 20.7846i −1.27920 2.21565i
\(89\) −1.22474 2.12132i −0.129823 0.224860i 0.793785 0.608198i \(-0.208107\pi\)
−0.923608 + 0.383339i \(0.874774\pi\)
\(90\) 0 0
\(91\) 2.00000 + 10.3923i 0.209657 + 1.08941i
\(92\) −4.89898 + 8.48528i −0.510754 + 0.884652i
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) −2.44949 −0.251312
\(96\) 0 0
\(97\) 0.500000 0.866025i 0.0507673 0.0879316i −0.839525 0.543321i \(-0.817167\pi\)
0.890292 + 0.455389i \(0.150500\pi\)
\(98\) 13.4722 + 10.6066i 1.36090 + 1.07143i
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −2.44949 4.24264i −0.243733 0.422159i 0.718041 0.696000i \(-0.245039\pi\)
−0.961775 + 0.273842i \(0.911706\pi\)
\(102\) 0 0
\(103\) −1.00000 + 1.73205i −0.0985329 + 0.170664i −0.911078 0.412235i \(-0.864748\pi\)
0.812545 + 0.582899i \(0.198082\pi\)
\(104\) 9.79796 + 16.9706i 0.960769 + 1.66410i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 9.79796 + 16.9706i 0.947204 + 1.64061i 0.751276 + 0.659988i \(0.229439\pi\)
0.195928 + 0.980618i \(0.437228\pi\)
\(108\) 0 0
\(109\) 0.500000 0.866025i 0.0478913 0.0829502i −0.841086 0.540901i \(-0.818083\pi\)
0.888977 + 0.457951i \(0.151417\pi\)
\(110\) 29.3939 2.80260
\(111\) 0 0
\(112\) 10.0000 + 3.46410i 0.944911 + 0.327327i
\(113\) 7.34847 + 12.7279i 0.691286 + 1.19734i 0.971417 + 0.237380i \(0.0762888\pi\)
−0.280131 + 0.959962i \(0.590378\pi\)
\(114\) 0 0
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 14.6969 25.4558i 1.36458 2.36352i
\(117\) 0 0
\(118\) −24.0000 −2.20938
\(119\) 4.89898 4.24264i 0.449089 0.388922i
\(120\) 0 0
\(121\) −6.50000 + 11.2583i −0.590909 + 1.02348i
\(122\) 12.2474 1.10883
\(123\) 0 0
\(124\) −28.0000 −2.51447
\(125\) −9.79796 −0.876356
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) −19.5959 −1.73205
\(129\) 0 0
\(130\) −24.0000 −2.10494
\(131\) −1.22474 + 2.12132i −0.107006 + 0.185341i −0.914556 0.404459i \(-0.867460\pi\)
0.807550 + 0.589799i \(0.200793\pi\)
\(132\) 0 0
\(133\) 0.500000 + 2.59808i 0.0433555 + 0.225282i
\(134\) 4.89898 0.423207
\(135\) 0 0
\(136\) 6.00000 10.3923i 0.514496 0.891133i
\(137\) 8.57321 + 14.8492i 0.732459 + 1.26866i 0.955829 + 0.293923i \(0.0949608\pi\)
−0.223370 + 0.974734i \(0.571706\pi\)
\(138\) 0 0
\(139\) −7.00000 12.1244i −0.593732 1.02837i −0.993724 0.111856i \(-0.964321\pi\)
0.399992 0.916519i \(-0.369013\pi\)
\(140\) −19.5959 + 16.9706i −1.65616 + 1.43427i
\(141\) 0 0
\(142\) 0 0
\(143\) 9.79796 16.9706i 0.819346 1.41915i
\(144\) 0 0
\(145\) 9.00000 + 15.5885i 0.747409 + 1.29455i
\(146\) 1.22474 2.12132i 0.101361 0.175562i
\(147\) 0 0
\(148\) −16.0000 27.7128i −1.31519 2.27798i
\(149\) −1.22474 + 2.12132i −0.100335 + 0.173785i −0.911823 0.410584i \(-0.865325\pi\)
0.811488 + 0.584370i \(0.198658\pi\)
\(150\) 0 0
\(151\) −2.50000 4.33013i −0.203447 0.352381i 0.746190 0.665733i \(-0.231881\pi\)
−0.949637 + 0.313353i \(0.898548\pi\)
\(152\) 2.44949 + 4.24264i 0.198680 + 0.344124i
\(153\) 0 0
\(154\) −6.00000 31.1769i −0.483494 2.51231i
\(155\) 8.57321 14.8492i 0.688617 1.19272i
\(156\) 0 0
\(157\) 20.0000 1.59617 0.798087 0.602542i \(-0.205846\pi\)
0.798087 + 0.602542i \(0.205846\pi\)
\(158\) −9.79796 −0.779484
\(159\) 0 0
\(160\) 0 0
\(161\) −4.89898 + 4.24264i −0.386094 + 0.334367i
\(162\) 0 0
\(163\) 0.500000 + 0.866025i 0.0391630 + 0.0678323i 0.884943 0.465700i \(-0.154198\pi\)
−0.845780 + 0.533533i \(0.820864\pi\)
\(164\) −14.6969 25.4558i −1.14764 1.98777i
\(165\) 0 0
\(166\) −18.0000 + 31.1769i −1.39707 + 2.41980i
\(167\) 7.34847 + 12.7279i 0.568642 + 0.984916i 0.996701 + 0.0811654i \(0.0258642\pi\)
−0.428059 + 0.903751i \(0.640802\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 7.34847 + 12.7279i 0.563602 + 0.976187i
\(171\) 0 0
\(172\) 2.00000 3.46410i 0.152499 0.264135i
\(173\) 2.44949 0.186231 0.0931156 0.995655i \(-0.470317\pi\)
0.0931156 + 0.995655i \(0.470317\pi\)
\(174\) 0 0
\(175\) −0.500000 2.59808i −0.0377964 0.196396i
\(176\) −9.79796 16.9706i −0.738549 1.27920i
\(177\) 0 0
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) 1.22474 2.12132i 0.0915417 0.158555i −0.816618 0.577178i \(-0.804154\pi\)
0.908160 + 0.418623i \(0.137487\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 4.89898 + 25.4558i 0.363137 + 1.88691i
\(183\) 0 0
\(184\) −6.00000 + 10.3923i −0.442326 + 0.766131i
\(185\) 19.5959 1.44072
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 9.79796 0.714590
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 2.44949 0.177239 0.0886194 0.996066i \(-0.471755\pi\)
0.0886194 + 0.996066i \(0.471755\pi\)
\(192\) 0 0
\(193\) 20.0000 1.43963 0.719816 0.694165i \(-0.244226\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(194\) 1.22474 2.12132i 0.0879316 0.152302i
\(195\) 0 0
\(196\) 22.0000 + 17.3205i 1.57143 + 1.23718i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 9.50000 16.4545i 0.673437 1.16643i −0.303486 0.952836i \(-0.598151\pi\)
0.976923 0.213591i \(-0.0685161\pi\)
\(200\) −2.44949 4.24264i −0.173205 0.300000i
\(201\) 0 0
\(202\) −6.00000 10.3923i −0.422159 0.731200i
\(203\) 14.6969 12.7279i 1.03152 0.893325i
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) −2.44949 + 4.24264i −0.170664 + 0.295599i
\(207\) 0 0
\(208\) 8.00000 + 13.8564i 0.554700 + 0.960769i
\(209\) 2.44949 4.24264i 0.169435 0.293470i
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 4.89898 8.48528i 0.336463 0.582772i
\(213\) 0 0
\(214\) 24.0000 + 41.5692i 1.64061 + 2.84161i
\(215\) 1.22474 + 2.12132i 0.0835269 + 0.144673i
\(216\) 0 0
\(217\) −17.5000 6.06218i −1.18798 0.411527i
\(218\) 1.22474 2.12132i 0.0829502 0.143674i
\(219\) 0 0
\(220\) 48.0000 3.23616
\(221\) 9.79796 0.659082
\(222\) 0 0
\(223\) −13.0000 + 22.5167i −0.870544 + 1.50783i −0.00910984 + 0.999959i \(0.502900\pi\)
−0.861435 + 0.507869i \(0.830434\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 18.0000 + 31.1769i 1.19734 + 2.07386i
\(227\) 8.57321 + 14.8492i 0.569024 + 0.985579i 0.996663 + 0.0816290i \(0.0260123\pi\)
−0.427639 + 0.903950i \(0.640654\pi\)
\(228\) 0 0
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) −7.34847 12.7279i −0.484544 0.839254i
\(231\) 0 0
\(232\) 18.0000 31.1769i 1.18176 2.04686i
\(233\) −1.22474 2.12132i −0.0802357 0.138972i 0.823115 0.567874i \(-0.192234\pi\)
−0.903351 + 0.428902i \(0.858901\pi\)
\(234\) 0 0
\(235\) −3.00000 + 5.19615i −0.195698 + 0.338960i
\(236\) −39.1918 −2.55117
\(237\) 0 0
\(238\) 12.0000 10.3923i 0.777844 0.673633i
\(239\) −3.67423 6.36396i −0.237666 0.411650i 0.722378 0.691499i \(-0.243049\pi\)
−0.960044 + 0.279848i \(0.909716\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) −15.9217 + 27.5772i −1.02348 + 1.77273i
\(243\) 0 0
\(244\) 20.0000 1.28037
\(245\) −15.9217 + 6.36396i −1.01720 + 0.406579i
\(246\) 0 0
\(247\) −2.00000 + 3.46410i −0.127257 + 0.220416i
\(248\) −34.2929 −2.17760
\(249\) 0 0
\(250\) −24.0000 −1.51789
\(251\) −22.0454 −1.39149 −0.695747 0.718287i \(-0.744926\pi\)
−0.695747 + 0.718287i \(0.744926\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 26.9444 1.69064
\(255\) 0 0
\(256\) −32.0000 −2.00000
\(257\) −12.2474 + 21.2132i −0.763975 + 1.32324i 0.176812 + 0.984245i \(0.443422\pi\)
−0.940787 + 0.338999i \(0.889912\pi\)
\(258\) 0 0
\(259\) −4.00000 20.7846i −0.248548 1.29149i
\(260\) −39.1918 −2.43057
\(261\) 0 0
\(262\) −3.00000 + 5.19615i −0.185341 + 0.321019i
\(263\) −2.44949 4.24264i −0.151042 0.261612i 0.780569 0.625070i \(-0.214930\pi\)
−0.931611 + 0.363457i \(0.881596\pi\)
\(264\) 0 0
\(265\) 3.00000 + 5.19615i 0.184289 + 0.319197i
\(266\) 1.22474 + 6.36396i 0.0750939 + 0.390199i
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) 12.2474 21.2132i 0.746740 1.29339i −0.202637 0.979254i \(-0.564951\pi\)
0.949377 0.314138i \(-0.101715\pi\)
\(270\) 0 0
\(271\) 0.500000 + 0.866025i 0.0303728 + 0.0526073i 0.880812 0.473466i \(-0.156997\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 4.89898 8.48528i 0.297044 0.514496i
\(273\) 0 0
\(274\) 21.0000 + 36.3731i 1.26866 + 2.19738i
\(275\) −2.44949 + 4.24264i −0.147710 + 0.255841i
\(276\) 0 0
\(277\) −11.5000 19.9186i −0.690968 1.19679i −0.971521 0.236953i \(-0.923851\pi\)
0.280553 0.959839i \(-0.409482\pi\)
\(278\) −17.1464 29.6985i −1.02837 1.78120i
\(279\) 0 0
\(280\) −24.0000 + 20.7846i −1.43427 + 1.24212i
\(281\) −7.34847 + 12.7279i −0.438373 + 0.759284i −0.997564 0.0697545i \(-0.977778\pi\)
0.559191 + 0.829039i \(0.311112\pi\)
\(282\) 0 0
\(283\) −25.0000 −1.48610 −0.743048 0.669238i \(-0.766621\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 24.0000 41.5692i 1.41915 2.45804i
\(287\) −3.67423 19.0919i −0.216883 1.12696i
\(288\) 0 0
\(289\) 5.50000 + 9.52628i 0.323529 + 0.560369i
\(290\) 22.0454 + 38.1838i 1.29455 + 2.24223i
\(291\) 0 0
\(292\) 2.00000 3.46410i 0.117041 0.202721i
\(293\) −14.6969 25.4558i −0.858604 1.48715i −0.873260 0.487254i \(-0.837999\pi\)
0.0146561 0.999893i \(-0.495335\pi\)
\(294\) 0 0
\(295\) 12.0000 20.7846i 0.698667 1.21013i
\(296\) −19.5959 33.9411i −1.13899 1.97279i
\(297\) 0 0
\(298\) −3.00000 + 5.19615i −0.173785 + 0.301005i
\(299\) −9.79796 −0.566631
\(300\) 0 0
\(301\) 2.00000 1.73205i 0.115278 0.0998337i
\(302\) −6.12372 10.6066i −0.352381 0.610341i
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) −6.12372 + 10.6066i −0.350643 + 0.607332i
\(306\) 0 0
\(307\) −25.0000 −1.42683 −0.713413 0.700744i \(-0.752851\pi\)
−0.713413 + 0.700744i \(0.752851\pi\)
\(308\) −9.79796 50.9117i −0.558291 2.90096i
\(309\) 0 0
\(310\) 21.0000 36.3731i 1.19272 2.06585i
\(311\) 34.2929 1.94457 0.972285 0.233800i \(-0.0751161\pi\)
0.972285 + 0.233800i \(0.0751161\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) 48.9898 2.76465
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) 24.4949 1.37577 0.687885 0.725819i \(-0.258539\pi\)
0.687885 + 0.725819i \(0.258539\pi\)
\(318\) 0 0
\(319\) −36.0000 −2.01561
\(320\) 9.79796 16.9706i 0.547723 0.948683i
\(321\) 0 0
\(322\) −12.0000 + 10.3923i −0.668734 + 0.579141i
\(323\) 2.44949 0.136293
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 1.22474 + 2.12132i 0.0678323 + 0.117489i
\(327\) 0 0
\(328\) −18.0000 31.1769i −0.993884 1.72146i
\(329\) 6.12372 + 2.12132i 0.337612 + 0.116952i
\(330\) 0 0
\(331\) −13.0000 −0.714545 −0.357272 0.934000i \(-0.616293\pi\)
−0.357272 + 0.934000i \(0.616293\pi\)
\(332\) −29.3939 + 50.9117i −1.61320 + 2.79414i
\(333\) 0 0
\(334\) 18.0000 + 31.1769i 0.984916 + 1.70592i
\(335\) −2.44949 + 4.24264i −0.133830 + 0.231800i
\(336\) 0 0
\(337\) −2.50000 4.33013i −0.136184 0.235877i 0.789865 0.613280i \(-0.210150\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) −3.67423 + 6.36396i −0.199852 + 0.346154i
\(339\) 0 0
\(340\) 12.0000 + 20.7846i 0.650791 + 1.12720i
\(341\) 17.1464 + 29.6985i 0.928531 + 1.60826i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 2.44949 4.24264i 0.132068 0.228748i
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −9.79796 −0.525982 −0.262991 0.964798i \(-0.584709\pi\)
−0.262991 + 0.964798i \(0.584709\pi\)
\(348\) 0 0
\(349\) −17.5000 + 30.3109i −0.936754 + 1.62250i −0.165277 + 0.986247i \(0.552852\pi\)
−0.771477 + 0.636257i \(0.780482\pi\)
\(350\) −1.22474 6.36396i −0.0654654 0.340168i
\(351\) 0 0
\(352\) 0 0
\(353\) −2.44949 4.24264i −0.130373 0.225813i 0.793447 0.608639i \(-0.208284\pi\)
−0.923820 + 0.382826i \(0.874951\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.89898 8.48528i −0.259645 0.449719i
\(357\) 0 0
\(358\) 3.00000 5.19615i 0.158555 0.274625i
\(359\) 9.79796 + 16.9706i 0.517116 + 0.895672i 0.999802 + 0.0198785i \(0.00632794\pi\)
−0.482686 + 0.875794i \(0.660339\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) −17.1464 −0.901196
\(363\) 0 0
\(364\) 8.00000 + 41.5692i 0.419314 + 2.17882i
\(365\) 1.22474 + 2.12132i 0.0641061 + 0.111035i
\(366\) 0 0
\(367\) 6.50000 + 11.2583i 0.339297 + 0.587680i 0.984301 0.176500i \(-0.0564774\pi\)
−0.645003 + 0.764180i \(0.723144\pi\)
\(368\) −4.89898 + 8.48528i −0.255377 + 0.442326i
\(369\) 0 0
\(370\) 48.0000 2.49540
\(371\) 4.89898 4.24264i 0.254342 0.220267i
\(372\) 0 0
\(373\) −5.50000 + 9.52628i −0.284779 + 0.493252i −0.972556 0.232671i \(-0.925254\pi\)
0.687776 + 0.725923i \(0.258587\pi\)
\(374\) −29.3939 −1.51992
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 29.3939 1.51386
\(378\) 0 0
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) −9.79796 −0.502625
\(381\) 0 0
\(382\) 6.00000 0.306987
\(383\) 9.79796 16.9706i 0.500652 0.867155i −0.499347 0.866402i \(-0.666427\pi\)
1.00000 0.000753393i \(-0.000239813\pi\)
\(384\) 0 0
\(385\) 30.0000 + 10.3923i 1.52894 + 0.529641i
\(386\) 48.9898 2.49351
\(387\) 0 0
\(388\) 2.00000 3.46410i 0.101535 0.175863i
\(389\) 8.57321 + 14.8492i 0.434679 + 0.752886i 0.997269 0.0738494i \(-0.0235284\pi\)
−0.562590 + 0.826736i \(0.690195\pi\)
\(390\) 0 0
\(391\) 3.00000 + 5.19615i 0.151717 + 0.262781i
\(392\) 26.9444 + 21.2132i 1.36090 + 1.07143i
\(393\) 0 0
\(394\) 0 0
\(395\) 4.89898 8.48528i 0.246494 0.426941i
\(396\) 0 0
\(397\) −8.50000 14.7224i −0.426603 0.738898i 0.569966 0.821668i \(-0.306956\pi\)
−0.996569 + 0.0827707i \(0.973623\pi\)
\(398\) 23.2702 40.3051i 1.16643 2.02031i
\(399\) 0 0
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) −12.2474 + 21.2132i −0.611608 + 1.05934i 0.379361 + 0.925249i \(0.376144\pi\)
−0.990969 + 0.134088i \(0.957189\pi\)
\(402\) 0 0
\(403\) −14.0000 24.2487i −0.697390 1.20791i
\(404\) −9.79796 16.9706i −0.487467 0.844317i
\(405\) 0 0
\(406\) 36.0000 31.1769i 1.78665 1.54728i
\(407\) −19.5959 + 33.9411i −0.971334 + 1.68240i
\(408\) 0 0
\(409\) 20.0000 0.988936 0.494468 0.869196i \(-0.335363\pi\)
0.494468 + 0.869196i \(0.335363\pi\)
\(410\) 44.0908 2.17749
\(411\) 0 0
\(412\) −4.00000 + 6.92820i −0.197066 + 0.341328i
\(413\) −24.4949 8.48528i −1.20532 0.417533i
\(414\) 0 0
\(415\) −18.0000 31.1769i −0.883585 1.53041i
\(416\) 0 0
\(417\) 0 0
\(418\) 6.00000 10.3923i 0.293470 0.508304i
\(419\) −3.67423 6.36396i −0.179498 0.310900i 0.762211 0.647329i \(-0.224114\pi\)
−0.941709 + 0.336429i \(0.890781\pi\)
\(420\) 0 0
\(421\) −17.5000 + 30.3109i −0.852898 + 1.47726i 0.0256838 + 0.999670i \(0.491824\pi\)
−0.878582 + 0.477592i \(0.841510\pi\)
\(422\) −6.12372 10.6066i −0.298098 0.516321i
\(423\) 0 0
\(424\) 6.00000 10.3923i 0.291386 0.504695i
\(425\) −2.44949 −0.118818
\(426\) 0 0
\(427\) 12.5000 + 4.33013i 0.604917 + 0.209550i
\(428\) 39.1918 + 67.8823i 1.89441 + 3.28121i
\(429\) 0 0
\(430\) 3.00000 + 5.19615i 0.144673 + 0.250581i
\(431\) −9.79796 + 16.9706i −0.471951 + 0.817443i −0.999485 0.0320907i \(-0.989783\pi\)
0.527534 + 0.849534i \(0.323117\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) −42.8661 14.8492i −2.05764 0.712786i
\(435\) 0 0
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) −2.44949 −0.117175
\(438\) 0 0
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 58.7878 2.80260
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) 2.44949 0.116379 0.0581894 0.998306i \(-0.481467\pi\)
0.0581894 + 0.998306i \(0.481467\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) −31.8434 + 55.1543i −1.50783 + 2.61163i
\(447\) 0 0
\(448\) −20.0000 6.92820i −0.944911 0.327327i
\(449\) 22.0454 1.04039 0.520194 0.854048i \(-0.325860\pi\)
0.520194 + 0.854048i \(0.325860\pi\)
\(450\) 0 0
\(451\) −18.0000 + 31.1769i −0.847587 + 1.46806i
\(452\) 29.3939 + 50.9117i 1.38257 + 2.39468i
\(453\) 0 0
\(454\) 21.0000 + 36.3731i 0.985579 + 1.70707i
\(455\) −24.4949 8.48528i −1.14834 0.397796i
\(456\) 0 0
\(457\) 23.0000 1.07589 0.537947 0.842978i \(-0.319200\pi\)
0.537947 + 0.842978i \(0.319200\pi\)
\(458\) 8.57321 14.8492i 0.400600 0.693860i
\(459\) 0 0
\(460\) −12.0000 20.7846i −0.559503 0.969087i
\(461\) 14.6969 25.4558i 0.684505 1.18560i −0.289088 0.957303i \(-0.593352\pi\)
0.973592 0.228294i \(-0.0733148\pi\)
\(462\) 0 0
\(463\) −11.5000 19.9186i −0.534450 0.925695i −0.999190 0.0402476i \(-0.987185\pi\)
0.464739 0.885448i \(-0.346148\pi\)
\(464\) 14.6969 25.4558i 0.682288 1.18176i
\(465\) 0 0
\(466\) −3.00000 5.19615i −0.138972 0.240707i
\(467\) −12.2474 21.2132i −0.566744 0.981630i −0.996885 0.0788681i \(-0.974869\pi\)
0.430141 0.902762i \(-0.358464\pi\)
\(468\) 0 0
\(469\) 5.00000 + 1.73205i 0.230879 + 0.0799787i
\(470\) −7.34847 + 12.7279i −0.338960 + 0.587095i
\(471\) 0 0
\(472\) −48.0000 −2.20938
\(473\) −4.89898 −0.225255
\(474\) 0 0
\(475\) 0.500000 0.866025i 0.0229416 0.0397360i
\(476\) 19.5959 16.9706i 0.898177 0.777844i
\(477\) 0 0
\(478\) −9.00000 15.5885i −0.411650 0.712999i
\(479\) −13.4722 23.3345i −0.615560 1.06618i −0.990286 0.139046i \(-0.955596\pi\)
0.374726 0.927136i \(-0.377737\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 15.9217 + 27.5772i 0.725213 + 1.25611i
\(483\) 0 0
\(484\) −26.0000 + 45.0333i −1.18182 + 2.04697i
\(485\) 1.22474 + 2.12132i 0.0556128 + 0.0963242i
\(486\) 0 0
\(487\) 9.50000 16.4545i 0.430486 0.745624i −0.566429 0.824110i \(-0.691675\pi\)
0.996915 + 0.0784867i \(0.0250088\pi\)
\(488\) 24.4949 1.10883
\(489\) 0 0
\(490\) −39.0000 + 15.5885i −1.76184 + 0.704215i
\(491\) 7.34847 + 12.7279i 0.331632 + 0.574403i 0.982832 0.184503i \(-0.0590675\pi\)
−0.651200 + 0.758906i \(0.725734\pi\)
\(492\) 0 0
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) −4.89898 + 8.48528i −0.220416 + 0.381771i
\(495\) 0 0
\(496\) −28.0000 −1.25724
\(497\) 0 0
\(498\) 0 0
\(499\) 3.50000 6.06218i 0.156682 0.271380i −0.776989 0.629515i \(-0.783254\pi\)
0.933670 + 0.358134i \(0.116587\pi\)
\(500\) −39.1918 −1.75271
\(501\) 0 0
\(502\) −54.0000 −2.41014
\(503\) −22.0454 −0.982956 −0.491478 0.870890i \(-0.663543\pi\)
−0.491478 + 0.870890i \(0.663543\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 29.3939 1.30672
\(507\) 0 0
\(508\) 44.0000 1.95218
\(509\) 9.79796 16.9706i 0.434287 0.752207i −0.562950 0.826491i \(-0.690334\pi\)
0.997237 + 0.0742838i \(0.0236671\pi\)
\(510\) 0 0
\(511\) 2.00000 1.73205i 0.0884748 0.0766214i
\(512\) −39.1918 −1.73205
\(513\) 0 0
\(514\) −30.0000 + 51.9615i −1.32324 + 2.29192i
\(515\) −2.44949 4.24264i −0.107937 0.186953i
\(516\) 0 0
\(517\) −6.00000 10.3923i −0.263880 0.457053i
\(518\) −9.79796 50.9117i −0.430498 2.23693i
\(519\) 0 0
\(520\) −48.0000 −2.10494
\(521\) −9.79796 + 16.9706i −0.429256 + 0.743494i −0.996807 0.0798444i \(-0.974558\pi\)
0.567551 + 0.823338i \(0.307891\pi\)
\(522\) 0 0
\(523\) −4.00000 6.92820i −0.174908 0.302949i 0.765222 0.643767i \(-0.222629\pi\)
−0.940129 + 0.340818i \(0.889296\pi\)
\(524\) −4.89898 + 8.48528i −0.214013 + 0.370681i
\(525\) 0 0
\(526\) −6.00000 10.3923i −0.261612 0.453126i
\(527\) −8.57321 + 14.8492i −0.373455 + 0.646843i
\(528\) 0 0
\(529\) 8.50000 + 14.7224i 0.369565 + 0.640106i
\(530\) 7.34847 + 12.7279i 0.319197 + 0.552866i
\(531\) 0 0
\(532\) 2.00000 + 10.3923i 0.0867110 + 0.450564i
\(533\) 14.6969 25.4558i 0.636595 1.10262i
\(534\) 0 0
\(535\) −48.0000 −2.07522
\(536\) 9.79796 0.423207
\(537\) 0 0
\(538\) 30.0000 51.9615i 1.29339 2.24022i
\(539\) 4.89898 33.9411i 0.211014 1.46195i
\(540\) 0 0
\(541\) −17.5000 30.3109i −0.752384 1.30317i −0.946664 0.322221i \(-0.895571\pi\)
0.194281 0.980946i \(-0.437763\pi\)
\(542\) 1.22474 + 2.12132i 0.0526073 + 0.0911185i
\(543\) 0 0
\(544\) 0 0
\(545\) 1.22474 + 2.12132i 0.0524623 + 0.0908674i
\(546\) 0 0
\(547\) 18.5000 32.0429i 0.791003 1.37006i −0.134344 0.990935i \(-0.542893\pi\)
0.925347 0.379122i \(-0.123774\pi\)
\(548\) 34.2929 + 59.3970i 1.46492 + 2.53731i
\(549\) 0 0
\(550\) −6.00000 + 10.3923i −0.255841 + 0.443129i
\(551\) 7.34847 0.313055
\(552\) 0 0
\(553\) −10.0000 3.46410i −0.425243 0.147309i
\(554\) −28.1691 48.7904i −1.19679 2.07290i
\(555\) 0 0
\(556\) −28.0000 48.4974i −1.18746 2.05675i
\(557\) −20.8207 + 36.0624i −0.882200 + 1.52801i −0.0333100 + 0.999445i \(0.510605\pi\)
−0.848890 + 0.528570i \(0.822728\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) −19.5959 + 16.9706i −0.828079 + 0.717137i
\(561\) 0 0
\(562\) −18.0000 + 31.1769i −0.759284 + 1.31512i
\(563\) 12.2474 0.516168 0.258084 0.966122i \(-0.416909\pi\)
0.258084 + 0.966122i \(0.416909\pi\)
\(564\) 0 0
\(565\) −36.0000 −1.51453
\(566\) −61.2372 −2.57399
\(567\) 0 0
\(568\) 0 0
\(569\) −19.5959 −0.821504 −0.410752 0.911747i \(-0.634734\pi\)
−0.410752 + 0.911747i \(0.634734\pi\)
\(570\) 0 0
\(571\) 29.0000 1.21361 0.606806 0.794850i \(-0.292450\pi\)
0.606806 + 0.794850i \(0.292450\pi\)
\(572\) 39.1918 67.8823i 1.63869 2.83830i
\(573\) 0 0
\(574\) −9.00000 46.7654i −0.375653 1.95195i
\(575\) 2.44949 0.102151
\(576\) 0 0
\(577\) −4.00000 + 6.92820i −0.166522 + 0.288425i −0.937195 0.348806i \(-0.886587\pi\)
0.770673 + 0.637231i \(0.219920\pi\)
\(578\) 13.4722 + 23.3345i 0.560369 + 0.970588i
\(579\) 0 0
\(580\) 36.0000 + 62.3538i 1.49482 + 2.58910i
\(581\) −29.3939 + 25.4558i −1.21946 + 1.05609i
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 2.44949 4.24264i 0.101361 0.175562i
\(585\) 0 0
\(586\) −36.0000 62.3538i −1.48715 2.57581i
\(587\) 3.67423 6.36396i 0.151652 0.262669i −0.780183 0.625551i \(-0.784874\pi\)
0.931835 + 0.362883i \(0.118207\pi\)
\(588\) 0 0
\(589\) −3.50000 6.06218i −0.144215 0.249788i
\(590\) 29.3939 50.9117i 1.21013 2.09600i
\(591\) 0 0
\(592\) −16.0000 27.7128i −0.657596 1.13899i
\(593\) −12.2474 21.2132i −0.502942 0.871122i −0.999994 0.00340097i \(-0.998917\pi\)
0.497052 0.867721i \(-0.334416\pi\)
\(594\) 0 0
\(595\) 3.00000 + 15.5885i 0.122988 + 0.639064i
\(596\) −4.89898 + 8.48528i −0.200670 + 0.347571i
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) −31.8434 −1.30108 −0.650542 0.759470i \(-0.725458\pi\)
−0.650542 + 0.759470i \(0.725458\pi\)
\(600\) 0 0
\(601\) −8.50000 + 14.7224i −0.346722 + 0.600541i −0.985665 0.168714i \(-0.946039\pi\)
0.638943 + 0.769254i \(0.279372\pi\)
\(602\) 4.89898 4.24264i 0.199667 0.172917i
\(603\) 0 0
\(604\) −10.0000 17.3205i −0.406894 0.704761i
\(605\) −15.9217 27.5772i −0.647308 1.12117i
\(606\) 0 0
\(607\) −14.5000 + 25.1147i −0.588537 + 1.01938i 0.405887 + 0.913923i \(0.366962\pi\)
−0.994424 + 0.105453i \(0.966371\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −15.0000 + 25.9808i −0.607332 + 1.05193i
\(611\) 4.89898 + 8.48528i 0.198191 + 0.343278i
\(612\) 0 0
\(613\) −8.50000 + 14.7224i −0.343312 + 0.594633i −0.985046 0.172294i \(-0.944882\pi\)
0.641734 + 0.766927i \(0.278215\pi\)
\(614\) −61.2372 −2.47133
\(615\) 0 0
\(616\) −12.0000 62.3538i −0.483494 2.51231i
\(617\) −14.6969 25.4558i −0.591676 1.02481i −0.994007 0.109319i \(-0.965133\pi\)
0.402330 0.915495i \(-0.368200\pi\)
\(618\) 0 0
\(619\) −7.00000 12.1244i −0.281354 0.487319i 0.690365 0.723462i \(-0.257450\pi\)
−0.971718 + 0.236143i \(0.924117\pi\)
\(620\) 34.2929 59.3970i 1.37723 2.38544i
\(621\) 0 0
\(622\) 84.0000 3.36809
\(623\) −1.22474 6.36396i −0.0490684 0.254967i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 56.3383 2.25173
\(627\) 0 0
\(628\) 80.0000 3.19235
\(629\) −19.5959 −0.781340
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) −19.5959 −0.779484
\(633\) 0 0
\(634\) 60.0000 2.38290
\(635\) −13.4722 + 23.3345i −0.534628 + 0.926002i
\(636\) 0 0
\(637\) −4.00000 + 27.7128i −0.158486 + 1.09802i
\(638\) −88.1816 −3.49114
\(639\) 0 0
\(640\) 24.0000 41.5692i 0.948683 1.64317i
\(641\) −13.4722 23.3345i −0.532120 0.921658i −0.999297 0.0374946i \(-0.988062\pi\)
0.467177 0.884164i \(-0.345271\pi\)
\(642\) 0 0
\(643\) −2.50000 4.33013i −0.0985904 0.170764i 0.812511 0.582946i \(-0.198100\pi\)
−0.911101 + 0.412182i \(0.864767\pi\)
\(644\) −19.5959 + 16.9706i −0.772187 + 0.668734i
\(645\) 0 0
\(646\) 6.00000 0.236067
\(647\) −9.79796 + 16.9706i −0.385198 + 0.667182i −0.991797 0.127826i \(-0.959200\pi\)
0.606599 + 0.795008i \(0.292533\pi\)
\(648\) 0 0
\(649\) 24.0000 + 41.5692i 0.942082 + 1.63173i
\(650\) 4.89898 8.48528i 0.192154 0.332820i
\(651\) 0 0
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) −1.22474 + 2.12132i −0.0479280 + 0.0830137i −0.888994 0.457919i \(-0.848595\pi\)
0.841066 + 0.540932i \(0.181928\pi\)
\(654\) 0 0
\(655\) −3.00000 5.19615i −0.117220 0.203030i
\(656\) −14.6969 25.4558i −0.573819 0.993884i
\(657\) 0 0
\(658\) 15.0000 + 5.19615i 0.584761 + 0.202567i
\(659\) 3.67423 6.36396i 0.143128 0.247905i −0.785545 0.618804i \(-0.787617\pi\)
0.928673 + 0.370900i \(0.120951\pi\)
\(660\) 0 0
\(661\) 11.0000 0.427850 0.213925 0.976850i \(-0.431375\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(662\) −31.8434 −1.23763
\(663\) 0 0
\(664\) −36.0000 + 62.3538i −1.39707 + 2.41980i
\(665\) −6.12372 2.12132i −0.237468 0.0822613i
\(666\) 0 0
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) 29.3939 + 50.9117i 1.13728 + 1.96983i
\(669\) 0 0
\(670\) −6.00000 + 10.3923i −0.231800 + 0.401490i
\(671\) −12.2474 21.2132i −0.472808 0.818927i
\(672\) 0 0
\(673\) −8.50000 + 14.7224i −0.327651 + 0.567508i −0.982045 0.188645i \(-0.939590\pi\)
0.654394 + 0.756153i \(0.272924\pi\)
\(674\) −6.12372 10.6066i −0.235877 0.408551i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) −19.5959 −0.753132 −0.376566 0.926390i \(-0.622895\pi\)
−0.376566 + 0.926390i \(0.622895\pi\)
\(678\) 0 0
\(679\) 2.00000 1.73205i 0.0767530 0.0664700i
\(680\) 14.6969 + 25.4558i 0.563602 + 0.976187i
\(681\) 0 0
\(682\) 42.0000 + 72.7461i 1.60826 + 2.78559i
\(683\) 12.2474 21.2132i 0.468636 0.811701i −0.530722 0.847546i \(-0.678079\pi\)
0.999357 + 0.0358455i \(0.0114124\pi\)
\(684\) 0 0
\(685\) −42.0000 −1.60474
\(686\) 24.4949 + 38.1838i 0.935220 + 1.45786i
\(687\) 0 0
\(688\) 2.00000 3.46410i 0.0762493 0.132068i
\(689\) 9.79796 0.373273
\(690\) 0 0
\(691\) 41.0000 1.55971 0.779857 0.625958i \(-0.215292\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 9.79796 0.372463
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 34.2929 1.30080
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) −42.8661 + 74.2462i −1.62250 + 2.81026i
\(699\) 0 0
\(700\) −2.00000 10.3923i −0.0755929 0.392792i
\(701\) 22.0454 0.832644 0.416322 0.909217i \(-0.363319\pi\)
0.416322 + 0.909217i \(0.363319\pi\)
\(702\) 0 0
\(703\) 4.00000 6.92820i 0.150863 0.261302i
\(704\) 19.5959 + 33.9411i 0.738549 + 1.27920i
\(705\) 0 0
\(706\) −6.00000 10.3923i −0.225813 0.391120i
\(707\) −2.44949 12.7279i −0.0921225 0.478683i
\(708\) 0 0
\(709\) −49.0000 −1.84023 −0.920117 0.391644i \(-0.871906\pi\)
−0.920117 + 0.391644i \(0.871906\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 10.3923i −0.224860 0.389468i
\(713\) 8.57321 14.8492i 0.321069 0.556108i
\(714\) 0 0
\(715\) 24.0000 + 41.5692i 0.897549 + 1.55460i
\(716\) 4.89898 8.48528i 0.183083 0.317110i
\(717\) 0 0
\(718\) 24.0000 + 41.5692i 0.895672 + 1.55135i
\(719\) 9.79796 + 16.9706i 0.365402 + 0.632895i 0.988841 0.148977i \(-0.0475981\pi\)
−0.623438 + 0.781872i \(0.714265\pi\)
\(720\) 0 0
\(721\) −4.00000 + 3.46410i −0.148968 + 0.129010i
\(722\) 22.0454 38.1838i 0.820445 1.42105i
\(723\) 0 0
\(724\) −28.0000 −1.04061
\(725\) −7.34847 −0.272915
\(726\) 0 0
\(727\) 9.50000 16.4545i 0.352335 0.610263i −0.634323 0.773068i \(-0.718721\pi\)
0.986658 + 0.162805i \(0.0520543\pi\)
\(728\) 9.79796 + 50.9117i 0.363137 + 1.88691i
\(729\) 0 0
\(730\) 3.00000 + 5.19615i 0.111035 + 0.192318i
\(731\) −1.22474 2.12132i −0.0452988 0.0784599i
\(732\) 0 0
\(733\) −5.50000 + 9.52628i −0.203147 + 0.351861i −0.949541 0.313644i \(-0.898450\pi\)
0.746394 + 0.665505i \(0.231784\pi\)
\(734\) 15.9217 + 27.5772i 0.587680 + 1.01789i
\(735\) 0 0
\(736\) 0 0
\(737\) −4.89898 8.48528i −0.180456 0.312559i
\(738\) 0 0
\(739\) 9.50000 16.4545i 0.349463 0.605288i −0.636691 0.771119i \(-0.719697\pi\)
0.986154 + 0.165831i \(0.0530307\pi\)
\(740\) 78.3837 2.88144
\(741\) 0 0
\(742\) 12.0000 10.3923i 0.440534 0.381514i
\(743\) −3.67423 6.36396i −0.134795 0.233471i 0.790724 0.612172i \(-0.209704\pi\)
−0.925519 + 0.378701i \(0.876371\pi\)
\(744\) 0 0
\(745\) −3.00000 5.19615i −0.109911 0.190372i
\(746\) −13.4722 + 23.3345i −0.493252 + 0.854338i
\(747\) 0 0
\(748\) −48.0000 −1.75505
\(749\) 9.79796 + 50.9117i 0.358010 + 1.86027i
\(750\) 0 0
\(751\) 21.5000 37.2391i 0.784546 1.35887i −0.144724 0.989472i \(-0.546229\pi\)
0.929270 0.369402i \(-0.120437\pi\)
\(752\) 9.79796 0.357295
\(753\) 0 0
\(754\) 72.0000 2.62209
\(755\) 12.2474 0.445730
\(756\) 0 0
\(757\) 47.0000 1.70824 0.854122 0.520073i \(-0.174095\pi\)
0.854122 + 0.520073i \(0.174095\pi\)
\(758\) −83.2827 −3.02496
\(759\) 0 0
\(760\) −12.0000 −0.435286
\(761\) 9.79796 16.9706i 0.355176 0.615182i −0.631972 0.774991i \(-0.717754\pi\)
0.987148 + 0.159809i \(0.0510877\pi\)
\(762\) 0 0
\(763\) 2.00000 1.73205i 0.0724049 0.0627044i
\(764\) 9.79796 0.354478
\(765\) 0 0
\(766\) 24.0000 41.5692i 0.867155 1.50196i
\(767\) −19.5959 33.9411i −0.707568 1.22554i
\(768\) 0 0
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) 73.4847 + 25.4558i 2.64820 + 0.917365i
\(771\) 0 0
\(772\) 80.0000 2.87926
\(773\) 23.2702 40.3051i 0.836969 1.44967i −0.0554478 0.998462i \(-0.517659\pi\)
0.892417 0.451212i \(-0.149008\pi\)
\(774\) 0 0
\(775\) 3.50000 + 6.06218i 0.125724 + 0.217760i
\(776\) 2.44949 4.24264i 0.0879316 0.152302i
\(777\) 0 0
\(778\) 21.0000 + 36.3731i 0.752886 + 1.30404i
\(779\) 3.67423 6.36396i 0.131643 0.228013i
\(780\) 0 0
\(781\) 0 0
\(782\) 7.34847 + 12.7279i 0.262781 + 0.455150i
\(783\) 0 0
\(784\) 22.0000 + 17.3205i 0.785714 + 0.618590i
\(785\) −24.4949 + 42.4264i −0.874260 + 1.51426i
\(786\) 0 0
\(787\) −7.00000 −0.249523 −0.124762 0.992187i \(-0.539817\pi\)
−0.124762 + 0.992187i \(0.539817\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 12.0000 20.7846i 0.426941 0.739483i
\(791\) 7.34847 + 38.1838i 0.261281 + 1.35766i
\(792\) 0 0
\(793\) 10.0000 + 17.3205i 0.355110 + 0.615069i
\(794\) −20.8207 36.0624i −0.738898 1.27981i
\(795\) 0 0
\(796\) 38.0000 65.8179i 1.34687 2.33285i
\(797\) 7.34847 + 12.7279i 0.260296 + 0.450846i 0.966321 0.257341i \(-0.0828465\pi\)
−0.706024 + 0.708187i \(0.749513\pi\)
\(798\) 0 0
\(799\) 3.00000 5.19615i 0.106132 0.183827i
\(800\) 0 0
\(801\) 0 0
\(802\) −30.0000 + 51.9615i −1.05934 + 1.83483i
\(803\) −4.89898 −0.172881
\(804\) 0 0
\(805\) −3.00000 15.5885i −0.105736 0.549421i
\(806\) −34.2929 59.3970i −1.20791 2.09217i
\(807\) 0 0
\(808\) −12.0000 20.7846i −0.422159 0.731200i
\(809\) 12.2474 21.2132i 0.430597 0.745817i −0.566327 0.824180i \(-0.691636\pi\)
0.996925 + 0.0783638i \(0.0249696\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 58.7878 50.9117i 2.06305 1.78665i
\(813\) 0 0
\(814\) −48.0000 + 83.1384i −1.68240 + 2.91400i
\(815\) −2.44949 −0.0858019
\(816\) 0 0
\(817\) 1.00000 0.0349856
\(818\) 48.9898 1.71289
\(819\) 0 0
\(820\) 72.0000 2.51435
\(821\) −19.5959 −0.683902 −0.341951 0.939718i \(-0.611088\pi\)
−0.341951 + 0.939718i \(0.611088\pi\)
\(822\) 0 0
\(823\) −25.0000 −0.871445 −0.435723 0.900081i \(-0.643507\pi\)
−0.435723 + 0.900081i \(0.643507\pi\)
\(824\) −4.89898 + 8.48528i −0.170664 + 0.295599i
\(825\) 0 0
\(826\) −60.0000 20.7846i −2.08767 0.723189i
\(827\) 44.0908 1.53319 0.766594 0.642132i \(-0.221950\pi\)
0.766594 + 0.642132i \(0.221950\pi\)
\(828\) 0 0
\(829\) 27.5000 47.6314i 0.955114 1.65431i 0.221009 0.975272i \(-0.429065\pi\)
0.734106 0.679035i \(-0.237602\pi\)
\(830\) −44.0908 76.3675i −1.53041 2.65076i
\(831\) 0 0
\(832\) −16.0000 27.7128i −0.554700 0.960769i
\(833\) 15.9217 6.36396i 0.551654 0.220498i
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 9.79796 16.9706i 0.338869 0.586939i
\(837\) 0 0
\(838\) −9.00000 15.5885i −0.310900 0.538494i
\(839\) −7.34847 + 12.7279i −0.253697 + 0.439417i −0.964541 0.263933i \(-0.914980\pi\)
0.710844 + 0.703350i \(0.248313\pi\)
\(840\) 0 0
\(841\) −12.5000 21.6506i −0.431034 0.746574i
\(842\) −42.8661 + 74.2462i −1.47726 + 2.55869i
\(843\) 0 0
\(844\) −10.0000 17.3205i −0.344214 0.596196i
\(845\) −3.67423 6.36396i −0.126398 0.218927i
\(846\) 0 0
\(847\) −26.0000 + 22.5167i −0.893371 + 0.773682i
\(848\) 4.89898 8.48528i 0.168232 0.291386i
\(849\) 0 0
\(850\) −6.00000 −0.205798
\(851\) 19.5959 0.671739
\(852\) 0 0
\(853\) 9.50000 16.4545i 0.325274 0.563391i −0.656294 0.754505i \(-0.727877\pi\)
0.981568 + 0.191115i \(0.0612102\pi\)
\(854\) 30.6186 + 10.6066i 1.04775 + 0.362950i
\(855\) 0 0
\(856\) 48.0000 + 83.1384i 1.64061 + 2.84161i
\(857\) 19.5959 + 33.9411i 0.669384 + 1.15941i 0.978077 + 0.208245i \(0.0667751\pi\)
−0.308693 + 0.951162i \(0.599892\pi\)
\(858\) 0 0
\(859\) 12.5000 21.6506i 0.426494 0.738710i −0.570064 0.821600i \(-0.693082\pi\)
0.996559 + 0.0828900i \(0.0264150\pi\)
\(860\) 4.89898 + 8.48528i 0.167054 + 0.289346i
\(861\) 0 0
\(862\) −24.0000 + 41.5692i −0.817443 + 1.41585i
\(863\) −1.22474 2.12132i −0.0416908 0.0722106i 0.844427 0.535671i \(-0.179941\pi\)
−0.886118 + 0.463460i \(0.846608\pi\)
\(864\) 0 0
\(865\) −3.00000 + 5.19615i −0.102003 + 0.176674i
\(866\) −17.1464 −0.582659
\(867\) 0 0
\(868\) −70.0000 24.2487i −2.37595 0.823055i
\(869\) 9.79796 + 16.9706i 0.332373 + 0.575687i
\(870\) 0 0
\(871\) 4.00000 + 6.92820i 0.135535 + 0.234753i
\(872\) 2.44949 4.24264i 0.0829502 0.143674i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) −24.4949 8.48528i −0.828079 0.286855i
\(876\) 0 0
\(877\) −23.5000 + 40.7032i −0.793539 + 1.37445i 0.130224 + 0.991485i \(0.458430\pi\)
−0.923763 + 0.382965i \(0.874903\pi\)
\(878\) 34.2929 1.15733
\(879\) 0 0
\(880\) 48.0000 1.61808
\(881\) −22.0454 −0.742729 −0.371364 0.928487i \(-0.621110\pi\)
−0.371364 + 0.928487i \(0.621110\pi\)
\(882\) 0 0
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) 39.1918 1.31816
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) 9.79796 16.9706i 0.328983 0.569816i −0.653327 0.757076i \(-0.726627\pi\)
0.982310 + 0.187260i \(0.0599607\pi\)
\(888\) 0 0
\(889\) 27.5000 + 9.52628i 0.922320 + 0.319501i
\(890\) 14.6969 0.492642
\(891\) 0 0
\(892\) −52.0000 + 90.0666i −1.74109 + 3.01565i
\(893\) 1.22474 + 2.12132i 0.0409845 + 0.0709873i
\(894\) 0 0
\(895\) 3.00000 + 5.19615i 0.100279 + 0.173688i
\(896\) −48.9898 16.9706i −1.63663 0.566947i
\(897\) 0 0
\(898\) 54.0000 1.80200
\(899\) −25.7196 + 44.5477i −0.857798 + 1.48575i
\(900\) 0 0
\(901\) −3.00000 5.19615i −0.0999445 0.173109i
\(902\) −44.0908 + 76.3675i −1.46806 + 2.54276i
\(903\) 0 0
\(904\) 36.0000 + 62.3538i 1.19734 + 2.07386i
\(905\) 8.57321 14.8492i 0.284983 0.493606i
\(906\) 0 0
\(907\) −16.0000 27.7128i −0.531271 0.920189i −0.999334 0.0364935i \(-0.988381\pi\)
0.468063 0.883695i \(-0.344952\pi\)
\(908\) 34.2929 + 59.3970i 1.13805 + 1.97116i
\(909\) 0 0
\(910\) −60.0000 20.7846i −1.98898 0.689003i
\(911\) 3.67423 6.36396i 0.121733 0.210847i −0.798718 0.601705i \(-0.794488\pi\)
0.920451 + 0.390858i \(0.127822\pi\)
\(912\) 0 0
\(913\) 72.0000 2.38285
\(914\) 56.3383 1.86350
\(915\) 0 0
\(916\) 14.0000 24.2487i 0.462573 0.801200i
\(917\) −4.89898 + 4.24264i −0.161779 + 0.140104i
\(918\) 0 0
\(919\) 0.500000 + 0.866025i 0.0164935 + 0.0285675i 0.874154 0.485648i \(-0.161416\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) −14.6969 25.4558i −0.484544 0.839254i
\(921\) 0 0
\(922\) 36.0000 62.3538i 1.18560 2.05351i
\(923\) 0 0
\(924\) 0 0
\(925\) −4.00000 + 6.92820i −0.131519 + 0.227798i
\(926\) −28.1691 48.7904i −0.925695 1.60335i
\(927\) 0 0
\(928\) 0 0
\(929\) 46.5403 1.52694 0.763469 0.645845i \(-0.223495\pi\)
0.763469 + 0.645845i \(0.223495\pi\)
\(930\) 0 0
\(931\) −1.00000 + 6.92820i −0.0327737 + 0.227063i
\(932\) −4.89898 8.48528i −0.160471 0.277945i
\(933\) 0 0
\(934\) −30.0000 51.9615i −0.981630 1.70023i
\(935\) 14.6969 25.4558i 0.480641 0.832495i
\(936\) 0 0
\(937\) −16.0000 −0.522697 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(938\) 12.2474 + 4.24264i 0.399893 + 0.138527i
\(939\) 0 0
\(940\) −12.0000 + 20.7846i −0.391397 + 0.677919i
\(941\) −9.79796 −0.319404 −0.159702 0.987165i \(-0.551053\pi\)
−0.159702 + 0.987165i \(0.551053\pi\)
\(942\) 0 0
\(943\) 18.0000 0.586161
\(944\) −39.1918 −1.27559
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 46.5403 1.51236 0.756178 0.654366i \(-0.227064\pi\)
0.756178 + 0.654366i \(0.227064\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 1.22474 2.12132i 0.0397360 0.0688247i
\(951\) 0 0
\(952\) 24.0000 20.7846i 0.777844 0.673633i
\(953\) −22.0454 −0.714121 −0.357060 0.934081i \(-0.616221\pi\)
−0.357060 + 0.934081i \(0.616221\pi\)
\(954\) 0 0
\(955\) −3.00000 + 5.19615i −0.0970777 + 0.168144i
\(956\) −14.6969 25.4558i −0.475333 0.823301i
\(957\) 0 0
\(958\) −33.0000 57.1577i −1.06618 1.84668i
\(959\) 8.57321 + 44.5477i 0.276844 + 1.43852i
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 39.1918 67.8823i 1.26360 2.18861i
\(963\) 0 0
\(964\) 26.0000 + 45.0333i 0.837404 + 1.45043i
\(965\) −24.4949 + 42.4264i −0.788519 + 1.36575i
\(966\) 0 0
\(967\) 11.0000 + 19.0526i 0.353736 + 0.612689i 0.986901 0.161328i \(-0.0515777\pi\)
−0.633165 + 0.774017i \(0.718244\pi\)
\(968\) −31.8434 + 55.1543i −1.02348 + 1.77273i
\(969\) 0 0
\(970\) 3.00000 + 5.19615i 0.0963242 + 0.166838i
\(971\) 20.8207 + 36.0624i 0.668167 + 1.15730i 0.978416 + 0.206644i \(0.0662541\pi\)
−0.310249 + 0.950655i \(0.600413\pi\)
\(972\) 0 0
\(973\) −7.00000 36.3731i −0.224410 1.16607i
\(974\) 23.2702 40.3051i 0.745624 1.29146i
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) −9.79796 −0.313464 −0.156732 0.987641i \(-0.550096\pi\)
−0.156732 + 0.987641i \(0.550096\pi\)
\(978\) 0 0
\(979\) −6.00000 + 10.3923i −0.191761 + 0.332140i
\(980\) −63.6867 + 25.4558i −2.03440 + 0.813157i
\(981\) 0 0
\(982\) 18.0000 + 31.1769i 0.574403 + 0.994895i
\(983\) 19.5959 + 33.9411i 0.625013 + 1.08255i 0.988538 + 0.150970i \(0.0482396\pi\)
−0.363526 + 0.931584i \(0.618427\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −22.0454 38.1838i −0.702069 1.21602i
\(987\) 0 0
\(988\) −8.00000 + 13.8564i −0.254514 + 0.440831i
\(989\) 1.22474 + 2.12132i 0.0389446 + 0.0674541i
\(990\) 0 0
\(991\) 5.00000 8.66025i 0.158830 0.275102i −0.775617 0.631204i \(-0.782561\pi\)
0.934447 + 0.356102i \(0.115894\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 23.2702 + 40.3051i 0.737713 + 1.27776i
\(996\) 0 0
\(997\) −20.5000 35.5070i −0.649242 1.12452i −0.983304 0.181968i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(998\) 8.57321 14.8492i 0.271380 0.470045i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.h.g.298.2 4
3.2 odd 2 inner 567.2.h.g.298.1 4
7.2 even 3 567.2.g.g.541.1 4
9.2 odd 6 189.2.e.d.109.2 yes 4
9.4 even 3 567.2.g.g.109.1 4
9.5 odd 6 567.2.g.g.109.2 4
9.7 even 3 189.2.e.d.109.1 4
21.2 odd 6 567.2.g.g.541.2 4
63.2 odd 6 189.2.e.d.163.2 yes 4
63.11 odd 6 1323.2.a.v.1.1 2
63.16 even 3 189.2.e.d.163.1 yes 4
63.23 odd 6 inner 567.2.h.g.352.1 4
63.25 even 3 1323.2.a.v.1.2 2
63.38 even 6 1323.2.a.u.1.1 2
63.52 odd 6 1323.2.a.u.1.2 2
63.58 even 3 inner 567.2.h.g.352.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.d.109.1 4 9.7 even 3
189.2.e.d.109.2 yes 4 9.2 odd 6
189.2.e.d.163.1 yes 4 63.16 even 3
189.2.e.d.163.2 yes 4 63.2 odd 6
567.2.g.g.109.1 4 9.4 even 3
567.2.g.g.109.2 4 9.5 odd 6
567.2.g.g.541.1 4 7.2 even 3
567.2.g.g.541.2 4 21.2 odd 6
567.2.h.g.298.1 4 3.2 odd 2 inner
567.2.h.g.298.2 4 1.1 even 1 trivial
567.2.h.g.352.1 4 63.23 odd 6 inner
567.2.h.g.352.2 4 63.58 even 3 inner
1323.2.a.u.1.1 2 63.38 even 6
1323.2.a.u.1.2 2 63.52 odd 6
1323.2.a.v.1.1 2 63.11 odd 6
1323.2.a.v.1.2 2 63.25 even 3