Properties

Label 575.4.a.o.1.8
Level $575$
Weight $4$
Character 575.1
Self dual yes
Analytic conductor $33.926$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(1,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 3 x^{12} - 85 x^{11} + 222 x^{10} + 2763 x^{9} - 6071 x^{8} - 43370 x^{7} + 78313 x^{6} + \cdots - 1836192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.74638\) of defining polynomial
Character \(\chi\) \(=\) 575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.74638 q^{2} +7.96785 q^{3} -4.95017 q^{4} +13.9149 q^{6} -27.5580 q^{7} -22.6159 q^{8} +36.4866 q^{9} +60.9612 q^{11} -39.4422 q^{12} +70.6157 q^{13} -48.1266 q^{14} +0.105454 q^{16} -9.53767 q^{17} +63.7193 q^{18} +137.393 q^{19} -219.578 q^{21} +106.461 q^{22} -23.0000 q^{23} -180.200 q^{24} +123.322 q^{26} +75.5876 q^{27} +136.417 q^{28} -193.189 q^{29} +170.657 q^{31} +181.111 q^{32} +485.729 q^{33} -16.6564 q^{34} -180.615 q^{36} +216.022 q^{37} +239.939 q^{38} +562.655 q^{39} +94.8947 q^{41} -383.466 q^{42} +495.951 q^{43} -301.768 q^{44} -40.1667 q^{46} -36.6486 q^{47} +0.840243 q^{48} +416.442 q^{49} -75.9947 q^{51} -349.559 q^{52} -691.376 q^{53} +132.004 q^{54} +623.248 q^{56} +1094.72 q^{57} -337.381 q^{58} +872.536 q^{59} -382.989 q^{61} +298.032 q^{62} -1005.50 q^{63} +315.445 q^{64} +848.267 q^{66} -325.119 q^{67} +47.2130 q^{68} -183.260 q^{69} +145.392 q^{71} -825.176 q^{72} -65.3155 q^{73} +377.256 q^{74} -680.116 q^{76} -1679.97 q^{77} +982.608 q^{78} +699.567 q^{79} -382.867 q^{81} +165.722 q^{82} +544.415 q^{83} +1086.95 q^{84} +866.117 q^{86} -1539.30 q^{87} -1378.69 q^{88} -837.249 q^{89} -1946.03 q^{91} +113.854 q^{92} +1359.77 q^{93} -64.0023 q^{94} +1443.07 q^{96} -253.821 q^{97} +727.266 q^{98} +2224.26 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 3 q^{2} + 3 q^{3} + 75 q^{4} + 62 q^{6} + q^{7} - 78 q^{8} + 108 q^{9} + 118 q^{11} - 27 q^{12} + 83 q^{13} + 40 q^{14} + 411 q^{16} + 71 q^{17} - 217 q^{18} + 360 q^{19} + 434 q^{21} + 169 q^{22}+ \cdots + 4599 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74638 0.617438 0.308719 0.951153i \(-0.400100\pi\)
0.308719 + 0.951153i \(0.400100\pi\)
\(3\) 7.96785 1.53341 0.766706 0.641998i \(-0.221894\pi\)
0.766706 + 0.641998i \(0.221894\pi\)
\(4\) −4.95017 −0.618771
\(5\) 0 0
\(6\) 13.9149 0.946787
\(7\) −27.5580 −1.48799 −0.743996 0.668185i \(-0.767072\pi\)
−0.743996 + 0.668185i \(0.767072\pi\)
\(8\) −22.6159 −0.999490
\(9\) 36.4866 1.35135
\(10\) 0 0
\(11\) 60.9612 1.67095 0.835477 0.549526i \(-0.185192\pi\)
0.835477 + 0.549526i \(0.185192\pi\)
\(12\) −39.4422 −0.948831
\(13\) 70.6157 1.50656 0.753280 0.657700i \(-0.228471\pi\)
0.753280 + 0.657700i \(0.228471\pi\)
\(14\) −48.1266 −0.918742
\(15\) 0 0
\(16\) 0.105454 0.00164772
\(17\) −9.53767 −0.136072 −0.0680360 0.997683i \(-0.521673\pi\)
−0.0680360 + 0.997683i \(0.521673\pi\)
\(18\) 63.7193 0.834377
\(19\) 137.393 1.65895 0.829474 0.558545i \(-0.188640\pi\)
0.829474 + 0.558545i \(0.188640\pi\)
\(20\) 0 0
\(21\) −219.578 −2.28170
\(22\) 106.461 1.03171
\(23\) −23.0000 −0.208514
\(24\) −180.200 −1.53263
\(25\) 0 0
\(26\) 123.322 0.930207
\(27\) 75.5876 0.538772
\(28\) 136.417 0.920725
\(29\) −193.189 −1.23704 −0.618522 0.785768i \(-0.712268\pi\)
−0.618522 + 0.785768i \(0.712268\pi\)
\(30\) 0 0
\(31\) 170.657 0.988742 0.494371 0.869251i \(-0.335399\pi\)
0.494371 + 0.869251i \(0.335399\pi\)
\(32\) 181.111 1.00051
\(33\) 485.729 2.56226
\(34\) −16.6564 −0.0840160
\(35\) 0 0
\(36\) −180.615 −0.836179
\(37\) 216.022 0.959832 0.479916 0.877314i \(-0.340667\pi\)
0.479916 + 0.877314i \(0.340667\pi\)
\(38\) 239.939 1.02430
\(39\) 562.655 2.31018
\(40\) 0 0
\(41\) 94.8947 0.361465 0.180733 0.983532i \(-0.442153\pi\)
0.180733 + 0.983532i \(0.442153\pi\)
\(42\) −383.466 −1.40881
\(43\) 495.951 1.75888 0.879439 0.476011i \(-0.157918\pi\)
0.879439 + 0.476011i \(0.157918\pi\)
\(44\) −301.768 −1.03394
\(45\) 0 0
\(46\) −40.1667 −0.128745
\(47\) −36.6486 −0.113739 −0.0568697 0.998382i \(-0.518112\pi\)
−0.0568697 + 0.998382i \(0.518112\pi\)
\(48\) 0.840243 0.00252664
\(49\) 416.442 1.21412
\(50\) 0 0
\(51\) −75.9947 −0.208655
\(52\) −349.559 −0.932215
\(53\) −691.376 −1.79184 −0.895922 0.444211i \(-0.853484\pi\)
−0.895922 + 0.444211i \(0.853484\pi\)
\(54\) 132.004 0.332658
\(55\) 0 0
\(56\) 623.248 1.48723
\(57\) 1094.72 2.54385
\(58\) −337.381 −0.763797
\(59\) 872.536 1.92533 0.962665 0.270696i \(-0.0872537\pi\)
0.962665 + 0.270696i \(0.0872537\pi\)
\(60\) 0 0
\(61\) −382.989 −0.803880 −0.401940 0.915666i \(-0.631664\pi\)
−0.401940 + 0.915666i \(0.631664\pi\)
\(62\) 298.032 0.610486
\(63\) −1005.50 −2.01080
\(64\) 315.445 0.616103
\(65\) 0 0
\(66\) 848.267 1.58204
\(67\) −325.119 −0.592831 −0.296415 0.955059i \(-0.595791\pi\)
−0.296415 + 0.955059i \(0.595791\pi\)
\(68\) 47.2130 0.0841974
\(69\) −183.260 −0.319739
\(70\) 0 0
\(71\) 145.392 0.243027 0.121513 0.992590i \(-0.461225\pi\)
0.121513 + 0.992590i \(0.461225\pi\)
\(72\) −825.176 −1.35067
\(73\) −65.3155 −0.104721 −0.0523603 0.998628i \(-0.516674\pi\)
−0.0523603 + 0.998628i \(0.516674\pi\)
\(74\) 377.256 0.592637
\(75\) 0 0
\(76\) −680.116 −1.02651
\(77\) −1679.97 −2.48636
\(78\) 982.608 1.42639
\(79\) 699.567 0.996296 0.498148 0.867092i \(-0.334014\pi\)
0.498148 + 0.867092i \(0.334014\pi\)
\(80\) 0 0
\(81\) −382.867 −0.525195
\(82\) 165.722 0.223182
\(83\) 544.415 0.719968 0.359984 0.932958i \(-0.382782\pi\)
0.359984 + 0.932958i \(0.382782\pi\)
\(84\) 1086.95 1.41185
\(85\) 0 0
\(86\) 866.117 1.08600
\(87\) −1539.30 −1.89690
\(88\) −1378.69 −1.67010
\(89\) −837.249 −0.997171 −0.498585 0.866841i \(-0.666147\pi\)
−0.498585 + 0.866841i \(0.666147\pi\)
\(90\) 0 0
\(91\) −1946.03 −2.24175
\(92\) 113.854 0.129023
\(93\) 1359.77 1.51615
\(94\) −64.0023 −0.0702270
\(95\) 0 0
\(96\) 1443.07 1.53419
\(97\) −253.821 −0.265687 −0.132843 0.991137i \(-0.542411\pi\)
−0.132843 + 0.991137i \(0.542411\pi\)
\(98\) 727.266 0.749642
\(99\) 2224.26 2.25805
\(100\) 0 0
\(101\) −785.461 −0.773824 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(102\) −132.715 −0.128831
\(103\) −143.585 −0.137358 −0.0686790 0.997639i \(-0.521878\pi\)
−0.0686790 + 0.997639i \(0.521878\pi\)
\(104\) −1597.04 −1.50579
\(105\) 0 0
\(106\) −1207.40 −1.10635
\(107\) −746.981 −0.674891 −0.337446 0.941345i \(-0.609563\pi\)
−0.337446 + 0.941345i \(0.609563\pi\)
\(108\) −374.171 −0.333376
\(109\) −184.744 −0.162342 −0.0811709 0.996700i \(-0.525866\pi\)
−0.0811709 + 0.996700i \(0.525866\pi\)
\(110\) 0 0
\(111\) 1721.23 1.47182
\(112\) −2.90610 −0.00245180
\(113\) −41.9387 −0.0349138 −0.0174569 0.999848i \(-0.505557\pi\)
−0.0174569 + 0.999848i \(0.505557\pi\)
\(114\) 1911.80 1.57067
\(115\) 0 0
\(116\) 956.316 0.765446
\(117\) 2576.53 2.03590
\(118\) 1523.78 1.18877
\(119\) 262.839 0.202474
\(120\) 0 0
\(121\) 2385.26 1.79208
\(122\) −668.843 −0.496346
\(123\) 756.107 0.554275
\(124\) −844.783 −0.611804
\(125\) 0 0
\(126\) −1755.98 −1.24155
\(127\) −1493.28 −1.04336 −0.521682 0.853140i \(-0.674695\pi\)
−0.521682 + 0.853140i \(0.674695\pi\)
\(128\) −898.004 −0.620102
\(129\) 3951.66 2.69709
\(130\) 0 0
\(131\) −114.667 −0.0764770 −0.0382385 0.999269i \(-0.512175\pi\)
−0.0382385 + 0.999269i \(0.512175\pi\)
\(132\) −2404.44 −1.58545
\(133\) −3786.26 −2.46850
\(134\) −567.781 −0.366036
\(135\) 0 0
\(136\) 215.703 0.136003
\(137\) 2262.22 1.41076 0.705380 0.708829i \(-0.250776\pi\)
0.705380 + 0.708829i \(0.250776\pi\)
\(138\) −320.042 −0.197419
\(139\) −2804.79 −1.71150 −0.855751 0.517387i \(-0.826905\pi\)
−0.855751 + 0.517387i \(0.826905\pi\)
\(140\) 0 0
\(141\) −292.011 −0.174409
\(142\) 253.910 0.150054
\(143\) 4304.82 2.51739
\(144\) 3.84766 0.00222666
\(145\) 0 0
\(146\) −114.065 −0.0646584
\(147\) 3318.15 1.86174
\(148\) −1069.34 −0.593916
\(149\) −232.626 −0.127902 −0.0639511 0.997953i \(-0.520370\pi\)
−0.0639511 + 0.997953i \(0.520370\pi\)
\(150\) 0 0
\(151\) −1426.30 −0.768680 −0.384340 0.923192i \(-0.625571\pi\)
−0.384340 + 0.923192i \(0.625571\pi\)
\(152\) −3107.25 −1.65810
\(153\) −347.997 −0.183882
\(154\) −2933.86 −1.53517
\(155\) 0 0
\(156\) −2785.24 −1.42947
\(157\) 962.502 0.489274 0.244637 0.969615i \(-0.421331\pi\)
0.244637 + 0.969615i \(0.421331\pi\)
\(158\) 1221.71 0.615151
\(159\) −5508.77 −2.74764
\(160\) 0 0
\(161\) 633.834 0.310268
\(162\) −668.631 −0.324275
\(163\) −1761.39 −0.846396 −0.423198 0.906037i \(-0.639093\pi\)
−0.423198 + 0.906037i \(0.639093\pi\)
\(164\) −469.745 −0.223664
\(165\) 0 0
\(166\) 950.755 0.444535
\(167\) −2012.99 −0.932756 −0.466378 0.884586i \(-0.654441\pi\)
−0.466378 + 0.884586i \(0.654441\pi\)
\(168\) 4965.94 2.28054
\(169\) 2789.58 1.26972
\(170\) 0 0
\(171\) 5012.98 2.24183
\(172\) −2455.04 −1.08834
\(173\) −540.225 −0.237414 −0.118707 0.992929i \(-0.537875\pi\)
−0.118707 + 0.992929i \(0.537875\pi\)
\(174\) −2688.20 −1.17122
\(175\) 0 0
\(176\) 6.42861 0.00275327
\(177\) 6952.23 2.95233
\(178\) −1462.15 −0.615691
\(179\) −918.831 −0.383668 −0.191834 0.981427i \(-0.561444\pi\)
−0.191834 + 0.981427i \(0.561444\pi\)
\(180\) 0 0
\(181\) 3173.59 1.30327 0.651633 0.758534i \(-0.274084\pi\)
0.651633 + 0.758534i \(0.274084\pi\)
\(182\) −3398.50 −1.38414
\(183\) −3051.59 −1.23268
\(184\) 520.165 0.208408
\(185\) 0 0
\(186\) 2374.68 0.936128
\(187\) −581.427 −0.227370
\(188\) 181.417 0.0703786
\(189\) −2083.04 −0.801688
\(190\) 0 0
\(191\) 2829.53 1.07192 0.535962 0.844242i \(-0.319949\pi\)
0.535962 + 0.844242i \(0.319949\pi\)
\(192\) 2513.42 0.944741
\(193\) 1987.90 0.741410 0.370705 0.928751i \(-0.379116\pi\)
0.370705 + 0.928751i \(0.379116\pi\)
\(194\) −443.267 −0.164045
\(195\) 0 0
\(196\) −2061.46 −0.751260
\(197\) −1644.24 −0.594658 −0.297329 0.954775i \(-0.596096\pi\)
−0.297329 + 0.954775i \(0.596096\pi\)
\(198\) 3884.41 1.39421
\(199\) 1995.20 0.710734 0.355367 0.934727i \(-0.384356\pi\)
0.355367 + 0.934727i \(0.384356\pi\)
\(200\) 0 0
\(201\) −2590.50 −0.909054
\(202\) −1371.71 −0.477788
\(203\) 5323.89 1.84071
\(204\) 376.186 0.129109
\(205\) 0 0
\(206\) −250.754 −0.0848101
\(207\) −839.191 −0.281777
\(208\) 7.44672 0.00248239
\(209\) 8375.61 2.77202
\(210\) 0 0
\(211\) 3654.46 1.19234 0.596170 0.802858i \(-0.296689\pi\)
0.596170 + 0.802858i \(0.296689\pi\)
\(212\) 3422.42 1.10874
\(213\) 1158.46 0.372661
\(214\) −1304.51 −0.416703
\(215\) 0 0
\(216\) −1709.48 −0.538497
\(217\) −4702.98 −1.47124
\(218\) −322.633 −0.100236
\(219\) −520.424 −0.160580
\(220\) 0 0
\(221\) −673.509 −0.205001
\(222\) 3005.92 0.908757
\(223\) −3845.98 −1.15491 −0.577457 0.816421i \(-0.695955\pi\)
−0.577457 + 0.816421i \(0.695955\pi\)
\(224\) −4991.06 −1.48875
\(225\) 0 0
\(226\) −73.2408 −0.0215571
\(227\) 3520.54 1.02937 0.514683 0.857380i \(-0.327910\pi\)
0.514683 + 0.857380i \(0.327910\pi\)
\(228\) −5419.06 −1.57406
\(229\) −731.753 −0.211160 −0.105580 0.994411i \(-0.533670\pi\)
−0.105580 + 0.994411i \(0.533670\pi\)
\(230\) 0 0
\(231\) −13385.7 −3.81262
\(232\) 4369.13 1.23641
\(233\) −5819.25 −1.63619 −0.818094 0.575085i \(-0.804969\pi\)
−0.818094 + 0.575085i \(0.804969\pi\)
\(234\) 4499.59 1.25704
\(235\) 0 0
\(236\) −4319.20 −1.19134
\(237\) 5574.04 1.52773
\(238\) 459.016 0.125015
\(239\) −2213.55 −0.599091 −0.299545 0.954082i \(-0.596835\pi\)
−0.299545 + 0.954082i \(0.596835\pi\)
\(240\) 0 0
\(241\) 5765.08 1.54092 0.770460 0.637489i \(-0.220027\pi\)
0.770460 + 0.637489i \(0.220027\pi\)
\(242\) 4165.57 1.10650
\(243\) −5091.49 −1.34411
\(244\) 1895.86 0.497417
\(245\) 0 0
\(246\) 1320.45 0.342230
\(247\) 9702.07 2.49930
\(248\) −3859.57 −0.988237
\(249\) 4337.82 1.10401
\(250\) 0 0
\(251\) −1076.57 −0.270726 −0.135363 0.990796i \(-0.543220\pi\)
−0.135363 + 0.990796i \(0.543220\pi\)
\(252\) 4977.37 1.24423
\(253\) −1402.11 −0.348418
\(254\) −2607.83 −0.644213
\(255\) 0 0
\(256\) −4091.81 −0.998978
\(257\) −3475.19 −0.843488 −0.421744 0.906715i \(-0.638582\pi\)
−0.421744 + 0.906715i \(0.638582\pi\)
\(258\) 6901.09 1.66528
\(259\) −5953.13 −1.42822
\(260\) 0 0
\(261\) −7048.80 −1.67168
\(262\) −200.252 −0.0472198
\(263\) 576.620 0.135194 0.0675968 0.997713i \(-0.478467\pi\)
0.0675968 + 0.997713i \(0.478467\pi\)
\(264\) −10985.2 −2.56095
\(265\) 0 0
\(266\) −6612.24 −1.52415
\(267\) −6671.07 −1.52907
\(268\) 1609.39 0.366826
\(269\) −1857.96 −0.421123 −0.210561 0.977581i \(-0.567529\pi\)
−0.210561 + 0.977581i \(0.567529\pi\)
\(270\) 0 0
\(271\) 8634.76 1.93551 0.967757 0.251887i \(-0.0810511\pi\)
0.967757 + 0.251887i \(0.0810511\pi\)
\(272\) −1.00579 −0.000224209 0
\(273\) −15505.6 −3.43752
\(274\) 3950.68 0.871057
\(275\) 0 0
\(276\) 907.170 0.197845
\(277\) −1614.11 −0.350117 −0.175059 0.984558i \(-0.556011\pi\)
−0.175059 + 0.984558i \(0.556011\pi\)
\(278\) −4898.22 −1.05675
\(279\) 6226.71 1.33614
\(280\) 0 0
\(281\) 1372.23 0.291319 0.145659 0.989335i \(-0.453470\pi\)
0.145659 + 0.989335i \(0.453470\pi\)
\(282\) −509.961 −0.107687
\(283\) −3394.23 −0.712953 −0.356477 0.934304i \(-0.616022\pi\)
−0.356477 + 0.934304i \(0.616022\pi\)
\(284\) −719.717 −0.150378
\(285\) 0 0
\(286\) 7517.83 1.55433
\(287\) −2615.11 −0.537857
\(288\) 6608.13 1.35204
\(289\) −4822.03 −0.981484
\(290\) 0 0
\(291\) −2022.41 −0.407407
\(292\) 323.322 0.0647980
\(293\) 3622.97 0.722376 0.361188 0.932493i \(-0.382371\pi\)
0.361188 + 0.932493i \(0.382371\pi\)
\(294\) 5794.74 1.14951
\(295\) 0 0
\(296\) −4885.53 −0.959343
\(297\) 4607.91 0.900262
\(298\) −406.252 −0.0789717
\(299\) −1624.16 −0.314139
\(300\) 0 0
\(301\) −13667.4 −2.61720
\(302\) −2490.86 −0.474612
\(303\) −6258.43 −1.18659
\(304\) 14.4886 0.00273348
\(305\) 0 0
\(306\) −607.734 −0.113535
\(307\) −4972.83 −0.924477 −0.462239 0.886756i \(-0.652954\pi\)
−0.462239 + 0.886756i \(0.652954\pi\)
\(308\) 8316.11 1.53849
\(309\) −1144.07 −0.210627
\(310\) 0 0
\(311\) −3408.78 −0.621525 −0.310763 0.950488i \(-0.600584\pi\)
−0.310763 + 0.950488i \(0.600584\pi\)
\(312\) −12724.9 −2.30900
\(313\) −5053.61 −0.912610 −0.456305 0.889823i \(-0.650827\pi\)
−0.456305 + 0.889823i \(0.650827\pi\)
\(314\) 1680.89 0.302096
\(315\) 0 0
\(316\) −3462.97 −0.616479
\(317\) 2191.69 0.388321 0.194161 0.980970i \(-0.437802\pi\)
0.194161 + 0.980970i \(0.437802\pi\)
\(318\) −9620.40 −1.69649
\(319\) −11777.0 −2.06704
\(320\) 0 0
\(321\) −5951.83 −1.03489
\(322\) 1106.91 0.191571
\(323\) −1310.40 −0.225736
\(324\) 1895.26 0.324975
\(325\) 0 0
\(326\) −3076.05 −0.522597
\(327\) −1472.01 −0.248937
\(328\) −2146.13 −0.361281
\(329\) 1009.96 0.169243
\(330\) 0 0
\(331\) 6443.90 1.07006 0.535028 0.844834i \(-0.320301\pi\)
0.535028 + 0.844834i \(0.320301\pi\)
\(332\) −2694.95 −0.445495
\(333\) 7881.90 1.29707
\(334\) −3515.45 −0.575919
\(335\) 0 0
\(336\) −23.1554 −0.00375961
\(337\) −11361.5 −1.83649 −0.918246 0.396010i \(-0.870394\pi\)
−0.918246 + 0.396010i \(0.870394\pi\)
\(338\) 4871.66 0.783974
\(339\) −334.161 −0.0535373
\(340\) 0 0
\(341\) 10403.5 1.65214
\(342\) 8754.56 1.38419
\(343\) −2023.92 −0.318605
\(344\) −11216.4 −1.75798
\(345\) 0 0
\(346\) −943.437 −0.146588
\(347\) 5654.15 0.874729 0.437364 0.899284i \(-0.355912\pi\)
0.437364 + 0.899284i \(0.355912\pi\)
\(348\) 7619.78 1.17374
\(349\) 3458.22 0.530414 0.265207 0.964192i \(-0.414560\pi\)
0.265207 + 0.964192i \(0.414560\pi\)
\(350\) 0 0
\(351\) 5337.67 0.811692
\(352\) 11040.8 1.67180
\(353\) −4298.91 −0.648181 −0.324090 0.946026i \(-0.605058\pi\)
−0.324090 + 0.946026i \(0.605058\pi\)
\(354\) 12141.2 1.82288
\(355\) 0 0
\(356\) 4144.52 0.617020
\(357\) 2094.26 0.310476
\(358\) −1604.63 −0.236891
\(359\) −4720.65 −0.694001 −0.347001 0.937865i \(-0.612800\pi\)
−0.347001 + 0.937865i \(0.612800\pi\)
\(360\) 0 0
\(361\) 12017.7 1.75211
\(362\) 5542.29 0.804686
\(363\) 19005.4 2.74800
\(364\) 9633.15 1.38713
\(365\) 0 0
\(366\) −5329.24 −0.761103
\(367\) −2253.88 −0.320576 −0.160288 0.987070i \(-0.551242\pi\)
−0.160288 + 0.987070i \(0.551242\pi\)
\(368\) −2.42545 −0.000343574 0
\(369\) 3462.38 0.488468
\(370\) 0 0
\(371\) 19052.9 2.66625
\(372\) −6731.10 −0.938148
\(373\) 971.159 0.134812 0.0674058 0.997726i \(-0.478528\pi\)
0.0674058 + 0.997726i \(0.478528\pi\)
\(374\) −1015.39 −0.140387
\(375\) 0 0
\(376\) 828.841 0.113681
\(377\) −13642.2 −1.86368
\(378\) −3637.78 −0.494992
\(379\) 4577.70 0.620424 0.310212 0.950667i \(-0.399600\pi\)
0.310212 + 0.950667i \(0.399600\pi\)
\(380\) 0 0
\(381\) −11898.2 −1.59991
\(382\) 4941.42 0.661846
\(383\) 7852.16 1.04759 0.523795 0.851844i \(-0.324516\pi\)
0.523795 + 0.851844i \(0.324516\pi\)
\(384\) −7155.15 −0.950872
\(385\) 0 0
\(386\) 3471.62 0.457775
\(387\) 18095.5 2.37687
\(388\) 1256.46 0.164399
\(389\) 5290.91 0.689613 0.344807 0.938674i \(-0.387944\pi\)
0.344807 + 0.938674i \(0.387944\pi\)
\(390\) 0 0
\(391\) 219.366 0.0283730
\(392\) −9418.21 −1.21350
\(393\) −913.648 −0.117271
\(394\) −2871.47 −0.367164
\(395\) 0 0
\(396\) −11010.5 −1.39722
\(397\) 10062.3 1.27207 0.636037 0.771658i \(-0.280572\pi\)
0.636037 + 0.771658i \(0.280572\pi\)
\(398\) 3484.37 0.438834
\(399\) −30168.4 −3.78523
\(400\) 0 0
\(401\) −3378.97 −0.420792 −0.210396 0.977616i \(-0.567475\pi\)
−0.210396 + 0.977616i \(0.567475\pi\)
\(402\) −4523.99 −0.561284
\(403\) 12051.1 1.48960
\(404\) 3888.16 0.478820
\(405\) 0 0
\(406\) 9297.53 1.13652
\(407\) 13169.0 1.60383
\(408\) 1718.69 0.208548
\(409\) −9626.70 −1.16384 −0.581919 0.813247i \(-0.697698\pi\)
−0.581919 + 0.813247i \(0.697698\pi\)
\(410\) 0 0
\(411\) 18025.0 2.16328
\(412\) 710.771 0.0849932
\(413\) −24045.3 −2.86487
\(414\) −1465.54 −0.173980
\(415\) 0 0
\(416\) 12789.3 1.50732
\(417\) −22348.1 −2.62444
\(418\) 14627.0 1.71155
\(419\) 652.487 0.0760765 0.0380383 0.999276i \(-0.487889\pi\)
0.0380383 + 0.999276i \(0.487889\pi\)
\(420\) 0 0
\(421\) −3349.84 −0.387794 −0.193897 0.981022i \(-0.562113\pi\)
−0.193897 + 0.981022i \(0.562113\pi\)
\(422\) 6382.07 0.736195
\(423\) −1337.18 −0.153702
\(424\) 15636.1 1.79093
\(425\) 0 0
\(426\) 2023.12 0.230095
\(427\) 10554.4 1.19617
\(428\) 3697.68 0.417603
\(429\) 34300.1 3.86020
\(430\) 0 0
\(431\) −2617.96 −0.292582 −0.146291 0.989242i \(-0.546734\pi\)
−0.146291 + 0.989242i \(0.546734\pi\)
\(432\) 7.97103 0.000887746 0
\(433\) −303.016 −0.0336306 −0.0168153 0.999859i \(-0.505353\pi\)
−0.0168153 + 0.999859i \(0.505353\pi\)
\(434\) −8213.17 −0.908398
\(435\) 0 0
\(436\) 914.513 0.100452
\(437\) −3160.03 −0.345915
\(438\) −908.856 −0.0991480
\(439\) 4887.75 0.531389 0.265694 0.964057i \(-0.414399\pi\)
0.265694 + 0.964057i \(0.414399\pi\)
\(440\) 0 0
\(441\) 15194.6 1.64070
\(442\) −1176.20 −0.126575
\(443\) 2134.04 0.228875 0.114437 0.993430i \(-0.463494\pi\)
0.114437 + 0.993430i \(0.463494\pi\)
\(444\) −8520.37 −0.910718
\(445\) 0 0
\(446\) −6716.53 −0.713087
\(447\) −1853.53 −0.196127
\(448\) −8693.03 −0.916756
\(449\) −2412.13 −0.253531 −0.126765 0.991933i \(-0.540460\pi\)
−0.126765 + 0.991933i \(0.540460\pi\)
\(450\) 0 0
\(451\) 5784.89 0.603991
\(452\) 207.604 0.0216036
\(453\) −11364.5 −1.17870
\(454\) 6148.18 0.635570
\(455\) 0 0
\(456\) −24758.1 −2.54256
\(457\) 5233.87 0.535733 0.267867 0.963456i \(-0.413681\pi\)
0.267867 + 0.963456i \(0.413681\pi\)
\(458\) −1277.92 −0.130378
\(459\) −720.929 −0.0733118
\(460\) 0 0
\(461\) 1170.36 0.118241 0.0591203 0.998251i \(-0.481170\pi\)
0.0591203 + 0.998251i \(0.481170\pi\)
\(462\) −23376.5 −2.35406
\(463\) −1030.98 −0.103486 −0.0517428 0.998660i \(-0.516478\pi\)
−0.0517428 + 0.998660i \(0.516478\pi\)
\(464\) −20.3726 −0.00203830
\(465\) 0 0
\(466\) −10162.6 −1.01024
\(467\) −9611.60 −0.952402 −0.476201 0.879336i \(-0.657987\pi\)
−0.476201 + 0.879336i \(0.657987\pi\)
\(468\) −12754.2 −1.25975
\(469\) 8959.64 0.882127
\(470\) 0 0
\(471\) 7669.07 0.750259
\(472\) −19733.2 −1.92435
\(473\) 30233.7 2.93900
\(474\) 9734.38 0.943280
\(475\) 0 0
\(476\) −1301.10 −0.125285
\(477\) −25225.9 −2.42142
\(478\) −3865.69 −0.369901
\(479\) 2740.84 0.261445 0.130722 0.991419i \(-0.458270\pi\)
0.130722 + 0.991419i \(0.458270\pi\)
\(480\) 0 0
\(481\) 15254.5 1.44604
\(482\) 10068.0 0.951422
\(483\) 5050.29 0.475768
\(484\) −11807.5 −1.10889
\(485\) 0 0
\(486\) −8891.67 −0.829906
\(487\) 599.429 0.0557756 0.0278878 0.999611i \(-0.491122\pi\)
0.0278878 + 0.999611i \(0.491122\pi\)
\(488\) 8661.63 0.803470
\(489\) −14034.5 −1.29787
\(490\) 0 0
\(491\) 8417.89 0.773715 0.386858 0.922139i \(-0.373561\pi\)
0.386858 + 0.922139i \(0.373561\pi\)
\(492\) −3742.85 −0.342969
\(493\) 1842.57 0.168327
\(494\) 16943.5 1.54316
\(495\) 0 0
\(496\) 17.9965 0.00162917
\(497\) −4006.72 −0.361622
\(498\) 7575.47 0.681656
\(499\) −4002.81 −0.359099 −0.179549 0.983749i \(-0.557464\pi\)
−0.179549 + 0.983749i \(0.557464\pi\)
\(500\) 0 0
\(501\) −16039.2 −1.43030
\(502\) −1880.09 −0.167156
\(503\) −5847.99 −0.518387 −0.259194 0.965825i \(-0.583457\pi\)
−0.259194 + 0.965825i \(0.583457\pi\)
\(504\) 22740.2 2.00978
\(505\) 0 0
\(506\) −2448.61 −0.215126
\(507\) 22226.9 1.94701
\(508\) 7391.99 0.645603
\(509\) −12474.1 −1.08625 −0.543127 0.839650i \(-0.682760\pi\)
−0.543127 + 0.839650i \(0.682760\pi\)
\(510\) 0 0
\(511\) 1799.96 0.155823
\(512\) 38.1784 0.00329544
\(513\) 10385.2 0.893794
\(514\) −6068.99 −0.520801
\(515\) 0 0
\(516\) −19561.4 −1.66888
\(517\) −2234.14 −0.190053
\(518\) −10396.4 −0.881838
\(519\) −4304.43 −0.364053
\(520\) 0 0
\(521\) 13917.3 1.17031 0.585154 0.810923i \(-0.301034\pi\)
0.585154 + 0.810923i \(0.301034\pi\)
\(522\) −12309.9 −1.03216
\(523\) −12279.6 −1.02667 −0.513335 0.858188i \(-0.671590\pi\)
−0.513335 + 0.858188i \(0.671590\pi\)
\(524\) 567.620 0.0473217
\(525\) 0 0
\(526\) 1007.00 0.0834736
\(527\) −1627.67 −0.134540
\(528\) 51.2222 0.00422189
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 31835.8 2.60180
\(532\) 18742.6 1.52744
\(533\) 6701.06 0.544569
\(534\) −11650.2 −0.944108
\(535\) 0 0
\(536\) 7352.86 0.592528
\(537\) −7321.10 −0.588322
\(538\) −3244.70 −0.260017
\(539\) 25386.8 2.02873
\(540\) 0 0
\(541\) 10350.6 0.822562 0.411281 0.911509i \(-0.365081\pi\)
0.411281 + 0.911509i \(0.365081\pi\)
\(542\) 15079.5 1.19506
\(543\) 25286.7 1.99845
\(544\) −1727.38 −0.136141
\(545\) 0 0
\(546\) −27078.7 −2.12246
\(547\) −806.728 −0.0630589 −0.0315294 0.999503i \(-0.510038\pi\)
−0.0315294 + 0.999503i \(0.510038\pi\)
\(548\) −11198.3 −0.872937
\(549\) −13973.9 −1.08633
\(550\) 0 0
\(551\) −26542.7 −2.05219
\(552\) 4144.60 0.319576
\(553\) −19278.6 −1.48248
\(554\) −2818.84 −0.216175
\(555\) 0 0
\(556\) 13884.2 1.05903
\(557\) 2775.50 0.211134 0.105567 0.994412i \(-0.466334\pi\)
0.105567 + 0.994412i \(0.466334\pi\)
\(558\) 10874.2 0.824984
\(559\) 35021.9 2.64986
\(560\) 0 0
\(561\) −4632.72 −0.348652
\(562\) 2396.44 0.179871
\(563\) −14230.1 −1.06524 −0.532619 0.846355i \(-0.678792\pi\)
−0.532619 + 0.846355i \(0.678792\pi\)
\(564\) 1445.50 0.107919
\(565\) 0 0
\(566\) −5927.60 −0.440204
\(567\) 10551.0 0.781486
\(568\) −3288.18 −0.242903
\(569\) 19128.1 1.40930 0.704650 0.709555i \(-0.251104\pi\)
0.704650 + 0.709555i \(0.251104\pi\)
\(570\) 0 0
\(571\) −3025.84 −0.221765 −0.110882 0.993834i \(-0.535368\pi\)
−0.110882 + 0.993834i \(0.535368\pi\)
\(572\) −21309.5 −1.55769
\(573\) 22545.2 1.64370
\(574\) −4566.97 −0.332093
\(575\) 0 0
\(576\) 11509.5 0.832574
\(577\) −26089.9 −1.88239 −0.941195 0.337865i \(-0.890295\pi\)
−0.941195 + 0.337865i \(0.890295\pi\)
\(578\) −8421.09 −0.606006
\(579\) 15839.3 1.13689
\(580\) 0 0
\(581\) −15003.0 −1.07131
\(582\) −3531.89 −0.251549
\(583\) −42147.1 −2.99409
\(584\) 1477.17 0.104667
\(585\) 0 0
\(586\) 6327.08 0.446022
\(587\) −8017.17 −0.563720 −0.281860 0.959455i \(-0.590951\pi\)
−0.281860 + 0.959455i \(0.590951\pi\)
\(588\) −16425.4 −1.15199
\(589\) 23447.1 1.64027
\(590\) 0 0
\(591\) −13101.1 −0.911856
\(592\) 22.7804 0.00158154
\(593\) 18589.1 1.28729 0.643645 0.765324i \(-0.277421\pi\)
0.643645 + 0.765324i \(0.277421\pi\)
\(594\) 8047.15 0.555856
\(595\) 0 0
\(596\) 1151.54 0.0791422
\(597\) 15897.5 1.08985
\(598\) −2836.40 −0.193961
\(599\) −26260.4 −1.79127 −0.895636 0.444787i \(-0.853279\pi\)
−0.895636 + 0.444787i \(0.853279\pi\)
\(600\) 0 0
\(601\) −9005.84 −0.611241 −0.305621 0.952153i \(-0.598864\pi\)
−0.305621 + 0.952153i \(0.598864\pi\)
\(602\) −23868.4 −1.61596
\(603\) −11862.5 −0.801125
\(604\) 7060.43 0.475637
\(605\) 0 0
\(606\) −10929.6 −0.732647
\(607\) −22583.2 −1.51009 −0.755043 0.655676i \(-0.772384\pi\)
−0.755043 + 0.655676i \(0.772384\pi\)
\(608\) 24883.3 1.65979
\(609\) 42420.0 2.82257
\(610\) 0 0
\(611\) −2587.97 −0.171355
\(612\) 1722.64 0.113780
\(613\) 1316.87 0.0867667 0.0433833 0.999058i \(-0.486186\pi\)
0.0433833 + 0.999058i \(0.486186\pi\)
\(614\) −8684.44 −0.570807
\(615\) 0 0
\(616\) 37993.9 2.48510
\(617\) 25475.8 1.66226 0.831132 0.556076i \(-0.187694\pi\)
0.831132 + 0.556076i \(0.187694\pi\)
\(618\) −1997.97 −0.130049
\(619\) 22782.0 1.47930 0.739650 0.672992i \(-0.234991\pi\)
0.739650 + 0.672992i \(0.234991\pi\)
\(620\) 0 0
\(621\) −1738.51 −0.112342
\(622\) −5953.02 −0.383753
\(623\) 23072.9 1.48378
\(624\) 59.3343 0.00380653
\(625\) 0 0
\(626\) −8825.52 −0.563480
\(627\) 66735.6 4.25066
\(628\) −4764.54 −0.302748
\(629\) −2060.35 −0.130606
\(630\) 0 0
\(631\) −17322.3 −1.09285 −0.546425 0.837508i \(-0.684012\pi\)
−0.546425 + 0.837508i \(0.684012\pi\)
\(632\) −15821.3 −0.995788
\(633\) 29118.2 1.82835
\(634\) 3827.52 0.239764
\(635\) 0 0
\(636\) 27269.3 1.70016
\(637\) 29407.4 1.82914
\(638\) −20567.1 −1.27627
\(639\) 5304.87 0.328416
\(640\) 0 0
\(641\) −25514.3 −1.57216 −0.786080 0.618125i \(-0.787893\pi\)
−0.786080 + 0.618125i \(0.787893\pi\)
\(642\) −10394.1 −0.638978
\(643\) 13167.6 0.807589 0.403794 0.914850i \(-0.367691\pi\)
0.403794 + 0.914850i \(0.367691\pi\)
\(644\) −3137.58 −0.191984
\(645\) 0 0
\(646\) −2288.46 −0.139378
\(647\) −14419.8 −0.876197 −0.438098 0.898927i \(-0.644348\pi\)
−0.438098 + 0.898927i \(0.644348\pi\)
\(648\) 8658.88 0.524927
\(649\) 53190.8 3.21714
\(650\) 0 0
\(651\) −37472.6 −2.25602
\(652\) 8719.16 0.523725
\(653\) 18605.4 1.11499 0.557493 0.830182i \(-0.311763\pi\)
0.557493 + 0.830182i \(0.311763\pi\)
\(654\) −2570.69 −0.153703
\(655\) 0 0
\(656\) 10.0070 0.000595594 0
\(657\) −2383.14 −0.141515
\(658\) 1763.78 0.104497
\(659\) −27497.4 −1.62541 −0.812705 0.582675i \(-0.802006\pi\)
−0.812705 + 0.582675i \(0.802006\pi\)
\(660\) 0 0
\(661\) 5841.00 0.343704 0.171852 0.985123i \(-0.445025\pi\)
0.171852 + 0.985123i \(0.445025\pi\)
\(662\) 11253.5 0.660693
\(663\) −5366.42 −0.314350
\(664\) −12312.4 −0.719601
\(665\) 0 0
\(666\) 13764.8 0.800862
\(667\) 4443.34 0.257941
\(668\) 9964.66 0.577162
\(669\) −30644.2 −1.77096
\(670\) 0 0
\(671\) −23347.4 −1.34325
\(672\) −39768.0 −2.28286
\(673\) −31184.0 −1.78611 −0.893057 0.449944i \(-0.851444\pi\)
−0.893057 + 0.449944i \(0.851444\pi\)
\(674\) −19841.4 −1.13392
\(675\) 0 0
\(676\) −13808.9 −0.785666
\(677\) −628.810 −0.0356974 −0.0178487 0.999841i \(-0.505682\pi\)
−0.0178487 + 0.999841i \(0.505682\pi\)
\(678\) −583.572 −0.0330559
\(679\) 6994.79 0.395339
\(680\) 0 0
\(681\) 28051.1 1.57844
\(682\) 18168.4 1.02009
\(683\) 13252.5 0.742451 0.371225 0.928543i \(-0.378938\pi\)
0.371225 + 0.928543i \(0.378938\pi\)
\(684\) −24815.1 −1.38718
\(685\) 0 0
\(686\) −3534.53 −0.196719
\(687\) −5830.50 −0.323795
\(688\) 52.3001 0.00289814
\(689\) −48822.0 −2.69952
\(690\) 0 0
\(691\) −20653.5 −1.13704 −0.568521 0.822669i \(-0.692484\pi\)
−0.568521 + 0.822669i \(0.692484\pi\)
\(692\) 2674.20 0.146905
\(693\) −61296.2 −3.35996
\(694\) 9874.29 0.540091
\(695\) 0 0
\(696\) 34812.6 1.89593
\(697\) −905.075 −0.0491853
\(698\) 6039.36 0.327498
\(699\) −46366.9 −2.50895
\(700\) 0 0
\(701\) −6385.56 −0.344050 −0.172025 0.985093i \(-0.555031\pi\)
−0.172025 + 0.985093i \(0.555031\pi\)
\(702\) 9321.59 0.501169
\(703\) 29679.8 1.59231
\(704\) 19229.9 1.02948
\(705\) 0 0
\(706\) −7507.52 −0.400211
\(707\) 21645.7 1.15144
\(708\) −34414.7 −1.82681
\(709\) −23481.3 −1.24381 −0.621904 0.783094i \(-0.713641\pi\)
−0.621904 + 0.783094i \(0.713641\pi\)
\(710\) 0 0
\(711\) 25524.8 1.34635
\(712\) 18935.1 0.996662
\(713\) −3925.12 −0.206167
\(714\) 3657.37 0.191700
\(715\) 0 0
\(716\) 4548.36 0.237403
\(717\) −17637.2 −0.918653
\(718\) −8244.04 −0.428503
\(719\) −26590.6 −1.37923 −0.689613 0.724178i \(-0.742219\pi\)
−0.689613 + 0.724178i \(0.742219\pi\)
\(720\) 0 0
\(721\) 3956.92 0.204388
\(722\) 20987.5 1.08182
\(723\) 45935.3 2.36287
\(724\) −15709.8 −0.806423
\(725\) 0 0
\(726\) 33190.6 1.69672
\(727\) −30288.8 −1.54518 −0.772592 0.634903i \(-0.781040\pi\)
−0.772592 + 0.634903i \(0.781040\pi\)
\(728\) 44011.1 2.24060
\(729\) −30230.8 −1.53588
\(730\) 0 0
\(731\) −4730.21 −0.239334
\(732\) 15105.9 0.762746
\(733\) −10849.1 −0.546685 −0.273342 0.961917i \(-0.588129\pi\)
−0.273342 + 0.961917i \(0.588129\pi\)
\(734\) −3936.12 −0.197936
\(735\) 0 0
\(736\) −4165.56 −0.208620
\(737\) −19819.7 −0.990592
\(738\) 6046.63 0.301598
\(739\) 19017.8 0.946660 0.473330 0.880885i \(-0.343052\pi\)
0.473330 + 0.880885i \(0.343052\pi\)
\(740\) 0 0
\(741\) 77304.6 3.83246
\(742\) 33273.6 1.64624
\(743\) −13686.8 −0.675801 −0.337901 0.941182i \(-0.609717\pi\)
−0.337901 + 0.941182i \(0.609717\pi\)
\(744\) −30752.5 −1.51538
\(745\) 0 0
\(746\) 1696.01 0.0832377
\(747\) 19863.9 0.972932
\(748\) 2878.16 0.140690
\(749\) 20585.3 1.00423
\(750\) 0 0
\(751\) 19702.9 0.957347 0.478674 0.877993i \(-0.341118\pi\)
0.478674 + 0.877993i \(0.341118\pi\)
\(752\) −3.86475 −0.000187411 0
\(753\) −8577.91 −0.415135
\(754\) −23824.4 −1.15071
\(755\) 0 0
\(756\) 10311.4 0.496061
\(757\) 41079.0 1.97231 0.986157 0.165813i \(-0.0530247\pi\)
0.986157 + 0.165813i \(0.0530247\pi\)
\(758\) 7994.39 0.383073
\(759\) −11171.8 −0.534268
\(760\) 0 0
\(761\) −11409.9 −0.543506 −0.271753 0.962367i \(-0.587603\pi\)
−0.271753 + 0.962367i \(0.587603\pi\)
\(762\) −20778.8 −0.987844
\(763\) 5091.17 0.241563
\(764\) −14006.6 −0.663275
\(765\) 0 0
\(766\) 13712.8 0.646821
\(767\) 61614.7 2.90062
\(768\) −32602.9 −1.53185
\(769\) −2253.98 −0.105697 −0.0528483 0.998603i \(-0.516830\pi\)
−0.0528483 + 0.998603i \(0.516830\pi\)
\(770\) 0 0
\(771\) −27689.8 −1.29342
\(772\) −9840.43 −0.458763
\(773\) −30875.1 −1.43661 −0.718306 0.695728i \(-0.755082\pi\)
−0.718306 + 0.695728i \(0.755082\pi\)
\(774\) 31601.7 1.46757
\(775\) 0 0
\(776\) 5740.38 0.265551
\(777\) −47433.6 −2.19005
\(778\) 9239.92 0.425793
\(779\) 13037.8 0.599652
\(780\) 0 0
\(781\) 8863.29 0.406087
\(782\) 383.096 0.0175185
\(783\) −14602.7 −0.666484
\(784\) 43.9156 0.00200053
\(785\) 0 0
\(786\) −1595.57 −0.0724075
\(787\) 13216.7 0.598634 0.299317 0.954154i \(-0.403241\pi\)
0.299317 + 0.954154i \(0.403241\pi\)
\(788\) 8139.28 0.367957
\(789\) 4594.42 0.207308
\(790\) 0 0
\(791\) 1155.75 0.0519515
\(792\) −50303.7 −2.25690
\(793\) −27045.0 −1.21109
\(794\) 17572.6 0.785427
\(795\) 0 0
\(796\) −9876.57 −0.439781
\(797\) −40132.2 −1.78363 −0.891817 0.452395i \(-0.850570\pi\)
−0.891817 + 0.452395i \(0.850570\pi\)
\(798\) −52685.3 −2.33714
\(799\) 349.542 0.0154767
\(800\) 0 0
\(801\) −30548.3 −1.34753
\(802\) −5900.96 −0.259813
\(803\) −3981.71 −0.174983
\(804\) 12823.4 0.562496
\(805\) 0 0
\(806\) 21045.8 0.919734
\(807\) −14804.0 −0.645755
\(808\) 17763.9 0.773430
\(809\) 14870.1 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(810\) 0 0
\(811\) 282.093 0.0122141 0.00610704 0.999981i \(-0.498056\pi\)
0.00610704 + 0.999981i \(0.498056\pi\)
\(812\) −26354.1 −1.13898
\(813\) 68800.4 2.96794
\(814\) 22998.0 0.990268
\(815\) 0 0
\(816\) −8.01396 −0.000343805 0
\(817\) 68139.9 2.91789
\(818\) −16811.9 −0.718598
\(819\) −71003.8 −3.02940
\(820\) 0 0
\(821\) −31977.5 −1.35934 −0.679672 0.733516i \(-0.737878\pi\)
−0.679672 + 0.733516i \(0.737878\pi\)
\(822\) 31478.4 1.33569
\(823\) 35152.5 1.48887 0.744434 0.667696i \(-0.232719\pi\)
0.744434 + 0.667696i \(0.232719\pi\)
\(824\) 3247.31 0.137288
\(825\) 0 0
\(826\) −41992.2 −1.76888
\(827\) 23945.0 1.00683 0.503416 0.864044i \(-0.332076\pi\)
0.503416 + 0.864044i \(0.332076\pi\)
\(828\) 4154.14 0.174355
\(829\) −24120.6 −1.01055 −0.505274 0.862959i \(-0.668608\pi\)
−0.505274 + 0.862959i \(0.668608\pi\)
\(830\) 0 0
\(831\) −12861.0 −0.536874
\(832\) 22275.4 0.928196
\(833\) −3971.89 −0.165207
\(834\) −39028.2 −1.62043
\(835\) 0 0
\(836\) −41460.7 −1.71525
\(837\) 12899.6 0.532706
\(838\) 1139.49 0.0469725
\(839\) 22867.8 0.940981 0.470490 0.882405i \(-0.344077\pi\)
0.470490 + 0.882405i \(0.344077\pi\)
\(840\) 0 0
\(841\) 12932.9 0.530276
\(842\) −5850.09 −0.239439
\(843\) 10933.7 0.446712
\(844\) −18090.2 −0.737785
\(845\) 0 0
\(846\) −2335.23 −0.0949016
\(847\) −65733.1 −2.66661
\(848\) −72.9085 −0.00295246
\(849\) −27044.7 −1.09325
\(850\) 0 0
\(851\) −4968.51 −0.200139
\(852\) −5734.59 −0.230591
\(853\) −39570.7 −1.58836 −0.794182 0.607680i \(-0.792100\pi\)
−0.794182 + 0.607680i \(0.792100\pi\)
\(854\) 18432.0 0.738558
\(855\) 0 0
\(856\) 16893.6 0.674547
\(857\) −34117.0 −1.35988 −0.679938 0.733270i \(-0.737993\pi\)
−0.679938 + 0.733270i \(0.737993\pi\)
\(858\) 59901.0 2.38343
\(859\) −25440.7 −1.01051 −0.505254 0.862971i \(-0.668601\pi\)
−0.505254 + 0.862971i \(0.668601\pi\)
\(860\) 0 0
\(861\) −20836.8 −0.824757
\(862\) −4571.95 −0.180651
\(863\) 6323.33 0.249419 0.124710 0.992193i \(-0.460200\pi\)
0.124710 + 0.992193i \(0.460200\pi\)
\(864\) 13689.8 0.539045
\(865\) 0 0
\(866\) −529.181 −0.0207648
\(867\) −38421.2 −1.50502
\(868\) 23280.5 0.910359
\(869\) 42646.4 1.66476
\(870\) 0 0
\(871\) −22958.5 −0.893135
\(872\) 4178.15 0.162259
\(873\) −9261.06 −0.359037
\(874\) −5518.60 −0.213581
\(875\) 0 0
\(876\) 2576.18 0.0993621
\(877\) 44457.7 1.71178 0.855889 0.517160i \(-0.173011\pi\)
0.855889 + 0.517160i \(0.173011\pi\)
\(878\) 8535.86 0.328099
\(879\) 28867.3 1.10770
\(880\) 0 0
\(881\) −17088.2 −0.653480 −0.326740 0.945114i \(-0.605950\pi\)
−0.326740 + 0.945114i \(0.605950\pi\)
\(882\) 26535.4 1.01303
\(883\) −37260.9 −1.42008 −0.710040 0.704162i \(-0.751323\pi\)
−0.710040 + 0.704162i \(0.751323\pi\)
\(884\) 3333.98 0.126848
\(885\) 0 0
\(886\) 3726.84 0.141316
\(887\) −14770.5 −0.559126 −0.279563 0.960127i \(-0.590190\pi\)
−0.279563 + 0.960127i \(0.590190\pi\)
\(888\) −38927.1 −1.47107
\(889\) 41151.8 1.55252
\(890\) 0 0
\(891\) −23340.0 −0.877576
\(892\) 19038.2 0.714627
\(893\) −5035.25 −0.188688
\(894\) −3236.96 −0.121096
\(895\) 0 0
\(896\) 24747.2 0.922706
\(897\) −12941.1 −0.481705
\(898\) −4212.49 −0.156540
\(899\) −32969.1 −1.22312
\(900\) 0 0
\(901\) 6594.11 0.243820
\(902\) 10102.6 0.372927
\(903\) −108900. −4.01324
\(904\) 948.481 0.0348960
\(905\) 0 0
\(906\) −19846.8 −0.727777
\(907\) −24238.3 −0.887342 −0.443671 0.896190i \(-0.646324\pi\)
−0.443671 + 0.896190i \(0.646324\pi\)
\(908\) −17427.2 −0.636942
\(909\) −28658.8 −1.04571
\(910\) 0 0
\(911\) −18340.4 −0.667009 −0.333505 0.942748i \(-0.608231\pi\)
−0.333505 + 0.942748i \(0.608231\pi\)
\(912\) 115.443 0.00419156
\(913\) 33188.2 1.20303
\(914\) 9140.31 0.330782
\(915\) 0 0
\(916\) 3622.30 0.130660
\(917\) 3159.99 0.113797
\(918\) −1259.01 −0.0452654
\(919\) 29898.4 1.07318 0.536592 0.843842i \(-0.319711\pi\)
0.536592 + 0.843842i \(0.319711\pi\)
\(920\) 0 0
\(921\) −39622.8 −1.41760
\(922\) 2043.88 0.0730062
\(923\) 10267.0 0.366134
\(924\) 66261.5 2.35914
\(925\) 0 0
\(926\) −1800.49 −0.0638959
\(927\) −5238.94 −0.185620
\(928\) −34988.6 −1.23767
\(929\) 3164.90 0.111773 0.0558865 0.998437i \(-0.482202\pi\)
0.0558865 + 0.998437i \(0.482202\pi\)
\(930\) 0 0
\(931\) 57216.1 2.01416
\(932\) 28806.2 1.01242
\(933\) −27160.7 −0.953055
\(934\) −16785.5 −0.588049
\(935\) 0 0
\(936\) −58270.4 −2.03486
\(937\) −7829.27 −0.272968 −0.136484 0.990642i \(-0.543580\pi\)
−0.136484 + 0.990642i \(0.543580\pi\)
\(938\) 15646.9 0.544658
\(939\) −40266.4 −1.39941
\(940\) 0 0
\(941\) 12422.9 0.430367 0.215183 0.976574i \(-0.430965\pi\)
0.215183 + 0.976574i \(0.430965\pi\)
\(942\) 13393.1 0.463238
\(943\) −2182.58 −0.0753707
\(944\) 92.0125 0.00317241
\(945\) 0 0
\(946\) 52799.5 1.81465
\(947\) 29718.7 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(948\) −27592.4 −0.945316
\(949\) −4612.30 −0.157768
\(950\) 0 0
\(951\) 17463.1 0.595456
\(952\) −5944.33 −0.202371
\(953\) 20281.7 0.689389 0.344695 0.938715i \(-0.387982\pi\)
0.344695 + 0.938715i \(0.387982\pi\)
\(954\) −44054.0 −1.49507
\(955\) 0 0
\(956\) 10957.4 0.370700
\(957\) −93837.4 −3.16963
\(958\) 4786.53 0.161426
\(959\) −62342.1 −2.09920
\(960\) 0 0
\(961\) −667.021 −0.0223900
\(962\) 26640.2 0.892842
\(963\) −27254.8 −0.912018
\(964\) −28538.1 −0.953476
\(965\) 0 0
\(966\) 8819.71 0.293757
\(967\) −36677.2 −1.21971 −0.609855 0.792513i \(-0.708772\pi\)
−0.609855 + 0.792513i \(0.708772\pi\)
\(968\) −53944.8 −1.79117
\(969\) −10441.1 −0.346147
\(970\) 0 0
\(971\) 28329.9 0.936302 0.468151 0.883648i \(-0.344920\pi\)
0.468151 + 0.883648i \(0.344920\pi\)
\(972\) 25203.7 0.831697
\(973\) 77294.3 2.54670
\(974\) 1046.83 0.0344380
\(975\) 0 0
\(976\) −40.3878 −0.00132457
\(977\) 3627.47 0.118785 0.0593926 0.998235i \(-0.481084\pi\)
0.0593926 + 0.998235i \(0.481084\pi\)
\(978\) −24509.5 −0.801357
\(979\) −51039.7 −1.66623
\(980\) 0 0
\(981\) −6740.67 −0.219381
\(982\) 14700.8 0.477721
\(983\) −32607.9 −1.05802 −0.529008 0.848617i \(-0.677436\pi\)
−0.529008 + 0.848617i \(0.677436\pi\)
\(984\) −17100.0 −0.553993
\(985\) 0 0
\(986\) 3217.82 0.103931
\(987\) 8047.22 0.259520
\(988\) −48026.9 −1.54650
\(989\) −11406.9 −0.366752
\(990\) 0 0
\(991\) 11086.4 0.355369 0.177685 0.984087i \(-0.443139\pi\)
0.177685 + 0.984087i \(0.443139\pi\)
\(992\) 30908.0 0.989243
\(993\) 51344.0 1.64084
\(994\) −6997.25 −0.223279
\(995\) 0 0
\(996\) −21472.9 −0.683128
\(997\) 26663.5 0.846982 0.423491 0.905900i \(-0.360805\pi\)
0.423491 + 0.905900i \(0.360805\pi\)
\(998\) −6990.42 −0.221721
\(999\) 16328.6 0.517131
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.a.o.1.8 13
5.2 odd 4 575.4.b.l.24.16 26
5.3 odd 4 575.4.b.l.24.11 26
5.4 even 2 575.4.a.p.1.6 yes 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.4.a.o.1.8 13 1.1 even 1 trivial
575.4.a.p.1.6 yes 13 5.4 even 2
575.4.b.l.24.11 26 5.3 odd 4
575.4.b.l.24.16 26 5.2 odd 4