Properties

Label 57.6.a.f.1.3
Level $57$
Weight $6$
Character 57.1
Self dual yes
Analytic conductor $9.142$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,6,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.14187772934\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 90x^{2} + 118x + 1412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.82184\) of defining polynomial
Character \(\chi\) \(=\) 57.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.82184 q^{2} -9.00000 q^{3} +1.89382 q^{4} +23.6174 q^{5} -52.3966 q^{6} -250.612 q^{7} -175.273 q^{8} +81.0000 q^{9} +137.497 q^{10} +414.956 q^{11} -17.0444 q^{12} -920.892 q^{13} -1459.02 q^{14} -212.557 q^{15} -1081.02 q^{16} -238.401 q^{17} +471.569 q^{18} -361.000 q^{19} +44.7271 q^{20} +2255.50 q^{21} +2415.81 q^{22} +1138.97 q^{23} +1577.46 q^{24} -2567.22 q^{25} -5361.29 q^{26} -729.000 q^{27} -474.613 q^{28} +7031.41 q^{29} -1237.47 q^{30} +495.673 q^{31} -684.752 q^{32} -3734.61 q^{33} -1387.93 q^{34} -5918.80 q^{35} +153.399 q^{36} +2981.99 q^{37} -2101.68 q^{38} +8288.03 q^{39} -4139.51 q^{40} +9339.27 q^{41} +13131.2 q^{42} -11537.4 q^{43} +785.851 q^{44} +1913.01 q^{45} +6630.91 q^{46} -19955.6 q^{47} +9729.14 q^{48} +45999.2 q^{49} -14945.9 q^{50} +2145.61 q^{51} -1744.00 q^{52} -20089.6 q^{53} -4244.12 q^{54} +9800.20 q^{55} +43925.5 q^{56} +3249.00 q^{57} +40935.7 q^{58} -48844.4 q^{59} -402.544 q^{60} +24559.4 q^{61} +2885.73 q^{62} -20299.5 q^{63} +30606.0 q^{64} -21749.1 q^{65} -21742.3 q^{66} -59482.1 q^{67} -451.487 q^{68} -10250.7 q^{69} -34458.3 q^{70} -4635.76 q^{71} -14197.1 q^{72} -26670.8 q^{73} +17360.6 q^{74} +23105.0 q^{75} -683.668 q^{76} -103993. q^{77} +48251.6 q^{78} -68240.6 q^{79} -25530.8 q^{80} +6561.00 q^{81} +54371.8 q^{82} +2260.79 q^{83} +4271.51 q^{84} -5630.41 q^{85} -67169.0 q^{86} -63282.7 q^{87} -72730.8 q^{88} +749.444 q^{89} +11137.3 q^{90} +230786. q^{91} +2157.00 q^{92} -4461.06 q^{93} -116179. q^{94} -8525.89 q^{95} +6162.77 q^{96} +88106.3 q^{97} +267800. q^{98} +33611.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 36 q^{3} + 53 q^{4} - 8 q^{5} - 9 q^{6} - 142 q^{7} - 147 q^{8} + 324 q^{9} - 496 q^{10} - 714 q^{11} - 477 q^{12} - 74 q^{13} - 2790 q^{14} + 72 q^{15} - 2839 q^{16} - 3690 q^{17} + 81 q^{18}+ \cdots - 57834 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.82184 1.02917 0.514583 0.857441i \(-0.327947\pi\)
0.514583 + 0.857441i \(0.327947\pi\)
\(3\) −9.00000 −0.577350
\(4\) 1.89382 0.0591818
\(5\) 23.6174 0.422482 0.211241 0.977434i \(-0.432250\pi\)
0.211241 + 0.977434i \(0.432250\pi\)
\(6\) −52.3966 −0.594189
\(7\) −250.612 −1.93311 −0.966554 0.256464i \(-0.917443\pi\)
−0.966554 + 0.256464i \(0.917443\pi\)
\(8\) −175.273 −0.968258
\(9\) 81.0000 0.333333
\(10\) 137.497 0.434803
\(11\) 414.956 1.03400 0.517000 0.855985i \(-0.327049\pi\)
0.517000 + 0.855985i \(0.327049\pi\)
\(12\) −17.0444 −0.0341686
\(13\) −920.892 −1.51130 −0.755650 0.654976i \(-0.772679\pi\)
−0.755650 + 0.654976i \(0.772679\pi\)
\(14\) −1459.02 −1.98949
\(15\) −212.557 −0.243920
\(16\) −1081.02 −1.05568
\(17\) −238.401 −0.200071 −0.100036 0.994984i \(-0.531896\pi\)
−0.100036 + 0.994984i \(0.531896\pi\)
\(18\) 471.569 0.343055
\(19\) −361.000 −0.229416
\(20\) 44.7271 0.0250032
\(21\) 2255.50 1.11608
\(22\) 2415.81 1.06416
\(23\) 1138.97 0.448945 0.224472 0.974480i \(-0.427934\pi\)
0.224472 + 0.974480i \(0.427934\pi\)
\(24\) 1577.46 0.559024
\(25\) −2567.22 −0.821509
\(26\) −5361.29 −1.55538
\(27\) −729.000 −0.192450
\(28\) −474.613 −0.114405
\(29\) 7031.41 1.55256 0.776278 0.630391i \(-0.217105\pi\)
0.776278 + 0.630391i \(0.217105\pi\)
\(30\) −1237.47 −0.251034
\(31\) 495.673 0.0926384 0.0463192 0.998927i \(-0.485251\pi\)
0.0463192 + 0.998927i \(0.485251\pi\)
\(32\) −684.752 −0.118211
\(33\) −3734.61 −0.596980
\(34\) −1387.93 −0.205907
\(35\) −5918.80 −0.816702
\(36\) 153.399 0.0197273
\(37\) 2981.99 0.358098 0.179049 0.983840i \(-0.442698\pi\)
0.179049 + 0.983840i \(0.442698\pi\)
\(38\) −2101.68 −0.236107
\(39\) 8288.03 0.872549
\(40\) −4139.51 −0.409071
\(41\) 9339.27 0.867668 0.433834 0.900993i \(-0.357160\pi\)
0.433834 + 0.900993i \(0.357160\pi\)
\(42\) 13131.2 1.14863
\(43\) −11537.4 −0.951563 −0.475781 0.879564i \(-0.657835\pi\)
−0.475781 + 0.879564i \(0.657835\pi\)
\(44\) 785.851 0.0611940
\(45\) 1913.01 0.140827
\(46\) 6630.91 0.462039
\(47\) −19955.6 −1.31771 −0.658857 0.752268i \(-0.728960\pi\)
−0.658857 + 0.752268i \(0.728960\pi\)
\(48\) 9729.14 0.609497
\(49\) 45999.2 2.73690
\(50\) −14945.9 −0.845469
\(51\) 2145.61 0.115511
\(52\) −1744.00 −0.0894414
\(53\) −20089.6 −0.982385 −0.491193 0.871051i \(-0.663439\pi\)
−0.491193 + 0.871051i \(0.663439\pi\)
\(54\) −4244.12 −0.198063
\(55\) 9800.20 0.436846
\(56\) 43925.5 1.87175
\(57\) 3249.00 0.132453
\(58\) 40935.7 1.59784
\(59\) −48844.4 −1.82677 −0.913387 0.407093i \(-0.866543\pi\)
−0.913387 + 0.407093i \(0.866543\pi\)
\(60\) −402.544 −0.0144356
\(61\) 24559.4 0.845069 0.422535 0.906347i \(-0.361140\pi\)
0.422535 + 0.906347i \(0.361140\pi\)
\(62\) 2885.73 0.0953402
\(63\) −20299.5 −0.644369
\(64\) 30606.0 0.934021
\(65\) −21749.1 −0.638496
\(66\) −21742.3 −0.614391
\(67\) −59482.1 −1.61882 −0.809411 0.587243i \(-0.800213\pi\)
−0.809411 + 0.587243i \(0.800213\pi\)
\(68\) −451.487 −0.0118406
\(69\) −10250.7 −0.259199
\(70\) −34458.3 −0.840522
\(71\) −4635.76 −0.109138 −0.0545689 0.998510i \(-0.517378\pi\)
−0.0545689 + 0.998510i \(0.517378\pi\)
\(72\) −14197.1 −0.322753
\(73\) −26670.8 −0.585772 −0.292886 0.956147i \(-0.594616\pi\)
−0.292886 + 0.956147i \(0.594616\pi\)
\(74\) 17360.6 0.368542
\(75\) 23105.0 0.474299
\(76\) −683.668 −0.0135772
\(77\) −103993. −1.99883
\(78\) 48251.6 0.897997
\(79\) −68240.6 −1.23020 −0.615100 0.788449i \(-0.710884\pi\)
−0.615100 + 0.788449i \(0.710884\pi\)
\(80\) −25530.8 −0.446005
\(81\) 6561.00 0.111111
\(82\) 54371.8 0.892974
\(83\) 2260.79 0.0360217 0.0180109 0.999838i \(-0.494267\pi\)
0.0180109 + 0.999838i \(0.494267\pi\)
\(84\) 4271.51 0.0660516
\(85\) −5630.41 −0.0845265
\(86\) −67169.0 −0.979315
\(87\) −63282.7 −0.896368
\(88\) −72730.8 −1.00118
\(89\) 749.444 0.0100291 0.00501457 0.999987i \(-0.498404\pi\)
0.00501457 + 0.999987i \(0.498404\pi\)
\(90\) 11137.3 0.144934
\(91\) 230786. 2.92150
\(92\) 2157.00 0.0265694
\(93\) −4461.06 −0.0534848
\(94\) −116179. −1.35615
\(95\) −8525.89 −0.0969239
\(96\) 6162.77 0.0682492
\(97\) 88106.3 0.950775 0.475387 0.879777i \(-0.342308\pi\)
0.475387 + 0.879777i \(0.342308\pi\)
\(98\) 267800. 2.81673
\(99\) 33611.5 0.344667
\(100\) −4861.84 −0.0486184
\(101\) −125404. −1.22323 −0.611613 0.791157i \(-0.709479\pi\)
−0.611613 + 0.791157i \(0.709479\pi\)
\(102\) 12491.4 0.118880
\(103\) −110218. −1.02367 −0.511835 0.859084i \(-0.671034\pi\)
−0.511835 + 0.859084i \(0.671034\pi\)
\(104\) 161408. 1.46333
\(105\) 53269.2 0.471523
\(106\) −116958. −1.01104
\(107\) 160783. 1.35763 0.678813 0.734311i \(-0.262495\pi\)
0.678813 + 0.734311i \(0.262495\pi\)
\(108\) −1380.59 −0.0113895
\(109\) −111776. −0.901122 −0.450561 0.892746i \(-0.648776\pi\)
−0.450561 + 0.892746i \(0.648776\pi\)
\(110\) 57055.2 0.449587
\(111\) −26837.9 −0.206748
\(112\) 270915. 2.04074
\(113\) 116128. 0.855544 0.427772 0.903887i \(-0.359299\pi\)
0.427772 + 0.903887i \(0.359299\pi\)
\(114\) 18915.2 0.136316
\(115\) 26899.6 0.189671
\(116\) 13316.2 0.0918830
\(117\) −74592.3 −0.503766
\(118\) −284364. −1.88005
\(119\) 59746.0 0.386760
\(120\) 37255.6 0.236177
\(121\) 11137.7 0.0691561
\(122\) 142981. 0.869716
\(123\) −84053.5 −0.500948
\(124\) 938.714 0.00548250
\(125\) −134436. −0.769554
\(126\) −118181. −0.663163
\(127\) −6062.47 −0.0333534 −0.0166767 0.999861i \(-0.505309\pi\)
−0.0166767 + 0.999861i \(0.505309\pi\)
\(128\) 200095. 1.07947
\(129\) 103837. 0.549385
\(130\) −126620. −0.657118
\(131\) 115145. 0.586228 0.293114 0.956078i \(-0.405308\pi\)
0.293114 + 0.956078i \(0.405308\pi\)
\(132\) −7072.66 −0.0353304
\(133\) 90470.8 0.443485
\(134\) −346295. −1.66604
\(135\) −17217.1 −0.0813066
\(136\) 41785.3 0.193721
\(137\) 326643. 1.48687 0.743434 0.668810i \(-0.233196\pi\)
0.743434 + 0.668810i \(0.233196\pi\)
\(138\) −59678.2 −0.266758
\(139\) −228617. −1.00362 −0.501812 0.864977i \(-0.667333\pi\)
−0.501812 + 0.864977i \(0.667333\pi\)
\(140\) −11209.1 −0.0483339
\(141\) 179601. 0.760782
\(142\) −26988.6 −0.112321
\(143\) −382130. −1.56268
\(144\) −87562.3 −0.351893
\(145\) 166064. 0.655926
\(146\) −155273. −0.602857
\(147\) −413992. −1.58015
\(148\) 5647.34 0.0211929
\(149\) 225286. 0.831321 0.415661 0.909520i \(-0.363550\pi\)
0.415661 + 0.909520i \(0.363550\pi\)
\(150\) 134513. 0.488132
\(151\) 102524. 0.365918 0.182959 0.983121i \(-0.441432\pi\)
0.182959 + 0.983121i \(0.441432\pi\)
\(152\) 63273.7 0.222134
\(153\) −19310.5 −0.0666905
\(154\) −605430. −2.05713
\(155\) 11706.5 0.0391380
\(156\) 15696.0 0.0516390
\(157\) 441599. 1.42981 0.714906 0.699220i \(-0.246469\pi\)
0.714906 + 0.699220i \(0.246469\pi\)
\(158\) −397286. −1.26608
\(159\) 180806. 0.567180
\(160\) −16172.1 −0.0499420
\(161\) −285439. −0.867859
\(162\) 38197.1 0.114352
\(163\) −451041. −1.32968 −0.664839 0.746986i \(-0.731500\pi\)
−0.664839 + 0.746986i \(0.731500\pi\)
\(164\) 17686.9 0.0513501
\(165\) −88201.8 −0.252213
\(166\) 13161.9 0.0370723
\(167\) 447874. 1.24270 0.621348 0.783535i \(-0.286585\pi\)
0.621348 + 0.783535i \(0.286585\pi\)
\(168\) −395330. −1.08065
\(169\) 476750. 1.28403
\(170\) −32779.4 −0.0869918
\(171\) −29241.0 −0.0764719
\(172\) −21849.8 −0.0563152
\(173\) −381949. −0.970266 −0.485133 0.874440i \(-0.661229\pi\)
−0.485133 + 0.874440i \(0.661229\pi\)
\(174\) −368421. −0.922511
\(175\) 643374. 1.58807
\(176\) −448574. −1.09157
\(177\) 439600. 1.05469
\(178\) 4363.14 0.0103217
\(179\) 193497. 0.451379 0.225690 0.974199i \(-0.427536\pi\)
0.225690 + 0.974199i \(0.427536\pi\)
\(180\) 3622.90 0.00833441
\(181\) 52655.8 0.119468 0.0597338 0.998214i \(-0.480975\pi\)
0.0597338 + 0.998214i \(0.480975\pi\)
\(182\) 1.34360e6 3.00671
\(183\) −221034. −0.487901
\(184\) −199631. −0.434694
\(185\) 70426.9 0.151290
\(186\) −25971.5 −0.0550447
\(187\) −98925.8 −0.206874
\(188\) −37792.4 −0.0779847
\(189\) 182696. 0.372027
\(190\) −49636.4 −0.0997507
\(191\) −303888. −0.602739 −0.301370 0.953507i \(-0.597444\pi\)
−0.301370 + 0.953507i \(0.597444\pi\)
\(192\) −275454. −0.539257
\(193\) 134586. 0.260080 0.130040 0.991509i \(-0.458489\pi\)
0.130040 + 0.991509i \(0.458489\pi\)
\(194\) 512941. 0.978505
\(195\) 195742. 0.368636
\(196\) 87114.0 0.161975
\(197\) −651096. −1.19531 −0.597654 0.801754i \(-0.703900\pi\)
−0.597654 + 0.801754i \(0.703900\pi\)
\(198\) 195680. 0.354719
\(199\) −291770. −0.522286 −0.261143 0.965300i \(-0.584099\pi\)
−0.261143 + 0.965300i \(0.584099\pi\)
\(200\) 449965. 0.795433
\(201\) 535339. 0.934627
\(202\) −730080. −1.25890
\(203\) −1.76215e6 −3.00126
\(204\) 4063.39 0.00683617
\(205\) 220570. 0.366574
\(206\) −641673. −1.05353
\(207\) 92256.7 0.149648
\(208\) 995499. 1.59545
\(209\) −149799. −0.237216
\(210\) 310125. 0.485275
\(211\) 1.05072e6 1.62472 0.812361 0.583154i \(-0.198182\pi\)
0.812361 + 0.583154i \(0.198182\pi\)
\(212\) −38046.1 −0.0581393
\(213\) 41721.8 0.0630107
\(214\) 936052. 1.39722
\(215\) −272484. −0.402018
\(216\) 127774. 0.186341
\(217\) −124221. −0.179080
\(218\) −650744. −0.927404
\(219\) 240037. 0.338196
\(220\) 18559.8 0.0258533
\(221\) 219541. 0.302368
\(222\) −156246. −0.212778
\(223\) −81993.8 −0.110413 −0.0552063 0.998475i \(-0.517582\pi\)
−0.0552063 + 0.998475i \(0.517582\pi\)
\(224\) 171607. 0.228515
\(225\) −207945. −0.273836
\(226\) 676081. 0.880497
\(227\) 911528. 1.17410 0.587051 0.809550i \(-0.300289\pi\)
0.587051 + 0.809550i \(0.300289\pi\)
\(228\) 6153.01 0.00783882
\(229\) −660815. −0.832705 −0.416353 0.909203i \(-0.636692\pi\)
−0.416353 + 0.909203i \(0.636692\pi\)
\(230\) 156605. 0.195203
\(231\) 935935. 1.15403
\(232\) −1.23242e6 −1.50327
\(233\) 866250. 1.04533 0.522665 0.852538i \(-0.324938\pi\)
0.522665 + 0.852538i \(0.324938\pi\)
\(234\) −434264. −0.518459
\(235\) −471301. −0.556710
\(236\) −92502.4 −0.108112
\(237\) 614166. 0.710256
\(238\) 347831. 0.398040
\(239\) −385761. −0.436841 −0.218421 0.975855i \(-0.570090\pi\)
−0.218421 + 0.975855i \(0.570090\pi\)
\(240\) 229777. 0.257501
\(241\) −1.27179e6 −1.41050 −0.705252 0.708957i \(-0.749166\pi\)
−0.705252 + 0.708957i \(0.749166\pi\)
\(242\) 64841.7 0.0711731
\(243\) −59049.0 −0.0641500
\(244\) 46510.9 0.0500127
\(245\) 1.08638e6 1.15629
\(246\) −489346. −0.515559
\(247\) 332442. 0.346716
\(248\) −86878.2 −0.0896978
\(249\) −20347.1 −0.0207972
\(250\) −782662. −0.791999
\(251\) −1.13475e6 −1.13689 −0.568444 0.822722i \(-0.692454\pi\)
−0.568444 + 0.822722i \(0.692454\pi\)
\(252\) −38443.6 −0.0381349
\(253\) 472623. 0.464209
\(254\) −35294.7 −0.0343262
\(255\) 50673.7 0.0488014
\(256\) 185531. 0.176936
\(257\) −129194. −0.122014 −0.0610071 0.998137i \(-0.519431\pi\)
−0.0610071 + 0.998137i \(0.519431\pi\)
\(258\) 604521. 0.565408
\(259\) −747320. −0.692241
\(260\) −41188.9 −0.0377873
\(261\) 569544. 0.517519
\(262\) 670355. 0.603326
\(263\) 913758. 0.814595 0.407298 0.913295i \(-0.366471\pi\)
0.407298 + 0.913295i \(0.366471\pi\)
\(264\) 654577. 0.578031
\(265\) −474465. −0.415040
\(266\) 526706. 0.456420
\(267\) −6744.99 −0.00579033
\(268\) −112648. −0.0958048
\(269\) −460736. −0.388214 −0.194107 0.980980i \(-0.562181\pi\)
−0.194107 + 0.980980i \(0.562181\pi\)
\(270\) −100235. −0.0836780
\(271\) −726289. −0.600739 −0.300370 0.953823i \(-0.597110\pi\)
−0.300370 + 0.953823i \(0.597110\pi\)
\(272\) 257715. 0.211211
\(273\) −2.07708e6 −1.68673
\(274\) 1.90166e6 1.53023
\(275\) −1.06528e6 −0.849441
\(276\) −19413.0 −0.0153398
\(277\) −588940. −0.461181 −0.230590 0.973051i \(-0.574066\pi\)
−0.230590 + 0.973051i \(0.574066\pi\)
\(278\) −1.33097e6 −1.03290
\(279\) 40149.5 0.0308795
\(280\) 1.03741e6 0.790778
\(281\) 111634. 0.0843396 0.0421698 0.999110i \(-0.486573\pi\)
0.0421698 + 0.999110i \(0.486573\pi\)
\(282\) 1.04561e6 0.782971
\(283\) −686287. −0.509377 −0.254689 0.967023i \(-0.581973\pi\)
−0.254689 + 0.967023i \(0.581973\pi\)
\(284\) −8779.28 −0.00645897
\(285\) 76733.0 0.0559590
\(286\) −2.22470e6 −1.60826
\(287\) −2.34053e6 −1.67730
\(288\) −55464.9 −0.0394037
\(289\) −1.36302e6 −0.959971
\(290\) 966797. 0.675056
\(291\) −792957. −0.548930
\(292\) −50509.6 −0.0346670
\(293\) −1.87734e6 −1.27754 −0.638769 0.769399i \(-0.720556\pi\)
−0.638769 + 0.769399i \(0.720556\pi\)
\(294\) −2.41020e6 −1.62624
\(295\) −1.15358e6 −0.771778
\(296\) −522663. −0.346731
\(297\) −302503. −0.198993
\(298\) 1.31158e6 0.855567
\(299\) −1.04887e6 −0.678490
\(300\) 43756.6 0.0280698
\(301\) 2.89141e6 1.83947
\(302\) 596879. 0.376590
\(303\) 1.12863e6 0.706230
\(304\) 390247. 0.242189
\(305\) 580029. 0.357026
\(306\) −112422. −0.0686356
\(307\) 396709. 0.240229 0.120115 0.992760i \(-0.461674\pi\)
0.120115 + 0.992760i \(0.461674\pi\)
\(308\) −196943. −0.118295
\(309\) 991964. 0.591016
\(310\) 68153.5 0.0402795
\(311\) −1.18936e6 −0.697290 −0.348645 0.937255i \(-0.613358\pi\)
−0.348645 + 0.937255i \(0.613358\pi\)
\(312\) −1.45267e6 −0.844852
\(313\) −778041. −0.448892 −0.224446 0.974487i \(-0.572057\pi\)
−0.224446 + 0.974487i \(0.572057\pi\)
\(314\) 2.57092e6 1.47151
\(315\) −479423. −0.272234
\(316\) −129235. −0.0728054
\(317\) 3.52584e6 1.97067 0.985335 0.170630i \(-0.0545802\pi\)
0.985335 + 0.170630i \(0.0545802\pi\)
\(318\) 1.05263e6 0.583722
\(319\) 2.91773e6 1.60534
\(320\) 722835. 0.394606
\(321\) −1.44705e6 −0.783826
\(322\) −1.66178e6 −0.893171
\(323\) 86062.7 0.0458995
\(324\) 12425.3 0.00657576
\(325\) 2.36413e6 1.24155
\(326\) −2.62589e6 −1.36846
\(327\) 1.00599e6 0.520263
\(328\) −1.63693e6 −0.840126
\(329\) 5.00112e6 2.54728
\(330\) −513497. −0.259569
\(331\) 2.21135e6 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(332\) 4281.52 0.00213183
\(333\) 241541. 0.119366
\(334\) 2.60745e6 1.27894
\(335\) −1.40481e6 −0.683922
\(336\) −2.43824e6 −1.17822
\(337\) 3.52355e6 1.69008 0.845038 0.534706i \(-0.179578\pi\)
0.845038 + 0.534706i \(0.179578\pi\)
\(338\) 2.77556e6 1.32147
\(339\) −1.04516e6 −0.493949
\(340\) −10663.0 −0.00500243
\(341\) 205683. 0.0957881
\(342\) −170236. −0.0787023
\(343\) −7.31589e6 −3.35762
\(344\) 2.02220e6 0.921358
\(345\) −242096. −0.109507
\(346\) −2.22365e6 −0.998564
\(347\) 3.53103e6 1.57426 0.787131 0.616785i \(-0.211565\pi\)
0.787131 + 0.616785i \(0.211565\pi\)
\(348\) −119846. −0.0530487
\(349\) −1.25322e6 −0.550760 −0.275380 0.961335i \(-0.588804\pi\)
−0.275380 + 0.961335i \(0.588804\pi\)
\(350\) 3.74562e6 1.63438
\(351\) 671330. 0.290850
\(352\) −284142. −0.122230
\(353\) 964634. 0.412027 0.206014 0.978549i \(-0.433951\pi\)
0.206014 + 0.978549i \(0.433951\pi\)
\(354\) 2.55928e6 1.08545
\(355\) −109485. −0.0461087
\(356\) 1419.31 0.000593543 0
\(357\) −537714. −0.223296
\(358\) 1.12651e6 0.464544
\(359\) −1.26957e6 −0.519900 −0.259950 0.965622i \(-0.583706\pi\)
−0.259950 + 0.965622i \(0.583706\pi\)
\(360\) −335300. −0.136357
\(361\) 130321. 0.0526316
\(362\) 306554. 0.122952
\(363\) −100239. −0.0399273
\(364\) 437067. 0.172900
\(365\) −629896. −0.247478
\(366\) −1.28683e6 −0.502131
\(367\) −1.26919e6 −0.491881 −0.245941 0.969285i \(-0.579097\pi\)
−0.245941 + 0.969285i \(0.579097\pi\)
\(368\) −1.23125e6 −0.473942
\(369\) 756481. 0.289223
\(370\) 410014. 0.155702
\(371\) 5.03469e6 1.89906
\(372\) −8448.42 −0.00316533
\(373\) 3.47150e6 1.29195 0.645975 0.763359i \(-0.276451\pi\)
0.645975 + 0.763359i \(0.276451\pi\)
\(374\) −575930. −0.212908
\(375\) 1.20992e6 0.444302
\(376\) 3.49769e6 1.27589
\(377\) −6.47517e6 −2.34638
\(378\) 1.06363e6 0.382877
\(379\) −2.84273e6 −1.01657 −0.508286 0.861188i \(-0.669721\pi\)
−0.508286 + 0.861188i \(0.669721\pi\)
\(380\) −16146.5 −0.00573613
\(381\) 54562.2 0.0192566
\(382\) −1.76918e6 −0.620319
\(383\) −1.59297e6 −0.554894 −0.277447 0.960741i \(-0.589488\pi\)
−0.277447 + 0.960741i \(0.589488\pi\)
\(384\) −1.80086e6 −0.623234
\(385\) −2.45604e6 −0.844470
\(386\) 783538. 0.267665
\(387\) −934531. −0.317188
\(388\) 166857. 0.0562686
\(389\) −5.24604e6 −1.75775 −0.878876 0.477050i \(-0.841706\pi\)
−0.878876 + 0.477050i \(0.841706\pi\)
\(390\) 1.13958e6 0.379387
\(391\) −271532. −0.0898211
\(392\) −8.06243e6 −2.65003
\(393\) −1.03630e6 −0.338459
\(394\) −3.79058e6 −1.23017
\(395\) −1.61167e6 −0.519736
\(396\) 63654.0 0.0203980
\(397\) −361755. −0.115196 −0.0575982 0.998340i \(-0.518344\pi\)
−0.0575982 + 0.998340i \(0.518344\pi\)
\(398\) −1.69864e6 −0.537518
\(399\) −814237. −0.256046
\(400\) 2.77520e6 0.867250
\(401\) −3.07851e6 −0.956049 −0.478025 0.878346i \(-0.658647\pi\)
−0.478025 + 0.878346i \(0.658647\pi\)
\(402\) 3.11666e6 0.961886
\(403\) −456461. −0.140004
\(404\) −237492. −0.0723927
\(405\) 154954. 0.0469424
\(406\) −1.02590e7 −3.08879
\(407\) 1.23739e6 0.370273
\(408\) −376068. −0.111845
\(409\) 4.13583e6 1.22252 0.611258 0.791432i \(-0.290664\pi\)
0.611258 + 0.791432i \(0.290664\pi\)
\(410\) 1.28412e6 0.377265
\(411\) −2.93979e6 −0.858443
\(412\) −208733. −0.0605827
\(413\) 1.22410e7 3.53135
\(414\) 537103. 0.154013
\(415\) 53394.0 0.0152185
\(416\) 630583. 0.178652
\(417\) 2.05755e6 0.579443
\(418\) −872107. −0.244134
\(419\) 3.19560e6 0.889238 0.444619 0.895720i \(-0.353339\pi\)
0.444619 + 0.895720i \(0.353339\pi\)
\(420\) 100882. 0.0279056
\(421\) 996574. 0.274034 0.137017 0.990569i \(-0.456249\pi\)
0.137017 + 0.990569i \(0.456249\pi\)
\(422\) 6.11710e6 1.67211
\(423\) −1.61641e6 −0.439238
\(424\) 3.52117e6 0.951202
\(425\) 612026. 0.164361
\(426\) 242898. 0.0648484
\(427\) −6.15486e6 −1.63361
\(428\) 304493. 0.0803467
\(429\) 3.43917e6 0.902216
\(430\) −1.58636e6 −0.413743
\(431\) −2.51955e6 −0.653325 −0.326662 0.945141i \(-0.605924\pi\)
−0.326662 + 0.945141i \(0.605924\pi\)
\(432\) 788060. 0.203166
\(433\) −3.82101e6 −0.979395 −0.489698 0.871892i \(-0.662893\pi\)
−0.489698 + 0.871892i \(0.662893\pi\)
\(434\) −723197. −0.184303
\(435\) −1.49457e6 −0.378699
\(436\) −211684. −0.0533300
\(437\) −411169. −0.102995
\(438\) 1.39746e6 0.348059
\(439\) 619538. 0.153429 0.0767144 0.997053i \(-0.475557\pi\)
0.0767144 + 0.997053i \(0.475557\pi\)
\(440\) −1.71771e6 −0.422979
\(441\) 3.72593e6 0.912302
\(442\) 1.27813e6 0.311187
\(443\) −1.08715e6 −0.263198 −0.131599 0.991303i \(-0.542011\pi\)
−0.131599 + 0.991303i \(0.542011\pi\)
\(444\) −50826.0 −0.0122357
\(445\) 17699.9 0.00423713
\(446\) −477355. −0.113633
\(447\) −2.02758e6 −0.479963
\(448\) −7.67021e6 −1.80556
\(449\) −4.56352e6 −1.06828 −0.534139 0.845397i \(-0.679364\pi\)
−0.534139 + 0.845397i \(0.679364\pi\)
\(450\) −1.21062e6 −0.281823
\(451\) 3.87539e6 0.897169
\(452\) 219926. 0.0506327
\(453\) −922717. −0.211263
\(454\) 5.30677e6 1.20834
\(455\) 5.45058e6 1.23428
\(456\) −569463. −0.128249
\(457\) 605485. 0.135617 0.0678083 0.997698i \(-0.478399\pi\)
0.0678083 + 0.997698i \(0.478399\pi\)
\(458\) −3.84716e6 −0.856992
\(459\) 173794. 0.0385038
\(460\) 50942.9 0.0112251
\(461\) −7.26112e6 −1.59130 −0.795649 0.605759i \(-0.792870\pi\)
−0.795649 + 0.605759i \(0.792870\pi\)
\(462\) 5.44887e6 1.18768
\(463\) 1.84692e6 0.400400 0.200200 0.979755i \(-0.435841\pi\)
0.200200 + 0.979755i \(0.435841\pi\)
\(464\) −7.60106e6 −1.63900
\(465\) −105359. −0.0225963
\(466\) 5.04317e6 1.07582
\(467\) 6.63166e6 1.40712 0.703559 0.710637i \(-0.251593\pi\)
0.703559 + 0.710637i \(0.251593\pi\)
\(468\) −141264. −0.0298138
\(469\) 1.49069e7 3.12936
\(470\) −2.74384e6 −0.572947
\(471\) −3.97439e6 −0.825503
\(472\) 8.56112e6 1.76879
\(473\) −4.78752e6 −0.983916
\(474\) 3.57557e6 0.730971
\(475\) 926765. 0.188467
\(476\) 113148. 0.0228891
\(477\) −1.62726e6 −0.327462
\(478\) −2.24584e6 −0.449582
\(479\) −2.39693e6 −0.477328 −0.238664 0.971102i \(-0.576709\pi\)
−0.238664 + 0.971102i \(0.576709\pi\)
\(480\) 145549. 0.0288340
\(481\) −2.74609e6 −0.541193
\(482\) −7.40418e6 −1.45164
\(483\) 2.56895e6 0.501059
\(484\) 21092.7 0.00409278
\(485\) 2.08084e6 0.401685
\(486\) −343774. −0.0660210
\(487\) −2.17359e6 −0.415294 −0.207647 0.978204i \(-0.566580\pi\)
−0.207647 + 0.978204i \(0.566580\pi\)
\(488\) −4.30460e6 −0.818245
\(489\) 4.05937e6 0.767690
\(490\) 6.32474e6 1.19002
\(491\) 9.09470e6 1.70249 0.851245 0.524768i \(-0.175848\pi\)
0.851245 + 0.524768i \(0.175848\pi\)
\(492\) −159182. −0.0296470
\(493\) −1.67629e6 −0.310622
\(494\) 1.93542e6 0.356828
\(495\) 793816. 0.145615
\(496\) −535830. −0.0977964
\(497\) 1.16177e6 0.210975
\(498\) −118458. −0.0214037
\(499\) 8.69614e6 1.56342 0.781709 0.623644i \(-0.214348\pi\)
0.781709 + 0.623644i \(0.214348\pi\)
\(500\) −254596. −0.0455436
\(501\) −4.03087e6 −0.717470
\(502\) −6.60636e6 −1.17005
\(503\) −2.72206e6 −0.479708 −0.239854 0.970809i \(-0.577100\pi\)
−0.239854 + 0.970809i \(0.577100\pi\)
\(504\) 3.55797e6 0.623915
\(505\) −2.96171e6 −0.516790
\(506\) 2.75154e6 0.477748
\(507\) −4.29075e6 −0.741332
\(508\) −11481.2 −0.00197391
\(509\) 7.17949e6 1.22828 0.614142 0.789195i \(-0.289502\pi\)
0.614142 + 0.789195i \(0.289502\pi\)
\(510\) 295014. 0.0502247
\(511\) 6.68401e6 1.13236
\(512\) −5.32292e6 −0.897377
\(513\) 263169. 0.0441511
\(514\) −752149. −0.125573
\(515\) −2.60307e6 −0.432482
\(516\) 196648. 0.0325136
\(517\) −8.28072e6 −1.36252
\(518\) −4.35078e6 −0.712431
\(519\) 3.43755e6 0.560183
\(520\) 3.81204e6 0.618229
\(521\) −2.71363e6 −0.437982 −0.218991 0.975727i \(-0.570277\pi\)
−0.218991 + 0.975727i \(0.570277\pi\)
\(522\) 3.31579e6 0.532612
\(523\) −8.12813e6 −1.29938 −0.649690 0.760199i \(-0.725101\pi\)
−0.649690 + 0.760199i \(0.725101\pi\)
\(524\) 218063. 0.0346940
\(525\) −5.79037e6 −0.916870
\(526\) 5.31975e6 0.838353
\(527\) −118169. −0.0185343
\(528\) 4.03717e6 0.630220
\(529\) −5.13909e6 −0.798448
\(530\) −2.76226e6 −0.427144
\(531\) −3.95640e6 −0.608925
\(532\) 171335. 0.0262463
\(533\) −8.60047e6 −1.31131
\(534\) −39268.3 −0.00595921
\(535\) 3.79728e6 0.573572
\(536\) 1.04256e7 1.56744
\(537\) −1.74147e6 −0.260604
\(538\) −2.68233e6 −0.399537
\(539\) 1.90876e7 2.82996
\(540\) −32606.1 −0.00481187
\(541\) 6.55456e6 0.962831 0.481416 0.876492i \(-0.340123\pi\)
0.481416 + 0.876492i \(0.340123\pi\)
\(542\) −4.22834e6 −0.618260
\(543\) −473903. −0.0689747
\(544\) 163245. 0.0236507
\(545\) −2.63987e6 −0.380707
\(546\) −1.20924e7 −1.73593
\(547\) 4.13403e6 0.590752 0.295376 0.955381i \(-0.404555\pi\)
0.295376 + 0.955381i \(0.404555\pi\)
\(548\) 618603. 0.0879955
\(549\) 1.98931e6 0.281690
\(550\) −6.20190e6 −0.874215
\(551\) −2.53834e6 −0.356181
\(552\) 1.79668e6 0.250971
\(553\) 1.71019e7 2.37811
\(554\) −3.42871e6 −0.474632
\(555\) −633842. −0.0873471
\(556\) −432959. −0.0593963
\(557\) −1.13647e7 −1.55211 −0.776053 0.630668i \(-0.782781\pi\)
−0.776053 + 0.630668i \(0.782781\pi\)
\(558\) 233744. 0.0317801
\(559\) 1.06247e7 1.43810
\(560\) 6.39832e6 0.862176
\(561\) 890333. 0.119439
\(562\) 649917. 0.0867994
\(563\) 1.00795e7 1.34019 0.670095 0.742276i \(-0.266254\pi\)
0.670095 + 0.742276i \(0.266254\pi\)
\(564\) 340131. 0.0450245
\(565\) 2.74266e6 0.361452
\(566\) −3.99545e6 −0.524233
\(567\) −1.64426e6 −0.214790
\(568\) 812525. 0.105673
\(569\) 1.25833e7 1.62934 0.814671 0.579924i \(-0.196918\pi\)
0.814671 + 0.579924i \(0.196918\pi\)
\(570\) 446727. 0.0575911
\(571\) −1.32744e7 −1.70382 −0.851909 0.523690i \(-0.824555\pi\)
−0.851909 + 0.523690i \(0.824555\pi\)
\(572\) −723684. −0.0924824
\(573\) 2.73499e6 0.347992
\(574\) −1.36262e7 −1.72621
\(575\) −2.92399e6 −0.368813
\(576\) 2.47908e6 0.311340
\(577\) −7.77405e6 −0.972093 −0.486046 0.873933i \(-0.661561\pi\)
−0.486046 + 0.873933i \(0.661561\pi\)
\(578\) −7.93530e6 −0.987970
\(579\) −1.21127e6 −0.150157
\(580\) 314494. 0.0388189
\(581\) −566580. −0.0696339
\(582\) −4.61647e6 −0.564940
\(583\) −8.33631e6 −1.01579
\(584\) 4.67468e6 0.567178
\(585\) −1.76168e6 −0.212832
\(586\) −1.09296e7 −1.31480
\(587\) −9.72112e6 −1.16445 −0.582225 0.813027i \(-0.697818\pi\)
−0.582225 + 0.813027i \(0.697818\pi\)
\(588\) −784026. −0.0935163
\(589\) −178938. −0.0212527
\(590\) −6.71595e6 −0.794287
\(591\) 5.85986e6 0.690111
\(592\) −3.22357e6 −0.378036
\(593\) −9.51207e6 −1.11081 −0.555403 0.831581i \(-0.687436\pi\)
−0.555403 + 0.831581i \(0.687436\pi\)
\(594\) −1.76112e6 −0.204797
\(595\) 1.41105e6 0.163399
\(596\) 426651. 0.0491991
\(597\) 2.62593e6 0.301542
\(598\) −6.10635e6 −0.698279
\(599\) 2.79130e6 0.317863 0.158931 0.987290i \(-0.449195\pi\)
0.158931 + 0.987290i \(0.449195\pi\)
\(600\) −4.04968e6 −0.459243
\(601\) −1.71913e6 −0.194143 −0.0970716 0.995277i \(-0.530948\pi\)
−0.0970716 + 0.995277i \(0.530948\pi\)
\(602\) 1.68333e7 1.89312
\(603\) −4.81805e6 −0.539607
\(604\) 194162. 0.0216557
\(605\) 263043. 0.0292172
\(606\) 6.57072e6 0.726827
\(607\) −1.11303e7 −1.22612 −0.613061 0.790035i \(-0.710062\pi\)
−0.613061 + 0.790035i \(0.710062\pi\)
\(608\) 247195. 0.0271195
\(609\) 1.58594e7 1.73278
\(610\) 3.37684e6 0.367439
\(611\) 1.83770e7 1.99146
\(612\) −36570.5 −0.00394686
\(613\) 998180. 0.107290 0.0536448 0.998560i \(-0.482916\pi\)
0.0536448 + 0.998560i \(0.482916\pi\)
\(614\) 2.30958e6 0.247236
\(615\) −1.98513e6 −0.211641
\(616\) 1.82272e7 1.93539
\(617\) −5.14322e6 −0.543904 −0.271952 0.962311i \(-0.587669\pi\)
−0.271952 + 0.962311i \(0.587669\pi\)
\(618\) 5.77505e6 0.608254
\(619\) −1.51122e7 −1.58526 −0.792632 0.609701i \(-0.791290\pi\)
−0.792632 + 0.609701i \(0.791290\pi\)
\(620\) 22170.0 0.00231626
\(621\) −830310. −0.0863995
\(622\) −6.92428e6 −0.717626
\(623\) −187819. −0.0193874
\(624\) −8.95949e6 −0.921132
\(625\) 4.84753e6 0.496387
\(626\) −4.52963e6 −0.461984
\(627\) 1.34819e6 0.136957
\(628\) 836308. 0.0846189
\(629\) −710908. −0.0716451
\(630\) −2.79112e6 −0.280174
\(631\) −3.02455e6 −0.302404 −0.151202 0.988503i \(-0.548314\pi\)
−0.151202 + 0.988503i \(0.548314\pi\)
\(632\) 1.19608e7 1.19115
\(633\) −9.45644e6 −0.938034
\(634\) 2.05269e7 2.02815
\(635\) −143180. −0.0140912
\(636\) 342414. 0.0335668
\(637\) −4.23603e7 −4.13628
\(638\) 1.69865e7 1.65216
\(639\) −375496. −0.0363792
\(640\) 4.72574e6 0.456057
\(641\) −6.09294e6 −0.585709 −0.292855 0.956157i \(-0.594605\pi\)
−0.292855 + 0.956157i \(0.594605\pi\)
\(642\) −8.42446e6 −0.806686
\(643\) 7.43059e6 0.708755 0.354377 0.935103i \(-0.384693\pi\)
0.354377 + 0.935103i \(0.384693\pi\)
\(644\) −540570. −0.0513615
\(645\) 2.45236e6 0.232105
\(646\) 501043. 0.0472382
\(647\) −1.75431e6 −0.164758 −0.0823789 0.996601i \(-0.526252\pi\)
−0.0823789 + 0.996601i \(0.526252\pi\)
\(648\) −1.14997e6 −0.107584
\(649\) −2.02683e7 −1.88888
\(650\) 1.37636e7 1.27776
\(651\) 1.11799e6 0.103392
\(652\) −854189. −0.0786928
\(653\) −6.02593e6 −0.553021 −0.276510 0.961011i \(-0.589178\pi\)
−0.276510 + 0.961011i \(0.589178\pi\)
\(654\) 5.85669e6 0.535437
\(655\) 2.71943e6 0.247670
\(656\) −1.00959e7 −0.915979
\(657\) −2.16033e6 −0.195257
\(658\) 2.91157e7 2.62158
\(659\) −1.15725e7 −1.03804 −0.519018 0.854763i \(-0.673702\pi\)
−0.519018 + 0.854763i \(0.673702\pi\)
\(660\) −167038. −0.0149264
\(661\) −8.34628e6 −0.743001 −0.371500 0.928433i \(-0.621157\pi\)
−0.371500 + 0.928433i \(0.621157\pi\)
\(662\) 1.28741e7 1.14176
\(663\) −1.97587e6 −0.174572
\(664\) −396256. −0.0348783
\(665\) 2.13669e6 0.187364
\(666\) 1.40621e6 0.122847
\(667\) 8.00857e6 0.697012
\(668\) 848192. 0.0735449
\(669\) 737944. 0.0637468
\(670\) −8.17860e6 −0.703869
\(671\) 1.01911e7 0.873802
\(672\) −1.54446e6 −0.131933
\(673\) −5.33266e6 −0.453843 −0.226922 0.973913i \(-0.572866\pi\)
−0.226922 + 0.973913i \(0.572866\pi\)
\(674\) 2.05136e7 1.73937
\(675\) 1.87150e6 0.158100
\(676\) 902877. 0.0759909
\(677\) 2.14247e7 1.79656 0.898282 0.439418i \(-0.144815\pi\)
0.898282 + 0.439418i \(0.144815\pi\)
\(678\) −6.08473e6 −0.508355
\(679\) −2.20805e7 −1.83795
\(680\) 986861. 0.0818434
\(681\) −8.20376e6 −0.677868
\(682\) 1.19745e6 0.0985818
\(683\) 2.01614e7 1.65375 0.826874 0.562388i \(-0.190117\pi\)
0.826874 + 0.562388i \(0.190117\pi\)
\(684\) −55377.1 −0.00452575
\(685\) 7.71448e6 0.628174
\(686\) −4.25920e7 −3.45555
\(687\) 5.94734e6 0.480763
\(688\) 1.24721e7 1.00454
\(689\) 1.85004e7 1.48468
\(690\) −1.40945e6 −0.112700
\(691\) 1.54453e7 1.23056 0.615279 0.788310i \(-0.289043\pi\)
0.615279 + 0.788310i \(0.289043\pi\)
\(692\) −723343. −0.0574221
\(693\) −8.42342e6 −0.666278
\(694\) 2.05571e7 1.62018
\(695\) −5.39934e6 −0.424013
\(696\) 1.10918e7 0.867916
\(697\) −2.22649e6 −0.173596
\(698\) −7.29603e6 −0.566823
\(699\) −7.79625e6 −0.603521
\(700\) 1.21843e6 0.0939846
\(701\) −3.36415e6 −0.258571 −0.129285 0.991607i \(-0.541268\pi\)
−0.129285 + 0.991607i \(0.541268\pi\)
\(702\) 3.90838e6 0.299332
\(703\) −1.07650e6 −0.0821532
\(704\) 1.27001e7 0.965777
\(705\) 4.24171e6 0.321417
\(706\) 5.61595e6 0.424044
\(707\) 3.14276e7 2.36463
\(708\) 832521. 0.0624183
\(709\) 9.46957e6 0.707481 0.353740 0.935344i \(-0.384910\pi\)
0.353740 + 0.935344i \(0.384910\pi\)
\(710\) −637402. −0.0474535
\(711\) −5.52749e6 −0.410066
\(712\) −131358. −0.00971080
\(713\) 564557. 0.0415895
\(714\) −3.13048e6 −0.229808
\(715\) −9.02493e6 −0.660205
\(716\) 366448. 0.0267135
\(717\) 3.47185e6 0.252210
\(718\) −7.39122e6 −0.535063
\(719\) −1.17104e7 −0.844790 −0.422395 0.906412i \(-0.638811\pi\)
−0.422395 + 0.906412i \(0.638811\pi\)
\(720\) −2.06800e6 −0.148668
\(721\) 2.76219e7 1.97886
\(722\) 758708. 0.0541666
\(723\) 1.14461e7 0.814355
\(724\) 99720.6 0.00707031
\(725\) −1.80511e7 −1.27544
\(726\) −583575. −0.0410918
\(727\) 1.55978e7 1.09453 0.547265 0.836959i \(-0.315669\pi\)
0.547265 + 0.836959i \(0.315669\pi\)
\(728\) −4.04507e7 −2.82877
\(729\) 531441. 0.0370370
\(730\) −3.66715e6 −0.254696
\(731\) 2.75053e6 0.190381
\(732\) −418598. −0.0288749
\(733\) 172411. 0.0118523 0.00592617 0.999982i \(-0.498114\pi\)
0.00592617 + 0.999982i \(0.498114\pi\)
\(734\) −7.38900e6 −0.506227
\(735\) −9.77744e6 −0.667585
\(736\) −779913. −0.0530703
\(737\) −2.46825e7 −1.67386
\(738\) 4.40411e6 0.297658
\(739\) −1.29022e6 −0.0869064 −0.0434532 0.999055i \(-0.513836\pi\)
−0.0434532 + 0.999055i \(0.513836\pi\)
\(740\) 133376. 0.00895359
\(741\) −2.99198e6 −0.200176
\(742\) 2.93111e7 1.95444
\(743\) −3.69707e6 −0.245689 −0.122844 0.992426i \(-0.539202\pi\)
−0.122844 + 0.992426i \(0.539202\pi\)
\(744\) 781904. 0.0517871
\(745\) 5.32068e6 0.351218
\(746\) 2.02105e7 1.32963
\(747\) 183124. 0.0120072
\(748\) −187348. −0.0122432
\(749\) −4.02940e7 −2.62444
\(750\) 7.04396e6 0.457261
\(751\) −188742. −0.0122115 −0.00610575 0.999981i \(-0.501944\pi\)
−0.00610575 + 0.999981i \(0.501944\pi\)
\(752\) 2.15724e7 1.39108
\(753\) 1.02128e7 0.656382
\(754\) −3.76974e7 −2.41481
\(755\) 2.42136e6 0.154594
\(756\) 345993. 0.0220172
\(757\) −2.13322e7 −1.35299 −0.676497 0.736446i \(-0.736503\pi\)
−0.676497 + 0.736446i \(0.736503\pi\)
\(758\) −1.65499e7 −1.04622
\(759\) −4.25361e6 −0.268011
\(760\) 1.49436e6 0.0938473
\(761\) −2.83469e7 −1.77437 −0.887185 0.461414i \(-0.847342\pi\)
−0.887185 + 0.461414i \(0.847342\pi\)
\(762\) 317652. 0.0198182
\(763\) 2.80124e7 1.74197
\(764\) −575508. −0.0356712
\(765\) −456063. −0.0281755
\(766\) −9.27400e6 −0.571078
\(767\) 4.49804e7 2.76080
\(768\) −1.66978e6 −0.102154
\(769\) 2.37153e7 1.44615 0.723073 0.690772i \(-0.242729\pi\)
0.723073 + 0.690772i \(0.242729\pi\)
\(770\) −1.42987e7 −0.869100
\(771\) 1.16275e6 0.0704450
\(772\) 254881. 0.0153920
\(773\) 92234.1 0.00555192 0.00277596 0.999996i \(-0.499116\pi\)
0.00277596 + 0.999996i \(0.499116\pi\)
\(774\) −5.44069e6 −0.326438
\(775\) −1.27250e6 −0.0761033
\(776\) −1.54427e7 −0.920595
\(777\) 6.72588e6 0.399666
\(778\) −3.05416e7 −1.80902
\(779\) −3.37148e6 −0.199057
\(780\) 370700. 0.0218165
\(781\) −1.92364e6 −0.112848
\(782\) −1.58081e6 −0.0924408
\(783\) −5.12589e6 −0.298789
\(784\) −4.97258e7 −2.88929
\(785\) 1.04294e7 0.604070
\(786\) −6.03320e6 −0.348330
\(787\) 350387. 0.0201656 0.0100828 0.999949i \(-0.496790\pi\)
0.0100828 + 0.999949i \(0.496790\pi\)
\(788\) −1.23306e6 −0.0707404
\(789\) −8.22382e6 −0.470307
\(790\) −9.38288e6 −0.534895
\(791\) −2.91031e7 −1.65386
\(792\) −5.89119e6 −0.333726
\(793\) −2.26165e7 −1.27715
\(794\) −2.10608e6 −0.118556
\(795\) 4.27018e6 0.239623
\(796\) −552559. −0.0309098
\(797\) 9.25461e6 0.516074 0.258037 0.966135i \(-0.416924\pi\)
0.258037 + 0.966135i \(0.416924\pi\)
\(798\) −4.74036e6 −0.263514
\(799\) 4.75744e6 0.263637
\(800\) 1.75791e6 0.0971115
\(801\) 60704.9 0.00334305
\(802\) −1.79226e7 −0.983933
\(803\) −1.10672e7 −0.605688
\(804\) 1.01383e6 0.0553129
\(805\) −6.74134e6 −0.366654
\(806\) −2.65744e6 −0.144088
\(807\) 4.14663e6 0.224136
\(808\) 2.19799e7 1.18440
\(809\) −2.94050e6 −0.157961 −0.0789805 0.996876i \(-0.525166\pi\)
−0.0789805 + 0.996876i \(0.525166\pi\)
\(810\) 902117. 0.0483115
\(811\) 2.12110e7 1.13242 0.566211 0.824260i \(-0.308409\pi\)
0.566211 + 0.824260i \(0.308409\pi\)
\(812\) −3.33719e6 −0.177620
\(813\) 6.53660e6 0.346837
\(814\) 7.20391e6 0.381072
\(815\) −1.06524e7 −0.561765
\(816\) −2.31943e6 −0.121943
\(817\) 4.16501e6 0.218303
\(818\) 2.40781e7 1.25817
\(819\) 1.86937e7 0.973835
\(820\) 417719. 0.0216945
\(821\) −28537.6 −0.00147761 −0.000738804 1.00000i \(-0.500235\pi\)
−0.000738804 1.00000i \(0.500235\pi\)
\(822\) −1.71150e7 −0.883480
\(823\) −1.60864e7 −0.827863 −0.413931 0.910308i \(-0.635845\pi\)
−0.413931 + 0.910308i \(0.635845\pi\)
\(824\) 1.93183e7 0.991177
\(825\) 9.58754e6 0.490425
\(826\) 7.12650e7 3.63434
\(827\) −1.43894e7 −0.731607 −0.365803 0.930692i \(-0.619206\pi\)
−0.365803 + 0.930692i \(0.619206\pi\)
\(828\) 174717. 0.00885646
\(829\) 2.29442e7 1.15954 0.579771 0.814779i \(-0.303142\pi\)
0.579771 + 0.814779i \(0.303142\pi\)
\(830\) 310851. 0.0156624
\(831\) 5.30046e6 0.266263
\(832\) −2.81848e7 −1.41158
\(833\) −1.09662e7 −0.547577
\(834\) 1.19787e7 0.596343
\(835\) 1.05776e7 0.525016
\(836\) −283692. −0.0140389
\(837\) −361345. −0.0178283
\(838\) 1.86043e7 0.915173
\(839\) −3.34833e7 −1.64219 −0.821095 0.570792i \(-0.806636\pi\)
−0.821095 + 0.570792i \(0.806636\pi\)
\(840\) −9.33668e6 −0.456556
\(841\) 2.89295e7 1.41043
\(842\) 5.80189e6 0.282026
\(843\) −1.00471e6 −0.0486935
\(844\) 1.98986e6 0.0961540
\(845\) 1.12596e7 0.542477
\(846\) −9.41046e6 −0.452049
\(847\) −2.79123e6 −0.133686
\(848\) 2.17172e7 1.03708
\(849\) 6.17658e6 0.294089
\(850\) 3.56312e6 0.169154
\(851\) 3.39640e6 0.160766
\(852\) 79013.5 0.00372909
\(853\) −9.55702e6 −0.449728 −0.224864 0.974390i \(-0.572194\pi\)
−0.224864 + 0.974390i \(0.572194\pi\)
\(854\) −3.58326e7 −1.68126
\(855\) −690597. −0.0323080
\(856\) −2.81809e7 −1.31453
\(857\) 1.69429e7 0.788019 0.394009 0.919106i \(-0.371088\pi\)
0.394009 + 0.919106i \(0.371088\pi\)
\(858\) 2.00223e7 0.928529
\(859\) −6.40368e6 −0.296106 −0.148053 0.988979i \(-0.547301\pi\)
−0.148053 + 0.988979i \(0.547301\pi\)
\(860\) −516035. −0.0237921
\(861\) 2.10648e7 0.968387
\(862\) −1.46684e7 −0.672379
\(863\) 3.12340e6 0.142758 0.0713791 0.997449i \(-0.477260\pi\)
0.0713791 + 0.997449i \(0.477260\pi\)
\(864\) 499184. 0.0227497
\(865\) −9.02067e6 −0.409919
\(866\) −2.22453e7 −1.00796
\(867\) 1.22672e7 0.554240
\(868\) −235253. −0.0105983
\(869\) −2.83169e7 −1.27203
\(870\) −8.70117e6 −0.389744
\(871\) 5.47766e7 2.44652
\(872\) 1.95914e7 0.872518
\(873\) 7.13661e6 0.316925
\(874\) −2.39376e6 −0.105999
\(875\) 3.36911e7 1.48763
\(876\) 454586. 0.0200150
\(877\) 3.31907e7 1.45719 0.728597 0.684943i \(-0.240173\pi\)
0.728597 + 0.684943i \(0.240173\pi\)
\(878\) 3.60685e6 0.157904
\(879\) 1.68961e7 0.737587
\(880\) −1.05942e7 −0.461169
\(881\) 3.73467e7 1.62111 0.810555 0.585662i \(-0.199165\pi\)
0.810555 + 0.585662i \(0.199165\pi\)
\(882\) 2.16918e7 0.938909
\(883\) −3.95144e7 −1.70551 −0.852753 0.522314i \(-0.825069\pi\)
−0.852753 + 0.522314i \(0.825069\pi\)
\(884\) 415771. 0.0178947
\(885\) 1.03822e7 0.445586
\(886\) −6.32924e6 −0.270874
\(887\) 3.39325e7 1.44813 0.724064 0.689732i \(-0.242272\pi\)
0.724064 + 0.689732i \(0.242272\pi\)
\(888\) 4.70397e6 0.200185
\(889\) 1.51932e6 0.0644757
\(890\) 103046. 0.00436071
\(891\) 2.72253e6 0.114889
\(892\) −155281. −0.00653442
\(893\) 7.20399e6 0.302304
\(894\) −1.18042e7 −0.493962
\(895\) 4.56990e6 0.190699
\(896\) −5.01462e7 −2.08674
\(897\) 9.43983e6 0.391726
\(898\) −2.65681e7 −1.09943
\(899\) 3.48528e6 0.143826
\(900\) −393809. −0.0162061
\(901\) 4.78938e6 0.196547
\(902\) 2.25619e7 0.923335
\(903\) −2.60227e7 −1.06202
\(904\) −2.03542e7 −0.828388
\(905\) 1.24360e6 0.0504729
\(906\) −5.37191e6 −0.217424
\(907\) −1.00269e7 −0.404716 −0.202358 0.979312i \(-0.564860\pi\)
−0.202358 + 0.979312i \(0.564860\pi\)
\(908\) 1.72627e6 0.0694854
\(909\) −1.01577e7 −0.407742
\(910\) 3.17324e7 1.27028
\(911\) −6.57126e6 −0.262333 −0.131166 0.991360i \(-0.541872\pi\)
−0.131166 + 0.991360i \(0.541872\pi\)
\(912\) −3.51222e6 −0.139828
\(913\) 938128. 0.0372465
\(914\) 3.52504e6 0.139572
\(915\) −5.22026e6 −0.206129
\(916\) −1.25146e6 −0.0492810
\(917\) −2.88566e7 −1.13324
\(918\) 1.01180e6 0.0396268
\(919\) −7.60638e6 −0.297091 −0.148545 0.988906i \(-0.547459\pi\)
−0.148545 + 0.988906i \(0.547459\pi\)
\(920\) −4.71478e6 −0.183650
\(921\) −3.57038e6 −0.138696
\(922\) −4.22731e7 −1.63771
\(923\) 4.26903e6 0.164940
\(924\) 1.77249e6 0.0682974
\(925\) −7.65541e6 −0.294181
\(926\) 1.07524e7 0.412078
\(927\) −8.92767e6 −0.341223
\(928\) −4.81477e6 −0.183529
\(929\) −3.40362e7 −1.29390 −0.646951 0.762532i \(-0.723956\pi\)
−0.646951 + 0.762532i \(0.723956\pi\)
\(930\) −613381. −0.0232554
\(931\) −1.66057e7 −0.627889
\(932\) 1.64052e6 0.0618645
\(933\) 1.07043e7 0.402580
\(934\) 3.86085e7 1.44816
\(935\) −2.33637e6 −0.0874004
\(936\) 1.30740e7 0.487776
\(937\) 1.77553e6 0.0660663 0.0330332 0.999454i \(-0.489483\pi\)
0.0330332 + 0.999454i \(0.489483\pi\)
\(938\) 8.67855e7 3.22063
\(939\) 7.00237e6 0.259168
\(940\) −892558. −0.0329471
\(941\) 1.16181e7 0.427721 0.213860 0.976864i \(-0.431396\pi\)
0.213860 + 0.976864i \(0.431396\pi\)
\(942\) −2.31383e7 −0.849579
\(943\) 1.06372e7 0.389535
\(944\) 5.28016e7 1.92849
\(945\) 4.31481e6 0.157174
\(946\) −2.78722e7 −1.01261
\(947\) 3.38853e7 1.22782 0.613912 0.789374i \(-0.289595\pi\)
0.613912 + 0.789374i \(0.289595\pi\)
\(948\) 1.16312e6 0.0420342
\(949\) 2.45609e7 0.885277
\(950\) 5.39548e6 0.193964
\(951\) −3.17325e7 −1.13777
\(952\) −1.04719e7 −0.374483
\(953\) −2.44407e7 −0.871729 −0.435864 0.900012i \(-0.643557\pi\)
−0.435864 + 0.900012i \(0.643557\pi\)
\(954\) −9.47364e6 −0.337012
\(955\) −7.17705e6 −0.254646
\(956\) −730561. −0.0258530
\(957\) −2.62595e7 −0.926845
\(958\) −1.39546e7 −0.491250
\(959\) −8.18606e7 −2.87427
\(960\) −6.50551e6 −0.227826
\(961\) −2.83835e7 −0.991418
\(962\) −1.59873e7 −0.556977
\(963\) 1.30234e7 0.452542
\(964\) −2.40855e6 −0.0834762
\(965\) 3.17858e6 0.109879
\(966\) 1.49560e7 0.515672
\(967\) −3.67340e7 −1.26329 −0.631644 0.775258i \(-0.717620\pi\)
−0.631644 + 0.775258i \(0.717620\pi\)
\(968\) −1.95214e6 −0.0669609
\(969\) −774564. −0.0265001
\(970\) 1.21143e7 0.413400
\(971\) −3.43205e7 −1.16817 −0.584085 0.811693i \(-0.698546\pi\)
−0.584085 + 0.811693i \(0.698546\pi\)
\(972\) −111828. −0.00379651
\(973\) 5.72940e7 1.94011
\(974\) −1.26543e7 −0.427406
\(975\) −2.12772e7 −0.716807
\(976\) −2.65490e7 −0.892122
\(977\) −8.40409e6 −0.281679 −0.140839 0.990032i \(-0.544980\pi\)
−0.140839 + 0.990032i \(0.544980\pi\)
\(978\) 2.36330e7 0.790081
\(979\) 310986. 0.0103701
\(980\) 2.05741e6 0.0684314
\(981\) −9.05388e6 −0.300374
\(982\) 5.29479e7 1.75215
\(983\) 1.87755e7 0.619738 0.309869 0.950779i \(-0.399715\pi\)
0.309869 + 0.950779i \(0.399715\pi\)
\(984\) 1.47323e7 0.485047
\(985\) −1.53772e7 −0.504995
\(986\) −9.75910e6 −0.319682
\(987\) −4.50100e7 −1.47067
\(988\) 629585. 0.0205193
\(989\) −1.31408e7 −0.427199
\(990\) 4.62147e6 0.149862
\(991\) −1.98114e6 −0.0640814 −0.0320407 0.999487i \(-0.510201\pi\)
−0.0320407 + 0.999487i \(0.510201\pi\)
\(992\) −339413. −0.0109509
\(993\) −1.99022e7 −0.640512
\(994\) 6.76366e6 0.217128
\(995\) −6.89086e6 −0.220656
\(996\) −38533.7 −0.00123081
\(997\) 1.55752e6 0.0496244 0.0248122 0.999692i \(-0.492101\pi\)
0.0248122 + 0.999692i \(0.492101\pi\)
\(998\) 5.06275e7 1.60902
\(999\) −2.17387e6 −0.0689159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 57.6.a.f.1.3 4
3.2 odd 2 171.6.a.j.1.2 4
4.3 odd 2 912.6.a.r.1.3 4
19.18 odd 2 1083.6.a.g.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.6.a.f.1.3 4 1.1 even 1 trivial
171.6.a.j.1.2 4 3.2 odd 2
912.6.a.r.1.3 4 4.3 odd 2
1083.6.a.g.1.2 4 19.18 odd 2