Properties

Label 819.2.j.j.352.4
Level $819$
Weight $2$
Character 819.352
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} + 214 x^{16} + 1450 x^{14} + 7087 x^{12} + 20465 x^{10} + 42361 x^{8} + 50535 x^{6} + \cdots + 3969 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.4
Root \(-0.563413 - 0.975859i\) of defining polynomial
Character \(\chi\) \(=\) 819.352
Dual form 819.2.j.j.235.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.563413 + 0.975859i) q^{2} +(0.365133 + 0.632428i) q^{4} +(-1.71089 + 2.96335i) q^{5} +(-2.13253 - 1.56598i) q^{7} -3.07653 q^{8} +(-1.92787 - 3.33917i) q^{10} +(3.11435 + 5.39421i) q^{11} +1.00000 q^{13} +(2.72967 - 1.19876i) q^{14} +(1.00309 - 1.73741i) q^{16} +(-0.301314 - 0.521891i) q^{17} +(-2.64962 + 4.58928i) q^{19} -2.49881 q^{20} -7.01866 q^{22} +(2.35766 - 4.08359i) q^{23} +(-3.35428 - 5.80979i) q^{25} +(-0.563413 + 0.975859i) q^{26} +(0.211714 - 1.92047i) q^{28} -6.48608 q^{29} +(-5.35737 - 9.27924i) q^{31} +(-1.94622 - 3.37096i) q^{32} +0.679056 q^{34} +(8.28908 - 3.64021i) q^{35} +(-0.134867 + 0.233597i) q^{37} +(-2.98566 - 5.17131i) q^{38} +(5.26360 - 9.11683i) q^{40} -0.266816 q^{41} +12.0187 q^{43} +(-2.27430 + 3.93921i) q^{44} +(2.65667 + 4.60149i) q^{46} +(-4.37598 + 7.57942i) q^{47} +(2.09540 + 6.67902i) q^{49} +7.55938 q^{50} +(0.365133 + 0.632428i) q^{52} +(-1.81893 - 3.15048i) q^{53} -21.3132 q^{55} +(6.56081 + 4.81779i) q^{56} +(3.65434 - 6.32950i) q^{58} +(-2.14089 - 3.70814i) q^{59} +(1.78991 - 3.10022i) q^{61} +12.0736 q^{62} +8.39847 q^{64} +(-1.71089 + 2.96335i) q^{65} +(-0.687573 - 1.19091i) q^{67} +(0.220039 - 0.381119i) q^{68} +(-1.11783 + 10.1399i) q^{70} +0.740276 q^{71} +(-2.09231 - 3.62398i) q^{73} +(-0.151972 - 0.263223i) q^{74} -3.86985 q^{76} +(1.80579 - 16.3804i) q^{77} +(-4.21779 + 7.30542i) q^{79} +(3.43236 + 5.94501i) q^{80} +(0.150327 - 0.260374i) q^{82} +0.116941 q^{83} +2.06206 q^{85} +(-6.77146 + 11.7285i) q^{86} +(-9.58140 - 16.5955i) q^{88} +(-4.93800 + 8.55286i) q^{89} +(-2.13253 - 1.56598i) q^{91} +3.44344 q^{92} +(-4.93096 - 8.54068i) q^{94} +(-9.06641 - 15.7035i) q^{95} +10.8465 q^{97} +(-7.69836 - 1.71823i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 16 q^{4} - 4 q^{7} + 4 q^{10} + 20 q^{13} - 32 q^{16} - 6 q^{19} + 20 q^{22} - 24 q^{25} + 8 q^{28} - 12 q^{31} + 68 q^{34} - 26 q^{37} + 70 q^{40} + 80 q^{43} + 6 q^{46} - 28 q^{49} - 16 q^{52}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.563413 + 0.975859i −0.398393 + 0.690037i −0.993528 0.113589i \(-0.963765\pi\)
0.595135 + 0.803626i \(0.297099\pi\)
\(3\) 0 0
\(4\) 0.365133 + 0.632428i 0.182566 + 0.316214i
\(5\) −1.71089 + 2.96335i −0.765133 + 1.32525i 0.175044 + 0.984561i \(0.443993\pi\)
−0.940176 + 0.340688i \(0.889340\pi\)
\(6\) 0 0
\(7\) −2.13253 1.56598i −0.806022 0.591886i
\(8\) −3.07653 −1.08772
\(9\) 0 0
\(10\) −1.92787 3.33917i −0.609647 1.05594i
\(11\) 3.11435 + 5.39421i 0.939012 + 1.62642i 0.767319 + 0.641266i \(0.221591\pi\)
0.171693 + 0.985150i \(0.445076\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 2.72967 1.19876i 0.729536 0.320382i
\(15\) 0 0
\(16\) 1.00309 1.73741i 0.250773 0.434351i
\(17\) −0.301314 0.521891i −0.0730794 0.126577i 0.827170 0.561952i \(-0.189949\pi\)
−0.900249 + 0.435374i \(0.856616\pi\)
\(18\) 0 0
\(19\) −2.64962 + 4.58928i −0.607865 + 1.05285i 0.383727 + 0.923447i \(0.374640\pi\)
−0.991592 + 0.129406i \(0.958693\pi\)
\(20\) −2.49881 −0.558750
\(21\) 0 0
\(22\) −7.01866 −1.49638
\(23\) 2.35766 4.08359i 0.491607 0.851488i −0.508346 0.861153i \(-0.669743\pi\)
0.999953 + 0.00966467i \(0.00307641\pi\)
\(24\) 0 0
\(25\) −3.35428 5.80979i −0.670856 1.16196i
\(26\) −0.563413 + 0.975859i −0.110494 + 0.191382i
\(27\) 0 0
\(28\) 0.211714 1.92047i 0.0400102 0.362934i
\(29\) −6.48608 −1.20444 −0.602218 0.798332i \(-0.705716\pi\)
−0.602218 + 0.798332i \(0.705716\pi\)
\(30\) 0 0
\(31\) −5.35737 9.27924i −0.962213 1.66660i −0.716924 0.697151i \(-0.754451\pi\)
−0.245288 0.969450i \(-0.578883\pi\)
\(32\) −1.94622 3.37096i −0.344047 0.595907i
\(33\) 0 0
\(34\) 0.679056 0.116457
\(35\) 8.28908 3.64021i 1.40111 0.615308i
\(36\) 0 0
\(37\) −0.134867 + 0.233597i −0.0221721 + 0.0384032i −0.876899 0.480676i \(-0.840392\pi\)
0.854726 + 0.519079i \(0.173725\pi\)
\(38\) −2.98566 5.17131i −0.484338 0.838898i
\(39\) 0 0
\(40\) 5.26360 9.11683i 0.832249 1.44150i
\(41\) −0.266816 −0.0416696 −0.0208348 0.999783i \(-0.506632\pi\)
−0.0208348 + 0.999783i \(0.506632\pi\)
\(42\) 0 0
\(43\) 12.0187 1.83283 0.916414 0.400232i \(-0.131070\pi\)
0.916414 + 0.400232i \(0.131070\pi\)
\(44\) −2.27430 + 3.93921i −0.342864 + 0.593858i
\(45\) 0 0
\(46\) 2.65667 + 4.60149i 0.391705 + 0.678453i
\(47\) −4.37598 + 7.57942i −0.638302 + 1.10557i 0.347503 + 0.937679i \(0.387030\pi\)
−0.985805 + 0.167893i \(0.946304\pi\)
\(48\) 0 0
\(49\) 2.09540 + 6.67902i 0.299343 + 0.954146i
\(50\) 7.55938 1.06906
\(51\) 0 0
\(52\) 0.365133 + 0.632428i 0.0506348 + 0.0877020i
\(53\) −1.81893 3.15048i −0.249849 0.432751i 0.713635 0.700518i \(-0.247048\pi\)
−0.963484 + 0.267767i \(0.913714\pi\)
\(54\) 0 0
\(55\) −21.3132 −2.87388
\(56\) 6.56081 + 4.81779i 0.876725 + 0.643805i
\(57\) 0 0
\(58\) 3.65434 6.32950i 0.479838 0.831104i
\(59\) −2.14089 3.70814i −0.278721 0.482758i 0.692346 0.721565i \(-0.256577\pi\)
−0.971067 + 0.238807i \(0.923244\pi\)
\(60\) 0 0
\(61\) 1.78991 3.10022i 0.229175 0.396943i −0.728389 0.685164i \(-0.759731\pi\)
0.957564 + 0.288221i \(0.0930639\pi\)
\(62\) 12.0736 1.53335
\(63\) 0 0
\(64\) 8.39847 1.04981
\(65\) −1.71089 + 2.96335i −0.212210 + 0.367558i
\(66\) 0 0
\(67\) −0.687573 1.19091i −0.0840004 0.145493i 0.820964 0.570979i \(-0.193436\pi\)
−0.904965 + 0.425486i \(0.860103\pi\)
\(68\) 0.220039 0.381119i 0.0266837 0.0462175i
\(69\) 0 0
\(70\) −1.11783 + 10.1399i −0.133607 + 1.21195i
\(71\) 0.740276 0.0878546 0.0439273 0.999035i \(-0.486013\pi\)
0.0439273 + 0.999035i \(0.486013\pi\)
\(72\) 0 0
\(73\) −2.09231 3.62398i −0.244886 0.424155i 0.717214 0.696853i \(-0.245417\pi\)
−0.962100 + 0.272699i \(0.912084\pi\)
\(74\) −0.151972 0.263223i −0.0176664 0.0305991i
\(75\) 0 0
\(76\) −3.86985 −0.443902
\(77\) 1.80579 16.3804i 0.205789 1.86672i
\(78\) 0 0
\(79\) −4.21779 + 7.30542i −0.474538 + 0.821924i −0.999575 0.0291555i \(-0.990718\pi\)
0.525037 + 0.851080i \(0.324052\pi\)
\(80\) 3.43236 + 5.94501i 0.383749 + 0.664673i
\(81\) 0 0
\(82\) 0.150327 0.260374i 0.0166009 0.0287535i
\(83\) 0.116941 0.0128359 0.00641795 0.999979i \(-0.497957\pi\)
0.00641795 + 0.999979i \(0.497957\pi\)
\(84\) 0 0
\(85\) 2.06206 0.223662
\(86\) −6.77146 + 11.7285i −0.730186 + 1.26472i
\(87\) 0 0
\(88\) −9.58140 16.5955i −1.02138 1.76908i
\(89\) −4.93800 + 8.55286i −0.523427 + 0.906601i 0.476202 + 0.879336i \(0.342013\pi\)
−0.999628 + 0.0272653i \(0.991320\pi\)
\(90\) 0 0
\(91\) −2.13253 1.56598i −0.223550 0.164160i
\(92\) 3.44344 0.359003
\(93\) 0 0
\(94\) −4.93096 8.54068i −0.508590 0.880904i
\(95\) −9.06641 15.7035i −0.930195 1.61114i
\(96\) 0 0
\(97\) 10.8465 1.10130 0.550649 0.834737i \(-0.314380\pi\)
0.550649 + 0.834737i \(0.314380\pi\)
\(98\) −7.69836 1.71823i −0.777651 0.173568i
\(99\) 0 0
\(100\) 2.44952 4.24268i 0.244952 0.424268i
\(101\) −2.23509 3.87128i −0.222399 0.385207i 0.733137 0.680081i \(-0.238056\pi\)
−0.955536 + 0.294874i \(0.904722\pi\)
\(102\) 0 0
\(103\) −5.86361 + 10.1561i −0.577759 + 1.00071i 0.417977 + 0.908458i \(0.362739\pi\)
−0.995736 + 0.0922499i \(0.970594\pi\)
\(104\) −3.07653 −0.301679
\(105\) 0 0
\(106\) 4.09923 0.398152
\(107\) −1.75504 + 3.03981i −0.169666 + 0.293870i −0.938302 0.345816i \(-0.887602\pi\)
0.768637 + 0.639686i \(0.220935\pi\)
\(108\) 0 0
\(109\) 6.21166 + 10.7589i 0.594969 + 1.03052i 0.993551 + 0.113384i \(0.0361689\pi\)
−0.398583 + 0.917132i \(0.630498\pi\)
\(110\) 12.0081 20.7987i 1.14493 1.98308i
\(111\) 0 0
\(112\) −4.85987 + 2.13425i −0.459215 + 0.201668i
\(113\) −5.31516 −0.500008 −0.250004 0.968245i \(-0.580432\pi\)
−0.250004 + 0.968245i \(0.580432\pi\)
\(114\) 0 0
\(115\) 8.06740 + 13.9731i 0.752289 + 1.30300i
\(116\) −2.36828 4.10198i −0.219889 0.380859i
\(117\) 0 0
\(118\) 4.82483 0.444161
\(119\) −0.174710 + 1.58480i −0.0160157 + 0.145279i
\(120\) 0 0
\(121\) −13.8984 + 24.0727i −1.26349 + 2.18842i
\(122\) 2.01692 + 3.49341i 0.182603 + 0.316278i
\(123\) 0 0
\(124\) 3.91230 6.77631i 0.351335 0.608530i
\(125\) 5.84633 0.522911
\(126\) 0 0
\(127\) −6.42331 −0.569977 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(128\) −0.839358 + 1.45381i −0.0741895 + 0.128500i
\(129\) 0 0
\(130\) −1.92787 3.33917i −0.169086 0.292865i
\(131\) −8.82899 + 15.2923i −0.771393 + 1.33609i 0.165407 + 0.986225i \(0.447106\pi\)
−0.936800 + 0.349866i \(0.886227\pi\)
\(132\) 0 0
\(133\) 12.8371 5.63753i 1.11312 0.488836i
\(134\) 1.54955 0.133861
\(135\) 0 0
\(136\) 0.927002 + 1.60561i 0.0794898 + 0.137680i
\(137\) 3.08946 + 5.35110i 0.263950 + 0.457175i 0.967288 0.253680i \(-0.0816412\pi\)
−0.703338 + 0.710856i \(0.748308\pi\)
\(138\) 0 0
\(139\) −7.82775 −0.663941 −0.331971 0.943290i \(-0.607713\pi\)
−0.331971 + 0.943290i \(0.607713\pi\)
\(140\) 5.32879 + 3.91308i 0.450365 + 0.330716i
\(141\) 0 0
\(142\) −0.417081 + 0.722405i −0.0350007 + 0.0606229i
\(143\) 3.11435 + 5.39421i 0.260435 + 0.451087i
\(144\) 0 0
\(145\) 11.0970 19.2205i 0.921553 1.59618i
\(146\) 4.71533 0.390243
\(147\) 0 0
\(148\) −0.196978 −0.0161915
\(149\) 4.16205 7.20889i 0.340969 0.590575i −0.643644 0.765325i \(-0.722578\pi\)
0.984613 + 0.174750i \(0.0559116\pi\)
\(150\) 0 0
\(151\) 10.1844 + 17.6398i 0.828792 + 1.43551i 0.898987 + 0.437976i \(0.144305\pi\)
−0.0701948 + 0.997533i \(0.522362\pi\)
\(152\) 8.15164 14.1191i 0.661186 1.14521i
\(153\) 0 0
\(154\) 14.9675 + 10.9911i 1.20612 + 0.885688i
\(155\) 36.6635 2.94488
\(156\) 0 0
\(157\) −2.28840 3.96362i −0.182634 0.316331i 0.760143 0.649756i \(-0.225129\pi\)
−0.942777 + 0.333425i \(0.891796\pi\)
\(158\) −4.75271 8.23193i −0.378105 0.654897i
\(159\) 0 0
\(160\) 13.3191 1.05297
\(161\) −11.4226 + 5.01634i −0.900229 + 0.395343i
\(162\) 0 0
\(163\) −4.55731 + 7.89350i −0.356956 + 0.618267i −0.987451 0.157927i \(-0.949519\pi\)
0.630494 + 0.776194i \(0.282852\pi\)
\(164\) −0.0974230 0.168742i −0.00760746 0.0131765i
\(165\) 0 0
\(166\) −0.0658859 + 0.114118i −0.00511373 + 0.00885725i
\(167\) −13.9793 −1.08175 −0.540874 0.841104i \(-0.681906\pi\)
−0.540874 + 0.841104i \(0.681906\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −1.16179 + 2.01228i −0.0891052 + 0.154335i
\(171\) 0 0
\(172\) 4.38840 + 7.60094i 0.334613 + 0.579566i
\(173\) 6.63403 11.4905i 0.504376 0.873605i −0.495611 0.868544i \(-0.665056\pi\)
0.999987 0.00506015i \(-0.00161070\pi\)
\(174\) 0 0
\(175\) −1.94491 + 17.6423i −0.147021 + 1.33363i
\(176\) 12.4959 0.941915
\(177\) 0 0
\(178\) −5.56426 9.63758i −0.417059 0.722367i
\(179\) −9.84939 17.0596i −0.736178 1.27510i −0.954205 0.299155i \(-0.903295\pi\)
0.218027 0.975943i \(-0.430038\pi\)
\(180\) 0 0
\(181\) −5.10682 −0.379587 −0.189794 0.981824i \(-0.560782\pi\)
−0.189794 + 0.981824i \(0.560782\pi\)
\(182\) 2.72967 1.19876i 0.202337 0.0888579i
\(183\) 0 0
\(184\) −7.25343 + 12.5633i −0.534730 + 0.926179i
\(185\) −0.461486 0.799318i −0.0339292 0.0587670i
\(186\) 0 0
\(187\) 1.87679 3.25070i 0.137245 0.237715i
\(188\) −6.39125 −0.466130
\(189\) 0 0
\(190\) 20.4325 1.48233
\(191\) −8.93725 + 15.4798i −0.646677 + 1.12008i 0.337235 + 0.941420i \(0.390508\pi\)
−0.983912 + 0.178656i \(0.942825\pi\)
\(192\) 0 0
\(193\) 0.307628 + 0.532827i 0.0221435 + 0.0383537i 0.876885 0.480701i \(-0.159618\pi\)
−0.854741 + 0.519054i \(0.826284\pi\)
\(194\) −6.11106 + 10.5847i −0.438749 + 0.759935i
\(195\) 0 0
\(196\) −3.45890 + 3.76392i −0.247064 + 0.268851i
\(197\) 2.01129 0.143298 0.0716492 0.997430i \(-0.477174\pi\)
0.0716492 + 0.997430i \(0.477174\pi\)
\(198\) 0 0
\(199\) 9.02080 + 15.6245i 0.639468 + 1.10759i 0.985550 + 0.169386i \(0.0541785\pi\)
−0.346082 + 0.938204i \(0.612488\pi\)
\(200\) 10.3196 + 17.8740i 0.729703 + 1.26388i
\(201\) 0 0
\(202\) 5.03710 0.354409
\(203\) 13.8318 + 10.1571i 0.970801 + 0.712888i
\(204\) 0 0
\(205\) 0.456492 0.790667i 0.0318828 0.0552226i
\(206\) −6.60726 11.4441i −0.460350 0.797349i
\(207\) 0 0
\(208\) 1.00309 1.73741i 0.0695519 0.120467i
\(209\) −33.0074 −2.28317
\(210\) 0 0
\(211\) 18.9585 1.30516 0.652578 0.757721i \(-0.273687\pi\)
0.652578 + 0.757721i \(0.273687\pi\)
\(212\) 1.32830 2.30068i 0.0912280 0.158012i
\(213\) 0 0
\(214\) −1.97762 3.42533i −0.135187 0.234151i
\(215\) −20.5626 + 35.6154i −1.40236 + 2.42895i
\(216\) 0 0
\(217\) −3.10635 + 28.1778i −0.210873 + 1.91284i
\(218\) −13.9989 −0.948125
\(219\) 0 0
\(220\) −7.78215 13.4791i −0.524673 0.908760i
\(221\) −0.301314 0.521891i −0.0202686 0.0351062i
\(222\) 0 0
\(223\) −17.7722 −1.19012 −0.595059 0.803682i \(-0.702871\pi\)
−0.595059 + 0.803682i \(0.702871\pi\)
\(224\) −1.12847 + 10.2364i −0.0753993 + 0.683950i
\(225\) 0 0
\(226\) 2.99463 5.18685i 0.199200 0.345024i
\(227\) 11.3015 + 19.5748i 0.750107 + 1.29922i 0.947770 + 0.318953i \(0.103331\pi\)
−0.197663 + 0.980270i \(0.563335\pi\)
\(228\) 0 0
\(229\) −7.23550 + 12.5323i −0.478135 + 0.828155i −0.999686 0.0250657i \(-0.992020\pi\)
0.521550 + 0.853220i \(0.325354\pi\)
\(230\) −18.1811 −1.19883
\(231\) 0 0
\(232\) 19.9546 1.31009
\(233\) 11.4239 19.7867i 0.748402 1.29627i −0.200186 0.979758i \(-0.564155\pi\)
0.948588 0.316513i \(-0.102512\pi\)
\(234\) 0 0
\(235\) −14.9736 25.9351i −0.976772 1.69182i
\(236\) 1.56342 2.70792i 0.101770 0.176271i
\(237\) 0 0
\(238\) −1.44811 1.06339i −0.0938671 0.0689294i
\(239\) −5.37010 −0.347363 −0.173682 0.984802i \(-0.555566\pi\)
−0.173682 + 0.984802i \(0.555566\pi\)
\(240\) 0 0
\(241\) −2.97144 5.14668i −0.191407 0.331527i 0.754310 0.656519i \(-0.227972\pi\)
−0.945717 + 0.324992i \(0.894638\pi\)
\(242\) −15.6610 27.1257i −1.00673 1.74370i
\(243\) 0 0
\(244\) 2.61422 0.167359
\(245\) −23.3772 5.21767i −1.49352 0.333345i
\(246\) 0 0
\(247\) −2.64962 + 4.58928i −0.168591 + 0.292009i
\(248\) 16.4821 + 28.5479i 1.04662 + 1.81279i
\(249\) 0 0
\(250\) −3.29389 + 5.70519i −0.208324 + 0.360828i
\(251\) −8.52086 −0.537832 −0.268916 0.963164i \(-0.586665\pi\)
−0.268916 + 0.963164i \(0.586665\pi\)
\(252\) 0 0
\(253\) 29.3704 1.84650
\(254\) 3.61897 6.26825i 0.227075 0.393305i
\(255\) 0 0
\(256\) 7.45266 + 12.9084i 0.465791 + 0.806774i
\(257\) −8.33602 + 14.4384i −0.519986 + 0.900643i 0.479744 + 0.877409i \(0.340730\pi\)
−0.999730 + 0.0232341i \(0.992604\pi\)
\(258\) 0 0
\(259\) 0.653419 0.286954i 0.0406015 0.0178304i
\(260\) −2.49881 −0.154969
\(261\) 0 0
\(262\) −9.94873 17.2317i −0.614635 1.06458i
\(263\) 13.8924 + 24.0623i 0.856640 + 1.48374i 0.875116 + 0.483914i \(0.160785\pi\)
−0.0184759 + 0.999829i \(0.505881\pi\)
\(264\) 0 0
\(265\) 12.4479 0.764671
\(266\) −1.73117 + 15.7035i −0.106145 + 0.962843i
\(267\) 0 0
\(268\) 0.502111 0.869681i 0.0306713 0.0531242i
\(269\) −1.17500 2.03516i −0.0716409 0.124086i 0.827980 0.560758i \(-0.189490\pi\)
−0.899621 + 0.436672i \(0.856157\pi\)
\(270\) 0 0
\(271\) 3.52194 6.10018i 0.213942 0.370559i −0.739002 0.673703i \(-0.764703\pi\)
0.952945 + 0.303143i \(0.0980361\pi\)
\(272\) −1.20898 −0.0733053
\(273\) 0 0
\(274\) −6.96256 −0.420624
\(275\) 20.8928 36.1874i 1.25988 2.18218i
\(276\) 0 0
\(277\) 8.15415 + 14.1234i 0.489935 + 0.848593i 0.999933 0.0115828i \(-0.00368702\pi\)
−0.509997 + 0.860176i \(0.670354\pi\)
\(278\) 4.41025 7.63878i 0.264509 0.458144i
\(279\) 0 0
\(280\) −25.5016 + 11.1992i −1.52401 + 0.669282i
\(281\) 22.5518 1.34533 0.672665 0.739947i \(-0.265150\pi\)
0.672665 + 0.739947i \(0.265150\pi\)
\(282\) 0 0
\(283\) −12.4284 21.5267i −0.738794 1.27963i −0.953039 0.302849i \(-0.902062\pi\)
0.214245 0.976780i \(-0.431271\pi\)
\(284\) 0.270299 + 0.468171i 0.0160393 + 0.0277809i
\(285\) 0 0
\(286\) −7.01866 −0.415022
\(287\) 0.568993 + 0.417828i 0.0335866 + 0.0246636i
\(288\) 0 0
\(289\) 8.31842 14.4079i 0.489319 0.847525i
\(290\) 12.5043 + 21.6582i 0.734280 + 1.27181i
\(291\) 0 0
\(292\) 1.52794 2.64647i 0.0894158 0.154873i
\(293\) 24.2328 1.41569 0.707847 0.706365i \(-0.249666\pi\)
0.707847 + 0.706365i \(0.249666\pi\)
\(294\) 0 0
\(295\) 14.6513 0.853033
\(296\) 0.414924 0.718669i 0.0241170 0.0417718i
\(297\) 0 0
\(298\) 4.68991 + 8.12316i 0.271679 + 0.470562i
\(299\) 2.35766 4.08359i 0.136347 0.236160i
\(300\) 0 0
\(301\) −25.6302 18.8210i −1.47730 1.08482i
\(302\) −22.9520 −1.32074
\(303\) 0 0
\(304\) 5.31562 + 9.20693i 0.304872 + 0.528054i
\(305\) 6.12469 + 10.6083i 0.350699 + 0.607428i
\(306\) 0 0
\(307\) −14.9020 −0.850503 −0.425252 0.905075i \(-0.639814\pi\)
−0.425252 + 0.905075i \(0.639814\pi\)
\(308\) 11.0188 4.83897i 0.627852 0.275726i
\(309\) 0 0
\(310\) −20.6567 + 35.7784i −1.17322 + 2.03208i
\(311\) −8.84894 15.3268i −0.501777 0.869104i −0.999998 0.00205350i \(-0.999346\pi\)
0.498221 0.867050i \(-0.333987\pi\)
\(312\) 0 0
\(313\) −9.33353 + 16.1661i −0.527562 + 0.913765i 0.471922 + 0.881640i \(0.343560\pi\)
−0.999484 + 0.0321240i \(0.989773\pi\)
\(314\) 5.15724 0.291040
\(315\) 0 0
\(316\) −6.16020 −0.346539
\(317\) −0.00139638 + 0.00241860i −7.84284e−5 + 0.000135842i −0.866065 0.499932i \(-0.833358\pi\)
0.865986 + 0.500068i \(0.166692\pi\)
\(318\) 0 0
\(319\) −20.1999 34.9873i −1.13098 1.95891i
\(320\) −14.3689 + 24.8876i −0.803243 + 1.39126i
\(321\) 0 0
\(322\) 1.54041 13.9731i 0.0858439 0.778693i
\(323\) 3.19347 0.177690
\(324\) 0 0
\(325\) −3.35428 5.80979i −0.186062 0.322269i
\(326\) −5.13530 8.89460i −0.284418 0.492626i
\(327\) 0 0
\(328\) 0.820866 0.0453248
\(329\) 21.2012 9.31066i 1.16886 0.513313i
\(330\) 0 0
\(331\) −16.7977 + 29.0944i −0.923283 + 1.59917i −0.128984 + 0.991647i \(0.541172\pi\)
−0.794299 + 0.607527i \(0.792162\pi\)
\(332\) 0.0426989 + 0.0739566i 0.00234340 + 0.00405889i
\(333\) 0 0
\(334\) 7.87609 13.6418i 0.430960 0.746445i
\(335\) 4.70544 0.257086
\(336\) 0 0
\(337\) 4.38767 0.239012 0.119506 0.992833i \(-0.461869\pi\)
0.119506 + 0.992833i \(0.461869\pi\)
\(338\) −0.563413 + 0.975859i −0.0306456 + 0.0530797i
\(339\) 0 0
\(340\) 0.752925 + 1.30410i 0.0408331 + 0.0707250i
\(341\) 33.3695 57.7976i 1.80706 3.12992i
\(342\) 0 0
\(343\) 5.99072 17.5246i 0.323469 0.946239i
\(344\) −36.9758 −1.99360
\(345\) 0 0
\(346\) 7.47539 + 12.9478i 0.401879 + 0.696076i
\(347\) −0.0356658 0.0617749i −0.00191464 0.00331625i 0.865066 0.501657i \(-0.167276\pi\)
−0.866981 + 0.498341i \(0.833943\pi\)
\(348\) 0 0
\(349\) 3.77491 0.202066 0.101033 0.994883i \(-0.467785\pi\)
0.101033 + 0.994883i \(0.467785\pi\)
\(350\) −16.1206 11.8379i −0.861684 0.632760i
\(351\) 0 0
\(352\) 12.1224 20.9967i 0.646128 1.11913i
\(353\) −3.32688 5.76232i −0.177072 0.306698i 0.763804 0.645448i \(-0.223329\pi\)
−0.940876 + 0.338750i \(0.889996\pi\)
\(354\) 0 0
\(355\) −1.26653 + 2.19369i −0.0672204 + 0.116429i
\(356\) −7.21209 −0.382240
\(357\) 0 0
\(358\) 22.1971 1.17315
\(359\) 9.40817 16.2954i 0.496544 0.860040i −0.503448 0.864026i \(-0.667935\pi\)
0.999992 + 0.00398593i \(0.00126876\pi\)
\(360\) 0 0
\(361\) −4.54098 7.86522i −0.238999 0.413959i
\(362\) 2.87725 4.98354i 0.151225 0.261929i
\(363\) 0 0
\(364\) 0.211714 1.92047i 0.0110968 0.100660i
\(365\) 14.3188 0.749481
\(366\) 0 0
\(367\) −11.4969 19.9132i −0.600133 1.03946i −0.992800 0.119781i \(-0.961781\pi\)
0.392667 0.919681i \(-0.371552\pi\)
\(368\) −4.72990 8.19243i −0.246563 0.427060i
\(369\) 0 0
\(370\) 1.04003 0.0540685
\(371\) −1.05467 + 9.56691i −0.0547555 + 0.496689i
\(372\) 0 0
\(373\) 9.01928 15.6219i 0.467001 0.808869i −0.532289 0.846563i \(-0.678668\pi\)
0.999289 + 0.0376939i \(0.0120012\pi\)
\(374\) 2.11482 + 3.66298i 0.109355 + 0.189408i
\(375\) 0 0
\(376\) 13.4628 23.3183i 0.694293 1.20255i
\(377\) −6.48608 −0.334050
\(378\) 0 0
\(379\) −9.99684 −0.513503 −0.256752 0.966477i \(-0.582652\pi\)
−0.256752 + 0.966477i \(0.582652\pi\)
\(380\) 6.62089 11.4677i 0.339644 0.588281i
\(381\) 0 0
\(382\) −10.0707 17.4430i −0.515263 0.892461i
\(383\) 5.07629 8.79240i 0.259386 0.449271i −0.706691 0.707522i \(-0.749813\pi\)
0.966078 + 0.258252i \(0.0831463\pi\)
\(384\) 0 0
\(385\) 45.4512 + 33.3761i 2.31641 + 1.70101i
\(386\) −0.693286 −0.0352873
\(387\) 0 0
\(388\) 3.96042 + 6.85964i 0.201060 + 0.348246i
\(389\) 15.6584 + 27.1212i 0.793914 + 1.37510i 0.923526 + 0.383535i \(0.125294\pi\)
−0.129612 + 0.991565i \(0.541373\pi\)
\(390\) 0 0
\(391\) −2.84159 −0.143705
\(392\) −6.44656 20.5482i −0.325600 1.03784i
\(393\) 0 0
\(394\) −1.13319 + 1.96273i −0.0570890 + 0.0988811i
\(395\) −14.4323 24.9975i −0.726169 1.25776i
\(396\) 0 0
\(397\) −11.4615 + 19.8519i −0.575235 + 0.996336i 0.420781 + 0.907162i \(0.361756\pi\)
−0.996016 + 0.0891738i \(0.971577\pi\)
\(398\) −20.3297 −1.01904
\(399\) 0 0
\(400\) −13.4586 −0.672930
\(401\) 9.16131 15.8679i 0.457494 0.792403i −0.541334 0.840808i \(-0.682080\pi\)
0.998828 + 0.0484048i \(0.0154137\pi\)
\(402\) 0 0
\(403\) −5.35737 9.27924i −0.266870 0.462232i
\(404\) 1.63221 2.82706i 0.0812053 0.140652i
\(405\) 0 0
\(406\) −17.7049 + 7.77524i −0.878679 + 0.385879i
\(407\) −1.68010 −0.0832794
\(408\) 0 0
\(409\) −2.46042 4.26157i −0.121660 0.210721i 0.798762 0.601647i \(-0.205488\pi\)
−0.920422 + 0.390925i \(0.872155\pi\)
\(410\) 0.514386 + 0.890943i 0.0254037 + 0.0440006i
\(411\) 0 0
\(412\) −8.56398 −0.421917
\(413\) −1.24135 + 11.2603i −0.0610828 + 0.554084i
\(414\) 0 0
\(415\) −0.200073 + 0.346536i −0.00982117 + 0.0170108i
\(416\) −1.94622 3.37096i −0.0954214 0.165275i
\(417\) 0 0
\(418\) 18.5968 32.2106i 0.909598 1.57547i
\(419\) 19.6349 0.959230 0.479615 0.877479i \(-0.340776\pi\)
0.479615 + 0.877479i \(0.340776\pi\)
\(420\) 0 0
\(421\) −4.93028 −0.240287 −0.120144 0.992757i \(-0.538335\pi\)
−0.120144 + 0.992757i \(0.538335\pi\)
\(422\) −10.6815 + 18.5008i −0.519965 + 0.900606i
\(423\) 0 0
\(424\) 5.59599 + 9.69254i 0.271765 + 0.470711i
\(425\) −2.02138 + 3.50114i −0.0980515 + 0.169830i
\(426\) 0 0
\(427\) −8.67194 + 3.80835i −0.419665 + 0.184299i
\(428\) −2.56328 −0.123901
\(429\) 0 0
\(430\) −23.1704 40.1324i −1.11738 1.93536i
\(431\) −16.5274 28.6262i −0.796094 1.37888i −0.922142 0.386852i \(-0.873562\pi\)
0.126047 0.992024i \(-0.459771\pi\)
\(432\) 0 0
\(433\) 6.62761 0.318503 0.159251 0.987238i \(-0.449092\pi\)
0.159251 + 0.987238i \(0.449092\pi\)
\(434\) −25.7475 18.9071i −1.23592 0.907571i
\(435\) 0 0
\(436\) −4.53616 + 7.85685i −0.217242 + 0.376275i
\(437\) 12.4938 + 21.6399i 0.597661 + 1.03518i
\(438\) 0 0
\(439\) 10.7822 18.6753i 0.514607 0.891325i −0.485250 0.874376i \(-0.661271\pi\)
0.999856 0.0169492i \(-0.00539535\pi\)
\(440\) 65.5708 3.12597
\(441\) 0 0
\(442\) 0.679056 0.0322994
\(443\) −6.57363 + 11.3859i −0.312323 + 0.540958i −0.978865 0.204509i \(-0.934440\pi\)
0.666542 + 0.745467i \(0.267774\pi\)
\(444\) 0 0
\(445\) −16.8967 29.2660i −0.800982 1.38734i
\(446\) 10.0131 17.3432i 0.474134 0.821225i
\(447\) 0 0
\(448\) −17.9100 13.1519i −0.846169 0.621367i
\(449\) −18.5922 −0.877422 −0.438711 0.898628i \(-0.644565\pi\)
−0.438711 + 0.898628i \(0.644565\pi\)
\(450\) 0 0
\(451\) −0.830957 1.43926i −0.0391282 0.0677721i
\(452\) −1.94074 3.36146i −0.0912847 0.158110i
\(453\) 0 0
\(454\) −25.4696 −1.19535
\(455\) 8.28908 3.64021i 0.388598 0.170656i
\(456\) 0 0
\(457\) 2.90763 5.03617i 0.136013 0.235582i −0.789971 0.613145i \(-0.789904\pi\)
0.925984 + 0.377562i \(0.123238\pi\)
\(458\) −8.15314 14.1217i −0.380971 0.659862i
\(459\) 0 0
\(460\) −5.89134 + 10.2041i −0.274685 + 0.475769i
\(461\) −3.87560 −0.180505 −0.0902523 0.995919i \(-0.528767\pi\)
−0.0902523 + 0.995919i \(0.528767\pi\)
\(462\) 0 0
\(463\) −12.3411 −0.573540 −0.286770 0.957999i \(-0.592582\pi\)
−0.286770 + 0.957999i \(0.592582\pi\)
\(464\) −6.50613 + 11.2690i −0.302040 + 0.523148i
\(465\) 0 0
\(466\) 12.8727 + 22.2962i 0.596316 + 1.03285i
\(467\) −15.0283 + 26.0298i −0.695427 + 1.20451i 0.274610 + 0.961556i \(0.411451\pi\)
−0.970037 + 0.242959i \(0.921882\pi\)
\(468\) 0 0
\(469\) −0.398674 + 3.61639i −0.0184091 + 0.166989i
\(470\) 33.7453 1.55656
\(471\) 0 0
\(472\) 6.58653 + 11.4082i 0.303169 + 0.525105i
\(473\) 37.4303 + 64.8312i 1.72105 + 2.98094i
\(474\) 0 0
\(475\) 35.5503 1.63116
\(476\) −1.06607 + 0.468171i −0.0488631 + 0.0214586i
\(477\) 0 0
\(478\) 3.02558 5.24046i 0.138387 0.239693i
\(479\) −5.86167 10.1527i −0.267827 0.463890i 0.700474 0.713678i \(-0.252972\pi\)
−0.968300 + 0.249789i \(0.919639\pi\)
\(480\) 0 0
\(481\) −0.134867 + 0.233597i −0.00614943 + 0.0106511i
\(482\) 6.69658 0.305021
\(483\) 0 0
\(484\) −20.2990 −0.922681
\(485\) −18.5572 + 32.1420i −0.842638 + 1.45949i
\(486\) 0 0
\(487\) −10.7409 18.6038i −0.486718 0.843020i 0.513166 0.858290i \(-0.328473\pi\)
−0.999883 + 0.0152696i \(0.995139\pi\)
\(488\) −5.50673 + 9.53793i −0.249278 + 0.431762i
\(489\) 0 0
\(490\) 18.2627 19.8732i 0.825027 0.897779i
\(491\) −4.33221 −0.195510 −0.0977549 0.995211i \(-0.531166\pi\)
−0.0977549 + 0.995211i \(0.531166\pi\)
\(492\) 0 0
\(493\) 1.95435 + 3.38503i 0.0880194 + 0.152454i
\(494\) −2.98566 5.17131i −0.134331 0.232668i
\(495\) 0 0
\(496\) −21.4957 −0.965187
\(497\) −1.57866 1.15926i −0.0708127 0.0519999i
\(498\) 0 0
\(499\) −18.9118 + 32.7563i −0.846610 + 1.46637i 0.0376058 + 0.999293i \(0.488027\pi\)
−0.884216 + 0.467079i \(0.845306\pi\)
\(500\) 2.13468 + 3.69738i 0.0954660 + 0.165352i
\(501\) 0 0
\(502\) 4.80076 8.31516i 0.214268 0.371124i
\(503\) 37.2173 1.65944 0.829718 0.558182i \(-0.188501\pi\)
0.829718 + 0.558182i \(0.188501\pi\)
\(504\) 0 0
\(505\) 15.2959 0.680660
\(506\) −16.5476 + 28.6613i −0.735632 + 1.27415i
\(507\) 0 0
\(508\) −2.34536 4.06228i −0.104059 0.180235i
\(509\) 4.22616 7.31993i 0.187321 0.324450i −0.757035 0.653374i \(-0.773353\pi\)
0.944356 + 0.328924i \(0.106686\pi\)
\(510\) 0 0
\(511\) −1.21318 + 11.0048i −0.0536678 + 0.486823i
\(512\) −20.1531 −0.890651
\(513\) 0 0
\(514\) −9.39323 16.2696i −0.414318 0.717619i
\(515\) −20.0640 34.7518i −0.884124 1.53135i
\(516\) 0 0
\(517\) −54.5133 −2.39749
\(518\) −0.0881176 + 0.799318i −0.00387167 + 0.0351200i
\(519\) 0 0
\(520\) 5.26360 9.11683i 0.230824 0.399799i
\(521\) 13.7821 + 23.8712i 0.603803 + 1.04582i 0.992239 + 0.124342i \(0.0396820\pi\)
−0.388436 + 0.921476i \(0.626985\pi\)
\(522\) 0 0
\(523\) 8.75484 15.1638i 0.382823 0.663068i −0.608642 0.793445i \(-0.708285\pi\)
0.991465 + 0.130377i \(0.0416187\pi\)
\(524\) −12.8950 −0.563321
\(525\) 0 0
\(526\) −31.3085 −1.36512
\(527\) −3.22850 + 5.59193i −0.140636 + 0.243588i
\(528\) 0 0
\(529\) 0.382847 + 0.663110i 0.0166455 + 0.0288309i
\(530\) −7.01332 + 12.1474i −0.304639 + 0.527651i
\(531\) 0 0
\(532\) 8.25259 + 6.06012i 0.357795 + 0.262740i
\(533\) −0.266816 −0.0115571
\(534\) 0 0
\(535\) −6.00534 10.4016i −0.259634 0.449698i
\(536\) 2.11534 + 3.66388i 0.0913688 + 0.158255i
\(537\) 0 0
\(538\) 2.64803 0.114165
\(539\) −29.5023 + 32.1038i −1.27075 + 1.38281i
\(540\) 0 0
\(541\) 15.7752 27.3235i 0.678230 1.17473i −0.297283 0.954789i \(-0.596081\pi\)
0.975513 0.219940i \(-0.0705861\pi\)
\(542\) 3.96861 + 6.87383i 0.170466 + 0.295256i
\(543\) 0 0
\(544\) −1.17285 + 2.03143i −0.0502855 + 0.0870970i
\(545\) −42.5098 −1.82092
\(546\) 0 0
\(547\) 10.3525 0.442639 0.221319 0.975201i \(-0.428964\pi\)
0.221319 + 0.975201i \(0.428964\pi\)
\(548\) −2.25612 + 3.90772i −0.0963768 + 0.166930i
\(549\) 0 0
\(550\) 23.5426 + 40.7769i 1.00386 + 1.73873i
\(551\) 17.1857 29.7664i 0.732134 1.26809i
\(552\) 0 0
\(553\) 20.4347 8.97407i 0.868973 0.381616i
\(554\) −18.3766 −0.780747
\(555\) 0 0
\(556\) −2.85817 4.95049i −0.121213 0.209948i
\(557\) 13.9175 + 24.1058i 0.589704 + 1.02140i 0.994271 + 0.106889i \(0.0340889\pi\)
−0.404567 + 0.914508i \(0.632578\pi\)
\(558\) 0 0
\(559\) 12.0187 0.508335
\(560\) 1.99018 18.0530i 0.0841003 0.762876i
\(561\) 0 0
\(562\) −12.7060 + 22.0074i −0.535970 + 0.928327i
\(563\) −13.8917 24.0611i −0.585466 1.01406i −0.994817 0.101680i \(-0.967578\pi\)
0.409351 0.912377i \(-0.365755\pi\)
\(564\) 0 0
\(565\) 9.09365 15.7507i 0.382573 0.662636i
\(566\) 28.0094 1.17732
\(567\) 0 0
\(568\) −2.27748 −0.0955611
\(569\) −19.2451 + 33.3335i −0.806797 + 1.39741i 0.108274 + 0.994121i \(0.465468\pi\)
−0.915071 + 0.403293i \(0.867866\pi\)
\(570\) 0 0
\(571\) 16.6707 + 28.8744i 0.697646 + 1.20836i 0.969281 + 0.245957i \(0.0791023\pi\)
−0.271635 + 0.962400i \(0.587564\pi\)
\(572\) −2.27430 + 3.93921i −0.0950933 + 0.164706i
\(573\) 0 0
\(574\) −0.728320 + 0.319847i −0.0303995 + 0.0133502i
\(575\) −31.6331 −1.31919
\(576\) 0 0
\(577\) 1.17754 + 2.03956i 0.0490216 + 0.0849079i 0.889495 0.456945i \(-0.151056\pi\)
−0.840473 + 0.541853i \(0.817723\pi\)
\(578\) 9.37340 + 16.2352i 0.389882 + 0.675296i
\(579\) 0 0
\(580\) 16.2075 0.672978
\(581\) −0.249380 0.183127i −0.0103460 0.00759739i
\(582\) 0 0
\(583\) 11.3296 19.6234i 0.469222 0.812717i
\(584\) 6.43705 + 11.1493i 0.266367 + 0.461361i
\(585\) 0 0
\(586\) −13.6531 + 23.6478i −0.564003 + 0.976881i
\(587\) 20.8410 0.860202 0.430101 0.902781i \(-0.358478\pi\)
0.430101 + 0.902781i \(0.358478\pi\)
\(588\) 0 0
\(589\) 56.7800 2.33958
\(590\) −8.25474 + 14.2976i −0.339842 + 0.588624i
\(591\) 0 0
\(592\) 0.270569 + 0.468639i 0.0111203 + 0.0192609i
\(593\) −4.21249 + 7.29624i −0.172986 + 0.299621i −0.939462 0.342652i \(-0.888675\pi\)
0.766476 + 0.642272i \(0.222008\pi\)
\(594\) 0 0
\(595\) −4.39741 3.22915i −0.180276 0.132382i
\(596\) 6.07881 0.248998
\(597\) 0 0
\(598\) 2.65667 + 4.60149i 0.108639 + 0.188169i
\(599\) −11.3372 19.6366i −0.463225 0.802329i 0.535895 0.844285i \(-0.319974\pi\)
−0.999119 + 0.0419561i \(0.986641\pi\)
\(600\) 0 0
\(601\) 12.9905 0.529895 0.264948 0.964263i \(-0.414645\pi\)
0.264948 + 0.964263i \(0.414645\pi\)
\(602\) 32.8070 14.4075i 1.33711 0.587204i
\(603\) 0 0
\(604\) −7.43729 + 12.8818i −0.302619 + 0.524151i
\(605\) −47.5571 82.3713i −1.93347 3.34887i
\(606\) 0 0
\(607\) −16.1643 + 27.9974i −0.656089 + 1.13638i 0.325530 + 0.945532i \(0.394457\pi\)
−0.981620 + 0.190848i \(0.938876\pi\)
\(608\) 20.6270 0.836536
\(609\) 0 0
\(610\) −13.8029 −0.558863
\(611\) −4.37598 + 7.57942i −0.177033 + 0.306630i
\(612\) 0 0
\(613\) −15.5161 26.8747i −0.626691 1.08546i −0.988211 0.153096i \(-0.951076\pi\)
0.361521 0.932364i \(-0.382258\pi\)
\(614\) 8.39599 14.5423i 0.338834 0.586879i
\(615\) 0 0
\(616\) −5.55556 + 50.3947i −0.223840 + 2.03046i
\(617\) −27.2587 −1.09739 −0.548697 0.836022i \(-0.684876\pi\)
−0.548697 + 0.836022i \(0.684876\pi\)
\(618\) 0 0
\(619\) −0.720416 1.24780i −0.0289560 0.0501532i 0.851184 0.524867i \(-0.175885\pi\)
−0.880140 + 0.474714i \(0.842552\pi\)
\(620\) 13.3870 + 23.1870i 0.537636 + 0.931213i
\(621\) 0 0
\(622\) 19.9424 0.799618
\(623\) 23.9241 10.5064i 0.958498 0.420932i
\(624\) 0 0
\(625\) 6.76900 11.7242i 0.270760 0.468970i
\(626\) −10.5173 18.2164i −0.420354 0.728074i
\(627\) 0 0
\(628\) 1.67114 2.89449i 0.0666856 0.115503i
\(629\) 0.162550 0.00648129
\(630\) 0 0
\(631\) −19.3826 −0.771610 −0.385805 0.922580i \(-0.626076\pi\)
−0.385805 + 0.922580i \(0.626076\pi\)
\(632\) 12.9762 22.4754i 0.516164 0.894022i
\(633\) 0 0
\(634\) −0.00157347 0.00272534i −6.24906e−5 0.000108237i
\(635\) 10.9896 19.0345i 0.436108 0.755361i
\(636\) 0 0
\(637\) 2.09540 + 6.67902i 0.0830227 + 0.264632i
\(638\) 45.5236 1.80230
\(639\) 0 0
\(640\) −2.87210 4.97462i −0.113530 0.196639i
\(641\) 0.481498 + 0.833979i 0.0190180 + 0.0329402i 0.875378 0.483439i \(-0.160613\pi\)
−0.856360 + 0.516380i \(0.827279\pi\)
\(642\) 0 0
\(643\) 5.51311 0.217416 0.108708 0.994074i \(-0.465329\pi\)
0.108708 + 0.994074i \(0.465329\pi\)
\(644\) −7.34325 5.39236i −0.289365 0.212489i
\(645\) 0 0
\(646\) −1.79924 + 3.11638i −0.0707902 + 0.122612i
\(647\) −2.87275 4.97574i −0.112939 0.195617i 0.804015 0.594609i \(-0.202693\pi\)
−0.916954 + 0.398993i \(0.869360\pi\)
\(648\) 0 0
\(649\) 13.3350 23.0969i 0.523444 0.906632i
\(650\) 7.55938 0.296503
\(651\) 0 0
\(652\) −6.65610 −0.260673
\(653\) 3.17807 5.50458i 0.124368 0.215411i −0.797118 0.603824i \(-0.793643\pi\)
0.921486 + 0.388413i \(0.126976\pi\)
\(654\) 0 0
\(655\) −30.2109 52.3267i −1.18044 2.04457i
\(656\) −0.267640 + 0.463567i −0.0104496 + 0.0180992i
\(657\) 0 0
\(658\) −2.85911 + 25.9351i −0.111460 + 1.01106i
\(659\) −18.7092 −0.728806 −0.364403 0.931241i \(-0.618727\pi\)
−0.364403 + 0.931241i \(0.618727\pi\)
\(660\) 0 0
\(661\) 18.4125 + 31.8913i 0.716162 + 1.24043i 0.962510 + 0.271247i \(0.0874360\pi\)
−0.246348 + 0.969181i \(0.579231\pi\)
\(662\) −18.9280 32.7843i −0.735659 1.27420i
\(663\) 0 0
\(664\) −0.359772 −0.0139618
\(665\) −5.25696 + 47.6861i −0.203856 + 1.84919i
\(666\) 0 0
\(667\) −15.2920 + 26.4865i −0.592109 + 1.02556i
\(668\) −5.10428 8.84088i −0.197491 0.342064i
\(669\) 0 0
\(670\) −2.65111 + 4.59185i −0.102421 + 0.177399i
\(671\) 22.2977 0.860792
\(672\) 0 0
\(673\) 40.4024 1.55740 0.778699 0.627397i \(-0.215880\pi\)
0.778699 + 0.627397i \(0.215880\pi\)
\(674\) −2.47207 + 4.28175i −0.0952205 + 0.164927i
\(675\) 0 0
\(676\) 0.365133 + 0.632428i 0.0140436 + 0.0243242i
\(677\) 1.00827 1.74638i 0.0387511 0.0671189i −0.845999 0.533184i \(-0.820995\pi\)
0.884750 + 0.466065i \(0.154329\pi\)
\(678\) 0 0
\(679\) −23.1306 16.9855i −0.887670 0.651842i
\(680\) −6.34399 −0.243281
\(681\) 0 0
\(682\) 37.6016 + 65.1278i 1.43984 + 2.49387i
\(683\) 6.95073 + 12.0390i 0.265962 + 0.460660i 0.967815 0.251662i \(-0.0809770\pi\)
−0.701853 + 0.712322i \(0.747644\pi\)
\(684\) 0 0
\(685\) −21.1429 −0.807828
\(686\) 13.7263 + 15.7197i 0.524072 + 0.600180i
\(687\) 0 0
\(688\) 12.0558 20.8813i 0.459623 0.796091i
\(689\) −1.81893 3.15048i −0.0692957 0.120024i
\(690\) 0 0
\(691\) −11.9023 + 20.6154i −0.452785 + 0.784247i −0.998558 0.0536861i \(-0.982903\pi\)
0.545772 + 0.837933i \(0.316236\pi\)
\(692\) 9.68920 0.368328
\(693\) 0 0
\(694\) 0.0803782 0.00305111
\(695\) 13.3924 23.1963i 0.508003 0.879887i
\(696\) 0 0
\(697\) 0.0803953 + 0.139249i 0.00304519 + 0.00527442i
\(698\) −2.12683 + 3.68378i −0.0805018 + 0.139433i
\(699\) 0 0
\(700\) −11.8676 + 5.21177i −0.448555 + 0.196986i
\(701\) 15.6607 0.591498 0.295749 0.955266i \(-0.404431\pi\)
0.295749 + 0.955266i \(0.404431\pi\)
\(702\) 0 0
\(703\) −0.714695 1.23789i −0.0269552 0.0466878i
\(704\) 26.1558 + 45.3031i 0.985783 + 1.70743i
\(705\) 0 0
\(706\) 7.49762 0.282177
\(707\) −1.29597 + 11.7557i −0.0487398 + 0.442120i
\(708\) 0 0
\(709\) 11.8412 20.5096i 0.444707 0.770255i −0.553325 0.832965i \(-0.686641\pi\)
0.998032 + 0.0627109i \(0.0199746\pi\)
\(710\) −1.42716 2.47191i −0.0535603 0.0927691i
\(711\) 0 0
\(712\) 15.1919 26.3131i 0.569340 0.986127i
\(713\) −50.5235 −1.89212
\(714\) 0 0
\(715\) −21.3132 −0.797070
\(716\) 7.19267 12.4581i 0.268803 0.465580i
\(717\) 0 0
\(718\) 10.6014 + 18.3621i 0.395639 + 0.685267i
\(719\) −19.0793 + 33.0463i −0.711538 + 1.23242i 0.252742 + 0.967534i \(0.418668\pi\)
−0.964280 + 0.264886i \(0.914666\pi\)
\(720\) 0 0
\(721\) 28.4086 12.4758i 1.05799 0.464625i
\(722\) 10.2338 0.380862
\(723\) 0 0
\(724\) −1.86467 3.22970i −0.0692998 0.120031i
\(725\) 21.7561 + 37.6828i 0.808003 + 1.39950i
\(726\) 0 0
\(727\) −41.6980 −1.54649 −0.773246 0.634106i \(-0.781368\pi\)
−0.773246 + 0.634106i \(0.781368\pi\)
\(728\) 6.56081 + 4.81779i 0.243160 + 0.178559i
\(729\) 0 0
\(730\) −8.06740 + 13.9731i −0.298588 + 0.517169i
\(731\) −3.62139 6.27243i −0.133942 0.231994i
\(732\) 0 0
\(733\) 10.1023 17.4977i 0.373137 0.646293i −0.616909 0.787034i \(-0.711615\pi\)
0.990046 + 0.140742i \(0.0449487\pi\)
\(734\) 25.9100 0.956355
\(735\) 0 0
\(736\) −18.3542 −0.676543
\(737\) 4.28269 7.41783i 0.157755 0.273239i
\(738\) 0 0
\(739\) 7.01305 + 12.1470i 0.257979 + 0.446833i 0.965700 0.259659i \(-0.0836101\pi\)
−0.707721 + 0.706492i \(0.750277\pi\)
\(740\) 0.337007 0.583714i 0.0123886 0.0214578i
\(741\) 0 0
\(742\) −8.74174 6.41932i −0.320919 0.235661i
\(743\) −37.7853 −1.38621 −0.693103 0.720838i \(-0.743757\pi\)
−0.693103 + 0.720838i \(0.743757\pi\)
\(744\) 0 0
\(745\) 14.2416 + 24.6672i 0.521773 + 0.903737i
\(746\) 10.1632 + 17.6031i 0.372100 + 0.644495i
\(747\) 0 0
\(748\) 2.74112 0.100225
\(749\) 8.50296 3.73414i 0.310691 0.136443i
\(750\) 0 0
\(751\) 3.57055 6.18438i 0.130291 0.225671i −0.793498 0.608573i \(-0.791742\pi\)
0.923789 + 0.382902i \(0.125075\pi\)
\(752\) 8.77901 + 15.2057i 0.320138 + 0.554495i
\(753\) 0 0
\(754\) 3.65434 6.32950i 0.133083 0.230507i
\(755\) −69.6973 −2.53654
\(756\) 0 0
\(757\) −17.9270 −0.651568 −0.325784 0.945444i \(-0.605628\pi\)
−0.325784 + 0.945444i \(0.605628\pi\)
\(758\) 5.63234 9.75551i 0.204576 0.354336i
\(759\) 0 0
\(760\) 27.8931 + 48.3123i 1.01179 + 1.75247i
\(761\) 6.01264 10.4142i 0.217958 0.377514i −0.736226 0.676736i \(-0.763394\pi\)
0.954184 + 0.299222i \(0.0967271\pi\)
\(762\) 0 0
\(763\) 3.60169 32.6711i 0.130390 1.18277i
\(764\) −13.0531 −0.472245
\(765\) 0 0
\(766\) 5.72010 + 9.90750i 0.206675 + 0.357972i
\(767\) −2.14089 3.70814i −0.0773032 0.133893i
\(768\) 0 0
\(769\) −0.871602 −0.0314308 −0.0157154 0.999877i \(-0.505003\pi\)
−0.0157154 + 0.999877i \(0.505003\pi\)
\(770\) −58.1782 + 25.5494i −2.09660 + 0.920737i
\(771\) 0 0
\(772\) −0.224650 + 0.389105i −0.00808533 + 0.0140042i
\(773\) −7.11923 12.3309i −0.256061 0.443511i 0.709122 0.705086i \(-0.249091\pi\)
−0.965183 + 0.261575i \(0.915758\pi\)
\(774\) 0 0
\(775\) −35.9403 + 62.2504i −1.29101 + 2.23610i
\(776\) −33.3697 −1.19790
\(777\) 0 0
\(778\) −35.2886 −1.26516
\(779\) 0.706960 1.22449i 0.0253295 0.0438719i
\(780\) 0 0
\(781\) 2.30548 + 3.99321i 0.0824965 + 0.142888i
\(782\) 1.60099 2.77299i 0.0572512 0.0991619i
\(783\) 0 0
\(784\) 13.7060 + 3.05911i 0.489501 + 0.109254i
\(785\) 15.6608 0.558957
\(786\) 0 0
\(787\) 17.8883 + 30.9834i 0.637648 + 1.10444i 0.985948 + 0.167055i \(0.0534258\pi\)
−0.348300 + 0.937383i \(0.613241\pi\)
\(788\) 0.734387 + 1.27200i 0.0261614 + 0.0453130i
\(789\) 0 0
\(790\) 32.5254 1.15720
\(791\) 11.3348 + 8.32345i 0.403018 + 0.295948i
\(792\) 0 0
\(793\) 1.78991 3.10022i 0.0635617 0.110092i
\(794\) −12.9151 22.3696i −0.458339 0.793866i
\(795\) 0 0
\(796\) −6.58758 + 11.4100i −0.233490 + 0.404417i
\(797\) 18.8290 0.666958 0.333479 0.942758i \(-0.391777\pi\)
0.333479 + 0.942758i \(0.391777\pi\)
\(798\) 0 0
\(799\) 5.27418 0.186587
\(800\) −13.0564 + 22.6143i −0.461612 + 0.799536i
\(801\) 0 0
\(802\) 10.3232 + 17.8803i 0.364525 + 0.631375i
\(803\) 13.0324 22.5727i 0.459902 0.796573i
\(804\) 0 0
\(805\) 4.67770 42.4316i 0.164867 1.49552i
\(806\) 12.0736 0.425276
\(807\) 0 0
\(808\) 6.87631 + 11.9101i 0.241908 + 0.418997i
\(809\) 23.0269 + 39.8837i 0.809582 + 1.40224i 0.913153 + 0.407616i \(0.133640\pi\)
−0.103571 + 0.994622i \(0.533027\pi\)
\(810\) 0 0
\(811\) 45.8404 1.60968 0.804838 0.593495i \(-0.202252\pi\)
0.804838 + 0.593495i \(0.202252\pi\)
\(812\) −1.37319 + 12.4563i −0.0481897 + 0.437130i
\(813\) 0 0
\(814\) 0.946588 1.63954i 0.0331779 0.0574658i
\(815\) −15.5941 27.0098i −0.546238 0.946112i
\(816\) 0 0
\(817\) −31.8449 + 55.1570i −1.11411 + 1.92970i
\(818\) 5.54493 0.193874
\(819\) 0 0
\(820\) 0.666720 0.0232829
\(821\) −13.0337 + 22.5751i −0.454880 + 0.787876i −0.998681 0.0513383i \(-0.983651\pi\)
0.543801 + 0.839214i \(0.316985\pi\)
\(822\) 0 0
\(823\) 12.5040 + 21.6575i 0.435861 + 0.754934i 0.997365 0.0725401i \(-0.0231105\pi\)
−0.561504 + 0.827474i \(0.689777\pi\)
\(824\) 18.0396 31.2455i 0.628439 1.08849i
\(825\) 0 0
\(826\) −10.2891 7.55559i −0.358004 0.262893i
\(827\) 32.1098 1.11657 0.558284 0.829650i \(-0.311460\pi\)
0.558284 + 0.829650i \(0.311460\pi\)
\(828\) 0 0
\(829\) −5.93772 10.2844i −0.206225 0.357193i 0.744297 0.667849i \(-0.232785\pi\)
−0.950522 + 0.310656i \(0.899451\pi\)
\(830\) −0.225447 0.390485i −0.00782537 0.0135539i
\(831\) 0 0
\(832\) 8.39847 0.291165
\(833\) 2.85435 3.10605i 0.0988973 0.107618i
\(834\) 0 0
\(835\) 23.9170 41.4254i 0.827680 1.43358i
\(836\) −12.0521 20.8748i −0.416830 0.721970i
\(837\) 0 0
\(838\) −11.0626 + 19.1609i −0.382150 + 0.661904i
\(839\) 11.7957 0.407232 0.203616 0.979051i \(-0.434731\pi\)
0.203616 + 0.979051i \(0.434731\pi\)
\(840\) 0 0
\(841\) 13.0693 0.450664
\(842\) 2.77778 4.81126i 0.0957287 0.165807i
\(843\) 0 0
\(844\) 6.92236 + 11.9899i 0.238278 + 0.412709i
\(845\) −1.71089 + 2.96335i −0.0588564 + 0.101942i
\(846\) 0 0
\(847\) 67.3361 29.5712i 2.31370 1.01608i
\(848\) −7.29821 −0.250621
\(849\) 0 0
\(850\) −2.27775 3.94517i −0.0781261 0.135318i
\(851\) 0.635944 + 1.10149i 0.0217999 + 0.0377585i
\(852\) 0 0
\(853\) 30.7053 1.05133 0.525665 0.850692i \(-0.323817\pi\)
0.525665 + 0.850692i \(0.323817\pi\)
\(854\) 1.16947 10.6083i 0.0400183 0.363008i
\(855\) 0 0
\(856\) 5.39942 9.35207i 0.184548 0.319647i
\(857\) 18.3991 + 31.8682i 0.628502 + 1.08860i 0.987853 + 0.155394i \(0.0496648\pi\)
−0.359351 + 0.933203i \(0.617002\pi\)
\(858\) 0 0
\(859\) 2.91404 5.04726i 0.0994256 0.172210i −0.812021 0.583628i \(-0.801633\pi\)
0.911447 + 0.411417i \(0.134966\pi\)
\(860\) −30.0323 −1.02409
\(861\) 0 0
\(862\) 37.2469 1.26863
\(863\) 20.5440 35.5833i 0.699327 1.21127i −0.269373 0.963036i \(-0.586816\pi\)
0.968700 0.248234i \(-0.0798503\pi\)
\(864\) 0 0
\(865\) 22.7002 + 39.3178i 0.771829 + 1.33685i
\(866\) −3.73408 + 6.46762i −0.126889 + 0.219779i
\(867\) 0 0
\(868\) −18.9547 + 8.32410i −0.643364 + 0.282538i
\(869\) −52.5427 −1.78239
\(870\) 0 0
\(871\) −0.687573 1.19091i −0.0232975 0.0403525i
\(872\) −19.1104 33.1001i −0.647158 1.12091i
\(873\) 0 0
\(874\) −28.1567 −0.952415
\(875\) −12.4675 9.15524i −0.421478 0.309504i
\(876\) 0 0
\(877\) 5.78069 10.0125i 0.195200 0.338096i −0.751766 0.659430i \(-0.770798\pi\)
0.946966 + 0.321334i \(0.104131\pi\)
\(878\) 12.1497 + 21.0438i 0.410031 + 0.710195i
\(879\) 0 0
\(880\) −21.3791 + 37.0297i −0.720690 + 1.24827i
\(881\) 18.8516 0.635125 0.317563 0.948237i \(-0.397136\pi\)
0.317563 + 0.948237i \(0.397136\pi\)
\(882\) 0 0
\(883\) −0.0238069 −0.000801165 −0.000400582 1.00000i \(-0.500128\pi\)
−0.000400582 1.00000i \(0.500128\pi\)
\(884\) 0.220039 0.381119i 0.00740072 0.0128184i
\(885\) 0 0
\(886\) −7.40733 12.8299i −0.248854 0.431028i
\(887\) 7.59392 13.1530i 0.254979 0.441636i −0.709911 0.704291i \(-0.751265\pi\)
0.964890 + 0.262655i \(0.0845982\pi\)
\(888\) 0 0
\(889\) 13.6979 + 10.0588i 0.459414 + 0.337361i
\(890\) 38.0793 1.27642
\(891\) 0 0
\(892\) −6.48923 11.2397i −0.217275 0.376332i
\(893\) −23.1894 40.1652i −0.776003 1.34408i
\(894\) 0 0
\(895\) 67.4048 2.25310
\(896\) 4.06660 1.78588i 0.135856 0.0596621i
\(897\) 0 0
\(898\) 10.4751 18.1434i 0.349559 0.605453i
\(899\) 34.7484 + 60.1859i 1.15892 + 2.00731i
\(900\) 0 0
\(901\) −1.09614 + 1.89857i −0.0365176 + 0.0632504i
\(902\) 1.87269 0.0623536
\(903\) 0 0
\(904\) 16.3523 0.543868
\(905\) 8.73721 15.1333i 0.290435 0.503048i
\(906\) 0 0
\(907\) −4.31162 7.46794i −0.143165 0.247969i 0.785522 0.618834i \(-0.212395\pi\)
−0.928687 + 0.370865i \(0.879061\pi\)
\(908\) −8.25309 + 14.2948i −0.273888 + 0.474389i
\(909\) 0 0
\(910\) −1.11783 + 10.1399i −0.0370558 + 0.336135i
\(911\) 10.5379 0.349135 0.174568 0.984645i \(-0.444147\pi\)
0.174568 + 0.984645i \(0.444147\pi\)
\(912\) 0 0
\(913\) 0.364194 + 0.630803i 0.0120531 + 0.0208765i
\(914\) 3.27640 + 5.67488i 0.108374 + 0.187708i
\(915\) 0 0
\(916\) −10.5677 −0.349166
\(917\) 42.7755 18.7852i 1.41257 0.620343i
\(918\) 0 0
\(919\) −1.41911 + 2.45797i −0.0468122 + 0.0810811i −0.888482 0.458911i \(-0.848240\pi\)
0.841670 + 0.539992i \(0.181573\pi\)
\(920\) −24.8196 42.9888i −0.818278 1.41730i
\(921\) 0 0
\(922\) 2.18356 3.78204i 0.0719117 0.124555i
\(923\) 0.740276 0.0243665
\(924\) 0 0
\(925\) 1.80953 0.0594971
\(926\) 6.95314 12.0432i 0.228494 0.395764i
\(927\) 0 0
\(928\) 12.6234 + 21.8643i 0.414382 + 0.717731i
\(929\) 28.6027 49.5413i 0.938425 1.62540i 0.170014 0.985442i \(-0.445619\pi\)
0.768410 0.639957i \(-0.221048\pi\)
\(930\) 0 0
\(931\) −36.2039 8.08051i −1.18653 0.264828i
\(932\) 16.6849 0.546532
\(933\) 0 0
\(934\) −16.9343 29.3310i −0.554106 0.959740i
\(935\) 6.42198 + 11.1232i 0.210021 + 0.363767i
\(936\) 0 0
\(937\) −3.71475 −0.121355 −0.0606777 0.998157i \(-0.519326\pi\)
−0.0606777 + 0.998157i \(0.519326\pi\)
\(938\) −3.30447 2.42657i −0.107895 0.0792302i
\(939\) 0 0
\(940\) 10.9347 18.9395i 0.356651 0.617738i
\(941\) 20.8884 + 36.1797i 0.680941 + 1.17942i 0.974694 + 0.223543i \(0.0717625\pi\)
−0.293753 + 0.955881i \(0.594904\pi\)
\(942\) 0 0
\(943\) −0.629061 + 1.08957i −0.0204851 + 0.0354812i
\(944\) −8.59005 −0.279582
\(945\) 0 0
\(946\) −84.3548 −2.74261
\(947\) 5.90368 10.2255i 0.191844 0.332283i −0.754018 0.656854i \(-0.771887\pi\)
0.945861 + 0.324571i \(0.105220\pi\)
\(948\) 0 0
\(949\) −2.09231 3.62398i −0.0679191 0.117639i
\(950\) −20.0295 + 34.6921i −0.649842 + 1.12556i
\(951\) 0 0
\(952\) 0.537502 4.87570i 0.0174205 0.158022i
\(953\) −17.1436 −0.555334 −0.277667 0.960677i \(-0.589561\pi\)
−0.277667 + 0.960677i \(0.589561\pi\)
\(954\) 0 0
\(955\) −30.5813 52.9683i −0.989587 1.71401i
\(956\) −1.96080 3.39620i −0.0634168 0.109841i
\(957\) 0 0
\(958\) 13.2102 0.426801
\(959\) 1.79135 16.2494i 0.0578458 0.524722i
\(960\) 0 0
\(961\) −41.9029 + 72.5779i −1.35171 + 2.34122i
\(962\) −0.151972 0.263223i −0.00489977 0.00848666i
\(963\) 0 0
\(964\) 2.16994 3.75844i 0.0698889 0.121051i
\(965\) −2.10527 −0.0677710
\(966\) 0 0
\(967\) 14.7591 0.474622 0.237311 0.971434i \(-0.423734\pi\)
0.237311 + 0.971434i \(0.423734\pi\)
\(968\) 42.7587 74.0603i 1.37432 2.38039i
\(969\) 0 0
\(970\) −20.9107 36.2184i −0.671402 1.16290i
\(971\) −15.3435 + 26.5756i −0.492395 + 0.852853i −0.999962 0.00875959i \(-0.997212\pi\)
0.507567 + 0.861612i \(0.330545\pi\)
\(972\) 0 0
\(973\) 16.6929 + 12.2581i 0.535151 + 0.392977i
\(974\) 24.2063 0.775620
\(975\) 0 0
\(976\) −3.59089 6.21961i −0.114942 0.199085i
\(977\) −18.0720 31.3016i −0.578175 1.00143i −0.995689 0.0927576i \(-0.970432\pi\)
0.417514 0.908671i \(-0.362902\pi\)
\(978\) 0 0
\(979\) −61.5146 −1.96602
\(980\) −5.23599 16.6896i −0.167258 0.533129i
\(981\) 0 0
\(982\) 2.44082 4.22763i 0.0778897 0.134909i
\(983\) 23.0569 + 39.9357i 0.735401 + 1.27375i 0.954547 + 0.298059i \(0.0963393\pi\)
−0.219147 + 0.975692i \(0.570327\pi\)
\(984\) 0 0
\(985\) −3.44109 + 5.96014i −0.109642 + 0.189906i
\(986\) −4.40442 −0.140265
\(987\) 0 0
\(988\) −3.86985 −0.123116
\(989\) 28.3359 49.0793i 0.901031 1.56063i
\(990\) 0 0
\(991\) 14.1119 + 24.4425i 0.448278 + 0.776440i 0.998274 0.0587271i \(-0.0187042\pi\)
−0.549996 + 0.835167i \(0.685371\pi\)
\(992\) −20.8533 + 36.1189i −0.662092 + 1.14678i
\(993\) 0 0
\(994\) 2.02071 0.887412i 0.0640931 0.0281470i
\(995\) −61.7344 −1.95711
\(996\) 0 0
\(997\) 3.18006 + 5.50802i 0.100713 + 0.174441i 0.911979 0.410237i \(-0.134554\pi\)
−0.811265 + 0.584678i \(0.801221\pi\)
\(998\) −21.3103 36.9106i −0.674567 1.16838i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.j.j.352.4 yes 20
3.2 odd 2 inner 819.2.j.j.352.7 yes 20
7.2 even 3 5733.2.a.by.1.7 10
7.4 even 3 inner 819.2.j.j.235.4 20
7.5 odd 6 5733.2.a.bz.1.7 10
21.2 odd 6 5733.2.a.by.1.4 10
21.5 even 6 5733.2.a.bz.1.4 10
21.11 odd 6 inner 819.2.j.j.235.7 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.j.j.235.4 20 7.4 even 3 inner
819.2.j.j.235.7 yes 20 21.11 odd 6 inner
819.2.j.j.352.4 yes 20 1.1 even 1 trivial
819.2.j.j.352.7 yes 20 3.2 odd 2 inner
5733.2.a.by.1.4 10 21.2 odd 6
5733.2.a.by.1.7 10 7.2 even 3
5733.2.a.bz.1.4 10 21.5 even 6
5733.2.a.bz.1.7 10 7.5 odd 6