Properties

Label 567.2.h.g.352.2
Level $567$
Weight $2$
Character 567.352
Analytic conductor $4.528$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(298,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 567.352
Dual form 567.2.h.g.298.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44949 q^{2} +4.00000 q^{4} +(-1.22474 - 2.12132i) q^{5} +(2.50000 - 0.866025i) q^{7} +4.89898 q^{8} +O(q^{10})\) \(q+2.44949 q^{2} +4.00000 q^{4} +(-1.22474 - 2.12132i) q^{5} +(2.50000 - 0.866025i) q^{7} +4.89898 q^{8} +(-3.00000 - 5.19615i) q^{10} +(-2.44949 + 4.24264i) q^{11} +(2.00000 - 3.46410i) q^{13} +(6.12372 - 2.12132i) q^{14} +4.00000 q^{16} +(1.22474 + 2.12132i) q^{17} +(0.500000 - 0.866025i) q^{19} +(-4.89898 - 8.48528i) q^{20} +(-6.00000 + 10.3923i) q^{22} +(-1.22474 - 2.12132i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(4.89898 - 8.48528i) q^{26} +(10.0000 - 3.46410i) q^{28} +(3.67423 + 6.36396i) q^{29} -7.00000 q^{31} +(3.00000 + 5.19615i) q^{34} +(-4.89898 - 4.24264i) q^{35} +(-4.00000 + 6.92820i) q^{37} +(1.22474 - 2.12132i) q^{38} +(-6.00000 - 10.3923i) q^{40} +(-3.67423 + 6.36396i) q^{41} +(0.500000 + 0.866025i) q^{43} +(-9.79796 + 16.9706i) q^{44} +(-3.00000 - 5.19615i) q^{46} +2.44949 q^{47} +(5.50000 - 4.33013i) q^{49} +(-1.22474 + 2.12132i) q^{50} +(8.00000 - 13.8564i) q^{52} +(1.22474 + 2.12132i) q^{53} +12.0000 q^{55} +(12.2474 - 4.24264i) q^{56} +(9.00000 + 15.5885i) q^{58} -9.79796 q^{59} +5.00000 q^{61} -17.1464 q^{62} -8.00000 q^{64} -9.79796 q^{65} +2.00000 q^{67} +(4.89898 + 8.48528i) q^{68} +(-12.0000 - 10.3923i) q^{70} +(0.500000 + 0.866025i) q^{73} +(-9.79796 + 16.9706i) q^{74} +(2.00000 - 3.46410i) q^{76} +(-2.44949 + 12.7279i) q^{77} -4.00000 q^{79} +(-4.89898 - 8.48528i) q^{80} +(-9.00000 + 15.5885i) q^{82} +(-7.34847 - 12.7279i) q^{83} +(3.00000 - 5.19615i) q^{85} +(1.22474 + 2.12132i) q^{86} +(-12.0000 + 20.7846i) q^{88} +(-1.22474 + 2.12132i) q^{89} +(2.00000 - 10.3923i) q^{91} +(-4.89898 - 8.48528i) q^{92} +6.00000 q^{94} -2.44949 q^{95} +(0.500000 + 0.866025i) q^{97} +(13.4722 - 10.6066i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 10 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 16 q^{4} + 10 q^{7} - 12 q^{10} + 8 q^{13} + 16 q^{16} + 2 q^{19} - 24 q^{22} - 2 q^{25} + 40 q^{28} - 28 q^{31} + 12 q^{34} - 16 q^{37} - 24 q^{40} + 2 q^{43} - 12 q^{46} + 22 q^{49} + 32 q^{52} + 48 q^{55} + 36 q^{58} + 20 q^{61} - 32 q^{64} + 8 q^{67} - 48 q^{70} + 2 q^{73} + 8 q^{76} - 16 q^{79} - 36 q^{82} + 12 q^{85} - 48 q^{88} + 8 q^{91} + 24 q^{94} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44949 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 4.00000 2.00000
\(5\) −1.22474 2.12132i −0.547723 0.948683i −0.998430 0.0560116i \(-0.982162\pi\)
0.450708 0.892672i \(-0.351172\pi\)
\(6\) 0 0
\(7\) 2.50000 0.866025i 0.944911 0.327327i
\(8\) 4.89898 1.73205
\(9\) 0 0
\(10\) −3.00000 5.19615i −0.948683 1.64317i
\(11\) −2.44949 + 4.24264i −0.738549 + 1.27920i 0.214600 + 0.976702i \(0.431155\pi\)
−0.953149 + 0.302502i \(0.902178\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 6.12372 2.12132i 1.63663 0.566947i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 1.22474 + 2.12132i 0.297044 + 0.514496i 0.975458 0.220184i \(-0.0706658\pi\)
−0.678414 + 0.734680i \(0.737332\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) −4.89898 8.48528i −1.09545 1.89737i
\(21\) 0 0
\(22\) −6.00000 + 10.3923i −1.27920 + 2.21565i
\(23\) −1.22474 2.12132i −0.255377 0.442326i 0.709621 0.704584i \(-0.248866\pi\)
−0.964998 + 0.262258i \(0.915533\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 4.89898 8.48528i 0.960769 1.66410i
\(27\) 0 0
\(28\) 10.0000 3.46410i 1.88982 0.654654i
\(29\) 3.67423 + 6.36396i 0.682288 + 1.18176i 0.974281 + 0.225337i \(0.0723484\pi\)
−0.291993 + 0.956421i \(0.594318\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 3.00000 + 5.19615i 0.514496 + 0.891133i
\(35\) −4.89898 4.24264i −0.828079 0.717137i
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 1.22474 2.12132i 0.198680 0.344124i
\(39\) 0 0
\(40\) −6.00000 10.3923i −0.948683 1.64317i
\(41\) −3.67423 + 6.36396i −0.573819 + 0.993884i 0.422350 + 0.906433i \(0.361205\pi\)
−0.996169 + 0.0874508i \(0.972128\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) −9.79796 + 16.9706i −1.47710 + 2.55841i
\(45\) 0 0
\(46\) −3.00000 5.19615i −0.442326 0.766131i
\(47\) 2.44949 0.357295 0.178647 0.983913i \(-0.442828\pi\)
0.178647 + 0.983913i \(0.442828\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) −1.22474 + 2.12132i −0.173205 + 0.300000i
\(51\) 0 0
\(52\) 8.00000 13.8564i 1.10940 1.92154i
\(53\) 1.22474 + 2.12132i 0.168232 + 0.291386i 0.937798 0.347181i \(-0.112861\pi\)
−0.769567 + 0.638567i \(0.779528\pi\)
\(54\) 0 0
\(55\) 12.0000 1.61808
\(56\) 12.2474 4.24264i 1.63663 0.566947i
\(57\) 0 0
\(58\) 9.00000 + 15.5885i 1.18176 + 2.04686i
\(59\) −9.79796 −1.27559 −0.637793 0.770208i \(-0.720152\pi\)
−0.637793 + 0.770208i \(0.720152\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) −17.1464 −2.17760
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −9.79796 −1.21529
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 4.89898 + 8.48528i 0.594089 + 1.02899i
\(69\) 0 0
\(70\) −12.0000 10.3923i −1.43427 1.24212i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0.500000 + 0.866025i 0.0585206 + 0.101361i 0.893801 0.448463i \(-0.148028\pi\)
−0.835281 + 0.549823i \(0.814695\pi\)
\(74\) −9.79796 + 16.9706i −1.13899 + 1.97279i
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) −2.44949 + 12.7279i −0.279145 + 1.45048i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −4.89898 8.48528i −0.547723 0.948683i
\(81\) 0 0
\(82\) −9.00000 + 15.5885i −0.993884 + 1.72146i
\(83\) −7.34847 12.7279i −0.806599 1.39707i −0.915206 0.402986i \(-0.867972\pi\)
0.108607 0.994085i \(-0.465361\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 1.22474 + 2.12132i 0.132068 + 0.228748i
\(87\) 0 0
\(88\) −12.0000 + 20.7846i −1.27920 + 2.21565i
\(89\) −1.22474 + 2.12132i −0.129823 + 0.224860i −0.923608 0.383339i \(-0.874774\pi\)
0.793785 + 0.608198i \(0.208107\pi\)
\(90\) 0 0
\(91\) 2.00000 10.3923i 0.209657 1.08941i
\(92\) −4.89898 8.48528i −0.510754 0.884652i
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) −2.44949 −0.251312
\(96\) 0 0
\(97\) 0.500000 + 0.866025i 0.0507673 + 0.0879316i 0.890292 0.455389i \(-0.150500\pi\)
−0.839525 + 0.543321i \(0.817167\pi\)
\(98\) 13.4722 10.6066i 1.36090 1.07143i
\(99\) 0 0
\(100\) −2.00000 + 3.46410i −0.200000 + 0.346410i
\(101\) −2.44949 + 4.24264i −0.243733 + 0.422159i −0.961775 0.273842i \(-0.911706\pi\)
0.718041 + 0.696000i \(0.245039\pi\)
\(102\) 0 0
\(103\) −1.00000 1.73205i −0.0985329 0.170664i 0.812545 0.582899i \(-0.198082\pi\)
−0.911078 + 0.412235i \(0.864748\pi\)
\(104\) 9.79796 16.9706i 0.960769 1.66410i
\(105\) 0 0
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) 9.79796 16.9706i 0.947204 1.64061i 0.195928 0.980618i \(-0.437228\pi\)
0.751276 0.659988i \(-0.229439\pi\)
\(108\) 0 0
\(109\) 0.500000 + 0.866025i 0.0478913 + 0.0829502i 0.888977 0.457951i \(-0.151417\pi\)
−0.841086 + 0.540901i \(0.818083\pi\)
\(110\) 29.3939 2.80260
\(111\) 0 0
\(112\) 10.0000 3.46410i 0.944911 0.327327i
\(113\) 7.34847 12.7279i 0.691286 1.19734i −0.280131 0.959962i \(-0.590378\pi\)
0.971417 0.237380i \(-0.0762888\pi\)
\(114\) 0 0
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) 14.6969 + 25.4558i 1.36458 + 2.36352i
\(117\) 0 0
\(118\) −24.0000 −2.20938
\(119\) 4.89898 + 4.24264i 0.449089 + 0.388922i
\(120\) 0 0
\(121\) −6.50000 11.2583i −0.590909 1.02348i
\(122\) 12.2474 1.10883
\(123\) 0 0
\(124\) −28.0000 −2.51447
\(125\) −9.79796 −0.876356
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) −19.5959 −1.73205
\(129\) 0 0
\(130\) −24.0000 −2.10494
\(131\) −1.22474 2.12132i −0.107006 0.185341i 0.807550 0.589799i \(-0.200793\pi\)
−0.914556 + 0.404459i \(0.867460\pi\)
\(132\) 0 0
\(133\) 0.500000 2.59808i 0.0433555 0.225282i
\(134\) 4.89898 0.423207
\(135\) 0 0
\(136\) 6.00000 + 10.3923i 0.514496 + 0.891133i
\(137\) 8.57321 14.8492i 0.732459 1.26866i −0.223370 0.974734i \(-0.571706\pi\)
0.955829 0.293923i \(-0.0949608\pi\)
\(138\) 0 0
\(139\) −7.00000 + 12.1244i −0.593732 + 1.02837i 0.399992 + 0.916519i \(0.369013\pi\)
−0.993724 + 0.111856i \(0.964321\pi\)
\(140\) −19.5959 16.9706i −1.65616 1.43427i
\(141\) 0 0
\(142\) 0 0
\(143\) 9.79796 + 16.9706i 0.819346 + 1.41915i
\(144\) 0 0
\(145\) 9.00000 15.5885i 0.747409 1.29455i
\(146\) 1.22474 + 2.12132i 0.101361 + 0.175562i
\(147\) 0 0
\(148\) −16.0000 + 27.7128i −1.31519 + 2.27798i
\(149\) −1.22474 2.12132i −0.100335 0.173785i 0.811488 0.584370i \(-0.198658\pi\)
−0.911823 + 0.410584i \(0.865325\pi\)
\(150\) 0 0
\(151\) −2.50000 + 4.33013i −0.203447 + 0.352381i −0.949637 0.313353i \(-0.898548\pi\)
0.746190 + 0.665733i \(0.231881\pi\)
\(152\) 2.44949 4.24264i 0.198680 0.344124i
\(153\) 0 0
\(154\) −6.00000 + 31.1769i −0.483494 + 2.51231i
\(155\) 8.57321 + 14.8492i 0.688617 + 1.19272i
\(156\) 0 0
\(157\) 20.0000 1.59617 0.798087 0.602542i \(-0.205846\pi\)
0.798087 + 0.602542i \(0.205846\pi\)
\(158\) −9.79796 −0.779484
\(159\) 0 0
\(160\) 0 0
\(161\) −4.89898 4.24264i −0.386094 0.334367i
\(162\) 0 0
\(163\) 0.500000 0.866025i 0.0391630 0.0678323i −0.845780 0.533533i \(-0.820864\pi\)
0.884943 + 0.465700i \(0.154198\pi\)
\(164\) −14.6969 + 25.4558i −1.14764 + 1.98777i
\(165\) 0 0
\(166\) −18.0000 31.1769i −1.39707 2.41980i
\(167\) 7.34847 12.7279i 0.568642 0.984916i −0.428059 0.903751i \(-0.640802\pi\)
0.996701 0.0811654i \(-0.0258642\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 7.34847 12.7279i 0.563602 0.976187i
\(171\) 0 0
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) 2.44949 0.186231 0.0931156 0.995655i \(-0.470317\pi\)
0.0931156 + 0.995655i \(0.470317\pi\)
\(174\) 0 0
\(175\) −0.500000 + 2.59808i −0.0377964 + 0.196396i
\(176\) −9.79796 + 16.9706i −0.738549 + 1.27920i
\(177\) 0 0
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) 1.22474 + 2.12132i 0.0915417 + 0.158555i 0.908160 0.418623i \(-0.137487\pi\)
−0.816618 + 0.577178i \(0.804154\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 4.89898 25.4558i 0.363137 1.88691i
\(183\) 0 0
\(184\) −6.00000 10.3923i −0.442326 0.766131i
\(185\) 19.5959 1.44072
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 9.79796 0.714590
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 2.44949 0.177239 0.0886194 0.996066i \(-0.471755\pi\)
0.0886194 + 0.996066i \(0.471755\pi\)
\(192\) 0 0
\(193\) 20.0000 1.43963 0.719816 0.694165i \(-0.244226\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(194\) 1.22474 + 2.12132i 0.0879316 + 0.152302i
\(195\) 0 0
\(196\) 22.0000 17.3205i 1.57143 1.23718i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 9.50000 + 16.4545i 0.673437 + 1.16643i 0.976923 + 0.213591i \(0.0685161\pi\)
−0.303486 + 0.952836i \(0.598151\pi\)
\(200\) −2.44949 + 4.24264i −0.173205 + 0.300000i
\(201\) 0 0
\(202\) −6.00000 + 10.3923i −0.422159 + 0.731200i
\(203\) 14.6969 + 12.7279i 1.03152 + 0.893325i
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) −2.44949 4.24264i −0.170664 0.295599i
\(207\) 0 0
\(208\) 8.00000 13.8564i 0.554700 0.960769i
\(209\) 2.44949 + 4.24264i 0.169435 + 0.293470i
\(210\) 0 0
\(211\) −2.50000 + 4.33013i −0.172107 + 0.298098i −0.939156 0.343490i \(-0.888391\pi\)
0.767049 + 0.641588i \(0.221724\pi\)
\(212\) 4.89898 + 8.48528i 0.336463 + 0.582772i
\(213\) 0 0
\(214\) 24.0000 41.5692i 1.64061 2.84161i
\(215\) 1.22474 2.12132i 0.0835269 0.144673i
\(216\) 0 0
\(217\) −17.5000 + 6.06218i −1.18798 + 0.411527i
\(218\) 1.22474 + 2.12132i 0.0829502 + 0.143674i
\(219\) 0 0
\(220\) 48.0000 3.23616
\(221\) 9.79796 0.659082
\(222\) 0 0
\(223\) −13.0000 22.5167i −0.870544 1.50783i −0.861435 0.507869i \(-0.830434\pi\)
−0.00910984 0.999959i \(-0.502900\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 18.0000 31.1769i 1.19734 2.07386i
\(227\) 8.57321 14.8492i 0.569024 0.985579i −0.427639 0.903950i \(-0.640654\pi\)
0.996663 0.0816290i \(-0.0260123\pi\)
\(228\) 0 0
\(229\) 3.50000 + 6.06218i 0.231287 + 0.400600i 0.958187 0.286143i \(-0.0923732\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) −7.34847 + 12.7279i −0.484544 + 0.839254i
\(231\) 0 0
\(232\) 18.0000 + 31.1769i 1.18176 + 2.04686i
\(233\) −1.22474 + 2.12132i −0.0802357 + 0.138972i −0.903351 0.428902i \(-0.858901\pi\)
0.823115 + 0.567874i \(0.192234\pi\)
\(234\) 0 0
\(235\) −3.00000 5.19615i −0.195698 0.338960i
\(236\) −39.1918 −2.55117
\(237\) 0 0
\(238\) 12.0000 + 10.3923i 0.777844 + 0.673633i
\(239\) −3.67423 + 6.36396i −0.237666 + 0.411650i −0.960044 0.279848i \(-0.909716\pi\)
0.722378 + 0.691499i \(0.243049\pi\)
\(240\) 0 0
\(241\) 6.50000 11.2583i 0.418702 0.725213i −0.577107 0.816668i \(-0.695819\pi\)
0.995809 + 0.0914555i \(0.0291519\pi\)
\(242\) −15.9217 27.5772i −1.02348 1.77273i
\(243\) 0 0
\(244\) 20.0000 1.28037
\(245\) −15.9217 6.36396i −1.01720 0.406579i
\(246\) 0 0
\(247\) −2.00000 3.46410i −0.127257 0.220416i
\(248\) −34.2929 −2.17760
\(249\) 0 0
\(250\) −24.0000 −1.51789
\(251\) −22.0454 −1.39149 −0.695747 0.718287i \(-0.744926\pi\)
−0.695747 + 0.718287i \(0.744926\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 26.9444 1.69064
\(255\) 0 0
\(256\) −32.0000 −2.00000
\(257\) −12.2474 21.2132i −0.763975 1.32324i −0.940787 0.338999i \(-0.889912\pi\)
0.176812 0.984245i \(-0.443422\pi\)
\(258\) 0 0
\(259\) −4.00000 + 20.7846i −0.248548 + 1.29149i
\(260\) −39.1918 −2.43057
\(261\) 0 0
\(262\) −3.00000 5.19615i −0.185341 0.321019i
\(263\) −2.44949 + 4.24264i −0.151042 + 0.261612i −0.931611 0.363457i \(-0.881596\pi\)
0.780569 + 0.625070i \(0.214930\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) 1.22474 6.36396i 0.0750939 0.390199i
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) 12.2474 + 21.2132i 0.746740 + 1.29339i 0.949377 + 0.314138i \(0.101715\pi\)
−0.202637 + 0.979254i \(0.564951\pi\)
\(270\) 0 0
\(271\) 0.500000 0.866025i 0.0303728 0.0526073i −0.850439 0.526073i \(-0.823664\pi\)
0.880812 + 0.473466i \(0.156997\pi\)
\(272\) 4.89898 + 8.48528i 0.297044 + 0.514496i
\(273\) 0 0
\(274\) 21.0000 36.3731i 1.26866 2.19738i
\(275\) −2.44949 4.24264i −0.147710 0.255841i
\(276\) 0 0
\(277\) −11.5000 + 19.9186i −0.690968 + 1.19679i 0.280553 + 0.959839i \(0.409482\pi\)
−0.971521 + 0.236953i \(0.923851\pi\)
\(278\) −17.1464 + 29.6985i −1.02837 + 1.78120i
\(279\) 0 0
\(280\) −24.0000 20.7846i −1.43427 1.24212i
\(281\) −7.34847 12.7279i −0.438373 0.759284i 0.559191 0.829039i \(-0.311112\pi\)
−0.997564 + 0.0697545i \(0.977778\pi\)
\(282\) 0 0
\(283\) −25.0000 −1.48610 −0.743048 0.669238i \(-0.766621\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 24.0000 + 41.5692i 1.41915 + 2.45804i
\(287\) −3.67423 + 19.0919i −0.216883 + 1.12696i
\(288\) 0 0
\(289\) 5.50000 9.52628i 0.323529 0.560369i
\(290\) 22.0454 38.1838i 1.29455 2.24223i
\(291\) 0 0
\(292\) 2.00000 + 3.46410i 0.117041 + 0.202721i
\(293\) −14.6969 + 25.4558i −0.858604 + 1.48715i 0.0146561 + 0.999893i \(0.495335\pi\)
−0.873260 + 0.487254i \(0.837999\pi\)
\(294\) 0 0
\(295\) 12.0000 + 20.7846i 0.698667 + 1.21013i
\(296\) −19.5959 + 33.9411i −1.13899 + 1.97279i
\(297\) 0 0
\(298\) −3.00000 5.19615i −0.173785 0.301005i
\(299\) −9.79796 −0.566631
\(300\) 0 0
\(301\) 2.00000 + 1.73205i 0.115278 + 0.0998337i
\(302\) −6.12372 + 10.6066i −0.352381 + 0.610341i
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) −6.12372 10.6066i −0.350643 0.607332i
\(306\) 0 0
\(307\) −25.0000 −1.42683 −0.713413 0.700744i \(-0.752851\pi\)
−0.713413 + 0.700744i \(0.752851\pi\)
\(308\) −9.79796 + 50.9117i −0.558291 + 2.90096i
\(309\) 0 0
\(310\) 21.0000 + 36.3731i 1.19272 + 2.06585i
\(311\) 34.2929 1.94457 0.972285 0.233800i \(-0.0751161\pi\)
0.972285 + 0.233800i \(0.0751161\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) 48.9898 2.76465
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) 24.4949 1.37577 0.687885 0.725819i \(-0.258539\pi\)
0.687885 + 0.725819i \(0.258539\pi\)
\(318\) 0 0
\(319\) −36.0000 −2.01561
\(320\) 9.79796 + 16.9706i 0.547723 + 0.948683i
\(321\) 0 0
\(322\) −12.0000 10.3923i −0.668734 0.579141i
\(323\) 2.44949 0.136293
\(324\) 0 0
\(325\) 2.00000 + 3.46410i 0.110940 + 0.192154i
\(326\) 1.22474 2.12132i 0.0678323 0.117489i
\(327\) 0 0
\(328\) −18.0000 + 31.1769i −0.993884 + 1.72146i
\(329\) 6.12372 2.12132i 0.337612 0.116952i
\(330\) 0 0
\(331\) −13.0000 −0.714545 −0.357272 0.934000i \(-0.616293\pi\)
−0.357272 + 0.934000i \(0.616293\pi\)
\(332\) −29.3939 50.9117i −1.61320 2.79414i
\(333\) 0 0
\(334\) 18.0000 31.1769i 0.984916 1.70592i
\(335\) −2.44949 4.24264i −0.133830 0.231800i
\(336\) 0 0
\(337\) −2.50000 + 4.33013i −0.136184 + 0.235877i −0.926049 0.377403i \(-0.876817\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) −3.67423 6.36396i −0.199852 0.346154i
\(339\) 0 0
\(340\) 12.0000 20.7846i 0.650791 1.12720i
\(341\) 17.1464 29.6985i 0.928531 1.60826i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 2.44949 + 4.24264i 0.132068 + 0.228748i
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −9.79796 −0.525982 −0.262991 0.964798i \(-0.584709\pi\)
−0.262991 + 0.964798i \(0.584709\pi\)
\(348\) 0 0
\(349\) −17.5000 30.3109i −0.936754 1.62250i −0.771477 0.636257i \(-0.780482\pi\)
−0.165277 0.986247i \(-0.552852\pi\)
\(350\) −1.22474 + 6.36396i −0.0654654 + 0.340168i
\(351\) 0 0
\(352\) 0 0
\(353\) −2.44949 + 4.24264i −0.130373 + 0.225813i −0.923820 0.382826i \(-0.874951\pi\)
0.793447 + 0.608639i \(0.208284\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.89898 + 8.48528i −0.259645 + 0.449719i
\(357\) 0 0
\(358\) 3.00000 + 5.19615i 0.158555 + 0.274625i
\(359\) 9.79796 16.9706i 0.517116 0.895672i −0.482686 0.875794i \(-0.660339\pi\)
0.999802 0.0198785i \(-0.00632794\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −17.1464 −0.901196
\(363\) 0 0
\(364\) 8.00000 41.5692i 0.419314 2.17882i
\(365\) 1.22474 2.12132i 0.0641061 0.111035i
\(366\) 0 0
\(367\) 6.50000 11.2583i 0.339297 0.587680i −0.645003 0.764180i \(-0.723144\pi\)
0.984301 + 0.176500i \(0.0564774\pi\)
\(368\) −4.89898 8.48528i −0.255377 0.442326i
\(369\) 0 0
\(370\) 48.0000 2.49540
\(371\) 4.89898 + 4.24264i 0.254342 + 0.220267i
\(372\) 0 0
\(373\) −5.50000 9.52628i −0.284779 0.493252i 0.687776 0.725923i \(-0.258587\pi\)
−0.972556 + 0.232671i \(0.925254\pi\)
\(374\) −29.3939 −1.51992
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 29.3939 1.51386
\(378\) 0 0
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) −9.79796 −0.502625
\(381\) 0 0
\(382\) 6.00000 0.306987
\(383\) 9.79796 + 16.9706i 0.500652 + 0.867155i 1.00000 0.000753393i \(0.000239813\pi\)
−0.499347 + 0.866402i \(0.666427\pi\)
\(384\) 0 0
\(385\) 30.0000 10.3923i 1.52894 0.529641i
\(386\) 48.9898 2.49351
\(387\) 0 0
\(388\) 2.00000 + 3.46410i 0.101535 + 0.175863i
\(389\) 8.57321 14.8492i 0.434679 0.752886i −0.562590 0.826736i \(-0.690195\pi\)
0.997269 + 0.0738494i \(0.0235284\pi\)
\(390\) 0 0
\(391\) 3.00000 5.19615i 0.151717 0.262781i
\(392\) 26.9444 21.2132i 1.36090 1.07143i
\(393\) 0 0
\(394\) 0 0
\(395\) 4.89898 + 8.48528i 0.246494 + 0.426941i
\(396\) 0 0
\(397\) −8.50000 + 14.7224i −0.426603 + 0.738898i −0.996569 0.0827707i \(-0.973623\pi\)
0.569966 + 0.821668i \(0.306956\pi\)
\(398\) 23.2702 + 40.3051i 1.16643 + 2.02031i
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −12.2474 21.2132i −0.611608 1.05934i −0.990969 0.134088i \(-0.957189\pi\)
0.379361 0.925249i \(-0.376144\pi\)
\(402\) 0 0
\(403\) −14.0000 + 24.2487i −0.697390 + 1.20791i
\(404\) −9.79796 + 16.9706i −0.487467 + 0.844317i
\(405\) 0 0
\(406\) 36.0000 + 31.1769i 1.78665 + 1.54728i
\(407\) −19.5959 33.9411i −0.971334 1.68240i
\(408\) 0 0
\(409\) 20.0000 0.988936 0.494468 0.869196i \(-0.335363\pi\)
0.494468 + 0.869196i \(0.335363\pi\)
\(410\) 44.0908 2.17749
\(411\) 0 0
\(412\) −4.00000 6.92820i −0.197066 0.341328i
\(413\) −24.4949 + 8.48528i −1.20532 + 0.417533i
\(414\) 0 0
\(415\) −18.0000 + 31.1769i −0.883585 + 1.53041i
\(416\) 0 0
\(417\) 0 0
\(418\) 6.00000 + 10.3923i 0.293470 + 0.508304i
\(419\) −3.67423 + 6.36396i −0.179498 + 0.310900i −0.941709 0.336429i \(-0.890781\pi\)
0.762211 + 0.647329i \(0.224114\pi\)
\(420\) 0 0
\(421\) −17.5000 30.3109i −0.852898 1.47726i −0.878582 0.477592i \(-0.841510\pi\)
0.0256838 0.999670i \(-0.491824\pi\)
\(422\) −6.12372 + 10.6066i −0.298098 + 0.516321i
\(423\) 0 0
\(424\) 6.00000 + 10.3923i 0.291386 + 0.504695i
\(425\) −2.44949 −0.118818
\(426\) 0 0
\(427\) 12.5000 4.33013i 0.604917 0.209550i
\(428\) 39.1918 67.8823i 1.89441 3.28121i
\(429\) 0 0
\(430\) 3.00000 5.19615i 0.144673 0.250581i
\(431\) −9.79796 16.9706i −0.471951 0.817443i 0.527534 0.849534i \(-0.323117\pi\)
−0.999485 + 0.0320907i \(0.989783\pi\)
\(432\) 0 0
\(433\) −7.00000 −0.336399 −0.168199 0.985753i \(-0.553795\pi\)
−0.168199 + 0.985753i \(0.553795\pi\)
\(434\) −42.8661 + 14.8492i −2.05764 + 0.712786i
\(435\) 0 0
\(436\) 2.00000 + 3.46410i 0.0957826 + 0.165900i
\(437\) −2.44949 −0.117175
\(438\) 0 0
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 58.7878 2.80260
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) 2.44949 0.116379 0.0581894 0.998306i \(-0.481467\pi\)
0.0581894 + 0.998306i \(0.481467\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) −31.8434 55.1543i −1.50783 2.61163i
\(447\) 0 0
\(448\) −20.0000 + 6.92820i −0.944911 + 0.327327i
\(449\) 22.0454 1.04039 0.520194 0.854048i \(-0.325860\pi\)
0.520194 + 0.854048i \(0.325860\pi\)
\(450\) 0 0
\(451\) −18.0000 31.1769i −0.847587 1.46806i
\(452\) 29.3939 50.9117i 1.38257 2.39468i
\(453\) 0 0
\(454\) 21.0000 36.3731i 0.985579 1.70707i
\(455\) −24.4949 + 8.48528i −1.14834 + 0.397796i
\(456\) 0 0
\(457\) 23.0000 1.07589 0.537947 0.842978i \(-0.319200\pi\)
0.537947 + 0.842978i \(0.319200\pi\)
\(458\) 8.57321 + 14.8492i 0.400600 + 0.693860i
\(459\) 0 0
\(460\) −12.0000 + 20.7846i −0.559503 + 0.969087i
\(461\) 14.6969 + 25.4558i 0.684505 + 1.18560i 0.973592 + 0.228294i \(0.0733148\pi\)
−0.289088 + 0.957303i \(0.593352\pi\)
\(462\) 0 0
\(463\) −11.5000 + 19.9186i −0.534450 + 0.925695i 0.464739 + 0.885448i \(0.346148\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 14.6969 + 25.4558i 0.682288 + 1.18176i
\(465\) 0 0
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) −12.2474 + 21.2132i −0.566744 + 0.981630i 0.430141 + 0.902762i \(0.358464\pi\)
−0.996885 + 0.0788681i \(0.974869\pi\)
\(468\) 0 0
\(469\) 5.00000 1.73205i 0.230879 0.0799787i
\(470\) −7.34847 12.7279i −0.338960 0.587095i
\(471\) 0 0
\(472\) −48.0000 −2.20938
\(473\) −4.89898 −0.225255
\(474\) 0 0
\(475\) 0.500000 + 0.866025i 0.0229416 + 0.0397360i
\(476\) 19.5959 + 16.9706i 0.898177 + 0.777844i
\(477\) 0 0
\(478\) −9.00000 + 15.5885i −0.411650 + 0.712999i
\(479\) −13.4722 + 23.3345i −0.615560 + 1.06618i 0.374726 + 0.927136i \(0.377737\pi\)
−0.990286 + 0.139046i \(0.955596\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) 15.9217 27.5772i 0.725213 1.25611i
\(483\) 0 0
\(484\) −26.0000 45.0333i −1.18182 2.04697i
\(485\) 1.22474 2.12132i 0.0556128 0.0963242i
\(486\) 0 0
\(487\) 9.50000 + 16.4545i 0.430486 + 0.745624i 0.996915 0.0784867i \(-0.0250088\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) 24.4949 1.10883
\(489\) 0 0
\(490\) −39.0000 15.5885i −1.76184 0.704215i
\(491\) 7.34847 12.7279i 0.331632 0.574403i −0.651200 0.758906i \(-0.725734\pi\)
0.982832 + 0.184503i \(0.0590675\pi\)
\(492\) 0 0
\(493\) −9.00000 + 15.5885i −0.405340 + 0.702069i
\(494\) −4.89898 8.48528i −0.220416 0.381771i
\(495\) 0 0
\(496\) −28.0000 −1.25724
\(497\) 0 0
\(498\) 0 0
\(499\) 3.50000 + 6.06218i 0.156682 + 0.271380i 0.933670 0.358134i \(-0.116587\pi\)
−0.776989 + 0.629515i \(0.783254\pi\)
\(500\) −39.1918 −1.75271
\(501\) 0 0
\(502\) −54.0000 −2.41014
\(503\) −22.0454 −0.982956 −0.491478 0.870890i \(-0.663543\pi\)
−0.491478 + 0.870890i \(0.663543\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 29.3939 1.30672
\(507\) 0 0
\(508\) 44.0000 1.95218
\(509\) 9.79796 + 16.9706i 0.434287 + 0.752207i 0.997237 0.0742838i \(-0.0236671\pi\)
−0.562950 + 0.826491i \(0.690334\pi\)
\(510\) 0 0
\(511\) 2.00000 + 1.73205i 0.0884748 + 0.0766214i
\(512\) −39.1918 −1.73205
\(513\) 0 0
\(514\) −30.0000 51.9615i −1.32324 2.29192i
\(515\) −2.44949 + 4.24264i −0.107937 + 0.186953i
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) −9.79796 + 50.9117i −0.430498 + 2.23693i
\(519\) 0 0
\(520\) −48.0000 −2.10494
\(521\) −9.79796 16.9706i −0.429256 0.743494i 0.567551 0.823338i \(-0.307891\pi\)
−0.996807 + 0.0798444i \(0.974558\pi\)
\(522\) 0 0
\(523\) −4.00000 + 6.92820i −0.174908 + 0.302949i −0.940129 0.340818i \(-0.889296\pi\)
0.765222 + 0.643767i \(0.222629\pi\)
\(524\) −4.89898 8.48528i −0.214013 0.370681i
\(525\) 0 0
\(526\) −6.00000 + 10.3923i −0.261612 + 0.453126i
\(527\) −8.57321 14.8492i −0.373455 0.646843i
\(528\) 0 0
\(529\) 8.50000 14.7224i 0.369565 0.640106i
\(530\) 7.34847 12.7279i 0.319197 0.552866i
\(531\) 0 0
\(532\) 2.00000 10.3923i 0.0867110 0.450564i
\(533\) 14.6969 + 25.4558i 0.636595 + 1.10262i
\(534\) 0 0
\(535\) −48.0000 −2.07522
\(536\) 9.79796 0.423207
\(537\) 0 0
\(538\) 30.0000 + 51.9615i 1.29339 + 2.24022i
\(539\) 4.89898 + 33.9411i 0.211014 + 1.46195i
\(540\) 0 0
\(541\) −17.5000 + 30.3109i −0.752384 + 1.30317i 0.194281 + 0.980946i \(0.437763\pi\)
−0.946664 + 0.322221i \(0.895571\pi\)
\(542\) 1.22474 2.12132i 0.0526073 0.0911185i
\(543\) 0 0
\(544\) 0 0
\(545\) 1.22474 2.12132i 0.0524623 0.0908674i
\(546\) 0 0
\(547\) 18.5000 + 32.0429i 0.791003 + 1.37006i 0.925347 + 0.379122i \(0.123774\pi\)
−0.134344 + 0.990935i \(0.542893\pi\)
\(548\) 34.2929 59.3970i 1.46492 2.53731i
\(549\) 0 0
\(550\) −6.00000 10.3923i −0.255841 0.443129i
\(551\) 7.34847 0.313055
\(552\) 0 0
\(553\) −10.0000 + 3.46410i −0.425243 + 0.147309i
\(554\) −28.1691 + 48.7904i −1.19679 + 2.07290i
\(555\) 0 0
\(556\) −28.0000 + 48.4974i −1.18746 + 2.05675i
\(557\) −20.8207 36.0624i −0.882200 1.52801i −0.848890 0.528570i \(-0.822728\pi\)
−0.0333100 0.999445i \(-0.510605\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) −19.5959 16.9706i −0.828079 0.717137i
\(561\) 0 0
\(562\) −18.0000 31.1769i −0.759284 1.31512i
\(563\) 12.2474 0.516168 0.258084 0.966122i \(-0.416909\pi\)
0.258084 + 0.966122i \(0.416909\pi\)
\(564\) 0 0
\(565\) −36.0000 −1.51453
\(566\) −61.2372 −2.57399
\(567\) 0 0
\(568\) 0 0
\(569\) −19.5959 −0.821504 −0.410752 0.911747i \(-0.634734\pi\)
−0.410752 + 0.911747i \(0.634734\pi\)
\(570\) 0 0
\(571\) 29.0000 1.21361 0.606806 0.794850i \(-0.292450\pi\)
0.606806 + 0.794850i \(0.292450\pi\)
\(572\) 39.1918 + 67.8823i 1.63869 + 2.83830i
\(573\) 0 0
\(574\) −9.00000 + 46.7654i −0.375653 + 1.95195i
\(575\) 2.44949 0.102151
\(576\) 0 0
\(577\) −4.00000 6.92820i −0.166522 0.288425i 0.770673 0.637231i \(-0.219920\pi\)
−0.937195 + 0.348806i \(0.886587\pi\)
\(578\) 13.4722 23.3345i 0.560369 0.970588i
\(579\) 0 0
\(580\) 36.0000 62.3538i 1.49482 2.58910i
\(581\) −29.3939 25.4558i −1.21946 1.05609i
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 2.44949 + 4.24264i 0.101361 + 0.175562i
\(585\) 0 0
\(586\) −36.0000 + 62.3538i −1.48715 + 2.57581i
\(587\) 3.67423 + 6.36396i 0.151652 + 0.262669i 0.931835 0.362883i \(-0.118207\pi\)
−0.780183 + 0.625551i \(0.784874\pi\)
\(588\) 0 0
\(589\) −3.50000 + 6.06218i −0.144215 + 0.249788i
\(590\) 29.3939 + 50.9117i 1.21013 + 2.09600i
\(591\) 0 0
\(592\) −16.0000 + 27.7128i −0.657596 + 1.13899i
\(593\) −12.2474 + 21.2132i −0.502942 + 0.871122i 0.497052 + 0.867721i \(0.334416\pi\)
−0.999994 + 0.00340097i \(0.998917\pi\)
\(594\) 0 0
\(595\) 3.00000 15.5885i 0.122988 0.639064i
\(596\) −4.89898 8.48528i −0.200670 0.347571i
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) −31.8434 −1.30108 −0.650542 0.759470i \(-0.725458\pi\)
−0.650542 + 0.759470i \(0.725458\pi\)
\(600\) 0 0
\(601\) −8.50000 14.7224i −0.346722 0.600541i 0.638943 0.769254i \(-0.279372\pi\)
−0.985665 + 0.168714i \(0.946039\pi\)
\(602\) 4.89898 + 4.24264i 0.199667 + 0.172917i
\(603\) 0 0
\(604\) −10.0000 + 17.3205i −0.406894 + 0.704761i
\(605\) −15.9217 + 27.5772i −0.647308 + 1.12117i
\(606\) 0 0
\(607\) −14.5000 25.1147i −0.588537 1.01938i −0.994424 0.105453i \(-0.966371\pi\)
0.405887 0.913923i \(-0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −15.0000 25.9808i −0.607332 1.05193i
\(611\) 4.89898 8.48528i 0.198191 0.343278i
\(612\) 0 0
\(613\) −8.50000 14.7224i −0.343312 0.594633i 0.641734 0.766927i \(-0.278215\pi\)
−0.985046 + 0.172294i \(0.944882\pi\)
\(614\) −61.2372 −2.47133
\(615\) 0 0
\(616\) −12.0000 + 62.3538i −0.483494 + 2.51231i
\(617\) −14.6969 + 25.4558i −0.591676 + 1.02481i 0.402330 + 0.915495i \(0.368200\pi\)
−0.994007 + 0.109319i \(0.965133\pi\)
\(618\) 0 0
\(619\) −7.00000 + 12.1244i −0.281354 + 0.487319i −0.971718 0.236143i \(-0.924117\pi\)
0.690365 + 0.723462i \(0.257450\pi\)
\(620\) 34.2929 + 59.3970i 1.37723 + 2.38544i
\(621\) 0 0
\(622\) 84.0000 3.36809
\(623\) −1.22474 + 6.36396i −0.0490684 + 0.254967i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 56.3383 2.25173
\(627\) 0 0
\(628\) 80.0000 3.19235
\(629\) −19.5959 −0.781340
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) −19.5959 −0.779484
\(633\) 0 0
\(634\) 60.0000 2.38290
\(635\) −13.4722 23.3345i −0.534628 0.926002i
\(636\) 0 0
\(637\) −4.00000 27.7128i −0.158486 1.09802i
\(638\) −88.1816 −3.49114
\(639\) 0 0
\(640\) 24.0000 + 41.5692i 0.948683 + 1.64317i
\(641\) −13.4722 + 23.3345i −0.532120 + 0.921658i 0.467177 + 0.884164i \(0.345271\pi\)
−0.999297 + 0.0374946i \(0.988062\pi\)
\(642\) 0 0
\(643\) −2.50000 + 4.33013i −0.0985904 + 0.170764i −0.911101 0.412182i \(-0.864767\pi\)
0.812511 + 0.582946i \(0.198100\pi\)
\(644\) −19.5959 16.9706i −0.772187 0.668734i
\(645\) 0 0
\(646\) 6.00000 0.236067
\(647\) −9.79796 16.9706i −0.385198 0.667182i 0.606599 0.795008i \(-0.292533\pi\)
−0.991797 + 0.127826i \(0.959200\pi\)
\(648\) 0 0
\(649\) 24.0000 41.5692i 0.942082 1.63173i
\(650\) 4.89898 + 8.48528i 0.192154 + 0.332820i
\(651\) 0 0
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −1.22474 2.12132i −0.0479280 0.0830137i 0.841066 0.540932i \(-0.181928\pi\)
−0.888994 + 0.457919i \(0.848595\pi\)
\(654\) 0 0
\(655\) −3.00000 + 5.19615i −0.117220 + 0.203030i
\(656\) −14.6969 + 25.4558i −0.573819 + 0.993884i
\(657\) 0 0
\(658\) 15.0000 5.19615i 0.584761 0.202567i
\(659\) 3.67423 + 6.36396i 0.143128 + 0.247905i 0.928673 0.370900i \(-0.120951\pi\)
−0.785545 + 0.618804i \(0.787617\pi\)
\(660\) 0 0
\(661\) 11.0000 0.427850 0.213925 0.976850i \(-0.431375\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(662\) −31.8434 −1.23763
\(663\) 0 0
\(664\) −36.0000 62.3538i −1.39707 2.41980i
\(665\) −6.12372 + 2.12132i −0.237468 + 0.0822613i
\(666\) 0 0
\(667\) 9.00000 15.5885i 0.348481 0.603587i
\(668\) 29.3939 50.9117i 1.13728 1.96983i
\(669\) 0 0
\(670\) −6.00000 10.3923i −0.231800 0.401490i
\(671\) −12.2474 + 21.2132i −0.472808 + 0.818927i
\(672\) 0 0
\(673\) −8.50000 14.7224i −0.327651 0.567508i 0.654394 0.756153i \(-0.272924\pi\)
−0.982045 + 0.188645i \(0.939590\pi\)
\(674\) −6.12372 + 10.6066i −0.235877 + 0.408551i
\(675\) 0 0
\(676\) −6.00000 10.3923i −0.230769 0.399704i
\(677\) −19.5959 −0.753132 −0.376566 0.926390i \(-0.622895\pi\)
−0.376566 + 0.926390i \(0.622895\pi\)
\(678\) 0 0
\(679\) 2.00000 + 1.73205i 0.0767530 + 0.0664700i
\(680\) 14.6969 25.4558i 0.563602 0.976187i
\(681\) 0 0
\(682\) 42.0000 72.7461i 1.60826 2.78559i
\(683\) 12.2474 + 21.2132i 0.468636 + 0.811701i 0.999357 0.0358455i \(-0.0114124\pi\)
−0.530722 + 0.847546i \(0.678079\pi\)
\(684\) 0 0
\(685\) −42.0000 −1.60474
\(686\) 24.4949 38.1838i 0.935220 1.45786i
\(687\) 0 0
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) 9.79796 0.373273
\(690\) 0 0
\(691\) 41.0000 1.55971 0.779857 0.625958i \(-0.215292\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 9.79796 0.372463
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 34.2929 1.30080
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) −42.8661 74.2462i −1.62250 2.81026i
\(699\) 0 0
\(700\) −2.00000 + 10.3923i −0.0755929 + 0.392792i
\(701\) 22.0454 0.832644 0.416322 0.909217i \(-0.363319\pi\)
0.416322 + 0.909217i \(0.363319\pi\)
\(702\) 0 0
\(703\) 4.00000 + 6.92820i 0.150863 + 0.261302i
\(704\) 19.5959 33.9411i 0.738549 1.27920i
\(705\) 0 0
\(706\) −6.00000 + 10.3923i −0.225813 + 0.391120i
\(707\) −2.44949 + 12.7279i −0.0921225 + 0.478683i
\(708\) 0 0
\(709\) −49.0000 −1.84023 −0.920117 0.391644i \(-0.871906\pi\)
−0.920117 + 0.391644i \(0.871906\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) 8.57321 + 14.8492i 0.321069 + 0.556108i
\(714\) 0 0
\(715\) 24.0000 41.5692i 0.897549 1.55460i
\(716\) 4.89898 + 8.48528i 0.183083 + 0.317110i
\(717\) 0 0
\(718\) 24.0000 41.5692i 0.895672 1.55135i
\(719\) 9.79796 16.9706i 0.365402 0.632895i −0.623438 0.781872i \(-0.714265\pi\)
0.988841 + 0.148977i \(0.0475981\pi\)
\(720\) 0 0
\(721\) −4.00000 3.46410i −0.148968 0.129010i
\(722\) 22.0454 + 38.1838i 0.820445 + 1.42105i
\(723\) 0 0
\(724\) −28.0000 −1.04061
\(725\) −7.34847 −0.272915
\(726\) 0 0
\(727\) 9.50000 + 16.4545i 0.352335 + 0.610263i 0.986658 0.162805i \(-0.0520543\pi\)
−0.634323 + 0.773068i \(0.718721\pi\)
\(728\) 9.79796 50.9117i 0.363137 1.88691i
\(729\) 0 0
\(730\) 3.00000 5.19615i 0.111035 0.192318i
\(731\) −1.22474 + 2.12132i −0.0452988 + 0.0784599i
\(732\) 0 0
\(733\) −5.50000 9.52628i −0.203147 0.351861i 0.746394 0.665505i \(-0.231784\pi\)
−0.949541 + 0.313644i \(0.898450\pi\)
\(734\) 15.9217 27.5772i 0.587680 1.01789i
\(735\) 0 0
\(736\) 0 0
\(737\) −4.89898 + 8.48528i −0.180456 + 0.312559i
\(738\) 0 0
\(739\) 9.50000 + 16.4545i 0.349463 + 0.605288i 0.986154 0.165831i \(-0.0530307\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(740\) 78.3837 2.88144
\(741\) 0 0
\(742\) 12.0000 + 10.3923i 0.440534 + 0.381514i
\(743\) −3.67423 + 6.36396i −0.134795 + 0.233471i −0.925519 0.378701i \(-0.876371\pi\)
0.790724 + 0.612172i \(0.209704\pi\)
\(744\) 0 0
\(745\) −3.00000 + 5.19615i −0.109911 + 0.190372i
\(746\) −13.4722 23.3345i −0.493252 0.854338i
\(747\) 0 0
\(748\) −48.0000 −1.75505
\(749\) 9.79796 50.9117i 0.358010 1.86027i
\(750\) 0 0
\(751\) 21.5000 + 37.2391i 0.784546 + 1.35887i 0.929270 + 0.369402i \(0.120437\pi\)
−0.144724 + 0.989472i \(0.546229\pi\)
\(752\) 9.79796 0.357295
\(753\) 0 0
\(754\) 72.0000 2.62209
\(755\) 12.2474 0.445730
\(756\) 0 0
\(757\) 47.0000 1.70824 0.854122 0.520073i \(-0.174095\pi\)
0.854122 + 0.520073i \(0.174095\pi\)
\(758\) −83.2827 −3.02496
\(759\) 0 0
\(760\) −12.0000 −0.435286
\(761\) 9.79796 + 16.9706i 0.355176 + 0.615182i 0.987148 0.159809i \(-0.0510877\pi\)
−0.631972 + 0.774991i \(0.717754\pi\)
\(762\) 0 0
\(763\) 2.00000 + 1.73205i 0.0724049 + 0.0627044i
\(764\) 9.79796 0.354478
\(765\) 0 0
\(766\) 24.0000 + 41.5692i 0.867155 + 1.50196i
\(767\) −19.5959 + 33.9411i −0.707568 + 1.22554i
\(768\) 0 0
\(769\) −2.50000 + 4.33013i −0.0901523 + 0.156148i −0.907575 0.419890i \(-0.862069\pi\)
0.817423 + 0.576038i \(0.195402\pi\)
\(770\) 73.4847 25.4558i 2.64820 0.917365i
\(771\) 0 0
\(772\) 80.0000 2.87926
\(773\) 23.2702 + 40.3051i 0.836969 + 1.44967i 0.892417 + 0.451212i \(0.149008\pi\)
−0.0554478 + 0.998462i \(0.517659\pi\)
\(774\) 0 0
\(775\) 3.50000 6.06218i 0.125724 0.217760i
\(776\) 2.44949 + 4.24264i 0.0879316 + 0.152302i
\(777\) 0 0
\(778\) 21.0000 36.3731i 0.752886 1.30404i
\(779\) 3.67423 + 6.36396i 0.131643 + 0.228013i
\(780\) 0 0
\(781\) 0 0
\(782\) 7.34847 12.7279i 0.262781 0.455150i
\(783\) 0 0
\(784\) 22.0000 17.3205i 0.785714 0.618590i
\(785\) −24.4949 42.4264i −0.874260 1.51426i
\(786\) 0 0
\(787\) −7.00000 −0.249523 −0.124762 0.992187i \(-0.539817\pi\)
−0.124762 + 0.992187i \(0.539817\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 12.0000 + 20.7846i 0.426941 + 0.739483i
\(791\) 7.34847 38.1838i 0.261281 1.35766i
\(792\) 0 0
\(793\) 10.0000 17.3205i 0.355110 0.615069i
\(794\) −20.8207 + 36.0624i −0.738898 + 1.27981i
\(795\) 0 0
\(796\) 38.0000 + 65.8179i 1.34687 + 2.33285i
\(797\) 7.34847 12.7279i 0.260296 0.450846i −0.706024 0.708187i \(-0.749513\pi\)
0.966321 + 0.257341i \(0.0828465\pi\)
\(798\) 0 0
\(799\) 3.00000 + 5.19615i 0.106132 + 0.183827i
\(800\) 0 0
\(801\) 0 0
\(802\) −30.0000 51.9615i −1.05934 1.83483i
\(803\) −4.89898 −0.172881
\(804\) 0 0
\(805\) −3.00000 + 15.5885i −0.105736 + 0.549421i
\(806\) −34.2929 + 59.3970i −1.20791 + 2.09217i
\(807\) 0 0
\(808\) −12.0000 + 20.7846i −0.422159 + 0.731200i
\(809\) 12.2474 + 21.2132i 0.430597 + 0.745817i 0.996925 0.0783638i \(-0.0249696\pi\)
−0.566327 + 0.824180i \(0.691636\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 58.7878 + 50.9117i 2.06305 + 1.78665i
\(813\) 0 0
\(814\) −48.0000 83.1384i −1.68240 2.91400i
\(815\) −2.44949 −0.0858019
\(816\) 0 0
\(817\) 1.00000 0.0349856
\(818\) 48.9898 1.71289
\(819\) 0 0
\(820\) 72.0000 2.51435
\(821\) −19.5959 −0.683902 −0.341951 0.939718i \(-0.611088\pi\)
−0.341951 + 0.939718i \(0.611088\pi\)
\(822\) 0 0
\(823\) −25.0000 −0.871445 −0.435723 0.900081i \(-0.643507\pi\)
−0.435723 + 0.900081i \(0.643507\pi\)
\(824\) −4.89898 8.48528i −0.170664 0.295599i
\(825\) 0 0
\(826\) −60.0000 + 20.7846i −2.08767 + 0.723189i
\(827\) 44.0908 1.53319 0.766594 0.642132i \(-0.221950\pi\)
0.766594 + 0.642132i \(0.221950\pi\)
\(828\) 0 0
\(829\) 27.5000 + 47.6314i 0.955114 + 1.65431i 0.734106 + 0.679035i \(0.237602\pi\)
0.221009 + 0.975272i \(0.429065\pi\)
\(830\) −44.0908 + 76.3675i −1.53041 + 2.65076i
\(831\) 0 0
\(832\) −16.0000 + 27.7128i −0.554700 + 0.960769i
\(833\) 15.9217 + 6.36396i 0.551654 + 0.220498i
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 9.79796 + 16.9706i 0.338869 + 0.586939i
\(837\) 0 0
\(838\) −9.00000 + 15.5885i −0.310900 + 0.538494i
\(839\) −7.34847 12.7279i −0.253697 0.439417i 0.710844 0.703350i \(-0.248313\pi\)
−0.964541 + 0.263933i \(0.914980\pi\)
\(840\) 0 0
\(841\) −12.5000 + 21.6506i −0.431034 + 0.746574i
\(842\) −42.8661 74.2462i −1.47726 2.55869i
\(843\) 0 0
\(844\) −10.0000 + 17.3205i −0.344214 + 0.596196i
\(845\) −3.67423 + 6.36396i −0.126398 + 0.218927i
\(846\) 0 0
\(847\) −26.0000 22.5167i −0.893371 0.773682i
\(848\) 4.89898 + 8.48528i 0.168232 + 0.291386i
\(849\) 0 0
\(850\) −6.00000 −0.205798
\(851\) 19.5959 0.671739
\(852\) 0 0
\(853\) 9.50000 + 16.4545i 0.325274 + 0.563391i 0.981568 0.191115i \(-0.0612102\pi\)
−0.656294 + 0.754505i \(0.727877\pi\)
\(854\) 30.6186 10.6066i 1.04775 0.362950i
\(855\) 0 0
\(856\) 48.0000 83.1384i 1.64061 2.84161i
\(857\) 19.5959 33.9411i 0.669384 1.15941i −0.308693 0.951162i \(-0.599892\pi\)
0.978077 0.208245i \(-0.0667751\pi\)
\(858\) 0 0
\(859\) 12.5000 + 21.6506i 0.426494 + 0.738710i 0.996559 0.0828900i \(-0.0264150\pi\)
−0.570064 + 0.821600i \(0.693082\pi\)
\(860\) 4.89898 8.48528i 0.167054 0.289346i
\(861\) 0 0
\(862\) −24.0000 41.5692i −0.817443 1.41585i
\(863\) −1.22474 + 2.12132i −0.0416908 + 0.0722106i −0.886118 0.463460i \(-0.846608\pi\)
0.844427 + 0.535671i \(0.179941\pi\)
\(864\) 0 0
\(865\) −3.00000 5.19615i −0.102003 0.176674i
\(866\) −17.1464 −0.582659
\(867\) 0 0
\(868\) −70.0000 + 24.2487i −2.37595 + 0.823055i
\(869\) 9.79796 16.9706i 0.332373 0.575687i
\(870\) 0 0
\(871\) 4.00000 6.92820i 0.135535 0.234753i
\(872\) 2.44949 + 4.24264i 0.0829502 + 0.143674i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) −24.4949 + 8.48528i −0.828079 + 0.286855i
\(876\) 0 0
\(877\) −23.5000 40.7032i −0.793539 1.37445i −0.923763 0.382965i \(-0.874903\pi\)
0.130224 0.991485i \(-0.458430\pi\)
\(878\) 34.2929 1.15733
\(879\) 0 0
\(880\) 48.0000 1.61808
\(881\) −22.0454 −0.742729 −0.371364 0.928487i \(-0.621110\pi\)
−0.371364 + 0.928487i \(0.621110\pi\)
\(882\) 0 0
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) 39.1918 1.31816
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) 9.79796 + 16.9706i 0.328983 + 0.569816i 0.982310 0.187260i \(-0.0599607\pi\)
−0.653327 + 0.757076i \(0.726627\pi\)
\(888\) 0 0
\(889\) 27.5000 9.52628i 0.922320 0.319501i
\(890\) 14.6969 0.492642
\(891\) 0 0
\(892\) −52.0000 90.0666i −1.74109 3.01565i
\(893\) 1.22474 2.12132i 0.0409845 0.0709873i
\(894\) 0 0
\(895\) 3.00000 5.19615i 0.100279 0.173688i
\(896\) −48.9898 + 16.9706i −1.63663 + 0.566947i
\(897\) 0 0
\(898\) 54.0000 1.80200
\(899\) −25.7196 44.5477i −0.857798 1.48575i
\(900\) 0 0
\(901\) −3.00000 + 5.19615i −0.0999445 + 0.173109i
\(902\) −44.0908 76.3675i −1.46806 2.54276i
\(903\) 0 0
\(904\) 36.0000 62.3538i 1.19734 2.07386i
\(905\) 8.57321 + 14.8492i 0.284983 + 0.493606i
\(906\) 0 0
\(907\) −16.0000 + 27.7128i −0.531271 + 0.920189i 0.468063 + 0.883695i \(0.344952\pi\)
−0.999334 + 0.0364935i \(0.988381\pi\)
\(908\) 34.2929 59.3970i 1.13805 1.97116i
\(909\) 0 0
\(910\) −60.0000 + 20.7846i −1.98898 + 0.689003i
\(911\) 3.67423 + 6.36396i 0.121733 + 0.210847i 0.920451 0.390858i \(-0.127822\pi\)
−0.798718 + 0.601705i \(0.794488\pi\)
\(912\) 0 0
\(913\) 72.0000 2.38285
\(914\) 56.3383 1.86350
\(915\) 0 0
\(916\) 14.0000 + 24.2487i 0.462573 + 0.801200i
\(917\) −4.89898 4.24264i −0.161779 0.140104i
\(918\) 0 0
\(919\) 0.500000 0.866025i 0.0164935 0.0285675i −0.857661 0.514216i \(-0.828083\pi\)
0.874154 + 0.485648i \(0.161416\pi\)
\(920\) −14.6969 + 25.4558i −0.484544 + 0.839254i
\(921\) 0 0
\(922\) 36.0000 + 62.3538i 1.18560 + 2.05351i
\(923\) 0 0
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) −28.1691 + 48.7904i −0.925695 + 1.60335i
\(927\) 0 0
\(928\) 0 0
\(929\) 46.5403 1.52694 0.763469 0.645845i \(-0.223495\pi\)
0.763469 + 0.645845i \(0.223495\pi\)
\(930\) 0 0
\(931\) −1.00000 6.92820i −0.0327737 0.227063i
\(932\) −4.89898 + 8.48528i −0.160471 + 0.277945i
\(933\) 0 0
\(934\) −30.0000 + 51.9615i −0.981630 + 1.70023i
\(935\) 14.6969 + 25.4558i 0.480641 + 0.832495i
\(936\) 0 0
\(937\) −16.0000 −0.522697 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(938\) 12.2474 4.24264i 0.399893 0.138527i
\(939\) 0 0
\(940\) −12.0000 20.7846i −0.391397 0.677919i
\(941\) −9.79796 −0.319404 −0.159702 0.987165i \(-0.551053\pi\)
−0.159702 + 0.987165i \(0.551053\pi\)
\(942\) 0 0
\(943\) 18.0000 0.586161
\(944\) −39.1918 −1.27559
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 46.5403 1.51236 0.756178 0.654366i \(-0.227064\pi\)
0.756178 + 0.654366i \(0.227064\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 1.22474 + 2.12132i 0.0397360 + 0.0688247i
\(951\) 0 0
\(952\) 24.0000 + 20.7846i 0.777844 + 0.673633i
\(953\) −22.0454 −0.714121 −0.357060 0.934081i \(-0.616221\pi\)
−0.357060 + 0.934081i \(0.616221\pi\)
\(954\) 0 0
\(955\) −3.00000 5.19615i −0.0970777 0.168144i
\(956\) −14.6969 + 25.4558i −0.475333 + 0.823301i
\(957\) 0 0
\(958\) −33.0000 + 57.1577i −1.06618 + 1.84668i
\(959\) 8.57321 44.5477i 0.276844 1.43852i
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 39.1918 + 67.8823i 1.26360 + 2.18861i
\(963\) 0 0
\(964\) 26.0000 45.0333i 0.837404 1.45043i
\(965\) −24.4949 42.4264i −0.788519 1.36575i
\(966\) 0 0
\(967\) 11.0000 19.0526i 0.353736 0.612689i −0.633165 0.774017i \(-0.718244\pi\)
0.986901 + 0.161328i \(0.0515777\pi\)
\(968\) −31.8434 55.1543i −1.02348 1.77273i
\(969\) 0 0
\(970\) 3.00000 5.19615i 0.0963242 0.166838i
\(971\) 20.8207 36.0624i 0.668167 1.15730i −0.310249 0.950655i \(-0.600413\pi\)
0.978416 0.206644i \(-0.0662541\pi\)
\(972\) 0 0
\(973\) −7.00000 + 36.3731i −0.224410 + 1.16607i
\(974\) 23.2702 + 40.3051i 0.745624 + 1.29146i
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) −9.79796 −0.313464 −0.156732 0.987641i \(-0.550096\pi\)
−0.156732 + 0.987641i \(0.550096\pi\)
\(978\) 0 0
\(979\) −6.00000 10.3923i −0.191761 0.332140i
\(980\) −63.6867 25.4558i −2.03440 0.813157i
\(981\) 0 0
\(982\) 18.0000 31.1769i 0.574403 0.994895i
\(983\) 19.5959 33.9411i 0.625013 1.08255i −0.363526 0.931584i \(-0.618427\pi\)
0.988538 0.150970i \(-0.0482396\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −22.0454 + 38.1838i −0.702069 + 1.21602i
\(987\) 0 0
\(988\) −8.00000 13.8564i −0.254514 0.440831i
\(989\) 1.22474 2.12132i 0.0389446 0.0674541i
\(990\) 0 0
\(991\) 5.00000 + 8.66025i 0.158830 + 0.275102i 0.934447 0.356102i \(-0.115894\pi\)
−0.775617 + 0.631204i \(0.782561\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 23.2702 40.3051i 0.737713 1.27776i
\(996\) 0 0
\(997\) −20.5000 + 35.5070i −0.649242 + 1.12452i 0.334063 + 0.942551i \(0.391580\pi\)
−0.983304 + 0.181968i \(0.941753\pi\)
\(998\) 8.57321 + 14.8492i 0.271380 + 0.470045i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.h.g.352.2 4
3.2 odd 2 inner 567.2.h.g.352.1 4
7.4 even 3 567.2.g.g.109.1 4
9.2 odd 6 567.2.g.g.541.2 4
9.4 even 3 189.2.e.d.163.1 yes 4
9.5 odd 6 189.2.e.d.163.2 yes 4
9.7 even 3 567.2.g.g.541.1 4
21.11 odd 6 567.2.g.g.109.2 4
63.4 even 3 189.2.e.d.109.1 4
63.5 even 6 1323.2.a.u.1.1 2
63.11 odd 6 inner 567.2.h.g.298.1 4
63.23 odd 6 1323.2.a.v.1.1 2
63.25 even 3 inner 567.2.h.g.298.2 4
63.32 odd 6 189.2.e.d.109.2 yes 4
63.40 odd 6 1323.2.a.u.1.2 2
63.58 even 3 1323.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.d.109.1 4 63.4 even 3
189.2.e.d.109.2 yes 4 63.32 odd 6
189.2.e.d.163.1 yes 4 9.4 even 3
189.2.e.d.163.2 yes 4 9.5 odd 6
567.2.g.g.109.1 4 7.4 even 3
567.2.g.g.109.2 4 21.11 odd 6
567.2.g.g.541.1 4 9.7 even 3
567.2.g.g.541.2 4 9.2 odd 6
567.2.h.g.298.1 4 63.11 odd 6 inner
567.2.h.g.298.2 4 63.25 even 3 inner
567.2.h.g.352.1 4 3.2 odd 2 inner
567.2.h.g.352.2 4 1.1 even 1 trivial
1323.2.a.u.1.1 2 63.5 even 6
1323.2.a.u.1.2 2 63.40 odd 6
1323.2.a.v.1.1 2 63.23 odd 6
1323.2.a.v.1.2 2 63.58 even 3