Properties

Label 57.10.a.d.1.3
Level 5757
Weight 1010
Character 57.1
Self dual yes
Analytic conductor 29.35729.357
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,10,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 57=319 57 = 3 \cdot 19
Weight: k k == 10 10
Character orbit: [χ][\chi] == 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 29.357042661329.3570426613
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x73446x6+2146x5+3632756x4+1877896x31128074928x2+684004608 x^{8} - x^{7} - 3446 x^{6} + 2146 x^{5} + 3632756 x^{4} + 1877896 x^{3} - 1128074928 x^{2} + \cdots - 684004608 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2532 2^{5}\cdot 3^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 22.5401-22.5401 of defining polynomial
Character χ\chi == 57.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q20.5401q2+81.0000q390.1033q4+849.287q51663.75q610981.2q7+12367.3q8+6561.00q917444.5q10+34068.5q117298.37q1270090.6q13+225555.q14+68792.2q15207892.q16+51130.2q17134764.q18130321.q1976523.6q20889477.q21699771.q22512837.q23+1.00175e6q241.23184e6q25+1.43967e6q26+531441.q27+989443.q28+3.83836e6q291.41300e6q30+2.93336e6q312.06191e6q32+2.75955e6q331.05022e6q349.32619e6q35591168.q36+1.23767e7q37+2.67681e6q385.67734e6q39+1.05034e7q40+7.42222e6q41+1.82700e7q42+3.06693e7q433.06968e6q44+5.57217e6q45+1.05337e7q46+5.92639e7q471.68393e7q48+8.02332e7q49+2.53021e7q50+4.14154e6q51+6.31540e6q52+7.73856e7q531.09159e7q54+2.89339e7q551.35808e8q561.05560e7q577.88404e7q581.89946e7q596.19841e6q601.21386e8q616.02516e7q627.20477e7q63+1.48793e8q645.95270e7q655.66814e7q66+2.07044e8q674.60700e6q684.15398e7q69+1.91561e8q704.75295e7q71+8.11417e7q721.79415e8q732.54220e8q749.97788e7q75+1.17424e7q763.74113e8q77+1.16613e8q781.96664e7q791.76560e8q80+4.30467e7q811.52453e8q821.31374e8q83+8.01449e7q84+4.34242e7q856.29951e8q86+3.10907e8q87+4.21334e8q88+7.24401e8q891.14453e8q90+7.69679e8q91+4.62083e7q92+2.37602e8q931.21729e9q941.10680e8q951.67015e8q962.74292e8q971.64800e9q98+2.23523e8q99+O(q100)q-20.5401 q^{2} +81.0000 q^{3} -90.1033 q^{4} +849.287 q^{5} -1663.75 q^{6} -10981.2 q^{7} +12367.3 q^{8} +6561.00 q^{9} -17444.5 q^{10} +34068.5 q^{11} -7298.37 q^{12} -70090.6 q^{13} +225555. q^{14} +68792.2 q^{15} -207892. q^{16} +51130.2 q^{17} -134764. q^{18} -130321. q^{19} -76523.6 q^{20} -889477. q^{21} -699771. q^{22} -512837. q^{23} +1.00175e6 q^{24} -1.23184e6 q^{25} +1.43967e6 q^{26} +531441. q^{27} +989443. q^{28} +3.83836e6 q^{29} -1.41300e6 q^{30} +2.93336e6 q^{31} -2.06191e6 q^{32} +2.75955e6 q^{33} -1.05022e6 q^{34} -9.32619e6 q^{35} -591168. q^{36} +1.23767e7 q^{37} +2.67681e6 q^{38} -5.67734e6 q^{39} +1.05034e7 q^{40} +7.42222e6 q^{41} +1.82700e7 q^{42} +3.06693e7 q^{43} -3.06968e6 q^{44} +5.57217e6 q^{45} +1.05337e7 q^{46} +5.92639e7 q^{47} -1.68393e7 q^{48} +8.02332e7 q^{49} +2.53021e7 q^{50} +4.14154e6 q^{51} +6.31540e6 q^{52} +7.73856e7 q^{53} -1.09159e7 q^{54} +2.89339e7 q^{55} -1.35808e8 q^{56} -1.05560e7 q^{57} -7.88404e7 q^{58} -1.89946e7 q^{59} -6.19841e6 q^{60} -1.21386e8 q^{61} -6.02516e7 q^{62} -7.20477e7 q^{63} +1.48793e8 q^{64} -5.95270e7 q^{65} -5.66814e7 q^{66} +2.07044e8 q^{67} -4.60700e6 q^{68} -4.15398e7 q^{69} +1.91561e8 q^{70} -4.75295e7 q^{71} +8.11417e7 q^{72} -1.79415e8 q^{73} -2.54220e8 q^{74} -9.97788e7 q^{75} +1.17424e7 q^{76} -3.74113e8 q^{77} +1.16613e8 q^{78} -1.96664e7 q^{79} -1.76560e8 q^{80} +4.30467e7 q^{81} -1.52453e8 q^{82} -1.31374e8 q^{83} +8.01449e7 q^{84} +4.34242e7 q^{85} -6.29951e8 q^{86} +3.10907e8 q^{87} +4.21334e8 q^{88} +7.24401e8 q^{89} -1.14453e8 q^{90} +7.69679e8 q^{91} +4.62083e7 q^{92} +2.37602e8 q^{93} -1.21729e9 q^{94} -1.10680e8 q^{95} -1.67015e8 q^{96} -2.74292e8 q^{97} -1.64800e9 q^{98} +2.23523e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+17q2+648q3+2833q4+3902q5+1377q6+9488q7+27927q8+52488q9+111324q10+38328q11+229473q12+238594q13+255570q14+316062q15++251470008q99+O(q100) 8 q + 17 q^{2} + 648 q^{3} + 2833 q^{4} + 3902 q^{5} + 1377 q^{6} + 9488 q^{7} + 27927 q^{8} + 52488 q^{9} + 111324 q^{10} + 38328 q^{11} + 229473 q^{12} + 238594 q^{13} + 255570 q^{14} + 316062 q^{15}+ \cdots + 251470008 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −20.5401 −0.907754 −0.453877 0.891064i 0.649959π-0.649959\pi
−0.453877 + 0.891064i 0.649959π0.649959\pi
33 81.0000 0.577350
44 −90.1033 −0.175983
55 849.287 0.607700 0.303850 0.952720i 0.401728π-0.401728\pi
0.303850 + 0.952720i 0.401728π0.401728\pi
66 −1663.75 −0.524092
77 −10981.2 −1.72866 −0.864328 0.502928i 0.832256π-0.832256\pi
−0.864328 + 0.502928i 0.832256π0.832256\pi
88 12367.3 1.06750
99 6561.00 0.333333
1010 −17444.5 −0.551642
1111 34068.5 0.701594 0.350797 0.936452i 0.385911π-0.385911\pi
0.350797 + 0.936452i 0.385911π0.385911\pi
1212 −7298.37 −0.101604
1313 −70090.6 −0.680635 −0.340318 0.940311i 0.610535π-0.610535\pi
−0.340318 + 0.940311i 0.610535π0.610535\pi
1414 225555. 1.56919
1515 68792.2 0.350856
1616 −207892. −0.793047
1717 51130.2 0.148476 0.0742381 0.997241i 0.476348π-0.476348\pi
0.0742381 + 0.997241i 0.476348π0.476348\pi
1818 −134764. −0.302585
1919 −130321. −0.229416
2020 −76523.6 −0.106945
2121 −889477. −0.998040
2222 −699771. −0.636874
2323 −512837. −0.382124 −0.191062 0.981578i 0.561193π-0.561193\pi
−0.191062 + 0.981578i 0.561193π0.561193\pi
2424 1.00175e6 0.616323
2525 −1.23184e6 −0.630700
2626 1.43967e6 0.617849
2727 531441. 0.192450
2828 989443. 0.304214
2929 3.83836e6 1.00775 0.503877 0.863775i 0.331906π-0.331906\pi
0.503877 + 0.863775i 0.331906π0.331906\pi
3030 −1.41300e6 −0.318491
3131 2.93336e6 0.570476 0.285238 0.958457i 0.407927π-0.407927\pi
0.285238 + 0.958457i 0.407927π0.407927\pi
3232 −2.06191e6 −0.347612
3333 2.75955e6 0.405065
3434 −1.05022e6 −0.134780
3535 −9.32619e6 −1.05050
3636 −591168. −0.0586610
3737 1.23767e7 1.08567 0.542835 0.839839i 0.317351π-0.317351\pi
0.542835 + 0.839839i 0.317351π0.317351\pi
3838 2.67681e6 0.208253
3939 −5.67734e6 −0.392965
4040 1.05034e7 0.648722
4141 7.42222e6 0.410210 0.205105 0.978740i 0.434246π-0.434246\pi
0.205105 + 0.978740i 0.434246π0.434246\pi
4242 1.82700e7 0.905975
4343 3.06693e7 1.36803 0.684016 0.729467i 0.260232π-0.260232\pi
0.684016 + 0.729467i 0.260232π0.260232\pi
4444 −3.06968e6 −0.123469
4545 5.57217e6 0.202567
4646 1.05337e7 0.346874
4747 5.92639e7 1.77154 0.885768 0.464127i 0.153632π-0.153632\pi
0.885768 + 0.464127i 0.153632π0.153632\pi
4848 −1.68393e7 −0.457866
4949 8.02332e7 1.98825
5050 2.53021e7 0.572521
5151 4.14154e6 0.0857228
5252 6.31540e6 0.119780
5353 7.73856e7 1.34716 0.673579 0.739115i 0.264756π-0.264756\pi
0.673579 + 0.739115i 0.264756π0.264756\pi
5454 −1.09159e7 −0.174697
5555 2.89339e7 0.426359
5656 −1.35808e8 −1.84535
5757 −1.05560e7 −0.132453
5858 −7.88404e7 −0.914793
5959 −1.89946e7 −0.204078 −0.102039 0.994780i 0.532537π-0.532537\pi
−0.102039 + 0.994780i 0.532537π0.532537\pi
6060 −6.19841e6 −0.0617447
6161 −1.21386e8 −1.12249 −0.561247 0.827649i 0.689678π-0.689678\pi
−0.561247 + 0.827649i 0.689678π0.689678\pi
6262 −6.02516e7 −0.517852
6363 −7.20477e7 −0.576219
6464 1.48793e8 1.10859
6565 −5.95270e7 −0.413622
6666 −5.66814e7 −0.367700
6767 2.07044e8 1.25524 0.627620 0.778520i 0.284029π-0.284029\pi
0.627620 + 0.778520i 0.284029π0.284029\pi
6868 −4.60700e6 −0.0261293
6969 −4.15398e7 −0.220619
7070 1.91561e8 0.953600
7171 −4.75295e7 −0.221973 −0.110987 0.993822i 0.535401π-0.535401\pi
−0.110987 + 0.993822i 0.535401π0.535401\pi
7272 8.11417e7 0.355834
7373 −1.79415e8 −0.739444 −0.369722 0.929142i 0.620547π-0.620547\pi
−0.369722 + 0.929142i 0.620547π0.620547\pi
7474 −2.54220e8 −0.985522
7575 −9.97788e7 −0.364135
7676 1.17424e7 0.0403733
7777 −3.74113e8 −1.21281
7878 1.16613e8 0.356715
7979 −1.96664e7 −0.0568071 −0.0284035 0.999597i 0.509042π-0.509042\pi
−0.0284035 + 0.999597i 0.509042π0.509042\pi
8080 −1.76560e8 −0.481935
8181 4.30467e7 0.111111
8282 −1.52453e8 −0.372370
8383 −1.31374e8 −0.303850 −0.151925 0.988392i 0.548547π-0.548547\pi
−0.151925 + 0.988392i 0.548547π0.548547\pi
8484 8.01449e7 0.175638
8585 4.34242e7 0.0902291
8686 −6.29951e8 −1.24184
8787 3.10907e8 0.581828
8888 4.21334e8 0.748954
8989 7.24401e8 1.22384 0.611919 0.790920i 0.290398π-0.290398\pi
0.611919 + 0.790920i 0.290398π0.290398\pi
9090 −1.14453e8 −0.183881
9191 7.69679e8 1.17658
9292 4.62083e7 0.0672473
9393 2.37602e8 0.329365
9494 −1.21729e9 −1.60812
9595 −1.10680e8 −0.139416
9696 −1.67015e8 −0.200694
9797 −2.74292e8 −0.314587 −0.157293 0.987552i 0.550277π-0.550277\pi
−0.157293 + 0.987552i 0.550277π0.550277\pi
9898 −1.64800e9 −1.80484
9999 2.23523e8 0.233865
100100 1.10993e8 0.110993
101101 1.85454e8 0.177333 0.0886664 0.996061i 0.471739π-0.471739\pi
0.0886664 + 0.996061i 0.471739π0.471739\pi
102102 −8.50678e7 −0.0778152
103103 1.17142e9 1.02552 0.512760 0.858532i 0.328623π-0.328623\pi
0.512760 + 0.858532i 0.328623π0.328623\pi
104104 −8.66829e8 −0.726580
105105 −7.55421e8 −0.606509
106106 −1.58951e9 −1.22289
107107 2.35004e9 1.73320 0.866600 0.499003i 0.166300π-0.166300\pi
0.866600 + 0.499003i 0.166300π0.166300\pi
108108 −4.78846e7 −0.0338680
109109 −8.61624e8 −0.584654 −0.292327 0.956318i 0.594429π-0.594429\pi
−0.292327 + 0.956318i 0.594429π0.594429\pi
110110 −5.94306e8 −0.387029
111111 1.00252e9 0.626812
112112 2.28291e9 1.37091
113113 −1.60777e9 −0.927623 −0.463811 0.885934i 0.653518π-0.653518\pi
−0.463811 + 0.885934i 0.653518π0.653518\pi
114114 2.16822e8 0.120235
115115 −4.35546e8 −0.232217
116116 −3.45849e8 −0.177348
117117 −4.59864e8 −0.226878
118118 3.90151e8 0.185252
119119 −5.61471e8 −0.256665
120120 8.50773e8 0.374540
121121 −1.19729e9 −0.507766
122122 2.49328e9 1.01895
123123 6.01200e8 0.236835
124124 −2.64306e8 −0.100394
125125 −2.70495e9 −0.990977
126126 1.47987e9 0.523065
127127 4.79972e9 1.63719 0.818595 0.574371i 0.194753π-0.194753\pi
0.818595 + 0.574371i 0.194753π0.194753\pi
128128 −2.00053e9 −0.658717
129129 2.48421e9 0.789833
130130 1.22269e9 0.375467
131131 2.34855e9 0.696753 0.348376 0.937355i 0.386733π-0.386733\pi
0.348376 + 0.937355i 0.386733π0.386733\pi
132132 −2.48644e8 −0.0712847
133133 1.43108e9 0.396581
134134 −4.25271e9 −1.13945
135135 4.51346e8 0.116952
136136 6.32341e8 0.158499
137137 −3.53989e9 −0.858515 −0.429257 0.903182i 0.641225π-0.641225\pi
−0.429257 + 0.903182i 0.641225π0.641225\pi
138138 8.53233e8 0.200268
139139 −5.73253e9 −1.30251 −0.651253 0.758861i 0.725756π-0.725756\pi
−0.651253 + 0.758861i 0.725756π0.725756\pi
140140 8.40321e8 0.184871
141141 4.80038e9 1.02280
142142 9.76262e8 0.201497
143143 −2.38788e9 −0.477530
144144 −1.36398e9 −0.264349
145145 3.25987e9 0.612413
146146 3.68520e9 0.671233
147147 6.49889e9 1.14792
148148 −1.11518e9 −0.191060
149149 9.46531e8 0.157325 0.0786623 0.996901i 0.474935π-0.474935\pi
0.0786623 + 0.996901i 0.474935π0.474935\pi
150150 2.04947e9 0.330545
151151 −2.23980e9 −0.350601 −0.175300 0.984515i 0.556090π-0.556090\pi
−0.175300 + 0.984515i 0.556090π0.556090\pi
152152 −1.61172e9 −0.244902
153153 3.35465e8 0.0494921
154154 7.68433e9 1.10094
155155 2.49126e9 0.346679
156156 5.11547e8 0.0691552
157157 5.26627e9 0.691759 0.345879 0.938279i 0.387581π-0.387581\pi
0.345879 + 0.938279i 0.387581π0.387581\pi
158158 4.03950e8 0.0515668
159159 6.26823e9 0.777782
160160 −1.75115e9 −0.211244
161161 5.63157e9 0.660561
162162 −8.84185e8 −0.100862
163163 −1.32402e10 −1.46910 −0.734549 0.678555i 0.762606π-0.762606\pi
−0.734549 + 0.678555i 0.762606π0.762606\pi
164164 −6.68767e8 −0.0721901
165165 2.34365e9 0.246158
166166 2.69845e9 0.275821
167167 7.00707e9 0.697128 0.348564 0.937285i 0.386669π-0.386669\pi
0.348564 + 0.937285i 0.386669π0.386669\pi
168168 −1.10004e10 −1.06541
169169 −5.69181e9 −0.536736
170170 −8.91938e8 −0.0819058
171171 −8.55036e8 −0.0764719
172172 −2.76341e9 −0.240750
173173 −1.50089e10 −1.27392 −0.636959 0.770898i 0.719808π-0.719808\pi
−0.636959 + 0.770898i 0.719808π0.719808\pi
174174 −6.38607e9 −0.528156
175175 1.35270e10 1.09026
176176 −7.08258e9 −0.556397
177177 −1.53856e9 −0.117824
178178 −1.48793e10 −1.11094
179179 −1.33981e10 −0.975451 −0.487726 0.872997i 0.662173π-0.662173\pi
−0.487726 + 0.872997i 0.662173π0.662173\pi
180180 −5.02071e8 −0.0356483
181181 2.66668e10 1.84679 0.923395 0.383852i 0.125403π-0.125403\pi
0.923395 + 0.383852i 0.125403π0.125403\pi
182182 −1.58093e10 −1.06805
183183 −9.83225e9 −0.648072
184184 −6.34240e9 −0.407918
185185 1.05114e10 0.659762
186186 −4.88038e9 −0.298982
187187 1.74193e9 0.104170
188188 −5.33988e9 −0.311761
189189 −5.83586e9 −0.332680
190190 2.27338e9 0.126555
191191 −2.27990e10 −1.23956 −0.619778 0.784777i 0.712778π-0.712778\pi
−0.619778 + 0.784777i 0.712778π0.712778\pi
192192 1.20522e10 0.640046
193193 1.04482e10 0.542042 0.271021 0.962573i 0.412639π-0.412639\pi
0.271021 + 0.962573i 0.412639π0.412639\pi
194194 5.63399e9 0.285567
195195 −4.82169e9 −0.238805
196196 −7.22928e9 −0.349899
197197 1.56378e10 0.739736 0.369868 0.929084i 0.379403π-0.379403\pi
0.369868 + 0.929084i 0.379403π0.379403\pi
198198 −4.59120e9 −0.212291
199199 2.43388e10 1.10017 0.550086 0.835108i 0.314595π-0.314595\pi
0.550086 + 0.835108i 0.314595π0.314595\pi
200200 −1.52345e10 −0.673275
201201 1.67706e10 0.724713
202202 −3.80924e9 −0.160975
203203 −4.21498e10 −1.74206
204204 −3.73167e8 −0.0150858
205205 6.30360e9 0.249285
206206 −2.40611e10 −0.930920
207207 −3.36472e9 −0.127375
208208 1.45713e10 0.539776
209209 −4.43984e9 −0.160957
210210 1.55165e10 0.550561
211211 −4.12068e10 −1.43119 −0.715595 0.698515i 0.753845π-0.753845\pi
−0.715595 + 0.698515i 0.753845π0.753845\pi
212212 −6.97270e9 −0.237077
213213 −3.84989e9 −0.128156
214214 −4.82702e10 −1.57332
215215 2.60470e10 0.831353
216216 6.57248e9 0.205441
217217 −3.22118e10 −0.986158
218218 1.76979e10 0.530721
219219 −1.45326e10 −0.426918
220220 −2.60704e9 −0.0750319
221221 −3.58374e9 −0.101058
222222 −2.05918e10 −0.568991
223223 −3.39769e10 −0.920050 −0.460025 0.887906i 0.652160π-0.652160\pi
−0.460025 + 0.887906i 0.652160π0.652160\pi
224224 2.26422e10 0.600901
225225 −8.08208e9 −0.210233
226226 3.30238e10 0.842053
227227 6.07084e10 1.51751 0.758757 0.651374i 0.225807π-0.225807\pi
0.758757 + 0.651374i 0.225807π0.225807\pi
228228 9.51131e8 0.0233095
229229 5.90425e10 1.41875 0.709373 0.704833i 0.248978π-0.248978\pi
0.709373 + 0.704833i 0.248978π0.248978\pi
230230 8.94617e9 0.210796
231231 −3.03031e10 −0.700219
232232 4.74701e10 1.07578
233233 3.71808e10 0.826452 0.413226 0.910629i 0.364402π-0.364402\pi
0.413226 + 0.910629i 0.364402π0.364402\pi
234234 9.44567e9 0.205950
235235 5.03321e10 1.07656
236236 1.71148e9 0.0359142
237237 −1.59298e9 −0.0327976
238238 1.15327e10 0.232988
239239 6.58294e10 1.30506 0.652529 0.757764i 0.273708π-0.273708\pi
0.652529 + 0.757764i 0.273708π0.273708\pi
240240 −1.43014e10 −0.278245
241241 −1.54299e10 −0.294637 −0.147319 0.989089i 0.547064π-0.547064\pi
−0.147319 + 0.989089i 0.547064π0.547064\pi
242242 2.45924e10 0.460927
243243 3.48678e9 0.0641500
244244 1.09373e10 0.197540
245245 6.81410e10 1.20826
246246 −1.23487e10 −0.214988
247247 9.13427e9 0.156148
248248 3.62777e10 0.608985
249249 −1.06413e10 −0.175428
250250 5.55599e10 0.899563
251251 1.16470e11 1.85217 0.926087 0.377311i 0.123151π-0.123151\pi
0.926087 + 0.377311i 0.123151π0.123151\pi
252252 6.49174e9 0.101405
253253 −1.74716e10 −0.268096
254254 −9.85868e10 −1.48617
255255 3.51736e9 0.0520938
256256 −3.50909e10 −0.510640
257257 −8.76554e10 −1.25337 −0.626685 0.779272i 0.715589π-0.715589\pi
−0.626685 + 0.779272i 0.715589π0.715589\pi
258258 −5.10261e10 −0.716974
259259 −1.35911e11 −1.87675
260260 5.36358e9 0.0727905
261261 2.51835e10 0.335918
262262 −4.82395e10 −0.632480
263263 5.59843e10 0.721548 0.360774 0.932653i 0.382513π-0.382513\pi
0.360774 + 0.932653i 0.382513π0.382513\pi
264264 3.41281e10 0.432409
265265 6.57226e10 0.818668
266266 −2.93946e10 −0.359998
267267 5.86765e10 0.706583
268268 −1.86554e10 −0.220901
269269 1.34921e11 1.57107 0.785533 0.618820i 0.212389π-0.212389\pi
0.785533 + 0.618820i 0.212389π0.212389\pi
270270 −9.27070e9 −0.106164
271271 −1.25689e11 −1.41559 −0.707793 0.706420i 0.750309π-0.750309\pi
−0.707793 + 0.706420i 0.750309π0.750309\pi
272272 −1.06296e10 −0.117749
273273 6.23440e10 0.679301
274274 7.27099e10 0.779320
275275 −4.19668e10 −0.442496
276276 3.74288e9 0.0388253
277277 1.41815e10 0.144732 0.0723660 0.997378i 0.476945π-0.476945\pi
0.0723660 + 0.997378i 0.476945π0.476945\pi
278278 1.17747e11 1.18235
279279 1.92458e10 0.190159
280280 −1.15340e11 −1.12142
281281 −3.28603e9 −0.0314408 −0.0157204 0.999876i 0.505004π-0.505004\pi
−0.0157204 + 0.999876i 0.505004π0.505004\pi
282282 −9.86004e10 −0.928448
283283 3.87463e9 0.0359080 0.0179540 0.999839i 0.494285π-0.494285\pi
0.0179540 + 0.999839i 0.494285π0.494285\pi
284284 4.28257e9 0.0390635
285285 −8.96507e9 −0.0804919
286286 4.90473e10 0.433479
287287 −8.15049e10 −0.709113
288288 −1.35282e10 −0.115871
289289 −1.15974e11 −0.977955
290290 −6.69581e10 −0.555920
291291 −2.22176e10 −0.181627
292292 1.61659e10 0.130130
293293 −1.07217e11 −0.849885 −0.424943 0.905220i 0.639706π-0.639706\pi
−0.424943 + 0.905220i 0.639706π0.639706\pi
294294 −1.33488e11 −1.04203
295295 −1.61319e10 −0.124018
296296 1.53066e11 1.15896
297297 1.81054e10 0.135022
298298 −1.94419e10 −0.142812
299299 3.59450e10 0.260087
300300 8.99040e9 0.0640816
301301 −3.36786e11 −2.36486
302302 4.60057e10 0.318259
303303 1.50217e10 0.102383
304304 2.70928e10 0.181937
305305 −1.03091e11 −0.682139
306306 −6.89049e9 −0.0449266
307307 −6.88951e10 −0.442655 −0.221327 0.975200i 0.571039π-0.571039\pi
−0.221327 + 0.975200i 0.571039π0.571039\pi
308308 3.37088e10 0.213435
309309 9.48848e10 0.592084
310310 −5.11709e10 −0.314699
311311 1.72287e10 0.104431 0.0522157 0.998636i 0.483372π-0.483372\pi
0.0522157 + 0.998636i 0.483372π0.483372\pi
312312 −7.02132e10 −0.419491
313313 1.38189e11 0.813810 0.406905 0.913470i 0.366608π-0.366608\pi
0.406905 + 0.913470i 0.366608π0.366608\pi
314314 −1.08170e11 −0.627946
315315 −6.11891e10 −0.350168
316316 1.77201e9 0.00999708
317317 1.08730e11 0.604758 0.302379 0.953188i 0.402219π-0.402219\pi
0.302379 + 0.953188i 0.402219π0.402219\pi
318318 −1.28750e11 −0.706035
319319 1.30767e11 0.707035
320320 1.26368e11 0.673692
321321 1.90353e11 1.00066
322322 −1.15673e11 −0.599627
323323 −6.66334e9 −0.0340628
324324 −3.87865e9 −0.0195537
325325 8.63401e10 0.429277
326326 2.71956e11 1.33358
327327 −6.97915e10 −0.337550
328328 9.17927e10 0.437901
329329 −6.50789e11 −3.06238
330330 −4.81388e10 −0.223451
331331 2.09296e11 0.958373 0.479187 0.877713i 0.340932π-0.340932\pi
0.479187 + 0.877713i 0.340932π0.340932\pi
332332 1.18373e10 0.0534725
333333 8.12037e10 0.361890
334334 −1.43926e11 −0.632821
335335 1.75840e11 0.762809
336336 1.84916e11 0.791493
337337 −3.45160e11 −1.45776 −0.728880 0.684641i 0.759959π-0.759959\pi
−0.728880 + 0.684641i 0.759959π0.759959\pi
338338 1.16911e11 0.487224
339339 −1.30230e11 −0.535563
340340 −3.91266e9 −0.0158788
341341 9.99351e10 0.400243
342342 1.75625e10 0.0694177
343343 −4.37926e11 −1.70835
344344 3.79296e11 1.46038
345345 −3.52792e10 −0.134070
346346 3.08285e11 1.15640
347347 3.49438e11 1.29386 0.646930 0.762549i 0.276053π-0.276053\pi
0.646930 + 0.762549i 0.276053π0.276053\pi
348348 −2.80138e10 −0.102392
349349 5.41554e11 1.95401 0.977006 0.213212i 0.0683924π-0.0683924\pi
0.977006 + 0.213212i 0.0683924π0.0683924\pi
350350 −2.77847e11 −0.989692
351351 −3.72490e10 −0.130988
352352 −7.02461e10 −0.243882
353353 −3.61705e11 −1.23985 −0.619923 0.784662i 0.712836π-0.712836\pi
−0.619923 + 0.784662i 0.712836π0.712836\pi
354354 3.16022e10 0.106956
355355 −4.03662e10 −0.134893
356356 −6.52710e10 −0.215375
357357 −4.54791e10 −0.148185
358358 2.75199e11 0.885469
359359 −2.03771e11 −0.647467 −0.323733 0.946148i 0.604938π-0.604938\pi
−0.323733 + 0.946148i 0.604938π0.604938\pi
360360 6.89126e10 0.216241
361361 1.69836e10 0.0526316
362362 −5.47739e11 −1.67643
363363 −9.69802e10 −0.293159
364364 −6.93506e10 −0.207059
365365 −1.52375e11 −0.449360
366366 2.01956e11 0.588290
367367 2.55387e11 0.734856 0.367428 0.930052i 0.380238π-0.380238\pi
0.367428 + 0.930052i 0.380238π0.380238\pi
368368 1.06615e11 0.303042
369369 4.86972e10 0.136737
370370 −2.15905e11 −0.598902
371371 −8.49787e11 −2.32877
372372 −2.14087e10 −0.0579626
373373 −2.45551e11 −0.656830 −0.328415 0.944534i 0.606514π-0.606514\pi
−0.328415 + 0.944534i 0.606514π0.606514\pi
374374 −3.57794e10 −0.0945608
375375 −2.19101e11 −0.572141
376376 7.32934e11 1.89112
377377 −2.69033e11 −0.685914
378378 1.19869e11 0.301992
379379 5.69966e11 1.41897 0.709484 0.704722i 0.248928π-0.248928\pi
0.709484 + 0.704722i 0.248928π0.248928\pi
380380 9.97263e9 0.0245349
381381 3.88777e11 0.945232
382382 4.68295e11 1.12521
383383 3.15156e11 0.748395 0.374197 0.927349i 0.377918π-0.377918\pi
0.374197 + 0.927349i 0.377918π0.377918\pi
384384 −1.62043e11 −0.380311
385385 −3.17729e11 −0.737028
386386 −2.14607e11 −0.492041
387387 2.01221e11 0.456010
388388 2.47146e10 0.0553619
389389 −1.45206e11 −0.321522 −0.160761 0.986993i 0.551395π-0.551395\pi
−0.160761 + 0.986993i 0.551395π0.551395\pi
390390 9.90381e10 0.216776
391391 −2.62215e10 −0.0567363
392392 9.92266e11 2.12247
393393 1.90232e11 0.402270
394394 −3.21202e11 −0.671498
395395 −1.67024e10 −0.0345217
396396 −2.01402e10 −0.0411562
397397 6.01437e11 1.21516 0.607579 0.794259i 0.292141π-0.292141\pi
0.607579 + 0.794259i 0.292141π0.292141\pi
398398 −4.99922e11 −0.998685
399399 1.15918e11 0.228966
400400 2.56090e11 0.500175
401401 −6.07613e11 −1.17348 −0.586742 0.809774i 0.699590π-0.699590\pi
−0.586742 + 0.809774i 0.699590π0.699590\pi
402402 −3.44470e11 −0.657861
403403 −2.05601e11 −0.388286
404404 −1.67100e10 −0.0312076
405405 3.65590e10 0.0675223
406406 8.65763e11 1.58136
407407 4.21656e11 0.761700
408408 5.12196e10 0.0915094
409409 −6.88220e11 −1.21611 −0.608055 0.793895i 0.708050π-0.708050\pi
−0.608055 + 0.793895i 0.708050π0.708050\pi
410410 −1.29477e11 −0.226289
411411 −2.86731e11 −0.495664
412412 −1.05549e11 −0.180474
413413 2.08583e11 0.352780
414414 6.91118e10 0.115625
415415 −1.11575e11 −0.184650
416416 1.44520e11 0.236597
417417 −4.64335e11 −0.752002
418418 9.11948e10 0.146109
419419 −3.71568e10 −0.0588946 −0.0294473 0.999566i 0.509375π-0.509375\pi
−0.0294473 + 0.999566i 0.509375π0.509375\pi
420420 6.80660e10 0.106735
421421 5.58155e11 0.865935 0.432968 0.901410i 0.357466π-0.357466\pi
0.432968 + 0.901410i 0.357466π0.357466\pi
422422 8.46392e11 1.29917
423423 3.88831e11 0.590512
424424 9.57049e11 1.43810
425425 −6.29840e10 −0.0936441
426426 7.90772e10 0.116334
427427 1.33296e12 1.94041
428428 −2.11747e11 −0.305014
429429 −1.93418e11 −0.275702
430430 −5.35010e11 −0.754664
431431 −9.86246e11 −1.37669 −0.688347 0.725381i 0.741663π-0.741663\pi
−0.688347 + 0.725381i 0.741663π0.741663\pi
432432 −1.10483e11 −0.152622
433433 −1.02917e12 −1.40699 −0.703497 0.710698i 0.748379π-0.748379\pi
−0.703497 + 0.710698i 0.748379π0.748379\pi
434434 6.61635e11 0.895188
435435 2.64050e11 0.353577
436436 7.76352e10 0.102889
437437 6.68334e10 0.0876652
438438 2.98501e11 0.387537
439439 −4.94349e11 −0.635248 −0.317624 0.948217i 0.602885π-0.602885\pi
−0.317624 + 0.948217i 0.602885π0.602885\pi
440440 3.57834e11 0.455139
441441 5.26410e11 0.662751
442442 7.36105e10 0.0917360
443443 −1.37930e12 −1.70153 −0.850767 0.525544i 0.823862π-0.823862\pi
−0.850767 + 0.525544i 0.823862π0.823862\pi
444444 −9.03300e10 −0.110308
445445 6.15224e11 0.743727
446446 6.97889e11 0.835179
447447 7.66690e10 0.0908314
448448 −1.63392e12 −1.91638
449449 5.05483e11 0.586945 0.293473 0.955967i 0.405189π-0.405189\pi
0.293473 + 0.955967i 0.405189π0.405189\pi
450450 1.66007e11 0.190840
451451 2.52864e11 0.287801
452452 1.44866e11 0.163246
453453 −1.81424e11 −0.202419
454454 −1.24696e12 −1.37753
455455 6.53678e11 0.715011
456456 −1.30549e11 −0.141394
457457 6.35644e11 0.681696 0.340848 0.940118i 0.389286π-0.389286\pi
0.340848 + 0.940118i 0.389286π0.389286\pi
458458 −1.21274e12 −1.28787
459459 2.71727e10 0.0285743
460460 3.92441e10 0.0408662
461461 −1.63724e12 −1.68834 −0.844168 0.536078i 0.819905π-0.819905\pi
−0.844168 + 0.536078i 0.819905π0.819905\pi
462462 6.22430e11 0.635626
463463 2.10608e11 0.212990 0.106495 0.994313i 0.466037π-0.466037\pi
0.106495 + 0.994313i 0.466037π0.466037\pi
464464 −7.97966e11 −0.799197
465465 2.01792e11 0.200155
466466 −7.63699e11 −0.750215
467467 1.74185e12 1.69467 0.847333 0.531062i 0.178207π-0.178207\pi
0.847333 + 0.531062i 0.178207π0.178207\pi
468468 4.14353e10 0.0399268
469469 −2.27359e12 −2.16988
470470 −1.03383e12 −0.977255
471471 4.26568e11 0.399387
472472 −2.34911e11 −0.217854
473473 1.04486e12 0.959802
474474 3.27199e10 0.0297721
475475 1.60534e11 0.144693
476476 5.05904e10 0.0451686
477477 5.07727e11 0.449053
478478 −1.35214e12 −1.18467
479479 −1.89986e12 −1.64897 −0.824484 0.565886i 0.808534π-0.808534\pi
−0.824484 + 0.565886i 0.808534π0.808534\pi
480480 −1.41843e11 −0.121962
481481 −8.67492e11 −0.738946
482482 3.16933e11 0.267458
483483 4.56157e11 0.381375
484484 1.07879e11 0.0893583
485485 −2.32953e11 −0.191174
486486 −7.16190e10 −0.0582324
487487 8.58404e11 0.691530 0.345765 0.938321i 0.387619π-0.387619\pi
0.345765 + 0.938321i 0.387619π0.387619\pi
488488 −1.50121e12 −1.19826
489489 −1.07246e12 −0.848184
490490 −1.39962e12 −1.09680
491491 −1.56518e12 −1.21534 −0.607671 0.794189i 0.707896π-0.707896\pi
−0.607671 + 0.794189i 0.707896π0.707896\pi
492492 −5.41701e10 −0.0416790
493493 1.96256e11 0.149628
494494 −1.87619e11 −0.141744
495495 1.89835e11 0.142120
496496 −6.09823e11 −0.452415
497497 5.21931e11 0.383716
498498 2.18574e11 0.159245
499499 2.19579e12 1.58540 0.792699 0.609613i 0.208675π-0.208675\pi
0.792699 + 0.609613i 0.208675π0.208675\pi
500500 2.43725e11 0.174395
501501 5.67573e11 0.402487
502502 −2.39230e12 −1.68132
503503 1.32838e12 0.925264 0.462632 0.886550i 0.346905π-0.346905\pi
0.462632 + 0.886550i 0.346905π0.346905\pi
504504 −8.91033e11 −0.615115
505505 1.57503e11 0.107765
506506 3.58868e11 0.243365
507507 −4.61037e11 −0.309884
508508 −4.32471e11 −0.288118
509509 −1.22144e12 −0.806568 −0.403284 0.915075i 0.632131π-0.632131\pi
−0.403284 + 0.915075i 0.632131π0.632131\pi
510510 −7.22470e10 −0.0472883
511511 1.97019e12 1.27824
512512 1.74504e12 1.12225
513513 −6.92579e10 −0.0441511
514514 1.80045e12 1.13775
515515 9.94870e11 0.623209
516516 −2.23836e11 −0.138997
517517 2.01903e12 1.24290
518518 2.79164e12 1.70363
519519 −1.21572e12 −0.735497
520520 −7.36187e11 −0.441543
521521 3.75797e11 0.223451 0.111726 0.993739i 0.464362π-0.464362\pi
0.111726 + 0.993739i 0.464362π0.464362\pi
522522 −5.17272e11 −0.304931
523523 1.79674e12 1.05009 0.525047 0.851073i 0.324048π-0.324048\pi
0.525047 + 0.851073i 0.324048π0.324048\pi
524524 −2.11612e11 −0.122617
525525 1.09569e12 0.629464
526526 −1.14992e12 −0.654988
527527 1.49983e11 0.0847022
528528 −5.73689e11 −0.321236
529529 −1.53815e12 −0.853981
530530 −1.34995e12 −0.743149
531531 −1.24623e11 −0.0680259
532532 −1.28945e11 −0.0697916
533533 −5.20228e11 −0.279204
534534 −1.20522e12 −0.641404
535535 1.99586e12 1.05327
536536 2.56057e12 1.33997
537537 −1.08525e12 −0.563177
538538 −2.77129e12 −1.42614
539539 2.73342e12 1.39495
540540 −4.06678e10 −0.0205816
541541 1.40714e12 0.706235 0.353118 0.935579i 0.385122π-0.385122\pi
0.353118 + 0.935579i 0.385122π0.385122\pi
542542 2.58167e12 1.28500
543543 2.16001e12 1.06624
544544 −1.05426e11 −0.0516121
545545 −7.31766e11 −0.355294
546546 −1.28055e12 −0.616638
547547 −1.35959e12 −0.649330 −0.324665 0.945829i 0.605252π-0.605252\pi
−0.324665 + 0.945829i 0.605252π0.605252\pi
548548 3.18956e11 0.151084
549549 −7.96412e11 −0.374164
550550 8.62003e11 0.401677
551551 −5.00219e11 −0.231195
552552 −5.13734e11 −0.235512
553553 2.15960e11 0.0981999
554554 −2.91291e11 −0.131381
555555 8.51423e11 0.380914
556556 5.16520e11 0.229219
557557 4.99582e11 0.219917 0.109958 0.993936i 0.464928π-0.464928\pi
0.109958 + 0.993936i 0.464928π0.464928\pi
558558 −3.95311e11 −0.172617
559559 −2.14963e12 −0.931130
560560 1.93884e12 0.833100
561561 1.41096e11 0.0601426
562562 6.74955e10 0.0285405
563563 2.30144e12 0.965412 0.482706 0.875782i 0.339654π-0.339654\pi
0.482706 + 0.875782i 0.339654π0.339654\pi
564564 −4.32530e11 −0.179995
565565 −1.36546e12 −0.563717
566566 −7.95854e10 −0.0325957
567567 −4.72705e11 −0.192073
568568 −5.87810e11 −0.236957
569569 −1.47757e12 −0.590938 −0.295469 0.955352i 0.595476π-0.595476\pi
−0.295469 + 0.955352i 0.595476π0.595476\pi
570570 1.84144e11 0.0730668
571571 3.51997e12 1.38572 0.692861 0.721071i 0.256350π-0.256350\pi
0.692861 + 0.721071i 0.256350π0.256350\pi
572572 2.15156e11 0.0840371
573573 −1.84672e12 −0.715659
574574 1.67412e12 0.643700
575575 6.31732e11 0.241006
576576 9.76230e11 0.369531
577577 1.93159e12 0.725476 0.362738 0.931891i 0.381842π-0.381842\pi
0.362738 + 0.931891i 0.381842π0.381842\pi
578578 2.38211e12 0.887742
579579 8.46303e11 0.312948
580580 −2.93725e11 −0.107774
581581 1.44265e12 0.525252
582582 4.56353e11 0.164872
583583 2.63641e12 0.945158
584584 −2.21887e12 −0.789359
585585 −3.90557e11 −0.137874
586586 2.20225e12 0.771486
587587 −2.05383e11 −0.0713990 −0.0356995 0.999363i 0.511366π-0.511366\pi
−0.0356995 + 0.999363i 0.511366π0.511366\pi
588588 −5.85572e11 −0.202014
589589 −3.82278e11 −0.130876
590590 3.31350e11 0.112578
591591 1.26666e12 0.427087
592592 −2.57303e12 −0.860988
593593 6.35391e11 0.211006 0.105503 0.994419i 0.466355π-0.466355\pi
0.105503 + 0.994419i 0.466355π0.466355\pi
594594 −3.71887e11 −0.122567
595595 −4.76850e11 −0.155975
596596 −8.52856e10 −0.0276865
597597 1.97144e12 0.635185
598598 −7.38316e11 −0.236095
599599 −2.77298e12 −0.880089 −0.440044 0.897976i 0.645037π-0.645037\pi
−0.440044 + 0.897976i 0.645037π0.645037\pi
600600 −1.23399e12 −0.388715
601601 6.08041e11 0.190107 0.0950534 0.995472i 0.469698π-0.469698\pi
0.0950534 + 0.995472i 0.469698π0.469698\pi
602602 6.91762e12 2.14671
603603 1.35842e12 0.418413
604604 2.01813e11 0.0616998
605605 −1.01684e12 −0.308570
606606 −3.08549e11 −0.0929387
607607 2.15450e12 0.644164 0.322082 0.946712i 0.395617π-0.395617\pi
0.322082 + 0.946712i 0.395617π0.395617\pi
608608 2.68710e11 0.0797476
609609 −3.41414e12 −1.00578
610610 2.11751e12 0.619215
611611 −4.15384e12 −1.20577
612612 −3.02265e10 −0.00870977
613613 7.03883e11 0.201339 0.100670 0.994920i 0.467901π-0.467901\pi
0.100670 + 0.994920i 0.467901π0.467901\pi
614614 1.41511e12 0.401822
615615 5.10591e11 0.143925
616616 −4.62676e12 −1.29468
617617 −1.79432e12 −0.498445 −0.249222 0.968446i 0.580175π-0.580175\pi
−0.249222 + 0.968446i 0.580175π0.580175\pi
618618 −1.94895e12 −0.537467
619619 −1.11310e12 −0.304737 −0.152369 0.988324i 0.548690π-0.548690\pi
−0.152369 + 0.988324i 0.548690π0.548690\pi
620620 −2.24471e11 −0.0610096
621621 −2.72543e11 −0.0735398
622622 −3.53880e11 −0.0947980
623623 −7.95479e12 −2.11560
624624 1.18028e12 0.311640
625625 1.08655e11 0.0284834
626626 −2.83841e12 −0.738739
627627 −3.59627e11 −0.0929284
628628 −4.74508e11 −0.121738
629629 6.32824e11 0.161196
630630 1.25683e12 0.317867
631631 −5.70160e12 −1.43174 −0.715870 0.698233i 0.753970π-0.753970\pi
−0.715870 + 0.698233i 0.753970π0.753970\pi
632632 −2.43219e11 −0.0606417
633633 −3.33775e12 −0.826298
634634 −2.23332e12 −0.548971
635635 4.07634e12 0.994921
636636 −5.64789e11 −0.136877
637637 −5.62359e12 −1.35328
638638 −2.68597e12 −0.641813
639639 −3.11841e11 −0.0739911
640640 −1.69902e12 −0.400303
641641 −4.47302e12 −1.04650 −0.523251 0.852179i 0.675281π-0.675281\pi
−0.523251 + 0.852179i 0.675281π0.675281\pi
642642 −3.90988e12 −0.908356
643643 3.99810e12 0.922369 0.461184 0.887304i 0.347425π-0.347425\pi
0.461184 + 0.887304i 0.347425π0.347425\pi
644644 −5.07423e11 −0.116248
645645 2.10981e12 0.479982
646646 1.36866e11 0.0309206
647647 2.07881e12 0.466385 0.233193 0.972431i 0.425083π-0.425083\pi
0.233193 + 0.972431i 0.425083π0.425083\pi
648648 5.32371e11 0.118611
649649 −6.47117e11 −0.143180
650650 −1.77344e12 −0.389678
651651 −2.60916e12 −0.569358
652652 1.19299e12 0.258537
653653 9.14519e12 1.96826 0.984132 0.177436i 0.0567802π-0.0567802\pi
0.984132 + 0.177436i 0.0567802π0.0567802\pi
654654 1.43353e12 0.306412
655655 1.99459e12 0.423417
656656 −1.54302e12 −0.325316
657657 −1.17714e12 −0.246481
658658 1.33673e13 2.77989
659659 6.16598e12 1.27355 0.636777 0.771048i 0.280267π-0.280267\pi
0.636777 + 0.771048i 0.280267π0.280267\pi
660660 −2.11170e11 −0.0433197
661661 −7.12362e12 −1.45142 −0.725712 0.687999i 0.758489π-0.758489\pi
−0.725712 + 0.687999i 0.758489π0.758489\pi
662662 −4.29896e12 −0.869967
663663 −2.90283e11 −0.0583460
664664 −1.62474e12 −0.324361
665665 1.21540e12 0.241002
666666 −1.66793e12 −0.328507
667667 −1.96845e12 −0.385087
668668 −6.31361e11 −0.122683
669669 −2.75213e12 −0.531191
670670 −3.61177e12 −0.692443
671671 −4.13543e12 −0.787534
672672 1.83402e12 0.346931
673673 −5.12635e11 −0.0963253 −0.0481627 0.998840i 0.515337π-0.515337\pi
−0.0481627 + 0.998840i 0.515337π0.515337\pi
674674 7.08963e12 1.32329
675675 −6.54649e11 −0.121378
676676 5.12851e11 0.0944564
677677 −5.87594e12 −1.07505 −0.537525 0.843248i 0.680641π-0.680641\pi
−0.537525 + 0.843248i 0.680641π0.680641\pi
678678 2.67493e12 0.486160
679679 3.01206e12 0.543812
680680 5.37039e11 0.0963198
681681 4.91738e12 0.876137
682682 −2.05268e12 −0.363322
683683 −2.56410e12 −0.450859 −0.225430 0.974259i 0.572379π-0.572379\pi
−0.225430 + 0.974259i 0.572379π0.572379\pi
684684 7.70416e10 0.0134578
685685 −3.00639e12 −0.521720
686686 8.99505e12 1.55076
687687 4.78244e12 0.819114
688688 −6.37592e12 −1.08491
689689 −5.42400e12 −0.916924
690690 7.24639e11 0.121703
691691 5.81266e12 0.969892 0.484946 0.874544i 0.338839π-0.338839\pi
0.484946 + 0.874544i 0.338839π0.338839\pi
692692 1.35235e12 0.224188
693693 −2.45455e12 −0.404272
694694 −7.17750e12 −1.17451
695695 −4.86856e12 −0.791533
696696 3.84508e12 0.621103
697697 3.79499e11 0.0609065
698698 −1.11236e13 −1.77376
699699 3.01165e12 0.477152
700700 −1.21883e12 −0.191868
701701 −3.02109e12 −0.472534 −0.236267 0.971688i 0.575924π-0.575924\pi
−0.236267 + 0.971688i 0.575924π0.575924\pi
702702 7.65099e11 0.118905
703703 −1.61295e12 −0.249070
704704 5.06915e12 0.777782
705705 4.07690e12 0.621554
706706 7.42946e12 1.12548
707707 −2.03650e12 −0.306548
708708 1.38630e11 0.0207351
709709 3.97322e12 0.590521 0.295260 0.955417i 0.404594π-0.404594\pi
0.295260 + 0.955417i 0.404594π0.404594\pi
710710 8.29126e11 0.122450
711711 −1.29031e11 −0.0189357
712712 8.95887e12 1.30645
713713 −1.50434e12 −0.217993
714714 9.34147e11 0.134516
715715 −2.02800e12 −0.290195
716716 1.20722e12 0.171663
717717 5.33218e12 0.753475
718718 4.18548e12 0.587740
719719 2.05393e12 0.286619 0.143309 0.989678i 0.454226π-0.454226\pi
0.143309 + 0.989678i 0.454226π0.454226\pi
720720 −1.15841e12 −0.160645
721721 −1.28636e13 −1.77277
722722 −3.48844e11 −0.0477765
723723 −1.24983e12 −0.170109
724724 −2.40277e12 −0.325004
725725 −4.72823e12 −0.635591
726726 1.99198e12 0.266116
727727 −4.17857e12 −0.554782 −0.277391 0.960757i 0.589470π-0.589470\pi
−0.277391 + 0.960757i 0.589470π0.589470\pi
728728 9.51883e12 1.25601
729729 2.82430e11 0.0370370
730730 3.12979e12 0.407909
731731 1.56813e12 0.203120
732732 8.85919e11 0.114050
733733 1.19821e13 1.53308 0.766541 0.642195i 0.221976π-0.221976\pi
0.766541 + 0.642195i 0.221976π0.221976\pi
734734 −5.24569e12 −0.667068
735735 5.51942e12 0.697590
736736 1.05742e12 0.132831
737737 7.05368e12 0.880668
738738 −1.00025e12 −0.124123
739739 −1.39659e13 −1.72254 −0.861271 0.508145i 0.830331π-0.830331\pi
−0.861271 + 0.508145i 0.830331π0.830331\pi
740740 −9.47112e11 −0.116107
741741 7.39876e11 0.0901524
742742 1.74547e13 2.11395
743743 1.20423e13 1.44964 0.724818 0.688940i 0.241924π-0.241924\pi
0.724818 + 0.688940i 0.241924π0.241924\pi
744744 2.93849e12 0.351598
745745 8.03877e11 0.0956062
746746 5.04366e12 0.596240
747747 −8.61947e11 −0.101283
748748 −1.56954e11 −0.0183322
749749 −2.58063e13 −2.99611
750750 4.50035e12 0.519363
751751 2.32972e11 0.0267254 0.0133627 0.999911i 0.495746π-0.495746\pi
0.0133627 + 0.999911i 0.495746π0.495746\pi
752752 −1.23205e13 −1.40491
753753 9.43405e12 1.06935
754754 5.52597e12 0.622641
755755 −1.90223e12 −0.213060
756756 5.25831e11 0.0585461
757757 1.72848e12 0.191307 0.0956537 0.995415i 0.469506π-0.469506\pi
0.0956537 + 0.995415i 0.469506π0.469506\pi
758758 −1.17072e13 −1.28807
759759 −1.41520e12 −0.154785
760760 −1.36881e12 −0.148827
761761 5.62773e12 0.608278 0.304139 0.952628i 0.401631π-0.401631\pi
0.304139 + 0.952628i 0.401631π0.401631\pi
762762 −7.98553e12 −0.858038
763763 9.46167e12 1.01067
764764 2.05427e12 0.218141
765765 2.84906e11 0.0300764
766766 −6.47334e12 −0.679358
767767 1.33134e12 0.138903
768768 −2.84236e12 −0.294818
769769 1.05077e13 1.08353 0.541765 0.840530i 0.317756π-0.317756\pi
0.541765 + 0.840530i 0.317756π0.317756\pi
770770 6.52620e12 0.669040
771771 −7.10008e12 −0.723634
772772 −9.41416e11 −0.0953902
773773 8.46560e12 0.852805 0.426403 0.904533i 0.359781π-0.359781\pi
0.426403 + 0.904533i 0.359781π0.359781\pi
774774 −4.13311e12 −0.413945
775775 −3.61342e12 −0.359800
776776 −3.39224e12 −0.335822
777777 −1.10088e13 −1.08354
778778 2.98255e12 0.291863
779779 −9.67271e11 −0.0941087
780780 4.34450e11 0.0420256
781781 −1.61926e12 −0.155735
782782 5.38592e11 0.0515026
783783 2.03986e12 0.193943
784784 −1.66799e13 −1.57678
785785 4.47257e12 0.420382
786786 −3.90740e12 −0.365162
787787 −1.21018e13 −1.12451 −0.562255 0.826964i 0.690066π-0.690066\pi
−0.562255 + 0.826964i 0.690066π0.690066\pi
788788 −1.40901e12 −0.130181
789789 4.53473e12 0.416586
790790 3.43069e11 0.0313372
791791 1.76553e13 1.60354
792792 2.76438e12 0.249651
793793 8.50800e12 0.764009
794794 −1.23536e13 −1.10306
795795 5.32353e12 0.472658
796796 −2.19301e12 −0.193612
797797 −6.33723e11 −0.0556336 −0.0278168 0.999613i 0.508856π-0.508856\pi
−0.0278168 + 0.999613i 0.508856π0.508856\pi
798798 −2.38096e12 −0.207845
799799 3.03018e12 0.263031
800800 2.53993e12 0.219239
801801 4.75279e12 0.407946
802802 1.24804e13 1.06524
803803 −6.11239e12 −0.518789
804804 −1.51109e12 −0.127537
805805 4.78282e12 0.401423
806806 4.22307e12 0.352468
807807 1.09286e13 0.907055
808808 2.29356e12 0.189303
809809 −2.06139e13 −1.69197 −0.845983 0.533209i 0.820986π-0.820986\pi
−0.845983 + 0.533209i 0.820986π0.820986\pi
810810 −7.50927e11 −0.0612936
811811 8.21265e12 0.666637 0.333319 0.942814i 0.391832π-0.391832\pi
0.333319 + 0.942814i 0.391832π0.391832\pi
812812 3.79784e12 0.306573
813813 −1.01808e13 −0.817289
814814 −8.66088e12 −0.691436
815815 −1.12447e13 −0.892772
816816 −8.60996e11 −0.0679822
817817 −3.99686e12 −0.313848
818818 1.41361e13 1.10393
819819 5.04986e12 0.392195
820820 −5.67975e11 −0.0438699
821821 −5.92048e11 −0.0454792 −0.0227396 0.999741i 0.507239π-0.507239\pi
−0.0227396 + 0.999741i 0.507239π0.507239\pi
822822 5.88950e12 0.449941
823823 2.20763e13 1.67737 0.838683 0.544620i 0.183326π-0.183326\pi
0.838683 + 0.544620i 0.183326π0.183326\pi
824824 1.44872e13 1.09475
825825 −3.39931e12 −0.255475
826826 −4.28433e12 −0.320238
827827 8.40134e12 0.624559 0.312280 0.949990i 0.398907π-0.398907\pi
0.312280 + 0.949990i 0.398907π0.398907\pi
828828 3.03173e11 0.0224158
829829 −1.32215e13 −0.972266 −0.486133 0.873885i 0.661593π-0.661593\pi
−0.486133 + 0.873885i 0.661593π0.661593\pi
830830 2.29175e12 0.167616
831831 1.14870e12 0.0835610
832832 −1.04290e13 −0.754547
833833 4.10234e12 0.295208
834834 9.53749e12 0.682632
835835 5.95102e12 0.423645
836836 4.00044e11 0.0283257
837837 1.55891e12 0.109788
838838 7.63206e11 0.0534618
839839 −2.02530e13 −1.41111 −0.705554 0.708657i 0.749302π-0.749302\pi
−0.705554 + 0.708657i 0.749302π0.749302\pi
840840 −9.34251e12 −0.647451
841841 2.25874e11 0.0155698
842842 −1.14646e13 −0.786056
843843 −2.66169e11 −0.0181524
844844 3.71287e12 0.251865
845845 −4.83398e12 −0.326174
846846 −7.98663e12 −0.536040
847847 1.31476e13 0.877753
848848 −1.60879e13 −1.06836
849849 3.13845e11 0.0207315
850850 1.29370e12 0.0850057
851851 −6.34725e12 −0.414861
852852 3.46888e11 0.0225533
853853 −2.08420e13 −1.34794 −0.673968 0.738761i 0.735411π-0.735411\pi
−0.673968 + 0.738761i 0.735411π0.735411\pi
854854 −2.73792e13 −1.76141
855855 −7.26171e11 −0.0464720
856856 2.90636e13 1.85020
857857 −2.03554e13 −1.28904 −0.644521 0.764587i 0.722943π-0.722943\pi
−0.644521 + 0.764587i 0.722943π0.722943\pi
858858 3.97283e12 0.250269
859859 3.16587e13 1.98392 0.991958 0.126569i 0.0403964π-0.0403964\pi
0.991958 + 0.126569i 0.0403964π0.0403964\pi
860860 −2.34693e12 −0.146304
861861 −6.60190e12 −0.409406
862862 2.02576e13 1.24970
863863 −5.17762e12 −0.317747 −0.158874 0.987299i 0.550786π-0.550786\pi
−0.158874 + 0.987299i 0.550786π0.550786\pi
864864 −1.09578e12 −0.0668979
865865 −1.27469e13 −0.774160
866866 2.11393e13 1.27720
867867 −9.39386e12 −0.564622
868868 2.90239e12 0.173547
869869 −6.70003e11 −0.0398555
870870 −5.42361e12 −0.320961
871871 −1.45118e13 −0.854360
872872 −1.06559e13 −0.624119
873873 −1.79963e12 −0.104862
874874 −1.37277e12 −0.0795784
875875 2.97036e13 1.71306
876876 1.30944e12 0.0751304
877877 1.52428e13 0.870093 0.435047 0.900408i 0.356732π-0.356732\pi
0.435047 + 0.900408i 0.356732π0.356732\pi
878878 1.01540e13 0.576649
879879 −8.68459e12 −0.490681
880880 −6.01514e12 −0.338122
881881 −1.32512e13 −0.741079 −0.370539 0.928817i 0.620827π-0.620827\pi
−0.370539 + 0.928817i 0.620827π0.620827\pi
882882 −1.08125e13 −0.601615
883883 −4.17400e12 −0.231062 −0.115531 0.993304i 0.536857π-0.536857\pi
−0.115531 + 0.993304i 0.536857π0.536857\pi
884884 3.22907e11 0.0177845
885885 −1.30668e12 −0.0716019
886886 2.83309e13 1.54457
887887 2.81553e13 1.52723 0.763613 0.645674i 0.223423π-0.223423\pi
0.763613 + 0.645674i 0.223423π0.223423\pi
888888 1.23984e13 0.669124
889889 −5.27067e13 −2.83014
890890 −1.26368e13 −0.675121
891891 1.46654e12 0.0779549
892892 3.06143e12 0.161913
893893 −7.72334e12 −0.406418
894894 −1.57479e12 −0.0824526
895895 −1.13789e13 −0.592782
896896 2.19682e13 1.13870
897897 2.91155e12 0.150161
898898 −1.03827e13 −0.532802
899899 1.12593e13 0.574900
900900 7.28223e11 0.0369975
901901 3.95674e12 0.200021
902902 −5.19385e12 −0.261252
903903 −2.72797e13 −1.36535
904904 −1.98838e13 −0.990240
905905 2.26478e13 1.12229
906906 3.72646e12 0.183747
907907 −2.79368e13 −1.37070 −0.685352 0.728212i 0.740352π-0.740352\pi
−0.685352 + 0.728212i 0.740352π0.740352\pi
908908 −5.47003e12 −0.267057
909909 1.21676e12 0.0591110
910910 −1.34266e13 −0.649054
911911 9.90365e12 0.476390 0.238195 0.971217i 0.423444π-0.423444\pi
0.238195 + 0.971217i 0.423444π0.423444\pi
912912 2.19451e12 0.105042
913913 −4.47573e12 −0.213179
914914 −1.30562e13 −0.618813
915915 −8.35040e12 −0.393833
916916 −5.31992e12 −0.249675
917917 −2.57899e13 −1.20445
918918 −5.58130e11 −0.0259384
919919 −2.42733e13 −1.12256 −0.561280 0.827626i 0.689691π-0.689691\pi
−0.561280 + 0.827626i 0.689691π0.689691\pi
920920 −5.38652e12 −0.247892
921921 −5.58050e12 −0.255567
922922 3.36292e13 1.53259
923923 3.33137e12 0.151083
924924 2.73042e12 0.123227
925925 −1.52461e13 −0.684733
926926 −4.32591e12 −0.193343
927927 7.68567e12 0.341840
928928 −7.91435e12 −0.350308
929929 1.19293e13 0.525463 0.262732 0.964869i 0.415377π-0.415377\pi
0.262732 + 0.964869i 0.415377π0.415377\pi
930930 −4.14484e12 −0.181691
931931 −1.04561e13 −0.456137
932932 −3.35012e12 −0.145442
933933 1.39553e12 0.0602935
934934 −3.57778e13 −1.53834
935935 1.47940e12 0.0633042
936936 −5.68727e12 −0.242193
937937 −1.17659e13 −0.498653 −0.249327 0.968419i 0.580209π-0.580209\pi
−0.249327 + 0.968419i 0.580209π0.580209\pi
938938 4.66999e13 1.96971
939939 1.11933e13 0.469854
940940 −4.53509e12 −0.189457
941941 −4.56502e12 −0.189797 −0.0948986 0.995487i 0.530253π-0.530253\pi
−0.0948986 + 0.995487i 0.530253π0.530253\pi
942942 −8.76175e12 −0.362545
943943 −3.80639e12 −0.156751
944944 3.94883e12 0.161843
945945 −4.95632e12 −0.202170
946946 −2.14615e13 −0.871264
947947 3.95574e13 1.59828 0.799140 0.601145i 0.205289π-0.205289\pi
0.799140 + 0.601145i 0.205289π0.205289\pi
948948 1.43532e11 0.00577182
949949 1.25753e13 0.503292
950950 −3.29739e12 −0.131345
951951 8.80711e12 0.349157
952952 −6.94386e12 −0.273990
953953 1.39350e13 0.547252 0.273626 0.961836i 0.411777π-0.411777\pi
0.273626 + 0.961836i 0.411777π0.411777\pi
954954 −1.04288e13 −0.407629
955955 −1.93629e13 −0.753279
956956 −5.93145e12 −0.229668
957957 1.05921e13 0.408207
958958 3.90234e13 1.49686
959959 3.88723e13 1.48408
960960 1.02358e13 0.388956
961961 −1.78350e13 −0.674557
962962 1.78184e13 0.670781
963963 1.54186e13 0.577733
964964 1.39029e12 0.0518512
965965 8.87350e12 0.329399
966966 −9.36952e12 −0.346195
967967 −9.51961e12 −0.350106 −0.175053 0.984559i 0.556010π-0.556010\pi
−0.175053 + 0.984559i 0.556010π0.556010\pi
968968 −1.48072e13 −0.542042
969969 −5.39730e11 −0.0196662
970970 4.78487e12 0.173539
971971 5.37528e13 1.94050 0.970252 0.242098i 0.0778356π-0.0778356\pi
0.970252 + 0.242098i 0.0778356π0.0778356\pi
972972 −3.14171e11 −0.0112893
973973 6.29500e13 2.25158
974974 −1.76317e13 −0.627739
975975 6.99355e12 0.247843
976976 2.52352e13 0.890190
977977 1.76883e13 0.621099 0.310549 0.950557i 0.399487π-0.399487\pi
0.310549 + 0.950557i 0.399487π0.399487\pi
978978 2.20284e13 0.769943
979979 2.46792e13 0.858637
980980 −6.13973e12 −0.212634
981981 −5.65312e12 −0.194885
982982 3.21490e13 1.10323
983983 4.71272e13 1.60983 0.804917 0.593388i 0.202210π-0.202210\pi
0.804917 + 0.593388i 0.202210π0.202210\pi
984984 7.43521e12 0.252822
985985 1.32809e13 0.449538
986986 −4.03112e12 −0.135825
987987 −5.27139e13 −1.76807
988988 −8.23029e11 −0.0274795
989989 −1.57284e13 −0.522757
990990 −3.89924e12 −0.129010
991991 1.41503e13 0.466052 0.233026 0.972470i 0.425137π-0.425137\pi
0.233026 + 0.972470i 0.425137π0.425137\pi
992992 −6.04832e12 −0.198304
993993 1.69530e13 0.553317
994994 −1.07205e13 −0.348319
995995 2.06706e13 0.668575
996996 9.58819e11 0.0308723
997997 1.07830e13 0.345631 0.172815 0.984954i 0.444714π-0.444714\pi
0.172815 + 0.984954i 0.444714π0.444714\pi
998998 −4.51018e13 −1.43915
999999 6.57750e12 0.208937
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 57.10.a.d.1.3 8
3.2 odd 2 171.10.a.e.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.10.a.d.1.3 8 1.1 even 1 trivial
171.10.a.e.1.6 8 3.2 odd 2