Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [57,2,Mod(2,57)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(57, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("57.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 57 = 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 57.j (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.455147291521\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −0.448036 | + | 2.54094i | −1.71942 | − | 0.208799i | −4.37626 | − | 1.59283i | 0.533860 | + | 1.46677i | 1.30091 | − | 4.27539i | 1.49687 | + | 2.59266i | 3.42787 | − | 5.93724i | 2.91281 | + | 0.718027i | −3.96616 | + | 0.699341i |
2.2 | −0.336464 | + | 1.90818i | 1.43743 | + | 0.966337i | −1.64856 | − | 0.600025i | −1.09544 | − | 3.00968i | −2.32759 | + | 2.41773i | −1.23083 | − | 2.13186i | −0.237981 | + | 0.412196i | 1.13238 | + | 2.77808i | 6.11159 | − | 1.07764i |
2.3 | 0.336464 | − | 1.90818i | −1.20126 | − | 1.24779i | −1.64856 | − | 0.600025i | 1.09544 | + | 3.00968i | −2.78518 | + | 1.87239i | −1.23083 | − | 2.13186i | 0.237981 | − | 0.412196i | −0.113935 | + | 2.99784i | 6.11159 | − | 1.07764i |
2.4 | 0.448036 | − | 2.54094i | 0.504201 | + | 1.65704i | −4.37626 | − | 1.59283i | −0.533860 | − | 1.46677i | 4.43634 | − | 0.538732i | 1.49687 | + | 2.59266i | −3.42787 | + | 5.93724i | −2.49156 | + | 1.67096i | −3.96616 | + | 0.699341i |
14.1 | −2.08555 | + | 0.759077i | −1.47284 | − | 0.911455i | 2.24122 | − | 1.88060i | 1.78018 | − | 2.12154i | 3.76353 | + | 0.782886i | −1.70913 | − | 2.96030i | −1.02725 | + | 1.77924i | 1.33850 | + | 2.68485i | −2.10224 | + | 5.77587i |
14.2 | −0.886259 | + | 0.322572i | −0.858393 | + | 1.50438i | −0.850687 | + | 0.713811i | −0.485824 | + | 0.578982i | 0.275488 | − | 1.61016i | 1.38278 | + | 2.39504i | 1.46681 | − | 2.54059i | −1.52632 | − | 2.58270i | 0.243802 | − | 0.669841i |
14.3 | 0.886259 | − | 0.322572i | −0.292097 | − | 1.70724i | −0.850687 | + | 0.713811i | 0.485824 | − | 0.578982i | −0.809582 | − | 1.41884i | 1.38278 | + | 2.39504i | −1.46681 | + | 2.54059i | −2.82936 | + | 0.997362i | 0.243802 | − | 0.669841i |
14.4 | 2.08555 | − | 0.759077i | −1.69575 | + | 0.352748i | 2.24122 | − | 1.88060i | −1.78018 | + | 2.12154i | −3.26880 | + | 2.02288i | −1.70913 | − | 2.96030i | 1.02725 | − | 1.77924i | 2.75114 | − | 1.19634i | −2.10224 | + | 5.77587i |
29.1 | −0.448036 | − | 2.54094i | −1.71942 | + | 0.208799i | −4.37626 | + | 1.59283i | 0.533860 | − | 1.46677i | 1.30091 | + | 4.27539i | 1.49687 | − | 2.59266i | 3.42787 | + | 5.93724i | 2.91281 | − | 0.718027i | −3.96616 | − | 0.699341i |
29.2 | −0.336464 | − | 1.90818i | 1.43743 | − | 0.966337i | −1.64856 | + | 0.600025i | −1.09544 | + | 3.00968i | −2.32759 | − | 2.41773i | −1.23083 | + | 2.13186i | −0.237981 | − | 0.412196i | 1.13238 | − | 2.77808i | 6.11159 | + | 1.07764i |
29.3 | 0.336464 | + | 1.90818i | −1.20126 | + | 1.24779i | −1.64856 | + | 0.600025i | 1.09544 | − | 3.00968i | −2.78518 | − | 1.87239i | −1.23083 | + | 2.13186i | 0.237981 | + | 0.412196i | −0.113935 | − | 2.99784i | 6.11159 | + | 1.07764i |
29.4 | 0.448036 | + | 2.54094i | 0.504201 | − | 1.65704i | −4.37626 | + | 1.59283i | −0.533860 | + | 1.46677i | 4.43634 | + | 0.538732i | 1.49687 | − | 2.59266i | −3.42787 | − | 5.93724i | −2.49156 | − | 1.67096i | −3.96616 | − | 0.699341i |
32.1 | −1.49833 | + | 1.25725i | 1.40671 | + | 1.01052i | 0.317026 | − | 1.79794i | −0.487091 | + | 0.0858872i | −3.37821 | + | 0.254491i | −0.969730 | + | 1.67962i | −0.170480 | − | 0.295279i | 0.957685 | + | 2.84303i | 0.621842 | − | 0.741083i |
32.2 | −0.745719 | + | 0.625733i | 0.0227926 | − | 1.73190i | −0.182741 | + | 1.03637i | 3.79113 | − | 0.668479i | 1.06671 | + | 1.30577i | −0.469963 | + | 0.814000i | −1.48569 | − | 2.57329i | −2.99896 | − | 0.0789491i | −2.40883 | + | 2.87073i |
32.3 | 0.745719 | − | 0.625733i | 1.09578 | − | 1.34136i | −0.182741 | + | 1.03637i | −3.79113 | + | 0.668479i | −0.0221879 | − | 1.68595i | −0.469963 | + | 0.814000i | 1.48569 | + | 2.57329i | −0.598514 | − | 2.93969i | −2.40883 | + | 2.87073i |
32.4 | 1.49833 | − | 1.25725i | −1.72716 | − | 0.130112i | 0.317026 | − | 1.79794i | 0.487091 | − | 0.0858872i | −2.75144 | + | 1.97652i | −0.969730 | + | 1.67962i | 0.170480 | + | 0.295279i | 2.96614 | + | 0.449448i | 0.621842 | − | 0.741083i |
41.1 | −1.49833 | − | 1.25725i | 1.40671 | − | 1.01052i | 0.317026 | + | 1.79794i | −0.487091 | − | 0.0858872i | −3.37821 | − | 0.254491i | −0.969730 | − | 1.67962i | −0.170480 | + | 0.295279i | 0.957685 | − | 2.84303i | 0.621842 | + | 0.741083i |
41.2 | −0.745719 | − | 0.625733i | 0.0227926 | + | 1.73190i | −0.182741 | − | 1.03637i | 3.79113 | + | 0.668479i | 1.06671 | − | 1.30577i | −0.469963 | − | 0.814000i | −1.48569 | + | 2.57329i | −2.99896 | + | 0.0789491i | −2.40883 | − | 2.87073i |
41.3 | 0.745719 | + | 0.625733i | 1.09578 | + | 1.34136i | −0.182741 | − | 1.03637i | −3.79113 | − | 0.668479i | −0.0221879 | + | 1.68595i | −0.469963 | − | 0.814000i | 1.48569 | − | 2.57329i | −0.598514 | + | 2.93969i | −2.40883 | − | 2.87073i |
41.4 | 1.49833 | + | 1.25725i | −1.72716 | + | 0.130112i | 0.317026 | + | 1.79794i | 0.487091 | + | 0.0858872i | −2.75144 | − | 1.97652i | −0.969730 | − | 1.67962i | 0.170480 | − | 0.295279i | 2.96614 | − | 0.449448i | 0.621842 | + | 0.741083i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
19.f | odd | 18 | 1 | inner |
57.j | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 57.2.j.b | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 57.2.j.b | ✓ | 24 |
4.b | odd | 2 | 1 | 912.2.cc.e | 24 | ||
12.b | even | 2 | 1 | 912.2.cc.e | 24 | ||
19.e | even | 9 | 1 | 1083.2.d.d | 24 | ||
19.f | odd | 18 | 1 | inner | 57.2.j.b | ✓ | 24 |
19.f | odd | 18 | 1 | 1083.2.d.d | 24 | ||
57.j | even | 18 | 1 | inner | 57.2.j.b | ✓ | 24 |
57.j | even | 18 | 1 | 1083.2.d.d | 24 | ||
57.l | odd | 18 | 1 | 1083.2.d.d | 24 | ||
76.k | even | 18 | 1 | 912.2.cc.e | 24 | ||
228.u | odd | 18 | 1 | 912.2.cc.e | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
57.2.j.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
57.2.j.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
57.2.j.b | ✓ | 24 | 19.f | odd | 18 | 1 | inner |
57.2.j.b | ✓ | 24 | 57.j | even | 18 | 1 | inner |
912.2.cc.e | 24 | 4.b | odd | 2 | 1 | ||
912.2.cc.e | 24 | 12.b | even | 2 | 1 | ||
912.2.cc.e | 24 | 76.k | even | 18 | 1 | ||
912.2.cc.e | 24 | 228.u | odd | 18 | 1 | ||
1083.2.d.d | 24 | 19.e | even | 9 | 1 | ||
1083.2.d.d | 24 | 19.f | odd | 18 | 1 | ||
1083.2.d.d | 24 | 57.j | even | 18 | 1 | ||
1083.2.d.d | 24 | 57.l | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} + 9 T_{2}^{22} + 6 T_{2}^{20} - 14 T_{2}^{18} + 1053 T_{2}^{16} + 2646 T_{2}^{14} + \cdots + 157609 \) acting on \(S_{2}^{\mathrm{new}}(57, [\chi])\).