Properties

Label 57.10.a.d.1.3
Level $57$
Weight $10$
Character 57.1
Self dual yes
Analytic conductor $29.357$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,10,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3570426613\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3446 x^{6} + 2146 x^{5} + 3632756 x^{4} + 1877896 x^{3} - 1128074928 x^{2} + \cdots - 684004608 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-22.5401\) of defining polynomial
Character \(\chi\) \(=\) 57.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-20.5401 q^{2} +81.0000 q^{3} -90.1033 q^{4} +849.287 q^{5} -1663.75 q^{6} -10981.2 q^{7} +12367.3 q^{8} +6561.00 q^{9} -17444.5 q^{10} +34068.5 q^{11} -7298.37 q^{12} -70090.6 q^{13} +225555. q^{14} +68792.2 q^{15} -207892. q^{16} +51130.2 q^{17} -134764. q^{18} -130321. q^{19} -76523.6 q^{20} -889477. q^{21} -699771. q^{22} -512837. q^{23} +1.00175e6 q^{24} -1.23184e6 q^{25} +1.43967e6 q^{26} +531441. q^{27} +989443. q^{28} +3.83836e6 q^{29} -1.41300e6 q^{30} +2.93336e6 q^{31} -2.06191e6 q^{32} +2.75955e6 q^{33} -1.05022e6 q^{34} -9.32619e6 q^{35} -591168. q^{36} +1.23767e7 q^{37} +2.67681e6 q^{38} -5.67734e6 q^{39} +1.05034e7 q^{40} +7.42222e6 q^{41} +1.82700e7 q^{42} +3.06693e7 q^{43} -3.06968e6 q^{44} +5.57217e6 q^{45} +1.05337e7 q^{46} +5.92639e7 q^{47} -1.68393e7 q^{48} +8.02332e7 q^{49} +2.53021e7 q^{50} +4.14154e6 q^{51} +6.31540e6 q^{52} +7.73856e7 q^{53} -1.09159e7 q^{54} +2.89339e7 q^{55} -1.35808e8 q^{56} -1.05560e7 q^{57} -7.88404e7 q^{58} -1.89946e7 q^{59} -6.19841e6 q^{60} -1.21386e8 q^{61} -6.02516e7 q^{62} -7.20477e7 q^{63} +1.48793e8 q^{64} -5.95270e7 q^{65} -5.66814e7 q^{66} +2.07044e8 q^{67} -4.60700e6 q^{68} -4.15398e7 q^{69} +1.91561e8 q^{70} -4.75295e7 q^{71} +8.11417e7 q^{72} -1.79415e8 q^{73} -2.54220e8 q^{74} -9.97788e7 q^{75} +1.17424e7 q^{76} -3.74113e8 q^{77} +1.16613e8 q^{78} -1.96664e7 q^{79} -1.76560e8 q^{80} +4.30467e7 q^{81} -1.52453e8 q^{82} -1.31374e8 q^{83} +8.01449e7 q^{84} +4.34242e7 q^{85} -6.29951e8 q^{86} +3.10907e8 q^{87} +4.21334e8 q^{88} +7.24401e8 q^{89} -1.14453e8 q^{90} +7.69679e8 q^{91} +4.62083e7 q^{92} +2.37602e8 q^{93} -1.21729e9 q^{94} -1.10680e8 q^{95} -1.67015e8 q^{96} -2.74292e8 q^{97} -1.64800e9 q^{98} +2.23523e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 17 q^{2} + 648 q^{3} + 2833 q^{4} + 3902 q^{5} + 1377 q^{6} + 9488 q^{7} + 27927 q^{8} + 52488 q^{9} + 111324 q^{10} + 38328 q^{11} + 229473 q^{12} + 238594 q^{13} + 255570 q^{14} + 316062 q^{15}+ \cdots + 251470008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −20.5401 −0.907754 −0.453877 0.891064i \(-0.649959\pi\)
−0.453877 + 0.891064i \(0.649959\pi\)
\(3\) 81.0000 0.577350
\(4\) −90.1033 −0.175983
\(5\) 849.287 0.607700 0.303850 0.952720i \(-0.401728\pi\)
0.303850 + 0.952720i \(0.401728\pi\)
\(6\) −1663.75 −0.524092
\(7\) −10981.2 −1.72866 −0.864328 0.502928i \(-0.832256\pi\)
−0.864328 + 0.502928i \(0.832256\pi\)
\(8\) 12367.3 1.06750
\(9\) 6561.00 0.333333
\(10\) −17444.5 −0.551642
\(11\) 34068.5 0.701594 0.350797 0.936452i \(-0.385911\pi\)
0.350797 + 0.936452i \(0.385911\pi\)
\(12\) −7298.37 −0.101604
\(13\) −70090.6 −0.680635 −0.340318 0.940311i \(-0.610535\pi\)
−0.340318 + 0.940311i \(0.610535\pi\)
\(14\) 225555. 1.56919
\(15\) 68792.2 0.350856
\(16\) −207892. −0.793047
\(17\) 51130.2 0.148476 0.0742381 0.997241i \(-0.476348\pi\)
0.0742381 + 0.997241i \(0.476348\pi\)
\(18\) −134764. −0.302585
\(19\) −130321. −0.229416
\(20\) −76523.6 −0.106945
\(21\) −889477. −0.998040
\(22\) −699771. −0.636874
\(23\) −512837. −0.382124 −0.191062 0.981578i \(-0.561193\pi\)
−0.191062 + 0.981578i \(0.561193\pi\)
\(24\) 1.00175e6 0.616323
\(25\) −1.23184e6 −0.630700
\(26\) 1.43967e6 0.617849
\(27\) 531441. 0.192450
\(28\) 989443. 0.304214
\(29\) 3.83836e6 1.00775 0.503877 0.863775i \(-0.331906\pi\)
0.503877 + 0.863775i \(0.331906\pi\)
\(30\) −1.41300e6 −0.318491
\(31\) 2.93336e6 0.570476 0.285238 0.958457i \(-0.407927\pi\)
0.285238 + 0.958457i \(0.407927\pi\)
\(32\) −2.06191e6 −0.347612
\(33\) 2.75955e6 0.405065
\(34\) −1.05022e6 −0.134780
\(35\) −9.32619e6 −1.05050
\(36\) −591168. −0.0586610
\(37\) 1.23767e7 1.08567 0.542835 0.839839i \(-0.317351\pi\)
0.542835 + 0.839839i \(0.317351\pi\)
\(38\) 2.67681e6 0.208253
\(39\) −5.67734e6 −0.392965
\(40\) 1.05034e7 0.648722
\(41\) 7.42222e6 0.410210 0.205105 0.978740i \(-0.434246\pi\)
0.205105 + 0.978740i \(0.434246\pi\)
\(42\) 1.82700e7 0.905975
\(43\) 3.06693e7 1.36803 0.684016 0.729467i \(-0.260232\pi\)
0.684016 + 0.729467i \(0.260232\pi\)
\(44\) −3.06968e6 −0.123469
\(45\) 5.57217e6 0.202567
\(46\) 1.05337e7 0.346874
\(47\) 5.92639e7 1.77154 0.885768 0.464127i \(-0.153632\pi\)
0.885768 + 0.464127i \(0.153632\pi\)
\(48\) −1.68393e7 −0.457866
\(49\) 8.02332e7 1.98825
\(50\) 2.53021e7 0.572521
\(51\) 4.14154e6 0.0857228
\(52\) 6.31540e6 0.119780
\(53\) 7.73856e7 1.34716 0.673579 0.739115i \(-0.264756\pi\)
0.673579 + 0.739115i \(0.264756\pi\)
\(54\) −1.09159e7 −0.174697
\(55\) 2.89339e7 0.426359
\(56\) −1.35808e8 −1.84535
\(57\) −1.05560e7 −0.132453
\(58\) −7.88404e7 −0.914793
\(59\) −1.89946e7 −0.204078 −0.102039 0.994780i \(-0.532537\pi\)
−0.102039 + 0.994780i \(0.532537\pi\)
\(60\) −6.19841e6 −0.0617447
\(61\) −1.21386e8 −1.12249 −0.561247 0.827649i \(-0.689678\pi\)
−0.561247 + 0.827649i \(0.689678\pi\)
\(62\) −6.02516e7 −0.517852
\(63\) −7.20477e7 −0.576219
\(64\) 1.48793e8 1.10859
\(65\) −5.95270e7 −0.413622
\(66\) −5.66814e7 −0.367700
\(67\) 2.07044e8 1.25524 0.627620 0.778520i \(-0.284029\pi\)
0.627620 + 0.778520i \(0.284029\pi\)
\(68\) −4.60700e6 −0.0261293
\(69\) −4.15398e7 −0.220619
\(70\) 1.91561e8 0.953600
\(71\) −4.75295e7 −0.221973 −0.110987 0.993822i \(-0.535401\pi\)
−0.110987 + 0.993822i \(0.535401\pi\)
\(72\) 8.11417e7 0.355834
\(73\) −1.79415e8 −0.739444 −0.369722 0.929142i \(-0.620547\pi\)
−0.369722 + 0.929142i \(0.620547\pi\)
\(74\) −2.54220e8 −0.985522
\(75\) −9.97788e7 −0.364135
\(76\) 1.17424e7 0.0403733
\(77\) −3.74113e8 −1.21281
\(78\) 1.16613e8 0.356715
\(79\) −1.96664e7 −0.0568071 −0.0284035 0.999597i \(-0.509042\pi\)
−0.0284035 + 0.999597i \(0.509042\pi\)
\(80\) −1.76560e8 −0.481935
\(81\) 4.30467e7 0.111111
\(82\) −1.52453e8 −0.372370
\(83\) −1.31374e8 −0.303850 −0.151925 0.988392i \(-0.548547\pi\)
−0.151925 + 0.988392i \(0.548547\pi\)
\(84\) 8.01449e7 0.175638
\(85\) 4.34242e7 0.0902291
\(86\) −6.29951e8 −1.24184
\(87\) 3.10907e8 0.581828
\(88\) 4.21334e8 0.748954
\(89\) 7.24401e8 1.22384 0.611919 0.790920i \(-0.290398\pi\)
0.611919 + 0.790920i \(0.290398\pi\)
\(90\) −1.14453e8 −0.183881
\(91\) 7.69679e8 1.17658
\(92\) 4.62083e7 0.0672473
\(93\) 2.37602e8 0.329365
\(94\) −1.21729e9 −1.60812
\(95\) −1.10680e8 −0.139416
\(96\) −1.67015e8 −0.200694
\(97\) −2.74292e8 −0.314587 −0.157293 0.987552i \(-0.550277\pi\)
−0.157293 + 0.987552i \(0.550277\pi\)
\(98\) −1.64800e9 −1.80484
\(99\) 2.23523e8 0.233865
\(100\) 1.10993e8 0.110993
\(101\) 1.85454e8 0.177333 0.0886664 0.996061i \(-0.471739\pi\)
0.0886664 + 0.996061i \(0.471739\pi\)
\(102\) −8.50678e7 −0.0778152
\(103\) 1.17142e9 1.02552 0.512760 0.858532i \(-0.328623\pi\)
0.512760 + 0.858532i \(0.328623\pi\)
\(104\) −8.66829e8 −0.726580
\(105\) −7.55421e8 −0.606509
\(106\) −1.58951e9 −1.22289
\(107\) 2.35004e9 1.73320 0.866600 0.499003i \(-0.166300\pi\)
0.866600 + 0.499003i \(0.166300\pi\)
\(108\) −4.78846e7 −0.0338680
\(109\) −8.61624e8 −0.584654 −0.292327 0.956318i \(-0.594429\pi\)
−0.292327 + 0.956318i \(0.594429\pi\)
\(110\) −5.94306e8 −0.387029
\(111\) 1.00252e9 0.626812
\(112\) 2.28291e9 1.37091
\(113\) −1.60777e9 −0.927623 −0.463811 0.885934i \(-0.653518\pi\)
−0.463811 + 0.885934i \(0.653518\pi\)
\(114\) 2.16822e8 0.120235
\(115\) −4.35546e8 −0.232217
\(116\) −3.45849e8 −0.177348
\(117\) −4.59864e8 −0.226878
\(118\) 3.90151e8 0.185252
\(119\) −5.61471e8 −0.256665
\(120\) 8.50773e8 0.374540
\(121\) −1.19729e9 −0.507766
\(122\) 2.49328e9 1.01895
\(123\) 6.01200e8 0.236835
\(124\) −2.64306e8 −0.100394
\(125\) −2.70495e9 −0.990977
\(126\) 1.47987e9 0.523065
\(127\) 4.79972e9 1.63719 0.818595 0.574371i \(-0.194753\pi\)
0.818595 + 0.574371i \(0.194753\pi\)
\(128\) −2.00053e9 −0.658717
\(129\) 2.48421e9 0.789833
\(130\) 1.22269e9 0.375467
\(131\) 2.34855e9 0.696753 0.348376 0.937355i \(-0.386733\pi\)
0.348376 + 0.937355i \(0.386733\pi\)
\(132\) −2.48644e8 −0.0712847
\(133\) 1.43108e9 0.396581
\(134\) −4.25271e9 −1.13945
\(135\) 4.51346e8 0.116952
\(136\) 6.32341e8 0.158499
\(137\) −3.53989e9 −0.858515 −0.429257 0.903182i \(-0.641225\pi\)
−0.429257 + 0.903182i \(0.641225\pi\)
\(138\) 8.53233e8 0.200268
\(139\) −5.73253e9 −1.30251 −0.651253 0.758861i \(-0.725756\pi\)
−0.651253 + 0.758861i \(0.725756\pi\)
\(140\) 8.40321e8 0.184871
\(141\) 4.80038e9 1.02280
\(142\) 9.76262e8 0.201497
\(143\) −2.38788e9 −0.477530
\(144\) −1.36398e9 −0.264349
\(145\) 3.25987e9 0.612413
\(146\) 3.68520e9 0.671233
\(147\) 6.49889e9 1.14792
\(148\) −1.11518e9 −0.191060
\(149\) 9.46531e8 0.157325 0.0786623 0.996901i \(-0.474935\pi\)
0.0786623 + 0.996901i \(0.474935\pi\)
\(150\) 2.04947e9 0.330545
\(151\) −2.23980e9 −0.350601 −0.175300 0.984515i \(-0.556090\pi\)
−0.175300 + 0.984515i \(0.556090\pi\)
\(152\) −1.61172e9 −0.244902
\(153\) 3.35465e8 0.0494921
\(154\) 7.68433e9 1.10094
\(155\) 2.49126e9 0.346679
\(156\) 5.11547e8 0.0691552
\(157\) 5.26627e9 0.691759 0.345879 0.938279i \(-0.387581\pi\)
0.345879 + 0.938279i \(0.387581\pi\)
\(158\) 4.03950e8 0.0515668
\(159\) 6.26823e9 0.777782
\(160\) −1.75115e9 −0.211244
\(161\) 5.63157e9 0.660561
\(162\) −8.84185e8 −0.100862
\(163\) −1.32402e10 −1.46910 −0.734549 0.678555i \(-0.762606\pi\)
−0.734549 + 0.678555i \(0.762606\pi\)
\(164\) −6.68767e8 −0.0721901
\(165\) 2.34365e9 0.246158
\(166\) 2.69845e9 0.275821
\(167\) 7.00707e9 0.697128 0.348564 0.937285i \(-0.386669\pi\)
0.348564 + 0.937285i \(0.386669\pi\)
\(168\) −1.10004e10 −1.06541
\(169\) −5.69181e9 −0.536736
\(170\) −8.91938e8 −0.0819058
\(171\) −8.55036e8 −0.0764719
\(172\) −2.76341e9 −0.240750
\(173\) −1.50089e10 −1.27392 −0.636959 0.770898i \(-0.719808\pi\)
−0.636959 + 0.770898i \(0.719808\pi\)
\(174\) −6.38607e9 −0.528156
\(175\) 1.35270e10 1.09026
\(176\) −7.08258e9 −0.556397
\(177\) −1.53856e9 −0.117824
\(178\) −1.48793e10 −1.11094
\(179\) −1.33981e10 −0.975451 −0.487726 0.872997i \(-0.662173\pi\)
−0.487726 + 0.872997i \(0.662173\pi\)
\(180\) −5.02071e8 −0.0356483
\(181\) 2.66668e10 1.84679 0.923395 0.383852i \(-0.125403\pi\)
0.923395 + 0.383852i \(0.125403\pi\)
\(182\) −1.58093e10 −1.06805
\(183\) −9.83225e9 −0.648072
\(184\) −6.34240e9 −0.407918
\(185\) 1.05114e10 0.659762
\(186\) −4.88038e9 −0.298982
\(187\) 1.74193e9 0.104170
\(188\) −5.33988e9 −0.311761
\(189\) −5.83586e9 −0.332680
\(190\) 2.27338e9 0.126555
\(191\) −2.27990e10 −1.23956 −0.619778 0.784777i \(-0.712778\pi\)
−0.619778 + 0.784777i \(0.712778\pi\)
\(192\) 1.20522e10 0.640046
\(193\) 1.04482e10 0.542042 0.271021 0.962573i \(-0.412639\pi\)
0.271021 + 0.962573i \(0.412639\pi\)
\(194\) 5.63399e9 0.285567
\(195\) −4.82169e9 −0.238805
\(196\) −7.22928e9 −0.349899
\(197\) 1.56378e10 0.739736 0.369868 0.929084i \(-0.379403\pi\)
0.369868 + 0.929084i \(0.379403\pi\)
\(198\) −4.59120e9 −0.212291
\(199\) 2.43388e10 1.10017 0.550086 0.835108i \(-0.314595\pi\)
0.550086 + 0.835108i \(0.314595\pi\)
\(200\) −1.52345e10 −0.673275
\(201\) 1.67706e10 0.724713
\(202\) −3.80924e9 −0.160975
\(203\) −4.21498e10 −1.74206
\(204\) −3.73167e8 −0.0150858
\(205\) 6.30360e9 0.249285
\(206\) −2.40611e10 −0.930920
\(207\) −3.36472e9 −0.127375
\(208\) 1.45713e10 0.539776
\(209\) −4.43984e9 −0.160957
\(210\) 1.55165e10 0.550561
\(211\) −4.12068e10 −1.43119 −0.715595 0.698515i \(-0.753845\pi\)
−0.715595 + 0.698515i \(0.753845\pi\)
\(212\) −6.97270e9 −0.237077
\(213\) −3.84989e9 −0.128156
\(214\) −4.82702e10 −1.57332
\(215\) 2.60470e10 0.831353
\(216\) 6.57248e9 0.205441
\(217\) −3.22118e10 −0.986158
\(218\) 1.76979e10 0.530721
\(219\) −1.45326e10 −0.426918
\(220\) −2.60704e9 −0.0750319
\(221\) −3.58374e9 −0.101058
\(222\) −2.05918e10 −0.568991
\(223\) −3.39769e10 −0.920050 −0.460025 0.887906i \(-0.652160\pi\)
−0.460025 + 0.887906i \(0.652160\pi\)
\(224\) 2.26422e10 0.600901
\(225\) −8.08208e9 −0.210233
\(226\) 3.30238e10 0.842053
\(227\) 6.07084e10 1.51751 0.758757 0.651374i \(-0.225807\pi\)
0.758757 + 0.651374i \(0.225807\pi\)
\(228\) 9.51131e8 0.0233095
\(229\) 5.90425e10 1.41875 0.709373 0.704833i \(-0.248978\pi\)
0.709373 + 0.704833i \(0.248978\pi\)
\(230\) 8.94617e9 0.210796
\(231\) −3.03031e10 −0.700219
\(232\) 4.74701e10 1.07578
\(233\) 3.71808e10 0.826452 0.413226 0.910629i \(-0.364402\pi\)
0.413226 + 0.910629i \(0.364402\pi\)
\(234\) 9.44567e9 0.205950
\(235\) 5.03321e10 1.07656
\(236\) 1.71148e9 0.0359142
\(237\) −1.59298e9 −0.0327976
\(238\) 1.15327e10 0.232988
\(239\) 6.58294e10 1.30506 0.652529 0.757764i \(-0.273708\pi\)
0.652529 + 0.757764i \(0.273708\pi\)
\(240\) −1.43014e10 −0.278245
\(241\) −1.54299e10 −0.294637 −0.147319 0.989089i \(-0.547064\pi\)
−0.147319 + 0.989089i \(0.547064\pi\)
\(242\) 2.45924e10 0.460927
\(243\) 3.48678e9 0.0641500
\(244\) 1.09373e10 0.197540
\(245\) 6.81410e10 1.20826
\(246\) −1.23487e10 −0.214988
\(247\) 9.13427e9 0.156148
\(248\) 3.62777e10 0.608985
\(249\) −1.06413e10 −0.175428
\(250\) 5.55599e10 0.899563
\(251\) 1.16470e11 1.85217 0.926087 0.377311i \(-0.123151\pi\)
0.926087 + 0.377311i \(0.123151\pi\)
\(252\) 6.49174e9 0.101405
\(253\) −1.74716e10 −0.268096
\(254\) −9.85868e10 −1.48617
\(255\) 3.51736e9 0.0520938
\(256\) −3.50909e10 −0.510640
\(257\) −8.76554e10 −1.25337 −0.626685 0.779272i \(-0.715589\pi\)
−0.626685 + 0.779272i \(0.715589\pi\)
\(258\) −5.10261e10 −0.716974
\(259\) −1.35911e11 −1.87675
\(260\) 5.36358e9 0.0727905
\(261\) 2.51835e10 0.335918
\(262\) −4.82395e10 −0.632480
\(263\) 5.59843e10 0.721548 0.360774 0.932653i \(-0.382513\pi\)
0.360774 + 0.932653i \(0.382513\pi\)
\(264\) 3.41281e10 0.432409
\(265\) 6.57226e10 0.818668
\(266\) −2.93946e10 −0.359998
\(267\) 5.86765e10 0.706583
\(268\) −1.86554e10 −0.220901
\(269\) 1.34921e11 1.57107 0.785533 0.618820i \(-0.212389\pi\)
0.785533 + 0.618820i \(0.212389\pi\)
\(270\) −9.27070e9 −0.106164
\(271\) −1.25689e11 −1.41559 −0.707793 0.706420i \(-0.750309\pi\)
−0.707793 + 0.706420i \(0.750309\pi\)
\(272\) −1.06296e10 −0.117749
\(273\) 6.23440e10 0.679301
\(274\) 7.27099e10 0.779320
\(275\) −4.19668e10 −0.442496
\(276\) 3.74288e9 0.0388253
\(277\) 1.41815e10 0.144732 0.0723660 0.997378i \(-0.476945\pi\)
0.0723660 + 0.997378i \(0.476945\pi\)
\(278\) 1.17747e11 1.18235
\(279\) 1.92458e10 0.190159
\(280\) −1.15340e11 −1.12142
\(281\) −3.28603e9 −0.0314408 −0.0157204 0.999876i \(-0.505004\pi\)
−0.0157204 + 0.999876i \(0.505004\pi\)
\(282\) −9.86004e10 −0.928448
\(283\) 3.87463e9 0.0359080 0.0179540 0.999839i \(-0.494285\pi\)
0.0179540 + 0.999839i \(0.494285\pi\)
\(284\) 4.28257e9 0.0390635
\(285\) −8.96507e9 −0.0804919
\(286\) 4.90473e10 0.433479
\(287\) −8.15049e10 −0.709113
\(288\) −1.35282e10 −0.115871
\(289\) −1.15974e11 −0.977955
\(290\) −6.69581e10 −0.555920
\(291\) −2.22176e10 −0.181627
\(292\) 1.61659e10 0.130130
\(293\) −1.07217e11 −0.849885 −0.424943 0.905220i \(-0.639706\pi\)
−0.424943 + 0.905220i \(0.639706\pi\)
\(294\) −1.33488e11 −1.04203
\(295\) −1.61319e10 −0.124018
\(296\) 1.53066e11 1.15896
\(297\) 1.81054e10 0.135022
\(298\) −1.94419e10 −0.142812
\(299\) 3.59450e10 0.260087
\(300\) 8.99040e9 0.0640816
\(301\) −3.36786e11 −2.36486
\(302\) 4.60057e10 0.318259
\(303\) 1.50217e10 0.102383
\(304\) 2.70928e10 0.181937
\(305\) −1.03091e11 −0.682139
\(306\) −6.89049e9 −0.0449266
\(307\) −6.88951e10 −0.442655 −0.221327 0.975200i \(-0.571039\pi\)
−0.221327 + 0.975200i \(0.571039\pi\)
\(308\) 3.37088e10 0.213435
\(309\) 9.48848e10 0.592084
\(310\) −5.11709e10 −0.314699
\(311\) 1.72287e10 0.104431 0.0522157 0.998636i \(-0.483372\pi\)
0.0522157 + 0.998636i \(0.483372\pi\)
\(312\) −7.02132e10 −0.419491
\(313\) 1.38189e11 0.813810 0.406905 0.913470i \(-0.366608\pi\)
0.406905 + 0.913470i \(0.366608\pi\)
\(314\) −1.08170e11 −0.627946
\(315\) −6.11891e10 −0.350168
\(316\) 1.77201e9 0.00999708
\(317\) 1.08730e11 0.604758 0.302379 0.953188i \(-0.402219\pi\)
0.302379 + 0.953188i \(0.402219\pi\)
\(318\) −1.28750e11 −0.706035
\(319\) 1.30767e11 0.707035
\(320\) 1.26368e11 0.673692
\(321\) 1.90353e11 1.00066
\(322\) −1.15673e11 −0.599627
\(323\) −6.66334e9 −0.0340628
\(324\) −3.87865e9 −0.0195537
\(325\) 8.63401e10 0.429277
\(326\) 2.71956e11 1.33358
\(327\) −6.97915e10 −0.337550
\(328\) 9.17927e10 0.437901
\(329\) −6.50789e11 −3.06238
\(330\) −4.81388e10 −0.223451
\(331\) 2.09296e11 0.958373 0.479187 0.877713i \(-0.340932\pi\)
0.479187 + 0.877713i \(0.340932\pi\)
\(332\) 1.18373e10 0.0534725
\(333\) 8.12037e10 0.361890
\(334\) −1.43926e11 −0.632821
\(335\) 1.75840e11 0.762809
\(336\) 1.84916e11 0.791493
\(337\) −3.45160e11 −1.45776 −0.728880 0.684641i \(-0.759959\pi\)
−0.728880 + 0.684641i \(0.759959\pi\)
\(338\) 1.16911e11 0.487224
\(339\) −1.30230e11 −0.535563
\(340\) −3.91266e9 −0.0158788
\(341\) 9.99351e10 0.400243
\(342\) 1.75625e10 0.0694177
\(343\) −4.37926e11 −1.70835
\(344\) 3.79296e11 1.46038
\(345\) −3.52792e10 −0.134070
\(346\) 3.08285e11 1.15640
\(347\) 3.49438e11 1.29386 0.646930 0.762549i \(-0.276053\pi\)
0.646930 + 0.762549i \(0.276053\pi\)
\(348\) −2.80138e10 −0.102392
\(349\) 5.41554e11 1.95401 0.977006 0.213212i \(-0.0683924\pi\)
0.977006 + 0.213212i \(0.0683924\pi\)
\(350\) −2.77847e11 −0.989692
\(351\) −3.72490e10 −0.130988
\(352\) −7.02461e10 −0.243882
\(353\) −3.61705e11 −1.23985 −0.619923 0.784662i \(-0.712836\pi\)
−0.619923 + 0.784662i \(0.712836\pi\)
\(354\) 3.16022e10 0.106956
\(355\) −4.03662e10 −0.134893
\(356\) −6.52710e10 −0.215375
\(357\) −4.54791e10 −0.148185
\(358\) 2.75199e11 0.885469
\(359\) −2.03771e11 −0.647467 −0.323733 0.946148i \(-0.604938\pi\)
−0.323733 + 0.946148i \(0.604938\pi\)
\(360\) 6.89126e10 0.216241
\(361\) 1.69836e10 0.0526316
\(362\) −5.47739e11 −1.67643
\(363\) −9.69802e10 −0.293159
\(364\) −6.93506e10 −0.207059
\(365\) −1.52375e11 −0.449360
\(366\) 2.01956e11 0.588290
\(367\) 2.55387e11 0.734856 0.367428 0.930052i \(-0.380238\pi\)
0.367428 + 0.930052i \(0.380238\pi\)
\(368\) 1.06615e11 0.303042
\(369\) 4.86972e10 0.136737
\(370\) −2.15905e11 −0.598902
\(371\) −8.49787e11 −2.32877
\(372\) −2.14087e10 −0.0579626
\(373\) −2.45551e11 −0.656830 −0.328415 0.944534i \(-0.606514\pi\)
−0.328415 + 0.944534i \(0.606514\pi\)
\(374\) −3.57794e10 −0.0945608
\(375\) −2.19101e11 −0.572141
\(376\) 7.32934e11 1.89112
\(377\) −2.69033e11 −0.685914
\(378\) 1.19869e11 0.301992
\(379\) 5.69966e11 1.41897 0.709484 0.704722i \(-0.248928\pi\)
0.709484 + 0.704722i \(0.248928\pi\)
\(380\) 9.97263e9 0.0245349
\(381\) 3.88777e11 0.945232
\(382\) 4.68295e11 1.12521
\(383\) 3.15156e11 0.748395 0.374197 0.927349i \(-0.377918\pi\)
0.374197 + 0.927349i \(0.377918\pi\)
\(384\) −1.62043e11 −0.380311
\(385\) −3.17729e11 −0.737028
\(386\) −2.14607e11 −0.492041
\(387\) 2.01221e11 0.456010
\(388\) 2.47146e10 0.0553619
\(389\) −1.45206e11 −0.321522 −0.160761 0.986993i \(-0.551395\pi\)
−0.160761 + 0.986993i \(0.551395\pi\)
\(390\) 9.90381e10 0.216776
\(391\) −2.62215e10 −0.0567363
\(392\) 9.92266e11 2.12247
\(393\) 1.90232e11 0.402270
\(394\) −3.21202e11 −0.671498
\(395\) −1.67024e10 −0.0345217
\(396\) −2.01402e10 −0.0411562
\(397\) 6.01437e11 1.21516 0.607579 0.794259i \(-0.292141\pi\)
0.607579 + 0.794259i \(0.292141\pi\)
\(398\) −4.99922e11 −0.998685
\(399\) 1.15918e11 0.228966
\(400\) 2.56090e11 0.500175
\(401\) −6.07613e11 −1.17348 −0.586742 0.809774i \(-0.699590\pi\)
−0.586742 + 0.809774i \(0.699590\pi\)
\(402\) −3.44470e11 −0.657861
\(403\) −2.05601e11 −0.388286
\(404\) −1.67100e10 −0.0312076
\(405\) 3.65590e10 0.0675223
\(406\) 8.65763e11 1.58136
\(407\) 4.21656e11 0.761700
\(408\) 5.12196e10 0.0915094
\(409\) −6.88220e11 −1.21611 −0.608055 0.793895i \(-0.708050\pi\)
−0.608055 + 0.793895i \(0.708050\pi\)
\(410\) −1.29477e11 −0.226289
\(411\) −2.86731e11 −0.495664
\(412\) −1.05549e11 −0.180474
\(413\) 2.08583e11 0.352780
\(414\) 6.91118e10 0.115625
\(415\) −1.11575e11 −0.184650
\(416\) 1.44520e11 0.236597
\(417\) −4.64335e11 −0.752002
\(418\) 9.11948e10 0.146109
\(419\) −3.71568e10 −0.0588946 −0.0294473 0.999566i \(-0.509375\pi\)
−0.0294473 + 0.999566i \(0.509375\pi\)
\(420\) 6.80660e10 0.106735
\(421\) 5.58155e11 0.865935 0.432968 0.901410i \(-0.357466\pi\)
0.432968 + 0.901410i \(0.357466\pi\)
\(422\) 8.46392e11 1.29917
\(423\) 3.88831e11 0.590512
\(424\) 9.57049e11 1.43810
\(425\) −6.29840e10 −0.0936441
\(426\) 7.90772e10 0.116334
\(427\) 1.33296e12 1.94041
\(428\) −2.11747e11 −0.305014
\(429\) −1.93418e11 −0.275702
\(430\) −5.35010e11 −0.754664
\(431\) −9.86246e11 −1.37669 −0.688347 0.725381i \(-0.741663\pi\)
−0.688347 + 0.725381i \(0.741663\pi\)
\(432\) −1.10483e11 −0.152622
\(433\) −1.02917e12 −1.40699 −0.703497 0.710698i \(-0.748379\pi\)
−0.703497 + 0.710698i \(0.748379\pi\)
\(434\) 6.61635e11 0.895188
\(435\) 2.64050e11 0.353577
\(436\) 7.76352e10 0.102889
\(437\) 6.68334e10 0.0876652
\(438\) 2.98501e11 0.387537
\(439\) −4.94349e11 −0.635248 −0.317624 0.948217i \(-0.602885\pi\)
−0.317624 + 0.948217i \(0.602885\pi\)
\(440\) 3.57834e11 0.455139
\(441\) 5.26410e11 0.662751
\(442\) 7.36105e10 0.0917360
\(443\) −1.37930e12 −1.70153 −0.850767 0.525544i \(-0.823862\pi\)
−0.850767 + 0.525544i \(0.823862\pi\)
\(444\) −9.03300e10 −0.110308
\(445\) 6.15224e11 0.743727
\(446\) 6.97889e11 0.835179
\(447\) 7.66690e10 0.0908314
\(448\) −1.63392e12 −1.91638
\(449\) 5.05483e11 0.586945 0.293473 0.955967i \(-0.405189\pi\)
0.293473 + 0.955967i \(0.405189\pi\)
\(450\) 1.66007e11 0.190840
\(451\) 2.52864e11 0.287801
\(452\) 1.44866e11 0.163246
\(453\) −1.81424e11 −0.202419
\(454\) −1.24696e12 −1.37753
\(455\) 6.53678e11 0.715011
\(456\) −1.30549e11 −0.141394
\(457\) 6.35644e11 0.681696 0.340848 0.940118i \(-0.389286\pi\)
0.340848 + 0.940118i \(0.389286\pi\)
\(458\) −1.21274e12 −1.28787
\(459\) 2.71727e10 0.0285743
\(460\) 3.92441e10 0.0408662
\(461\) −1.63724e12 −1.68834 −0.844168 0.536078i \(-0.819905\pi\)
−0.844168 + 0.536078i \(0.819905\pi\)
\(462\) 6.22430e11 0.635626
\(463\) 2.10608e11 0.212990 0.106495 0.994313i \(-0.466037\pi\)
0.106495 + 0.994313i \(0.466037\pi\)
\(464\) −7.97966e11 −0.799197
\(465\) 2.01792e11 0.200155
\(466\) −7.63699e11 −0.750215
\(467\) 1.74185e12 1.69467 0.847333 0.531062i \(-0.178207\pi\)
0.847333 + 0.531062i \(0.178207\pi\)
\(468\) 4.14353e10 0.0399268
\(469\) −2.27359e12 −2.16988
\(470\) −1.03383e12 −0.977255
\(471\) 4.26568e11 0.399387
\(472\) −2.34911e11 −0.217854
\(473\) 1.04486e12 0.959802
\(474\) 3.27199e10 0.0297721
\(475\) 1.60534e11 0.144693
\(476\) 5.05904e10 0.0451686
\(477\) 5.07727e11 0.449053
\(478\) −1.35214e12 −1.18467
\(479\) −1.89986e12 −1.64897 −0.824484 0.565886i \(-0.808534\pi\)
−0.824484 + 0.565886i \(0.808534\pi\)
\(480\) −1.41843e11 −0.121962
\(481\) −8.67492e11 −0.738946
\(482\) 3.16933e11 0.267458
\(483\) 4.56157e11 0.381375
\(484\) 1.07879e11 0.0893583
\(485\) −2.32953e11 −0.191174
\(486\) −7.16190e10 −0.0582324
\(487\) 8.58404e11 0.691530 0.345765 0.938321i \(-0.387619\pi\)
0.345765 + 0.938321i \(0.387619\pi\)
\(488\) −1.50121e12 −1.19826
\(489\) −1.07246e12 −0.848184
\(490\) −1.39962e12 −1.09680
\(491\) −1.56518e12 −1.21534 −0.607671 0.794189i \(-0.707896\pi\)
−0.607671 + 0.794189i \(0.707896\pi\)
\(492\) −5.41701e10 −0.0416790
\(493\) 1.96256e11 0.149628
\(494\) −1.87619e11 −0.141744
\(495\) 1.89835e11 0.142120
\(496\) −6.09823e11 −0.452415
\(497\) 5.21931e11 0.383716
\(498\) 2.18574e11 0.159245
\(499\) 2.19579e12 1.58540 0.792699 0.609613i \(-0.208675\pi\)
0.792699 + 0.609613i \(0.208675\pi\)
\(500\) 2.43725e11 0.174395
\(501\) 5.67573e11 0.402487
\(502\) −2.39230e12 −1.68132
\(503\) 1.32838e12 0.925264 0.462632 0.886550i \(-0.346905\pi\)
0.462632 + 0.886550i \(0.346905\pi\)
\(504\) −8.91033e11 −0.615115
\(505\) 1.57503e11 0.107765
\(506\) 3.58868e11 0.243365
\(507\) −4.61037e11 −0.309884
\(508\) −4.32471e11 −0.288118
\(509\) −1.22144e12 −0.806568 −0.403284 0.915075i \(-0.632131\pi\)
−0.403284 + 0.915075i \(0.632131\pi\)
\(510\) −7.22470e10 −0.0472883
\(511\) 1.97019e12 1.27824
\(512\) 1.74504e12 1.12225
\(513\) −6.92579e10 −0.0441511
\(514\) 1.80045e12 1.13775
\(515\) 9.94870e11 0.623209
\(516\) −2.23836e11 −0.138997
\(517\) 2.01903e12 1.24290
\(518\) 2.79164e12 1.70363
\(519\) −1.21572e12 −0.735497
\(520\) −7.36187e11 −0.441543
\(521\) 3.75797e11 0.223451 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(522\) −5.17272e11 −0.304931
\(523\) 1.79674e12 1.05009 0.525047 0.851073i \(-0.324048\pi\)
0.525047 + 0.851073i \(0.324048\pi\)
\(524\) −2.11612e11 −0.122617
\(525\) 1.09569e12 0.629464
\(526\) −1.14992e12 −0.654988
\(527\) 1.49983e11 0.0847022
\(528\) −5.73689e11 −0.321236
\(529\) −1.53815e12 −0.853981
\(530\) −1.34995e12 −0.743149
\(531\) −1.24623e11 −0.0680259
\(532\) −1.28945e11 −0.0697916
\(533\) −5.20228e11 −0.279204
\(534\) −1.20522e12 −0.641404
\(535\) 1.99586e12 1.05327
\(536\) 2.56057e12 1.33997
\(537\) −1.08525e12 −0.563177
\(538\) −2.77129e12 −1.42614
\(539\) 2.73342e12 1.39495
\(540\) −4.06678e10 −0.0205816
\(541\) 1.40714e12 0.706235 0.353118 0.935579i \(-0.385122\pi\)
0.353118 + 0.935579i \(0.385122\pi\)
\(542\) 2.58167e12 1.28500
\(543\) 2.16001e12 1.06624
\(544\) −1.05426e11 −0.0516121
\(545\) −7.31766e11 −0.355294
\(546\) −1.28055e12 −0.616638
\(547\) −1.35959e12 −0.649330 −0.324665 0.945829i \(-0.605252\pi\)
−0.324665 + 0.945829i \(0.605252\pi\)
\(548\) 3.18956e11 0.151084
\(549\) −7.96412e11 −0.374164
\(550\) 8.62003e11 0.401677
\(551\) −5.00219e11 −0.231195
\(552\) −5.13734e11 −0.235512
\(553\) 2.15960e11 0.0981999
\(554\) −2.91291e11 −0.131381
\(555\) 8.51423e11 0.380914
\(556\) 5.16520e11 0.229219
\(557\) 4.99582e11 0.219917 0.109958 0.993936i \(-0.464928\pi\)
0.109958 + 0.993936i \(0.464928\pi\)
\(558\) −3.95311e11 −0.172617
\(559\) −2.14963e12 −0.931130
\(560\) 1.93884e12 0.833100
\(561\) 1.41096e11 0.0601426
\(562\) 6.74955e10 0.0285405
\(563\) 2.30144e12 0.965412 0.482706 0.875782i \(-0.339654\pi\)
0.482706 + 0.875782i \(0.339654\pi\)
\(564\) −4.32530e11 −0.179995
\(565\) −1.36546e12 −0.563717
\(566\) −7.95854e10 −0.0325957
\(567\) −4.72705e11 −0.192073
\(568\) −5.87810e11 −0.236957
\(569\) −1.47757e12 −0.590938 −0.295469 0.955352i \(-0.595476\pi\)
−0.295469 + 0.955352i \(0.595476\pi\)
\(570\) 1.84144e11 0.0730668
\(571\) 3.51997e12 1.38572 0.692861 0.721071i \(-0.256350\pi\)
0.692861 + 0.721071i \(0.256350\pi\)
\(572\) 2.15156e11 0.0840371
\(573\) −1.84672e12 −0.715659
\(574\) 1.67412e12 0.643700
\(575\) 6.31732e11 0.241006
\(576\) 9.76230e11 0.369531
\(577\) 1.93159e12 0.725476 0.362738 0.931891i \(-0.381842\pi\)
0.362738 + 0.931891i \(0.381842\pi\)
\(578\) 2.38211e12 0.887742
\(579\) 8.46303e11 0.312948
\(580\) −2.93725e11 −0.107774
\(581\) 1.44265e12 0.525252
\(582\) 4.56353e11 0.164872
\(583\) 2.63641e12 0.945158
\(584\) −2.21887e12 −0.789359
\(585\) −3.90557e11 −0.137874
\(586\) 2.20225e12 0.771486
\(587\) −2.05383e11 −0.0713990 −0.0356995 0.999363i \(-0.511366\pi\)
−0.0356995 + 0.999363i \(0.511366\pi\)
\(588\) −5.85572e11 −0.202014
\(589\) −3.82278e11 −0.130876
\(590\) 3.31350e11 0.112578
\(591\) 1.26666e12 0.427087
\(592\) −2.57303e12 −0.860988
\(593\) 6.35391e11 0.211006 0.105503 0.994419i \(-0.466355\pi\)
0.105503 + 0.994419i \(0.466355\pi\)
\(594\) −3.71887e11 −0.122567
\(595\) −4.76850e11 −0.155975
\(596\) −8.52856e10 −0.0276865
\(597\) 1.97144e12 0.635185
\(598\) −7.38316e11 −0.236095
\(599\) −2.77298e12 −0.880089 −0.440044 0.897976i \(-0.645037\pi\)
−0.440044 + 0.897976i \(0.645037\pi\)
\(600\) −1.23399e12 −0.388715
\(601\) 6.08041e11 0.190107 0.0950534 0.995472i \(-0.469698\pi\)
0.0950534 + 0.995472i \(0.469698\pi\)
\(602\) 6.91762e12 2.14671
\(603\) 1.35842e12 0.418413
\(604\) 2.01813e11 0.0616998
\(605\) −1.01684e12 −0.308570
\(606\) −3.08549e11 −0.0929387
\(607\) 2.15450e12 0.644164 0.322082 0.946712i \(-0.395617\pi\)
0.322082 + 0.946712i \(0.395617\pi\)
\(608\) 2.68710e11 0.0797476
\(609\) −3.41414e12 −1.00578
\(610\) 2.11751e12 0.619215
\(611\) −4.15384e12 −1.20577
\(612\) −3.02265e10 −0.00870977
\(613\) 7.03883e11 0.201339 0.100670 0.994920i \(-0.467901\pi\)
0.100670 + 0.994920i \(0.467901\pi\)
\(614\) 1.41511e12 0.401822
\(615\) 5.10591e11 0.143925
\(616\) −4.62676e12 −1.29468
\(617\) −1.79432e12 −0.498445 −0.249222 0.968446i \(-0.580175\pi\)
−0.249222 + 0.968446i \(0.580175\pi\)
\(618\) −1.94895e12 −0.537467
\(619\) −1.11310e12 −0.304737 −0.152369 0.988324i \(-0.548690\pi\)
−0.152369 + 0.988324i \(0.548690\pi\)
\(620\) −2.24471e11 −0.0610096
\(621\) −2.72543e11 −0.0735398
\(622\) −3.53880e11 −0.0947980
\(623\) −7.95479e12 −2.11560
\(624\) 1.18028e12 0.311640
\(625\) 1.08655e11 0.0284834
\(626\) −2.83841e12 −0.738739
\(627\) −3.59627e11 −0.0929284
\(628\) −4.74508e11 −0.121738
\(629\) 6.32824e11 0.161196
\(630\) 1.25683e12 0.317867
\(631\) −5.70160e12 −1.43174 −0.715870 0.698233i \(-0.753970\pi\)
−0.715870 + 0.698233i \(0.753970\pi\)
\(632\) −2.43219e11 −0.0606417
\(633\) −3.33775e12 −0.826298
\(634\) −2.23332e12 −0.548971
\(635\) 4.07634e12 0.994921
\(636\) −5.64789e11 −0.136877
\(637\) −5.62359e12 −1.35328
\(638\) −2.68597e12 −0.641813
\(639\) −3.11841e11 −0.0739911
\(640\) −1.69902e12 −0.400303
\(641\) −4.47302e12 −1.04650 −0.523251 0.852179i \(-0.675281\pi\)
−0.523251 + 0.852179i \(0.675281\pi\)
\(642\) −3.90988e12 −0.908356
\(643\) 3.99810e12 0.922369 0.461184 0.887304i \(-0.347425\pi\)
0.461184 + 0.887304i \(0.347425\pi\)
\(644\) −5.07423e11 −0.116248
\(645\) 2.10981e12 0.479982
\(646\) 1.36866e11 0.0309206
\(647\) 2.07881e12 0.466385 0.233193 0.972431i \(-0.425083\pi\)
0.233193 + 0.972431i \(0.425083\pi\)
\(648\) 5.32371e11 0.118611
\(649\) −6.47117e11 −0.143180
\(650\) −1.77344e12 −0.389678
\(651\) −2.60916e12 −0.569358
\(652\) 1.19299e12 0.258537
\(653\) 9.14519e12 1.96826 0.984132 0.177436i \(-0.0567802\pi\)
0.984132 + 0.177436i \(0.0567802\pi\)
\(654\) 1.43353e12 0.306412
\(655\) 1.99459e12 0.423417
\(656\) −1.54302e12 −0.325316
\(657\) −1.17714e12 −0.246481
\(658\) 1.33673e13 2.77989
\(659\) 6.16598e12 1.27355 0.636777 0.771048i \(-0.280267\pi\)
0.636777 + 0.771048i \(0.280267\pi\)
\(660\) −2.11170e11 −0.0433197
\(661\) −7.12362e12 −1.45142 −0.725712 0.687999i \(-0.758489\pi\)
−0.725712 + 0.687999i \(0.758489\pi\)
\(662\) −4.29896e12 −0.869967
\(663\) −2.90283e11 −0.0583460
\(664\) −1.62474e12 −0.324361
\(665\) 1.21540e12 0.241002
\(666\) −1.66793e12 −0.328507
\(667\) −1.96845e12 −0.385087
\(668\) −6.31361e11 −0.122683
\(669\) −2.75213e12 −0.531191
\(670\) −3.61177e12 −0.692443
\(671\) −4.13543e12 −0.787534
\(672\) 1.83402e12 0.346931
\(673\) −5.12635e11 −0.0963253 −0.0481627 0.998840i \(-0.515337\pi\)
−0.0481627 + 0.998840i \(0.515337\pi\)
\(674\) 7.08963e12 1.32329
\(675\) −6.54649e11 −0.121378
\(676\) 5.12851e11 0.0944564
\(677\) −5.87594e12 −1.07505 −0.537525 0.843248i \(-0.680641\pi\)
−0.537525 + 0.843248i \(0.680641\pi\)
\(678\) 2.67493e12 0.486160
\(679\) 3.01206e12 0.543812
\(680\) 5.37039e11 0.0963198
\(681\) 4.91738e12 0.876137
\(682\) −2.05268e12 −0.363322
\(683\) −2.56410e12 −0.450859 −0.225430 0.974259i \(-0.572379\pi\)
−0.225430 + 0.974259i \(0.572379\pi\)
\(684\) 7.70416e10 0.0134578
\(685\) −3.00639e12 −0.521720
\(686\) 8.99505e12 1.55076
\(687\) 4.78244e12 0.819114
\(688\) −6.37592e12 −1.08491
\(689\) −5.42400e12 −0.916924
\(690\) 7.24639e11 0.121703
\(691\) 5.81266e12 0.969892 0.484946 0.874544i \(-0.338839\pi\)
0.484946 + 0.874544i \(0.338839\pi\)
\(692\) 1.35235e12 0.224188
\(693\) −2.45455e12 −0.404272
\(694\) −7.17750e12 −1.17451
\(695\) −4.86856e12 −0.791533
\(696\) 3.84508e12 0.621103
\(697\) 3.79499e11 0.0609065
\(698\) −1.11236e13 −1.77376
\(699\) 3.01165e12 0.477152
\(700\) −1.21883e12 −0.191868
\(701\) −3.02109e12 −0.472534 −0.236267 0.971688i \(-0.575924\pi\)
−0.236267 + 0.971688i \(0.575924\pi\)
\(702\) 7.65099e11 0.118905
\(703\) −1.61295e12 −0.249070
\(704\) 5.06915e12 0.777782
\(705\) 4.07690e12 0.621554
\(706\) 7.42946e12 1.12548
\(707\) −2.03650e12 −0.306548
\(708\) 1.38630e11 0.0207351
\(709\) 3.97322e12 0.590521 0.295260 0.955417i \(-0.404594\pi\)
0.295260 + 0.955417i \(0.404594\pi\)
\(710\) 8.29126e11 0.122450
\(711\) −1.29031e11 −0.0189357
\(712\) 8.95887e12 1.30645
\(713\) −1.50434e12 −0.217993
\(714\) 9.34147e11 0.134516
\(715\) −2.02800e12 −0.290195
\(716\) 1.20722e12 0.171663
\(717\) 5.33218e12 0.753475
\(718\) 4.18548e12 0.587740
\(719\) 2.05393e12 0.286619 0.143309 0.989678i \(-0.454226\pi\)
0.143309 + 0.989678i \(0.454226\pi\)
\(720\) −1.15841e12 −0.160645
\(721\) −1.28636e13 −1.77277
\(722\) −3.48844e11 −0.0477765
\(723\) −1.24983e12 −0.170109
\(724\) −2.40277e12 −0.325004
\(725\) −4.72823e12 −0.635591
\(726\) 1.99198e12 0.266116
\(727\) −4.17857e12 −0.554782 −0.277391 0.960757i \(-0.589470\pi\)
−0.277391 + 0.960757i \(0.589470\pi\)
\(728\) 9.51883e12 1.25601
\(729\) 2.82430e11 0.0370370
\(730\) 3.12979e12 0.407909
\(731\) 1.56813e12 0.203120
\(732\) 8.85919e11 0.114050
\(733\) 1.19821e13 1.53308 0.766541 0.642195i \(-0.221976\pi\)
0.766541 + 0.642195i \(0.221976\pi\)
\(734\) −5.24569e12 −0.667068
\(735\) 5.51942e12 0.697590
\(736\) 1.05742e12 0.132831
\(737\) 7.05368e12 0.880668
\(738\) −1.00025e12 −0.124123
\(739\) −1.39659e13 −1.72254 −0.861271 0.508145i \(-0.830331\pi\)
−0.861271 + 0.508145i \(0.830331\pi\)
\(740\) −9.47112e11 −0.116107
\(741\) 7.39876e11 0.0901524
\(742\) 1.74547e13 2.11395
\(743\) 1.20423e13 1.44964 0.724818 0.688940i \(-0.241924\pi\)
0.724818 + 0.688940i \(0.241924\pi\)
\(744\) 2.93849e12 0.351598
\(745\) 8.03877e11 0.0956062
\(746\) 5.04366e12 0.596240
\(747\) −8.61947e11 −0.101283
\(748\) −1.56954e11 −0.0183322
\(749\) −2.58063e13 −2.99611
\(750\) 4.50035e12 0.519363
\(751\) 2.32972e11 0.0267254 0.0133627 0.999911i \(-0.495746\pi\)
0.0133627 + 0.999911i \(0.495746\pi\)
\(752\) −1.23205e13 −1.40491
\(753\) 9.43405e12 1.06935
\(754\) 5.52597e12 0.622641
\(755\) −1.90223e12 −0.213060
\(756\) 5.25831e11 0.0585461
\(757\) 1.72848e12 0.191307 0.0956537 0.995415i \(-0.469506\pi\)
0.0956537 + 0.995415i \(0.469506\pi\)
\(758\) −1.17072e13 −1.28807
\(759\) −1.41520e12 −0.154785
\(760\) −1.36881e12 −0.148827
\(761\) 5.62773e12 0.608278 0.304139 0.952628i \(-0.401631\pi\)
0.304139 + 0.952628i \(0.401631\pi\)
\(762\) −7.98553e12 −0.858038
\(763\) 9.46167e12 1.01067
\(764\) 2.05427e12 0.218141
\(765\) 2.84906e11 0.0300764
\(766\) −6.47334e12 −0.679358
\(767\) 1.33134e12 0.138903
\(768\) −2.84236e12 −0.294818
\(769\) 1.05077e13 1.08353 0.541765 0.840530i \(-0.317756\pi\)
0.541765 + 0.840530i \(0.317756\pi\)
\(770\) 6.52620e12 0.669040
\(771\) −7.10008e12 −0.723634
\(772\) −9.41416e11 −0.0953902
\(773\) 8.46560e12 0.852805 0.426403 0.904533i \(-0.359781\pi\)
0.426403 + 0.904533i \(0.359781\pi\)
\(774\) −4.13311e12 −0.413945
\(775\) −3.61342e12 −0.359800
\(776\) −3.39224e12 −0.335822
\(777\) −1.10088e13 −1.08354
\(778\) 2.98255e12 0.291863
\(779\) −9.67271e11 −0.0941087
\(780\) 4.34450e11 0.0420256
\(781\) −1.61926e12 −0.155735
\(782\) 5.38592e11 0.0515026
\(783\) 2.03986e12 0.193943
\(784\) −1.66799e13 −1.57678
\(785\) 4.47257e12 0.420382
\(786\) −3.90740e12 −0.365162
\(787\) −1.21018e13 −1.12451 −0.562255 0.826964i \(-0.690066\pi\)
−0.562255 + 0.826964i \(0.690066\pi\)
\(788\) −1.40901e12 −0.130181
\(789\) 4.53473e12 0.416586
\(790\) 3.43069e11 0.0313372
\(791\) 1.76553e13 1.60354
\(792\) 2.76438e12 0.249651
\(793\) 8.50800e12 0.764009
\(794\) −1.23536e13 −1.10306
\(795\) 5.32353e12 0.472658
\(796\) −2.19301e12 −0.193612
\(797\) −6.33723e11 −0.0556336 −0.0278168 0.999613i \(-0.508856\pi\)
−0.0278168 + 0.999613i \(0.508856\pi\)
\(798\) −2.38096e12 −0.207845
\(799\) 3.03018e12 0.263031
\(800\) 2.53993e12 0.219239
\(801\) 4.75279e12 0.407946
\(802\) 1.24804e13 1.06524
\(803\) −6.11239e12 −0.518789
\(804\) −1.51109e12 −0.127537
\(805\) 4.78282e12 0.401423
\(806\) 4.22307e12 0.352468
\(807\) 1.09286e13 0.907055
\(808\) 2.29356e12 0.189303
\(809\) −2.06139e13 −1.69197 −0.845983 0.533209i \(-0.820986\pi\)
−0.845983 + 0.533209i \(0.820986\pi\)
\(810\) −7.50927e11 −0.0612936
\(811\) 8.21265e12 0.666637 0.333319 0.942814i \(-0.391832\pi\)
0.333319 + 0.942814i \(0.391832\pi\)
\(812\) 3.79784e12 0.306573
\(813\) −1.01808e13 −0.817289
\(814\) −8.66088e12 −0.691436
\(815\) −1.12447e13 −0.892772
\(816\) −8.60996e11 −0.0679822
\(817\) −3.99686e12 −0.313848
\(818\) 1.41361e13 1.10393
\(819\) 5.04986e12 0.392195
\(820\) −5.67975e11 −0.0438699
\(821\) −5.92048e11 −0.0454792 −0.0227396 0.999741i \(-0.507239\pi\)
−0.0227396 + 0.999741i \(0.507239\pi\)
\(822\) 5.88950e12 0.449941
\(823\) 2.20763e13 1.67737 0.838683 0.544620i \(-0.183326\pi\)
0.838683 + 0.544620i \(0.183326\pi\)
\(824\) 1.44872e13 1.09475
\(825\) −3.39931e12 −0.255475
\(826\) −4.28433e12 −0.320238
\(827\) 8.40134e12 0.624559 0.312280 0.949990i \(-0.398907\pi\)
0.312280 + 0.949990i \(0.398907\pi\)
\(828\) 3.03173e11 0.0224158
\(829\) −1.32215e13 −0.972266 −0.486133 0.873885i \(-0.661593\pi\)
−0.486133 + 0.873885i \(0.661593\pi\)
\(830\) 2.29175e12 0.167616
\(831\) 1.14870e12 0.0835610
\(832\) −1.04290e13 −0.754547
\(833\) 4.10234e12 0.295208
\(834\) 9.53749e12 0.682632
\(835\) 5.95102e12 0.423645
\(836\) 4.00044e11 0.0283257
\(837\) 1.55891e12 0.109788
\(838\) 7.63206e11 0.0534618
\(839\) −2.02530e13 −1.41111 −0.705554 0.708657i \(-0.749302\pi\)
−0.705554 + 0.708657i \(0.749302\pi\)
\(840\) −9.34251e12 −0.647451
\(841\) 2.25874e11 0.0155698
\(842\) −1.14646e13 −0.786056
\(843\) −2.66169e11 −0.0181524
\(844\) 3.71287e12 0.251865
\(845\) −4.83398e12 −0.326174
\(846\) −7.98663e12 −0.536040
\(847\) 1.31476e13 0.877753
\(848\) −1.60879e13 −1.06836
\(849\) 3.13845e11 0.0207315
\(850\) 1.29370e12 0.0850057
\(851\) −6.34725e12 −0.414861
\(852\) 3.46888e11 0.0225533
\(853\) −2.08420e13 −1.34794 −0.673968 0.738761i \(-0.735411\pi\)
−0.673968 + 0.738761i \(0.735411\pi\)
\(854\) −2.73792e13 −1.76141
\(855\) −7.26171e11 −0.0464720
\(856\) 2.90636e13 1.85020
\(857\) −2.03554e13 −1.28904 −0.644521 0.764587i \(-0.722943\pi\)
−0.644521 + 0.764587i \(0.722943\pi\)
\(858\) 3.97283e12 0.250269
\(859\) 3.16587e13 1.98392 0.991958 0.126569i \(-0.0403964\pi\)
0.991958 + 0.126569i \(0.0403964\pi\)
\(860\) −2.34693e12 −0.146304
\(861\) −6.60190e12 −0.409406
\(862\) 2.02576e13 1.24970
\(863\) −5.17762e12 −0.317747 −0.158874 0.987299i \(-0.550786\pi\)
−0.158874 + 0.987299i \(0.550786\pi\)
\(864\) −1.09578e12 −0.0668979
\(865\) −1.27469e13 −0.774160
\(866\) 2.11393e13 1.27720
\(867\) −9.39386e12 −0.564622
\(868\) 2.90239e12 0.173547
\(869\) −6.70003e11 −0.0398555
\(870\) −5.42361e12 −0.320961
\(871\) −1.45118e13 −0.854360
\(872\) −1.06559e13 −0.624119
\(873\) −1.79963e12 −0.104862
\(874\) −1.37277e12 −0.0795784
\(875\) 2.97036e13 1.71306
\(876\) 1.30944e12 0.0751304
\(877\) 1.52428e13 0.870093 0.435047 0.900408i \(-0.356732\pi\)
0.435047 + 0.900408i \(0.356732\pi\)
\(878\) 1.01540e13 0.576649
\(879\) −8.68459e12 −0.490681
\(880\) −6.01514e12 −0.338122
\(881\) −1.32512e13 −0.741079 −0.370539 0.928817i \(-0.620827\pi\)
−0.370539 + 0.928817i \(0.620827\pi\)
\(882\) −1.08125e13 −0.601615
\(883\) −4.17400e12 −0.231062 −0.115531 0.993304i \(-0.536857\pi\)
−0.115531 + 0.993304i \(0.536857\pi\)
\(884\) 3.22907e11 0.0177845
\(885\) −1.30668e12 −0.0716019
\(886\) 2.83309e13 1.54457
\(887\) 2.81553e13 1.52723 0.763613 0.645674i \(-0.223423\pi\)
0.763613 + 0.645674i \(0.223423\pi\)
\(888\) 1.23984e13 0.669124
\(889\) −5.27067e13 −2.83014
\(890\) −1.26368e13 −0.675121
\(891\) 1.46654e12 0.0779549
\(892\) 3.06143e12 0.161913
\(893\) −7.72334e12 −0.406418
\(894\) −1.57479e12 −0.0824526
\(895\) −1.13789e13 −0.592782
\(896\) 2.19682e13 1.13870
\(897\) 2.91155e12 0.150161
\(898\) −1.03827e13 −0.532802
\(899\) 1.12593e13 0.574900
\(900\) 7.28223e11 0.0369975
\(901\) 3.95674e12 0.200021
\(902\) −5.19385e12 −0.261252
\(903\) −2.72797e13 −1.36535
\(904\) −1.98838e13 −0.990240
\(905\) 2.26478e13 1.12229
\(906\) 3.72646e12 0.183747
\(907\) −2.79368e13 −1.37070 −0.685352 0.728212i \(-0.740352\pi\)
−0.685352 + 0.728212i \(0.740352\pi\)
\(908\) −5.47003e12 −0.267057
\(909\) 1.21676e12 0.0591110
\(910\) −1.34266e13 −0.649054
\(911\) 9.90365e12 0.476390 0.238195 0.971217i \(-0.423444\pi\)
0.238195 + 0.971217i \(0.423444\pi\)
\(912\) 2.19451e12 0.105042
\(913\) −4.47573e12 −0.213179
\(914\) −1.30562e13 −0.618813
\(915\) −8.35040e12 −0.393833
\(916\) −5.31992e12 −0.249675
\(917\) −2.57899e13 −1.20445
\(918\) −5.58130e11 −0.0259384
\(919\) −2.42733e13 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(920\) −5.38652e12 −0.247892
\(921\) −5.58050e12 −0.255567
\(922\) 3.36292e13 1.53259
\(923\) 3.33137e12 0.151083
\(924\) 2.73042e12 0.123227
\(925\) −1.52461e13 −0.684733
\(926\) −4.32591e12 −0.193343
\(927\) 7.68567e12 0.341840
\(928\) −7.91435e12 −0.350308
\(929\) 1.19293e13 0.525463 0.262732 0.964869i \(-0.415377\pi\)
0.262732 + 0.964869i \(0.415377\pi\)
\(930\) −4.14484e12 −0.181691
\(931\) −1.04561e13 −0.456137
\(932\) −3.35012e12 −0.145442
\(933\) 1.39553e12 0.0602935
\(934\) −3.57778e13 −1.53834
\(935\) 1.47940e12 0.0633042
\(936\) −5.68727e12 −0.242193
\(937\) −1.17659e13 −0.498653 −0.249327 0.968419i \(-0.580209\pi\)
−0.249327 + 0.968419i \(0.580209\pi\)
\(938\) 4.66999e13 1.96971
\(939\) 1.11933e13 0.469854
\(940\) −4.53509e12 −0.189457
\(941\) −4.56502e12 −0.189797 −0.0948986 0.995487i \(-0.530253\pi\)
−0.0948986 + 0.995487i \(0.530253\pi\)
\(942\) −8.76175e12 −0.362545
\(943\) −3.80639e12 −0.156751
\(944\) 3.94883e12 0.161843
\(945\) −4.95632e12 −0.202170
\(946\) −2.14615e13 −0.871264
\(947\) 3.95574e13 1.59828 0.799140 0.601145i \(-0.205289\pi\)
0.799140 + 0.601145i \(0.205289\pi\)
\(948\) 1.43532e11 0.00577182
\(949\) 1.25753e13 0.503292
\(950\) −3.29739e12 −0.131345
\(951\) 8.80711e12 0.349157
\(952\) −6.94386e12 −0.273990
\(953\) 1.39350e13 0.547252 0.273626 0.961836i \(-0.411777\pi\)
0.273626 + 0.961836i \(0.411777\pi\)
\(954\) −1.04288e13 −0.407629
\(955\) −1.93629e13 −0.753279
\(956\) −5.93145e12 −0.229668
\(957\) 1.05921e13 0.408207
\(958\) 3.90234e13 1.49686
\(959\) 3.88723e13 1.48408
\(960\) 1.02358e13 0.388956
\(961\) −1.78350e13 −0.674557
\(962\) 1.78184e13 0.670781
\(963\) 1.54186e13 0.577733
\(964\) 1.39029e12 0.0518512
\(965\) 8.87350e12 0.329399
\(966\) −9.36952e12 −0.346195
\(967\) −9.51961e12 −0.350106 −0.175053 0.984559i \(-0.556010\pi\)
−0.175053 + 0.984559i \(0.556010\pi\)
\(968\) −1.48072e13 −0.542042
\(969\) −5.39730e11 −0.0196662
\(970\) 4.78487e12 0.173539
\(971\) 5.37528e13 1.94050 0.970252 0.242098i \(-0.0778356\pi\)
0.970252 + 0.242098i \(0.0778356\pi\)
\(972\) −3.14171e11 −0.0112893
\(973\) 6.29500e13 2.25158
\(974\) −1.76317e13 −0.627739
\(975\) 6.99355e12 0.247843
\(976\) 2.52352e13 0.890190
\(977\) 1.76883e13 0.621099 0.310549 0.950557i \(-0.399487\pi\)
0.310549 + 0.950557i \(0.399487\pi\)
\(978\) 2.20284e13 0.769943
\(979\) 2.46792e13 0.858637
\(980\) −6.13973e12 −0.212634
\(981\) −5.65312e12 −0.194885
\(982\) 3.21490e13 1.10323
\(983\) 4.71272e13 1.60983 0.804917 0.593388i \(-0.202210\pi\)
0.804917 + 0.593388i \(0.202210\pi\)
\(984\) 7.43521e12 0.252822
\(985\) 1.32809e13 0.449538
\(986\) −4.03112e12 −0.135825
\(987\) −5.27139e13 −1.76807
\(988\) −8.23029e11 −0.0274795
\(989\) −1.57284e13 −0.522757
\(990\) −3.89924e12 −0.129010
\(991\) 1.41503e13 0.466052 0.233026 0.972470i \(-0.425137\pi\)
0.233026 + 0.972470i \(0.425137\pi\)
\(992\) −6.04832e12 −0.198304
\(993\) 1.69530e13 0.553317
\(994\) −1.07205e13 −0.348319
\(995\) 2.06706e13 0.668575
\(996\) 9.58819e11 0.0308723
\(997\) 1.07830e13 0.345631 0.172815 0.984954i \(-0.444714\pi\)
0.172815 + 0.984954i \(0.444714\pi\)
\(998\) −4.51018e13 −1.43915
\(999\) 6.57750e12 0.208937
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 57.10.a.d.1.3 8
3.2 odd 2 171.10.a.e.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.10.a.d.1.3 8 1.1 even 1 trivial
171.10.a.e.1.6 8 3.2 odd 2