Properties

Label 5733.2.a.by.1.7
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 18x^{8} + 110x^{6} - 265x^{4} + 243x^{2} - 63 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 819)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.12683\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.12683 q^{2} -0.730265 q^{4} +3.42178 q^{5} -3.07653 q^{8} +3.85575 q^{10} -6.22870 q^{11} +1.00000 q^{13} -2.00618 q^{16} +0.602628 q^{17} +5.29924 q^{19} -2.49881 q^{20} -7.01866 q^{22} -4.71533 q^{23} +6.70856 q^{25} +1.12683 q^{26} -6.48608 q^{29} +10.7147 q^{31} +3.89245 q^{32} +0.679056 q^{34} +0.269735 q^{37} +5.97132 q^{38} -10.5272 q^{40} -0.266816 q^{41} +12.0187 q^{43} +4.54860 q^{44} -5.31335 q^{46} +8.75196 q^{47} +7.55938 q^{50} -0.730265 q^{52} +3.63786 q^{53} -21.3132 q^{55} -7.30868 q^{58} +4.28179 q^{59} -3.57983 q^{61} +12.0736 q^{62} +8.39847 q^{64} +3.42178 q^{65} +1.37515 q^{67} -0.440078 q^{68} +0.740276 q^{71} +4.18461 q^{73} +0.303944 q^{74} -3.86985 q^{76} +8.43557 q^{79} -6.86471 q^{80} -0.300654 q^{82} +0.116941 q^{83} +2.06206 q^{85} +13.5429 q^{86} +19.1628 q^{88} +9.87599 q^{89} +3.44344 q^{92} +9.86193 q^{94} +18.1328 q^{95} +10.8465 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 16 q^{4} - 4 q^{10} + 10 q^{13} + 32 q^{16} + 6 q^{19} + 10 q^{22} + 24 q^{25} + 12 q^{31} + 34 q^{34} + 26 q^{37} - 70 q^{40} + 40 q^{43} - 6 q^{46} + 16 q^{52} - 24 q^{55} + 36 q^{58} - 22 q^{61}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12683 0.796786 0.398393 0.917215i \(-0.369568\pi\)
0.398393 + 0.917215i \(0.369568\pi\)
\(3\) 0 0
\(4\) −0.730265 −0.365133
\(5\) 3.42178 1.53027 0.765133 0.643873i \(-0.222673\pi\)
0.765133 + 0.643873i \(0.222673\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −3.07653 −1.08772
\(9\) 0 0
\(10\) 3.85575 1.21929
\(11\) −6.22870 −1.87802 −0.939012 0.343884i \(-0.888257\pi\)
−0.939012 + 0.343884i \(0.888257\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00618 −0.501546
\(17\) 0.602628 0.146159 0.0730794 0.997326i \(-0.476717\pi\)
0.0730794 + 0.997326i \(0.476717\pi\)
\(18\) 0 0
\(19\) 5.29924 1.21573 0.607865 0.794041i \(-0.292026\pi\)
0.607865 + 0.794041i \(0.292026\pi\)
\(20\) −2.49881 −0.558750
\(21\) 0 0
\(22\) −7.01866 −1.49638
\(23\) −4.71533 −0.983214 −0.491607 0.870817i \(-0.663590\pi\)
−0.491607 + 0.870817i \(0.663590\pi\)
\(24\) 0 0
\(25\) 6.70856 1.34171
\(26\) 1.12683 0.220989
\(27\) 0 0
\(28\) 0 0
\(29\) −6.48608 −1.20444 −0.602218 0.798332i \(-0.705716\pi\)
−0.602218 + 0.798332i \(0.705716\pi\)
\(30\) 0 0
\(31\) 10.7147 1.92443 0.962213 0.272299i \(-0.0877840\pi\)
0.962213 + 0.272299i \(0.0877840\pi\)
\(32\) 3.89245 0.688094
\(33\) 0 0
\(34\) 0.679056 0.116457
\(35\) 0 0
\(36\) 0 0
\(37\) 0.269735 0.0443441 0.0221721 0.999754i \(-0.492942\pi\)
0.0221721 + 0.999754i \(0.492942\pi\)
\(38\) 5.97132 0.968676
\(39\) 0 0
\(40\) −10.5272 −1.66450
\(41\) −0.266816 −0.0416696 −0.0208348 0.999783i \(-0.506632\pi\)
−0.0208348 + 0.999783i \(0.506632\pi\)
\(42\) 0 0
\(43\) 12.0187 1.83283 0.916414 0.400232i \(-0.131070\pi\)
0.916414 + 0.400232i \(0.131070\pi\)
\(44\) 4.54860 0.685728
\(45\) 0 0
\(46\) −5.31335 −0.783411
\(47\) 8.75196 1.27660 0.638302 0.769786i \(-0.279637\pi\)
0.638302 + 0.769786i \(0.279637\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7.55938 1.06906
\(51\) 0 0
\(52\) −0.730265 −0.101270
\(53\) 3.63786 0.499698 0.249849 0.968285i \(-0.419619\pi\)
0.249849 + 0.968285i \(0.419619\pi\)
\(54\) 0 0
\(55\) −21.3132 −2.87388
\(56\) 0 0
\(57\) 0 0
\(58\) −7.30868 −0.959677
\(59\) 4.28179 0.557441 0.278721 0.960372i \(-0.410090\pi\)
0.278721 + 0.960372i \(0.410090\pi\)
\(60\) 0 0
\(61\) −3.57983 −0.458350 −0.229175 0.973385i \(-0.573603\pi\)
−0.229175 + 0.973385i \(0.573603\pi\)
\(62\) 12.0736 1.53335
\(63\) 0 0
\(64\) 8.39847 1.04981
\(65\) 3.42178 0.424419
\(66\) 0 0
\(67\) 1.37515 0.168001 0.0840004 0.996466i \(-0.473230\pi\)
0.0840004 + 0.996466i \(0.473230\pi\)
\(68\) −0.440078 −0.0533673
\(69\) 0 0
\(70\) 0 0
\(71\) 0.740276 0.0878546 0.0439273 0.999035i \(-0.486013\pi\)
0.0439273 + 0.999035i \(0.486013\pi\)
\(72\) 0 0
\(73\) 4.18461 0.489772 0.244886 0.969552i \(-0.421249\pi\)
0.244886 + 0.969552i \(0.421249\pi\)
\(74\) 0.303944 0.0353328
\(75\) 0 0
\(76\) −3.86985 −0.443902
\(77\) 0 0
\(78\) 0 0
\(79\) 8.43557 0.949076 0.474538 0.880235i \(-0.342615\pi\)
0.474538 + 0.880235i \(0.342615\pi\)
\(80\) −6.86471 −0.767498
\(81\) 0 0
\(82\) −0.300654 −0.0332017
\(83\) 0.116941 0.0128359 0.00641795 0.999979i \(-0.497957\pi\)
0.00641795 + 0.999979i \(0.497957\pi\)
\(84\) 0 0
\(85\) 2.06206 0.223662
\(86\) 13.5429 1.46037
\(87\) 0 0
\(88\) 19.1628 2.04276
\(89\) 9.87599 1.04685 0.523427 0.852071i \(-0.324653\pi\)
0.523427 + 0.852071i \(0.324653\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.44344 0.359003
\(93\) 0 0
\(94\) 9.86193 1.01718
\(95\) 18.1328 1.86039
\(96\) 0 0
\(97\) 10.8465 1.10130 0.550649 0.834737i \(-0.314380\pi\)
0.550649 + 0.834737i \(0.314380\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.89903 −0.489903
\(101\) 4.47017 0.444799 0.222399 0.974956i \(-0.428611\pi\)
0.222399 + 0.974956i \(0.428611\pi\)
\(102\) 0 0
\(103\) 11.7272 1.15552 0.577759 0.816208i \(-0.303927\pi\)
0.577759 + 0.816208i \(0.303927\pi\)
\(104\) −3.07653 −0.301679
\(105\) 0 0
\(106\) 4.09923 0.398152
\(107\) 3.51007 0.339331 0.169666 0.985502i \(-0.445731\pi\)
0.169666 + 0.985502i \(0.445731\pi\)
\(108\) 0 0
\(109\) −12.4233 −1.18994 −0.594969 0.803749i \(-0.702836\pi\)
−0.594969 + 0.803749i \(0.702836\pi\)
\(110\) −24.0163 −2.28986
\(111\) 0 0
\(112\) 0 0
\(113\) −5.31516 −0.500008 −0.250004 0.968245i \(-0.580432\pi\)
−0.250004 + 0.968245i \(0.580432\pi\)
\(114\) 0 0
\(115\) −16.1348 −1.50458
\(116\) 4.73656 0.439779
\(117\) 0 0
\(118\) 4.82483 0.444161
\(119\) 0 0
\(120\) 0 0
\(121\) 27.7967 2.52697
\(122\) −4.03384 −0.365207
\(123\) 0 0
\(124\) −7.82461 −0.702670
\(125\) 5.84633 0.522911
\(126\) 0 0
\(127\) −6.42331 −0.569977 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(128\) 1.67872 0.148379
\(129\) 0 0
\(130\) 3.85575 0.338171
\(131\) 17.6580 1.54279 0.771393 0.636359i \(-0.219560\pi\)
0.771393 + 0.636359i \(0.219560\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.54955 0.133861
\(135\) 0 0
\(136\) −1.85400 −0.158980
\(137\) −6.17892 −0.527901 −0.263950 0.964536i \(-0.585025\pi\)
−0.263950 + 0.964536i \(0.585025\pi\)
\(138\) 0 0
\(139\) −7.82775 −0.663941 −0.331971 0.943290i \(-0.607713\pi\)
−0.331971 + 0.943290i \(0.607713\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.834162 0.0700013
\(143\) −6.22870 −0.520870
\(144\) 0 0
\(145\) −22.1939 −1.84311
\(146\) 4.71533 0.390243
\(147\) 0 0
\(148\) −0.196978 −0.0161915
\(149\) −8.32411 −0.681938 −0.340969 0.940075i \(-0.610755\pi\)
−0.340969 + 0.940075i \(0.610755\pi\)
\(150\) 0 0
\(151\) −20.3687 −1.65758 −0.828792 0.559557i \(-0.810971\pi\)
−0.828792 + 0.559557i \(0.810971\pi\)
\(152\) −16.3033 −1.32237
\(153\) 0 0
\(154\) 0 0
\(155\) 36.6635 2.94488
\(156\) 0 0
\(157\) 4.57679 0.365268 0.182634 0.983181i \(-0.441538\pi\)
0.182634 + 0.983181i \(0.441538\pi\)
\(158\) 9.50542 0.756210
\(159\) 0 0
\(160\) 13.3191 1.05297
\(161\) 0 0
\(162\) 0 0
\(163\) 9.11463 0.713913 0.356956 0.934121i \(-0.383814\pi\)
0.356956 + 0.934121i \(0.383814\pi\)
\(164\) 0.194846 0.0152149
\(165\) 0 0
\(166\) 0.131772 0.0102275
\(167\) −13.9793 −1.08175 −0.540874 0.841104i \(-0.681906\pi\)
−0.540874 + 0.841104i \(0.681906\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 2.32358 0.178210
\(171\) 0 0
\(172\) −8.77681 −0.669225
\(173\) −13.2681 −1.00875 −0.504376 0.863484i \(-0.668277\pi\)
−0.504376 + 0.863484i \(0.668277\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.4959 0.941915
\(177\) 0 0
\(178\) 11.1285 0.834118
\(179\) 19.6988 1.47236 0.736178 0.676788i \(-0.236629\pi\)
0.736178 + 0.676788i \(0.236629\pi\)
\(180\) 0 0
\(181\) −5.10682 −0.379587 −0.189794 0.981824i \(-0.560782\pi\)
−0.189794 + 0.981824i \(0.560782\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 14.5069 1.06946
\(185\) 0.922973 0.0678583
\(186\) 0 0
\(187\) −3.75359 −0.274490
\(188\) −6.39125 −0.466130
\(189\) 0 0
\(190\) 20.4325 1.48233
\(191\) 17.8745 1.29335 0.646677 0.762764i \(-0.276158\pi\)
0.646677 + 0.762764i \(0.276158\pi\)
\(192\) 0 0
\(193\) −0.615256 −0.0442871 −0.0221435 0.999755i \(-0.507049\pi\)
−0.0221435 + 0.999755i \(0.507049\pi\)
\(194\) 12.2221 0.877498
\(195\) 0 0
\(196\) 0 0
\(197\) 2.01129 0.143298 0.0716492 0.997430i \(-0.477174\pi\)
0.0716492 + 0.997430i \(0.477174\pi\)
\(198\) 0 0
\(199\) −18.0416 −1.27894 −0.639468 0.768818i \(-0.720845\pi\)
−0.639468 + 0.768818i \(0.720845\pi\)
\(200\) −20.6391 −1.45941
\(201\) 0 0
\(202\) 5.03710 0.354409
\(203\) 0 0
\(204\) 0 0
\(205\) −0.912984 −0.0637655
\(206\) 13.2145 0.920700
\(207\) 0 0
\(208\) −2.00618 −0.139104
\(209\) −33.0074 −2.28317
\(210\) 0 0
\(211\) 18.9585 1.30516 0.652578 0.757721i \(-0.273687\pi\)
0.652578 + 0.757721i \(0.273687\pi\)
\(212\) −2.65660 −0.182456
\(213\) 0 0
\(214\) 3.95524 0.270374
\(215\) 41.1252 2.80471
\(216\) 0 0
\(217\) 0 0
\(218\) −13.9989 −0.948125
\(219\) 0 0
\(220\) 15.5643 1.04935
\(221\) 0.602628 0.0405371
\(222\) 0 0
\(223\) −17.7722 −1.19012 −0.595059 0.803682i \(-0.702871\pi\)
−0.595059 + 0.803682i \(0.702871\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.98926 −0.398400
\(227\) −22.6030 −1.50021 −0.750107 0.661317i \(-0.769998\pi\)
−0.750107 + 0.661317i \(0.769998\pi\)
\(228\) 0 0
\(229\) 14.4710 0.956271 0.478135 0.878286i \(-0.341313\pi\)
0.478135 + 0.878286i \(0.341313\pi\)
\(230\) −18.1811 −1.19883
\(231\) 0 0
\(232\) 19.9546 1.31009
\(233\) −22.8477 −1.49680 −0.748402 0.663245i \(-0.769179\pi\)
−0.748402 + 0.663245i \(0.769179\pi\)
\(234\) 0 0
\(235\) 29.9473 1.95354
\(236\) −3.12684 −0.203540
\(237\) 0 0
\(238\) 0 0
\(239\) −5.37010 −0.347363 −0.173682 0.984802i \(-0.555566\pi\)
−0.173682 + 0.984802i \(0.555566\pi\)
\(240\) 0 0
\(241\) 5.94287 0.382814 0.191407 0.981511i \(-0.438695\pi\)
0.191407 + 0.981511i \(0.438695\pi\)
\(242\) 31.3220 2.01346
\(243\) 0 0
\(244\) 2.61422 0.167359
\(245\) 0 0
\(246\) 0 0
\(247\) 5.29924 0.337183
\(248\) −32.9643 −2.09323
\(249\) 0 0
\(250\) 6.58779 0.416648
\(251\) −8.52086 −0.537832 −0.268916 0.963164i \(-0.586665\pi\)
−0.268916 + 0.963164i \(0.586665\pi\)
\(252\) 0 0
\(253\) 29.3704 1.84650
\(254\) −7.23795 −0.454149
\(255\) 0 0
\(256\) −14.9053 −0.931583
\(257\) 16.6720 1.03997 0.519986 0.854175i \(-0.325937\pi\)
0.519986 + 0.854175i \(0.325937\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.49881 −0.154969
\(261\) 0 0
\(262\) 19.8975 1.22927
\(263\) −27.7847 −1.71328 −0.856640 0.515915i \(-0.827452\pi\)
−0.856640 + 0.515915i \(0.827452\pi\)
\(264\) 0 0
\(265\) 12.4479 0.764671
\(266\) 0 0
\(267\) 0 0
\(268\) −1.00422 −0.0613426
\(269\) 2.35000 0.143282 0.0716409 0.997430i \(-0.477176\pi\)
0.0716409 + 0.997430i \(0.477176\pi\)
\(270\) 0 0
\(271\) −7.04388 −0.427885 −0.213942 0.976846i \(-0.568631\pi\)
−0.213942 + 0.976846i \(0.568631\pi\)
\(272\) −1.20898 −0.0733053
\(273\) 0 0
\(274\) −6.96256 −0.420624
\(275\) −41.7856 −2.51977
\(276\) 0 0
\(277\) −16.3083 −0.979871 −0.489935 0.871759i \(-0.662980\pi\)
−0.489935 + 0.871759i \(0.662980\pi\)
\(278\) −8.82051 −0.529019
\(279\) 0 0
\(280\) 0 0
\(281\) 22.5518 1.34533 0.672665 0.739947i \(-0.265150\pi\)
0.672665 + 0.739947i \(0.265150\pi\)
\(282\) 0 0
\(283\) 24.8569 1.47759 0.738794 0.673931i \(-0.235396\pi\)
0.738794 + 0.673931i \(0.235396\pi\)
\(284\) −0.540598 −0.0320786
\(285\) 0 0
\(286\) −7.01866 −0.415022
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6368 −0.978638
\(290\) −25.0087 −1.46856
\(291\) 0 0
\(292\) −3.05588 −0.178832
\(293\) 24.2328 1.41569 0.707847 0.706365i \(-0.249666\pi\)
0.707847 + 0.706365i \(0.249666\pi\)
\(294\) 0 0
\(295\) 14.6513 0.853033
\(296\) −0.829848 −0.0482339
\(297\) 0 0
\(298\) −9.37981 −0.543358
\(299\) −4.71533 −0.272694
\(300\) 0 0
\(301\) 0 0
\(302\) −22.9520 −1.32074
\(303\) 0 0
\(304\) −10.6312 −0.609744
\(305\) −12.2494 −0.701397
\(306\) 0 0
\(307\) −14.9020 −0.850503 −0.425252 0.905075i \(-0.639814\pi\)
−0.425252 + 0.905075i \(0.639814\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 41.3133 2.34644
\(311\) 17.6979 1.00355 0.501777 0.864997i \(-0.332680\pi\)
0.501777 + 0.864997i \(0.332680\pi\)
\(312\) 0 0
\(313\) 18.6671 1.05512 0.527562 0.849516i \(-0.323106\pi\)
0.527562 + 0.849516i \(0.323106\pi\)
\(314\) 5.15724 0.291040
\(315\) 0 0
\(316\) −6.16020 −0.346539
\(317\) 0.00279276 0.000156857 0 7.84284e−5 1.00000i \(-0.499975\pi\)
7.84284e−5 1.00000i \(0.499975\pi\)
\(318\) 0 0
\(319\) 40.3999 2.26196
\(320\) 28.7377 1.60649
\(321\) 0 0
\(322\) 0 0
\(323\) 3.19347 0.177690
\(324\) 0 0
\(325\) 6.70856 0.372124
\(326\) 10.2706 0.568836
\(327\) 0 0
\(328\) 0.820866 0.0453248
\(329\) 0 0
\(330\) 0 0
\(331\) 33.5953 1.84657 0.923283 0.384120i \(-0.125495\pi\)
0.923283 + 0.384120i \(0.125495\pi\)
\(332\) −0.0853977 −0.00468681
\(333\) 0 0
\(334\) −15.7522 −0.861921
\(335\) 4.70544 0.257086
\(336\) 0 0
\(337\) 4.38767 0.239012 0.119506 0.992833i \(-0.461869\pi\)
0.119506 + 0.992833i \(0.461869\pi\)
\(338\) 1.12683 0.0612912
\(339\) 0 0
\(340\) −1.50585 −0.0816662
\(341\) −66.7390 −3.61412
\(342\) 0 0
\(343\) 0 0
\(344\) −36.9758 −1.99360
\(345\) 0 0
\(346\) −14.9508 −0.803759
\(347\) 0.0713316 0.00382928 0.00191464 0.999998i \(-0.499391\pi\)
0.00191464 + 0.999998i \(0.499391\pi\)
\(348\) 0 0
\(349\) 3.77491 0.202066 0.101033 0.994883i \(-0.467785\pi\)
0.101033 + 0.994883i \(0.467785\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −24.2449 −1.29226
\(353\) 6.65376 0.354144 0.177072 0.984198i \(-0.443337\pi\)
0.177072 + 0.984198i \(0.443337\pi\)
\(354\) 0 0
\(355\) 2.53306 0.134441
\(356\) −7.21209 −0.382240
\(357\) 0 0
\(358\) 22.1971 1.17315
\(359\) −18.8163 −0.993088 −0.496544 0.868011i \(-0.665398\pi\)
−0.496544 + 0.868011i \(0.665398\pi\)
\(360\) 0 0
\(361\) 9.08197 0.477998
\(362\) −5.75450 −0.302450
\(363\) 0 0
\(364\) 0 0
\(365\) 14.3188 0.749481
\(366\) 0 0
\(367\) 22.9938 1.20027 0.600133 0.799900i \(-0.295114\pi\)
0.600133 + 0.799900i \(0.295114\pi\)
\(368\) 9.45981 0.493127
\(369\) 0 0
\(370\) 1.04003 0.0540685
\(371\) 0 0
\(372\) 0 0
\(373\) −18.0386 −0.934002 −0.467001 0.884257i \(-0.654665\pi\)
−0.467001 + 0.884257i \(0.654665\pi\)
\(374\) −4.22964 −0.218709
\(375\) 0 0
\(376\) −26.9257 −1.38859
\(377\) −6.48608 −0.334050
\(378\) 0 0
\(379\) −9.99684 −0.513503 −0.256752 0.966477i \(-0.582652\pi\)
−0.256752 + 0.966477i \(0.582652\pi\)
\(380\) −13.2418 −0.679289
\(381\) 0 0
\(382\) 20.1414 1.03053
\(383\) −10.1526 −0.518773 −0.259386 0.965774i \(-0.583520\pi\)
−0.259386 + 0.965774i \(0.583520\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.693286 −0.0352873
\(387\) 0 0
\(388\) −7.92083 −0.402119
\(389\) −31.3169 −1.58783 −0.793914 0.608030i \(-0.791960\pi\)
−0.793914 + 0.608030i \(0.791960\pi\)
\(390\) 0 0
\(391\) −2.84159 −0.143705
\(392\) 0 0
\(393\) 0 0
\(394\) 2.26637 0.114178
\(395\) 28.8647 1.45234
\(396\) 0 0
\(397\) 22.9229 1.15047 0.575235 0.817988i \(-0.304911\pi\)
0.575235 + 0.817988i \(0.304911\pi\)
\(398\) −20.3297 −1.01904
\(399\) 0 0
\(400\) −13.4586 −0.672930
\(401\) −18.3226 −0.914988 −0.457494 0.889213i \(-0.651253\pi\)
−0.457494 + 0.889213i \(0.651253\pi\)
\(402\) 0 0
\(403\) 10.7147 0.533740
\(404\) −3.26441 −0.162411
\(405\) 0 0
\(406\) 0 0
\(407\) −1.68010 −0.0832794
\(408\) 0 0
\(409\) 4.92084 0.243320 0.121660 0.992572i \(-0.461178\pi\)
0.121660 + 0.992572i \(0.461178\pi\)
\(410\) −1.02877 −0.0508075
\(411\) 0 0
\(412\) −8.56398 −0.421917
\(413\) 0 0
\(414\) 0 0
\(415\) 0.400145 0.0196423
\(416\) 3.89245 0.190843
\(417\) 0 0
\(418\) −37.1936 −1.81920
\(419\) 19.6349 0.959230 0.479615 0.877479i \(-0.340776\pi\)
0.479615 + 0.877479i \(0.340776\pi\)
\(420\) 0 0
\(421\) −4.93028 −0.240287 −0.120144 0.992757i \(-0.538335\pi\)
−0.120144 + 0.992757i \(0.538335\pi\)
\(422\) 21.3629 1.03993
\(423\) 0 0
\(424\) −11.1920 −0.543531
\(425\) 4.04277 0.196103
\(426\) 0 0
\(427\) 0 0
\(428\) −2.56328 −0.123901
\(429\) 0 0
\(430\) 46.3409 2.23476
\(431\) 33.0547 1.59219 0.796094 0.605172i \(-0.206896\pi\)
0.796094 + 0.605172i \(0.206896\pi\)
\(432\) 0 0
\(433\) 6.62761 0.318503 0.159251 0.987238i \(-0.449092\pi\)
0.159251 + 0.987238i \(0.449092\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 9.07231 0.434485
\(437\) −24.9877 −1.19532
\(438\) 0 0
\(439\) −21.5644 −1.02921 −0.514607 0.857426i \(-0.672062\pi\)
−0.514607 + 0.857426i \(0.672062\pi\)
\(440\) 65.5708 3.12597
\(441\) 0 0
\(442\) 0.679056 0.0322994
\(443\) 13.1473 0.624645 0.312323 0.949976i \(-0.398893\pi\)
0.312323 + 0.949976i \(0.398893\pi\)
\(444\) 0 0
\(445\) 33.7935 1.60196
\(446\) −20.0262 −0.948269
\(447\) 0 0
\(448\) 0 0
\(449\) −18.5922 −0.877422 −0.438711 0.898628i \(-0.644565\pi\)
−0.438711 + 0.898628i \(0.644565\pi\)
\(450\) 0 0
\(451\) 1.66191 0.0782565
\(452\) 3.88148 0.182569
\(453\) 0 0
\(454\) −25.4696 −1.19535
\(455\) 0 0
\(456\) 0 0
\(457\) −5.81527 −0.272027 −0.136013 0.990707i \(-0.543429\pi\)
−0.136013 + 0.990707i \(0.543429\pi\)
\(458\) 16.3063 0.761943
\(459\) 0 0
\(460\) 11.7827 0.549370
\(461\) −3.87560 −0.180505 −0.0902523 0.995919i \(-0.528767\pi\)
−0.0902523 + 0.995919i \(0.528767\pi\)
\(462\) 0 0
\(463\) −12.3411 −0.573540 −0.286770 0.957999i \(-0.592582\pi\)
−0.286770 + 0.957999i \(0.592582\pi\)
\(464\) 13.0123 0.604079
\(465\) 0 0
\(466\) −25.7454 −1.19263
\(467\) 30.0566 1.39085 0.695427 0.718597i \(-0.255215\pi\)
0.695427 + 0.718597i \(0.255215\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 33.7453 1.55656
\(471\) 0 0
\(472\) −13.1731 −0.606339
\(473\) −74.8606 −3.44209
\(474\) 0 0
\(475\) 35.5503 1.63116
\(476\) 0 0
\(477\) 0 0
\(478\) −6.05117 −0.276774
\(479\) 11.7233 0.535653 0.267827 0.963467i \(-0.413695\pi\)
0.267827 + 0.963467i \(0.413695\pi\)
\(480\) 0 0
\(481\) 0.269735 0.0122989
\(482\) 6.69658 0.305021
\(483\) 0 0
\(484\) −20.2990 −0.922681
\(485\) 37.1144 1.68528
\(486\) 0 0
\(487\) 21.4819 0.973436 0.486718 0.873559i \(-0.338194\pi\)
0.486718 + 0.873559i \(0.338194\pi\)
\(488\) 11.0135 0.498556
\(489\) 0 0
\(490\) 0 0
\(491\) −4.33221 −0.195510 −0.0977549 0.995211i \(-0.531166\pi\)
−0.0977549 + 0.995211i \(0.531166\pi\)
\(492\) 0 0
\(493\) −3.90870 −0.176039
\(494\) 5.97132 0.268662
\(495\) 0 0
\(496\) −21.4957 −0.965187
\(497\) 0 0
\(498\) 0 0
\(499\) 37.8237 1.69322 0.846610 0.532214i \(-0.178640\pi\)
0.846610 + 0.532214i \(0.178640\pi\)
\(500\) −4.26937 −0.190932
\(501\) 0 0
\(502\) −9.60152 −0.428537
\(503\) 37.2173 1.65944 0.829718 0.558182i \(-0.188501\pi\)
0.829718 + 0.558182i \(0.188501\pi\)
\(504\) 0 0
\(505\) 15.2959 0.680660
\(506\) 33.0953 1.47126
\(507\) 0 0
\(508\) 4.69072 0.208117
\(509\) −8.45232 −0.374643 −0.187321 0.982299i \(-0.559981\pi\)
−0.187321 + 0.982299i \(0.559981\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −20.1531 −0.890651
\(513\) 0 0
\(514\) 18.7865 0.828635
\(515\) 40.1279 1.76825
\(516\) 0 0
\(517\) −54.5133 −2.39749
\(518\) 0 0
\(519\) 0 0
\(520\) −10.5272 −0.461649
\(521\) −27.5641 −1.20761 −0.603803 0.797134i \(-0.706349\pi\)
−0.603803 + 0.797134i \(0.706349\pi\)
\(522\) 0 0
\(523\) −17.5097 −0.765645 −0.382823 0.923822i \(-0.625048\pi\)
−0.382823 + 0.923822i \(0.625048\pi\)
\(524\) −12.8950 −0.563321
\(525\) 0 0
\(526\) −31.3085 −1.36512
\(527\) 6.45701 0.281272
\(528\) 0 0
\(529\) −0.765693 −0.0332910
\(530\) 14.0266 0.609279
\(531\) 0 0
\(532\) 0 0
\(533\) −0.266816 −0.0115571
\(534\) 0 0
\(535\) 12.0107 0.519267
\(536\) −4.23068 −0.182738
\(537\) 0 0
\(538\) 2.64803 0.114165
\(539\) 0 0
\(540\) 0 0
\(541\) −31.5505 −1.35646 −0.678230 0.734849i \(-0.737253\pi\)
−0.678230 + 0.734849i \(0.737253\pi\)
\(542\) −7.93722 −0.340933
\(543\) 0 0
\(544\) 2.34570 0.100571
\(545\) −42.5098 −1.82092
\(546\) 0 0
\(547\) 10.3525 0.442639 0.221319 0.975201i \(-0.428964\pi\)
0.221319 + 0.975201i \(0.428964\pi\)
\(548\) 4.51225 0.192754
\(549\) 0 0
\(550\) −47.0851 −2.00772
\(551\) −34.3713 −1.46427
\(552\) 0 0
\(553\) 0 0
\(554\) −18.3766 −0.780747
\(555\) 0 0
\(556\) 5.71633 0.242427
\(557\) −27.8350 −1.17941 −0.589704 0.807619i \(-0.700756\pi\)
−0.589704 + 0.807619i \(0.700756\pi\)
\(558\) 0 0
\(559\) 12.0187 0.508335
\(560\) 0 0
\(561\) 0 0
\(562\) 25.4120 1.07194
\(563\) 27.7834 1.17093 0.585466 0.810697i \(-0.300912\pi\)
0.585466 + 0.810697i \(0.300912\pi\)
\(564\) 0 0
\(565\) −18.1873 −0.765146
\(566\) 28.0094 1.17732
\(567\) 0 0
\(568\) −2.27748 −0.0955611
\(569\) 38.4902 1.61359 0.806797 0.590828i \(-0.201199\pi\)
0.806797 + 0.590828i \(0.201199\pi\)
\(570\) 0 0
\(571\) −33.3413 −1.39529 −0.697646 0.716443i \(-0.745769\pi\)
−0.697646 + 0.716443i \(0.745769\pi\)
\(572\) 4.54860 0.190187
\(573\) 0 0
\(574\) 0 0
\(575\) −31.6331 −1.31919
\(576\) 0 0
\(577\) −2.35508 −0.0980431 −0.0490216 0.998798i \(-0.515610\pi\)
−0.0490216 + 0.998798i \(0.515610\pi\)
\(578\) −18.7468 −0.779764
\(579\) 0 0
\(580\) 16.2075 0.672978
\(581\) 0 0
\(582\) 0 0
\(583\) −22.6591 −0.938445
\(584\) −12.8741 −0.532734
\(585\) 0 0
\(586\) 27.3061 1.12801
\(587\) 20.8410 0.860202 0.430101 0.902781i \(-0.358478\pi\)
0.430101 + 0.902781i \(0.358478\pi\)
\(588\) 0 0
\(589\) 56.7800 2.33958
\(590\) 16.5095 0.679685
\(591\) 0 0
\(592\) −0.541137 −0.0222406
\(593\) 8.42497 0.345972 0.172986 0.984924i \(-0.444658\pi\)
0.172986 + 0.984924i \(0.444658\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.07881 0.248998
\(597\) 0 0
\(598\) −5.31335 −0.217279
\(599\) 22.6744 0.926449 0.463225 0.886241i \(-0.346692\pi\)
0.463225 + 0.886241i \(0.346692\pi\)
\(600\) 0 0
\(601\) 12.9905 0.529895 0.264948 0.964263i \(-0.414645\pi\)
0.264948 + 0.964263i \(0.414645\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 14.8746 0.605238
\(605\) 95.1142 3.86694
\(606\) 0 0
\(607\) 32.3286 1.31218 0.656089 0.754683i \(-0.272209\pi\)
0.656089 + 0.754683i \(0.272209\pi\)
\(608\) 20.6270 0.836536
\(609\) 0 0
\(610\) −13.8029 −0.558863
\(611\) 8.75196 0.354066
\(612\) 0 0
\(613\) 31.0323 1.25338 0.626691 0.779268i \(-0.284409\pi\)
0.626691 + 0.779268i \(0.284409\pi\)
\(614\) −16.7920 −0.677669
\(615\) 0 0
\(616\) 0 0
\(617\) −27.2587 −1.09739 −0.548697 0.836022i \(-0.684876\pi\)
−0.548697 + 0.836022i \(0.684876\pi\)
\(618\) 0 0
\(619\) 1.44083 0.0579119 0.0289560 0.999581i \(-0.490782\pi\)
0.0289560 + 0.999581i \(0.490782\pi\)
\(620\) −26.7741 −1.07527
\(621\) 0 0
\(622\) 19.9424 0.799618
\(623\) 0 0
\(624\) 0 0
\(625\) −13.5380 −0.541520
\(626\) 21.0345 0.840708
\(627\) 0 0
\(628\) −3.34227 −0.133371
\(629\) 0.162550 0.00648129
\(630\) 0 0
\(631\) −19.3826 −0.771610 −0.385805 0.922580i \(-0.626076\pi\)
−0.385805 + 0.922580i \(0.626076\pi\)
\(632\) −25.9523 −1.03233
\(633\) 0 0
\(634\) 0.00314695 0.000124981 0
\(635\) −21.9791 −0.872216
\(636\) 0 0
\(637\) 0 0
\(638\) 45.5236 1.80230
\(639\) 0 0
\(640\) 5.74420 0.227059
\(641\) −0.962996 −0.0380361 −0.0190180 0.999819i \(-0.506054\pi\)
−0.0190180 + 0.999819i \(0.506054\pi\)
\(642\) 0 0
\(643\) 5.51311 0.217416 0.108708 0.994074i \(-0.465329\pi\)
0.108708 + 0.994074i \(0.465329\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 3.59848 0.141580
\(647\) 5.74549 0.225879 0.112939 0.993602i \(-0.463973\pi\)
0.112939 + 0.993602i \(0.463973\pi\)
\(648\) 0 0
\(649\) −26.6700 −1.04689
\(650\) 7.55938 0.296503
\(651\) 0 0
\(652\) −6.65610 −0.260673
\(653\) −6.35614 −0.248735 −0.124368 0.992236i \(-0.539690\pi\)
−0.124368 + 0.992236i \(0.539690\pi\)
\(654\) 0 0
\(655\) 60.4217 2.36087
\(656\) 0.535281 0.0208992
\(657\) 0 0
\(658\) 0 0
\(659\) −18.7092 −0.728806 −0.364403 0.931241i \(-0.618727\pi\)
−0.364403 + 0.931241i \(0.618727\pi\)
\(660\) 0 0
\(661\) −36.8249 −1.43232 −0.716162 0.697934i \(-0.754103\pi\)
−0.716162 + 0.697934i \(0.754103\pi\)
\(662\) 37.8561 1.47132
\(663\) 0 0
\(664\) −0.359772 −0.0139618
\(665\) 0 0
\(666\) 0 0
\(667\) 30.5840 1.18422
\(668\) 10.2086 0.394981
\(669\) 0 0
\(670\) 5.30221 0.204842
\(671\) 22.2977 0.860792
\(672\) 0 0
\(673\) 40.4024 1.55740 0.778699 0.627397i \(-0.215880\pi\)
0.778699 + 0.627397i \(0.215880\pi\)
\(674\) 4.94414 0.190441
\(675\) 0 0
\(676\) −0.730265 −0.0280871
\(677\) −2.01655 −0.0775022 −0.0387511 0.999249i \(-0.512338\pi\)
−0.0387511 + 0.999249i \(0.512338\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.34399 −0.243281
\(681\) 0 0
\(682\) −75.2031 −2.87968
\(683\) −13.9015 −0.531925 −0.265962 0.963983i \(-0.585690\pi\)
−0.265962 + 0.963983i \(0.585690\pi\)
\(684\) 0 0
\(685\) −21.1429 −0.807828
\(686\) 0 0
\(687\) 0 0
\(688\) −24.1116 −0.919247
\(689\) 3.63786 0.138591
\(690\) 0 0
\(691\) 23.8046 0.905571 0.452785 0.891620i \(-0.350430\pi\)
0.452785 + 0.891620i \(0.350430\pi\)
\(692\) 9.68920 0.368328
\(693\) 0 0
\(694\) 0.0803782 0.00305111
\(695\) −26.7848 −1.01601
\(696\) 0 0
\(697\) −0.160791 −0.00609038
\(698\) 4.25367 0.161004
\(699\) 0 0
\(700\) 0 0
\(701\) 15.6607 0.591498 0.295749 0.955266i \(-0.404431\pi\)
0.295749 + 0.955266i \(0.404431\pi\)
\(702\) 0 0
\(703\) 1.42939 0.0539105
\(704\) −52.3116 −1.97157
\(705\) 0 0
\(706\) 7.49762 0.282177
\(707\) 0 0
\(708\) 0 0
\(709\) −23.6825 −0.889413 −0.444707 0.895676i \(-0.646692\pi\)
−0.444707 + 0.895676i \(0.646692\pi\)
\(710\) 2.85432 0.107121
\(711\) 0 0
\(712\) −30.3838 −1.13868
\(713\) −50.5235 −1.89212
\(714\) 0 0
\(715\) −21.3132 −0.797070
\(716\) −14.3853 −0.537605
\(717\) 0 0
\(718\) −21.2027 −0.791278
\(719\) 38.1586 1.42308 0.711538 0.702647i \(-0.247999\pi\)
0.711538 + 0.702647i \(0.247999\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 10.2338 0.380862
\(723\) 0 0
\(724\) 3.72934 0.138600
\(725\) −43.5123 −1.61601
\(726\) 0 0
\(727\) −41.6980 −1.54649 −0.773246 0.634106i \(-0.781368\pi\)
−0.773246 + 0.634106i \(0.781368\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 16.1348 0.597176
\(731\) 7.24278 0.267884
\(732\) 0 0
\(733\) −20.2046 −0.746275 −0.373137 0.927776i \(-0.621718\pi\)
−0.373137 + 0.927776i \(0.621718\pi\)
\(734\) 25.9100 0.956355
\(735\) 0 0
\(736\) −18.3542 −0.676543
\(737\) −8.56537 −0.315510
\(738\) 0 0
\(739\) −14.0261 −0.515958 −0.257979 0.966151i \(-0.583057\pi\)
−0.257979 + 0.966151i \(0.583057\pi\)
\(740\) −0.674015 −0.0247773
\(741\) 0 0
\(742\) 0 0
\(743\) −37.7853 −1.38621 −0.693103 0.720838i \(-0.743757\pi\)
−0.693103 + 0.720838i \(0.743757\pi\)
\(744\) 0 0
\(745\) −28.4832 −1.04355
\(746\) −20.3263 −0.744199
\(747\) 0 0
\(748\) 2.74112 0.100225
\(749\) 0 0
\(750\) 0 0
\(751\) −7.14110 −0.260582 −0.130291 0.991476i \(-0.541591\pi\)
−0.130291 + 0.991476i \(0.541591\pi\)
\(752\) −17.5580 −0.640275
\(753\) 0 0
\(754\) −7.30868 −0.266166
\(755\) −69.6973 −2.53654
\(756\) 0 0
\(757\) −17.9270 −0.651568 −0.325784 0.945444i \(-0.605628\pi\)
−0.325784 + 0.945444i \(0.605628\pi\)
\(758\) −11.2647 −0.409152
\(759\) 0 0
\(760\) −55.7862 −2.02358
\(761\) −12.0253 −0.435916 −0.217958 0.975958i \(-0.569940\pi\)
−0.217958 + 0.975958i \(0.569940\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −13.0531 −0.472245
\(765\) 0 0
\(766\) −11.4402 −0.413351
\(767\) 4.28179 0.154606
\(768\) 0 0
\(769\) −0.871602 −0.0314308 −0.0157154 0.999877i \(-0.505003\pi\)
−0.0157154 + 0.999877i \(0.505003\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.449300 0.0161707
\(773\) 14.2385 0.512122 0.256061 0.966661i \(-0.417575\pi\)
0.256061 + 0.966661i \(0.417575\pi\)
\(774\) 0 0
\(775\) 71.8806 2.58203
\(776\) −33.3697 −1.19790
\(777\) 0 0
\(778\) −35.2886 −1.26516
\(779\) −1.41392 −0.0506590
\(780\) 0 0
\(781\) −4.61096 −0.164993
\(782\) −3.20197 −0.114502
\(783\) 0 0
\(784\) 0 0
\(785\) 15.6608 0.558957
\(786\) 0 0
\(787\) −35.7765 −1.27530 −0.637648 0.770328i \(-0.720092\pi\)
−0.637648 + 0.770328i \(0.720092\pi\)
\(788\) −1.46877 −0.0523229
\(789\) 0 0
\(790\) 32.5254 1.15720
\(791\) 0 0
\(792\) 0 0
\(793\) −3.57983 −0.127123
\(794\) 25.8302 0.916678
\(795\) 0 0
\(796\) 13.1752 0.466981
\(797\) 18.8290 0.666958 0.333479 0.942758i \(-0.391777\pi\)
0.333479 + 0.942758i \(0.391777\pi\)
\(798\) 0 0
\(799\) 5.27418 0.186587
\(800\) 26.1127 0.923224
\(801\) 0 0
\(802\) −20.6464 −0.729050
\(803\) −26.0647 −0.919803
\(804\) 0 0
\(805\) 0 0
\(806\) 12.0736 0.425276
\(807\) 0 0
\(808\) −13.7526 −0.483816
\(809\) −46.0538 −1.61916 −0.809582 0.587006i \(-0.800306\pi\)
−0.809582 + 0.587006i \(0.800306\pi\)
\(810\) 0 0
\(811\) 45.8404 1.60968 0.804838 0.593495i \(-0.202252\pi\)
0.804838 + 0.593495i \(0.202252\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.89318 −0.0663558
\(815\) 31.1882 1.09248
\(816\) 0 0
\(817\) 63.6898 2.22822
\(818\) 5.54493 0.193874
\(819\) 0 0
\(820\) 0.666720 0.0232829
\(821\) 26.0675 0.909761 0.454880 0.890553i \(-0.349682\pi\)
0.454880 + 0.890553i \(0.349682\pi\)
\(822\) 0 0
\(823\) −25.0080 −0.871722 −0.435861 0.900014i \(-0.643556\pi\)
−0.435861 + 0.900014i \(0.643556\pi\)
\(824\) −36.0792 −1.25688
\(825\) 0 0
\(826\) 0 0
\(827\) 32.1098 1.11657 0.558284 0.829650i \(-0.311460\pi\)
0.558284 + 0.829650i \(0.311460\pi\)
\(828\) 0 0
\(829\) 11.8754 0.412451 0.206225 0.978505i \(-0.433882\pi\)
0.206225 + 0.978505i \(0.433882\pi\)
\(830\) 0.450893 0.0156507
\(831\) 0 0
\(832\) 8.39847 0.291165
\(833\) 0 0
\(834\) 0 0
\(835\) −47.8339 −1.65536
\(836\) 24.1041 0.833659
\(837\) 0 0
\(838\) 22.1251 0.764300
\(839\) 11.7957 0.407232 0.203616 0.979051i \(-0.434731\pi\)
0.203616 + 0.979051i \(0.434731\pi\)
\(840\) 0 0
\(841\) 13.0693 0.450664
\(842\) −5.55556 −0.191457
\(843\) 0 0
\(844\) −13.8447 −0.476555
\(845\) 3.42178 0.117713
\(846\) 0 0
\(847\) 0 0
\(848\) −7.29821 −0.250621
\(849\) 0 0
\(850\) 4.55549 0.156252
\(851\) −1.27189 −0.0435998
\(852\) 0 0
\(853\) 30.7053 1.05133 0.525665 0.850692i \(-0.323817\pi\)
0.525665 + 0.850692i \(0.323817\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10.7988 −0.369097
\(857\) −36.7982 −1.25700 −0.628502 0.777808i \(-0.716331\pi\)
−0.628502 + 0.777808i \(0.716331\pi\)
\(858\) 0 0
\(859\) −5.82807 −0.198851 −0.0994256 0.995045i \(-0.531701\pi\)
−0.0994256 + 0.995045i \(0.531701\pi\)
\(860\) −30.0323 −1.02409
\(861\) 0 0
\(862\) 37.2469 1.26863
\(863\) −41.0881 −1.39865 −0.699327 0.714802i \(-0.746517\pi\)
−0.699327 + 0.714802i \(0.746517\pi\)
\(864\) 0 0
\(865\) −45.4003 −1.54366
\(866\) 7.46816 0.253778
\(867\) 0 0
\(868\) 0 0
\(869\) −52.5427 −1.78239
\(870\) 0 0
\(871\) 1.37515 0.0465950
\(872\) 38.2207 1.29432
\(873\) 0 0
\(874\) −28.1567 −0.952415
\(875\) 0 0
\(876\) 0 0
\(877\) −11.5614 −0.390400 −0.195200 0.980763i \(-0.562536\pi\)
−0.195200 + 0.980763i \(0.562536\pi\)
\(878\) −24.2993 −0.820062
\(879\) 0 0
\(880\) 42.7582 1.44138
\(881\) 18.8516 0.635125 0.317563 0.948237i \(-0.397136\pi\)
0.317563 + 0.948237i \(0.397136\pi\)
\(882\) 0 0
\(883\) −0.0238069 −0.000801165 0 −0.000400582 1.00000i \(-0.500128\pi\)
−0.000400582 1.00000i \(0.500128\pi\)
\(884\) −0.440078 −0.0148014
\(885\) 0 0
\(886\) 14.8147 0.497708
\(887\) −15.1878 −0.509957 −0.254979 0.966947i \(-0.582068\pi\)
−0.254979 + 0.966947i \(0.582068\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 38.0793 1.27642
\(891\) 0 0
\(892\) 12.9785 0.434551
\(893\) 46.3788 1.55201
\(894\) 0 0
\(895\) 67.4048 2.25310
\(896\) 0 0
\(897\) 0 0
\(898\) −20.9502 −0.699117
\(899\) −69.4967 −2.31785
\(900\) 0 0
\(901\) 2.19227 0.0730353
\(902\) 1.87269 0.0623536
\(903\) 0 0
\(904\) 16.3523 0.543868
\(905\) −17.4744 −0.580869
\(906\) 0 0
\(907\) 8.62323 0.286330 0.143165 0.989699i \(-0.454272\pi\)
0.143165 + 0.989699i \(0.454272\pi\)
\(908\) 16.5062 0.547777
\(909\) 0 0
\(910\) 0 0
\(911\) 10.5379 0.349135 0.174568 0.984645i \(-0.444147\pi\)
0.174568 + 0.984645i \(0.444147\pi\)
\(912\) 0 0
\(913\) −0.728389 −0.0241061
\(914\) −6.55279 −0.216747
\(915\) 0 0
\(916\) −10.5677 −0.349166
\(917\) 0 0
\(918\) 0 0
\(919\) 2.83822 0.0936244 0.0468122 0.998904i \(-0.485094\pi\)
0.0468122 + 0.998904i \(0.485094\pi\)
\(920\) 49.6392 1.63656
\(921\) 0 0
\(922\) −4.36712 −0.143823
\(923\) 0.740276 0.0243665
\(924\) 0 0
\(925\) 1.80953 0.0594971
\(926\) −13.9063 −0.456989
\(927\) 0 0
\(928\) −25.2467 −0.828764
\(929\) −57.2054 −1.87685 −0.938425 0.345484i \(-0.887715\pi\)
−0.938425 + 0.345484i \(0.887715\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 16.6849 0.546532
\(933\) 0 0
\(934\) 33.8685 1.10821
\(935\) −12.8440 −0.420042
\(936\) 0 0
\(937\) −3.71475 −0.121355 −0.0606777 0.998157i \(-0.519326\pi\)
−0.0606777 + 0.998157i \(0.519326\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −21.8694 −0.713302
\(941\) −41.7767 −1.36188 −0.680941 0.732338i \(-0.738429\pi\)
−0.680941 + 0.732338i \(0.738429\pi\)
\(942\) 0 0
\(943\) 1.25812 0.0409701
\(944\) −8.59005 −0.279582
\(945\) 0 0
\(946\) −84.3548 −2.74261
\(947\) −11.8074 −0.383688 −0.191844 0.981425i \(-0.561447\pi\)
−0.191844 + 0.981425i \(0.561447\pi\)
\(948\) 0 0
\(949\) 4.18461 0.135838
\(950\) 40.0590 1.29968
\(951\) 0 0
\(952\) 0 0
\(953\) −17.1436 −0.555334 −0.277667 0.960677i \(-0.589561\pi\)
−0.277667 + 0.960677i \(0.589561\pi\)
\(954\) 0 0
\(955\) 61.1626 1.97917
\(956\) 3.92160 0.126834
\(957\) 0 0
\(958\) 13.2102 0.426801
\(959\) 0 0
\(960\) 0 0
\(961\) 83.8058 2.70341
\(962\) 0.303944 0.00979955
\(963\) 0 0
\(964\) −4.33987 −0.139778
\(965\) −2.10527 −0.0677710
\(966\) 0 0
\(967\) 14.7591 0.474622 0.237311 0.971434i \(-0.423734\pi\)
0.237311 + 0.971434i \(0.423734\pi\)
\(968\) −85.5175 −2.74864
\(969\) 0 0
\(970\) 41.8214 1.34280
\(971\) 30.6869 0.984790 0.492395 0.870372i \(-0.336122\pi\)
0.492395 + 0.870372i \(0.336122\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 24.2063 0.775620
\(975\) 0 0
\(976\) 7.18179 0.229883
\(977\) 36.1440 1.15635 0.578175 0.815913i \(-0.303765\pi\)
0.578175 + 0.815913i \(0.303765\pi\)
\(978\) 0 0
\(979\) −61.5146 −1.96602
\(980\) 0 0
\(981\) 0 0
\(982\) −4.88164 −0.155779
\(983\) −46.1138 −1.47080 −0.735401 0.677633i \(-0.763006\pi\)
−0.735401 + 0.677633i \(0.763006\pi\)
\(984\) 0 0
\(985\) 6.88218 0.219285
\(986\) −4.40442 −0.140265
\(987\) 0 0
\(988\) −3.86985 −0.123116
\(989\) −56.6719 −1.80206
\(990\) 0 0
\(991\) −28.2237 −0.896556 −0.448278 0.893894i \(-0.647962\pi\)
−0.448278 + 0.893894i \(0.647962\pi\)
\(992\) 41.7066 1.32418
\(993\) 0 0
\(994\) 0 0
\(995\) −61.7344 −1.95711
\(996\) 0 0
\(997\) −6.36012 −0.201427 −0.100713 0.994915i \(-0.532113\pi\)
−0.100713 + 0.994915i \(0.532113\pi\)
\(998\) 42.6207 1.34913
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.by.1.7 10
3.2 odd 2 inner 5733.2.a.by.1.4 10
7.2 even 3 819.2.j.j.235.4 20
7.4 even 3 819.2.j.j.352.4 yes 20
7.6 odd 2 5733.2.a.bz.1.7 10
21.2 odd 6 819.2.j.j.235.7 yes 20
21.11 odd 6 819.2.j.j.352.7 yes 20
21.20 even 2 5733.2.a.bz.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.j.j.235.4 20 7.2 even 3
819.2.j.j.235.7 yes 20 21.2 odd 6
819.2.j.j.352.4 yes 20 7.4 even 3
819.2.j.j.352.7 yes 20 21.11 odd 6
5733.2.a.by.1.4 10 3.2 odd 2 inner
5733.2.a.by.1.7 10 1.1 even 1 trivial
5733.2.a.bz.1.4 10 21.20 even 2
5733.2.a.bz.1.7 10 7.6 odd 2