Properties

Label 575.4.b.j.24.2
Level $575$
Weight $4$
Character 575.24
Analytic conductor $33.926$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 83x^{12} + 2715x^{10} + 44273x^{8} + 372280x^{6} + 1482448x^{4} + 2136384x^{2} + 746496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.2
Root \(-4.39200i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.4.b.j.24.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.39200i q^{2} -3.27927i q^{3} -11.2896 q^{4} -14.4025 q^{6} -13.7978i q^{7} +14.4481i q^{8} +16.2464 q^{9} -16.7024 q^{11} +37.0218i q^{12} -68.7171i q^{13} -60.5997 q^{14} -26.8610 q^{16} +40.7204i q^{17} -71.3541i q^{18} -40.6147 q^{19} -45.2466 q^{21} +73.3568i q^{22} -23.0000i q^{23} +47.3793 q^{24} -301.805 q^{26} -141.817i q^{27} +155.772i q^{28} -41.4829 q^{29} -234.349 q^{31} +233.559i q^{32} +54.7716i q^{33} +178.844 q^{34} -183.416 q^{36} -101.472i q^{37} +178.380i q^{38} -225.342 q^{39} +9.09912 q^{41} +198.723i q^{42} -146.349i q^{43} +188.564 q^{44} -101.016 q^{46} +383.965i q^{47} +88.0845i q^{48} +152.622 q^{49} +133.533 q^{51} +775.792i q^{52} +430.635i q^{53} -622.858 q^{54} +199.352 q^{56} +133.187i q^{57} +182.193i q^{58} +441.067 q^{59} +73.6756 q^{61} +1029.26i q^{62} -224.164i q^{63} +810.901 q^{64} +240.557 q^{66} +245.433i q^{67} -459.719i q^{68} -75.4232 q^{69} -241.613 q^{71} +234.730i q^{72} +187.130i q^{73} -445.667 q^{74} +458.526 q^{76} +230.455i q^{77} +989.701i q^{78} -109.404 q^{79} -26.4023 q^{81} -39.9633i q^{82} -1198.92i q^{83} +510.818 q^{84} -642.765 q^{86} +136.034i q^{87} -241.318i q^{88} -148.942 q^{89} -948.142 q^{91} +259.662i q^{92} +768.492i q^{93} +1686.38 q^{94} +765.902 q^{96} -1829.68i q^{97} -670.314i q^{98} -271.353 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 54 q^{4} - 82 q^{6} - 20 q^{9} - 104 q^{11} + 84 q^{14} - 170 q^{16} + 20 q^{19} - 404 q^{21} + 606 q^{24} - 52 q^{26} + 910 q^{29} - 1380 q^{31} + 1314 q^{34} + 408 q^{36} + 554 q^{39} - 460 q^{41}+ \cdots + 4286 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.39200i − 1.55281i −0.630237 0.776403i \(-0.717042\pi\)
0.630237 0.776403i \(-0.282958\pi\)
\(3\) − 3.27927i − 0.631096i −0.948910 0.315548i \(-0.897812\pi\)
0.948910 0.315548i \(-0.102188\pi\)
\(4\) −11.2896 −1.41121
\(5\) 0 0
\(6\) −14.4025 −0.979969
\(7\) − 13.7978i − 0.745009i −0.928030 0.372505i \(-0.878499\pi\)
0.928030 0.372505i \(-0.121501\pi\)
\(8\) 14.4481i 0.638523i
\(9\) 16.2464 0.601718
\(10\) 0 0
\(11\) −16.7024 −0.457814 −0.228907 0.973448i \(-0.573515\pi\)
−0.228907 + 0.973448i \(0.573515\pi\)
\(12\) 37.0218i 0.890606i
\(13\) − 68.7171i − 1.46605i −0.680200 0.733027i \(-0.738107\pi\)
0.680200 0.733027i \(-0.261893\pi\)
\(14\) −60.5997 −1.15685
\(15\) 0 0
\(16\) −26.8610 −0.419703
\(17\) 40.7204i 0.580950i 0.956883 + 0.290475i \(0.0938134\pi\)
−0.956883 + 0.290475i \(0.906187\pi\)
\(18\) − 71.3541i − 0.934351i
\(19\) −40.6147 −0.490403 −0.245201 0.969472i \(-0.578854\pi\)
−0.245201 + 0.969472i \(0.578854\pi\)
\(20\) 0 0
\(21\) −45.2466 −0.470172
\(22\) 73.3568i 0.710897i
\(23\) − 23.0000i − 0.208514i
\(24\) 47.3793 0.402969
\(25\) 0 0
\(26\) −301.805 −2.27650
\(27\) − 141.817i − 1.01084i
\(28\) 155.772i 1.05136i
\(29\) −41.4829 −0.265627 −0.132814 0.991141i \(-0.542401\pi\)
−0.132814 + 0.991141i \(0.542401\pi\)
\(30\) 0 0
\(31\) −234.349 −1.35775 −0.678875 0.734254i \(-0.737532\pi\)
−0.678875 + 0.734254i \(0.737532\pi\)
\(32\) 233.559i 1.29024i
\(33\) 54.7716i 0.288925i
\(34\) 178.844 0.902103
\(35\) 0 0
\(36\) −183.416 −0.849148
\(37\) − 101.472i − 0.450864i −0.974259 0.225432i \(-0.927621\pi\)
0.974259 0.225432i \(-0.0723794\pi\)
\(38\) 178.380i 0.761500i
\(39\) −225.342 −0.925220
\(40\) 0 0
\(41\) 9.09912 0.0346596 0.0173298 0.999850i \(-0.494483\pi\)
0.0173298 + 0.999850i \(0.494483\pi\)
\(42\) 198.723i 0.730086i
\(43\) − 146.349i − 0.519024i −0.965740 0.259512i \(-0.916438\pi\)
0.965740 0.259512i \(-0.0835617\pi\)
\(44\) 188.564 0.646070
\(45\) 0 0
\(46\) −101.016 −0.323782
\(47\) 383.965i 1.19164i 0.803118 + 0.595820i \(0.203173\pi\)
−0.803118 + 0.595820i \(0.796827\pi\)
\(48\) 88.0845i 0.264873i
\(49\) 152.622 0.444961
\(50\) 0 0
\(51\) 133.533 0.366635
\(52\) 775.792i 2.06890i
\(53\) 430.635i 1.11608i 0.829814 + 0.558040i \(0.188447\pi\)
−0.829814 + 0.558040i \(0.811553\pi\)
\(54\) −622.858 −1.56963
\(55\) 0 0
\(56\) 199.352 0.475706
\(57\) 133.187i 0.309491i
\(58\) 182.193i 0.412467i
\(59\) 441.067 0.973255 0.486627 0.873610i \(-0.338227\pi\)
0.486627 + 0.873610i \(0.338227\pi\)
\(60\) 0 0
\(61\) 73.6756 0.154643 0.0773213 0.997006i \(-0.475363\pi\)
0.0773213 + 0.997006i \(0.475363\pi\)
\(62\) 1029.26i 2.10832i
\(63\) − 224.164i − 0.448286i
\(64\) 810.901 1.58379
\(65\) 0 0
\(66\) 240.557 0.448644
\(67\) 245.433i 0.447529i 0.974643 + 0.223765i \(0.0718347\pi\)
−0.974643 + 0.223765i \(0.928165\pi\)
\(68\) − 459.719i − 0.819841i
\(69\) −75.4232 −0.131593
\(70\) 0 0
\(71\) −241.613 −0.403862 −0.201931 0.979400i \(-0.564722\pi\)
−0.201931 + 0.979400i \(0.564722\pi\)
\(72\) 234.730i 0.384211i
\(73\) 187.130i 0.300026i 0.988684 + 0.150013i \(0.0479315\pi\)
−0.988684 + 0.150013i \(0.952068\pi\)
\(74\) −445.667 −0.700104
\(75\) 0 0
\(76\) 458.526 0.692059
\(77\) 230.455i 0.341076i
\(78\) 989.701i 1.43669i
\(79\) −109.404 −0.155808 −0.0779041 0.996961i \(-0.524823\pi\)
−0.0779041 + 0.996961i \(0.524823\pi\)
\(80\) 0 0
\(81\) −26.4023 −0.0362171
\(82\) − 39.9633i − 0.0538196i
\(83\) − 1198.92i − 1.58552i −0.609533 0.792761i \(-0.708643\pi\)
0.609533 0.792761i \(-0.291357\pi\)
\(84\) 510.818 0.663510
\(85\) 0 0
\(86\) −642.765 −0.805944
\(87\) 136.034i 0.167636i
\(88\) − 241.318i − 0.292325i
\(89\) −148.942 −0.177391 −0.0886953 0.996059i \(-0.528270\pi\)
−0.0886953 + 0.996059i \(0.528270\pi\)
\(90\) 0 0
\(91\) −948.142 −1.09222
\(92\) 259.662i 0.294257i
\(93\) 768.492i 0.856870i
\(94\) 1686.38 1.85039
\(95\) 0 0
\(96\) 765.902 0.814266
\(97\) − 1829.68i − 1.91521i −0.288082 0.957606i \(-0.593018\pi\)
0.288082 0.957606i \(-0.406982\pi\)
\(98\) − 670.314i − 0.690939i
\(99\) −271.353 −0.275475
\(100\) 0 0
\(101\) −628.795 −0.619479 −0.309740 0.950821i \(-0.600242\pi\)
−0.309740 + 0.950821i \(0.600242\pi\)
\(102\) − 586.478i − 0.569313i
\(103\) 1577.66i 1.50924i 0.656162 + 0.754620i \(0.272179\pi\)
−0.656162 + 0.754620i \(0.727821\pi\)
\(104\) 992.834 0.936109
\(105\) 0 0
\(106\) 1891.35 1.73306
\(107\) − 1253.21i − 1.13226i −0.824316 0.566130i \(-0.808440\pi\)
0.824316 0.566130i \(-0.191560\pi\)
\(108\) 1601.06i 1.42650i
\(109\) 1271.40 1.11723 0.558615 0.829427i \(-0.311333\pi\)
0.558615 + 0.829427i \(0.311333\pi\)
\(110\) 0 0
\(111\) −332.756 −0.284538
\(112\) 370.622i 0.312683i
\(113\) 1469.50i 1.22336i 0.791107 + 0.611678i \(0.209505\pi\)
−0.791107 + 0.611678i \(0.790495\pi\)
\(114\) 584.955 0.480579
\(115\) 0 0
\(116\) 468.328 0.374855
\(117\) − 1116.40i − 0.882151i
\(118\) − 1937.17i − 1.51128i
\(119\) 561.851 0.432813
\(120\) 0 0
\(121\) −1052.03 −0.790406
\(122\) − 323.583i − 0.240130i
\(123\) − 29.8385i − 0.0218735i
\(124\) 2645.71 1.91607
\(125\) 0 0
\(126\) −984.527 −0.696100
\(127\) 445.611i 0.311351i 0.987808 + 0.155676i \(0.0497555\pi\)
−0.987808 + 0.155676i \(0.950245\pi\)
\(128\) − 1693.01i − 1.16908i
\(129\) −479.918 −0.327554
\(130\) 0 0
\(131\) 630.681 0.420632 0.210316 0.977633i \(-0.432551\pi\)
0.210316 + 0.977633i \(0.432551\pi\)
\(132\) − 618.352i − 0.407732i
\(133\) 560.392i 0.365354i
\(134\) 1077.94 0.694926
\(135\) 0 0
\(136\) −588.334 −0.370950
\(137\) − 479.846i − 0.299241i −0.988743 0.149621i \(-0.952195\pi\)
0.988743 0.149621i \(-0.0478052\pi\)
\(138\) 331.259i 0.204338i
\(139\) 202.400 0.123506 0.0617531 0.998091i \(-0.480331\pi\)
0.0617531 + 0.998091i \(0.480331\pi\)
\(140\) 0 0
\(141\) 1259.13 0.752039
\(142\) 1061.16i 0.627119i
\(143\) 1147.74i 0.671180i
\(144\) −436.395 −0.252543
\(145\) 0 0
\(146\) 821.874 0.465882
\(147\) − 500.488i − 0.280813i
\(148\) 1145.59i 0.636262i
\(149\) 739.957 0.406843 0.203422 0.979091i \(-0.434794\pi\)
0.203422 + 0.979091i \(0.434794\pi\)
\(150\) 0 0
\(151\) −1278.96 −0.689274 −0.344637 0.938736i \(-0.611998\pi\)
−0.344637 + 0.938736i \(0.611998\pi\)
\(152\) − 586.806i − 0.313133i
\(153\) 661.560i 0.349568i
\(154\) 1012.16 0.529624
\(155\) 0 0
\(156\) 2544.03 1.30568
\(157\) − 713.690i − 0.362794i −0.983410 0.181397i \(-0.941938\pi\)
0.983410 0.181397i \(-0.0580619\pi\)
\(158\) 480.500i 0.241940i
\(159\) 1412.17 0.704354
\(160\) 0 0
\(161\) −317.349 −0.155345
\(162\) 115.959i 0.0562382i
\(163\) 215.300i 0.103458i 0.998661 + 0.0517288i \(0.0164731\pi\)
−0.998661 + 0.0517288i \(0.983527\pi\)
\(164\) −102.726 −0.0489118
\(165\) 0 0
\(166\) −5265.64 −2.46201
\(167\) − 4086.64i − 1.89362i −0.321800 0.946808i \(-0.604288\pi\)
0.321800 0.946808i \(-0.395712\pi\)
\(168\) − 653.729i − 0.300216i
\(169\) −2525.04 −1.14931
\(170\) 0 0
\(171\) −659.842 −0.295084
\(172\) 1652.23i 0.732450i
\(173\) 858.878i 0.377453i 0.982030 + 0.188726i \(0.0604359\pi\)
−0.982030 + 0.188726i \(0.939564\pi\)
\(174\) 597.460 0.260306
\(175\) 0 0
\(176\) 448.643 0.192146
\(177\) − 1446.38i − 0.614217i
\(178\) 654.151i 0.275453i
\(179\) −1668.46 −0.696683 −0.348342 0.937368i \(-0.613255\pi\)
−0.348342 + 0.937368i \(0.613255\pi\)
\(180\) 0 0
\(181\) −347.888 −0.142864 −0.0714319 0.997445i \(-0.522757\pi\)
−0.0714319 + 0.997445i \(0.522757\pi\)
\(182\) 4164.24i 1.69601i
\(183\) − 241.602i − 0.0975942i
\(184\) 332.307 0.133141
\(185\) 0 0
\(186\) 3375.22 1.33055
\(187\) − 680.128i − 0.265967i
\(188\) − 4334.83i − 1.68165i
\(189\) −1956.75 −0.753083
\(190\) 0 0
\(191\) 2316.47 0.877559 0.438780 0.898595i \(-0.355411\pi\)
0.438780 + 0.898595i \(0.355411\pi\)
\(192\) − 2659.16i − 0.999524i
\(193\) 1530.07i 0.570658i 0.958430 + 0.285329i \(0.0921028\pi\)
−0.958430 + 0.285329i \(0.907897\pi\)
\(194\) −8035.94 −2.97395
\(195\) 0 0
\(196\) −1723.05 −0.627932
\(197\) 1798.69i 0.650513i 0.945626 + 0.325257i \(0.105451\pi\)
−0.945626 + 0.325257i \(0.894549\pi\)
\(198\) 1191.78i 0.427759i
\(199\) −3231.92 −1.15128 −0.575640 0.817703i \(-0.695247\pi\)
−0.575640 + 0.817703i \(0.695247\pi\)
\(200\) 0 0
\(201\) 804.842 0.282434
\(202\) 2761.67i 0.961931i
\(203\) 572.372i 0.197895i
\(204\) −1507.54 −0.517398
\(205\) 0 0
\(206\) 6929.09 2.34356
\(207\) − 373.667i − 0.125467i
\(208\) 1845.81i 0.615308i
\(209\) 678.362 0.224513
\(210\) 0 0
\(211\) −5199.79 −1.69653 −0.848266 0.529570i \(-0.822353\pi\)
−0.848266 + 0.529570i \(0.822353\pi\)
\(212\) − 4861.72i − 1.57502i
\(213\) 792.314i 0.254875i
\(214\) −5504.07 −1.75818
\(215\) 0 0
\(216\) 2048.98 0.645443
\(217\) 3233.49i 1.01154i
\(218\) − 5583.99i − 1.73484i
\(219\) 613.649 0.189345
\(220\) 0 0
\(221\) 2798.19 0.851704
\(222\) 1461.46i 0.441833i
\(223\) 3144.43i 0.944246i 0.881533 + 0.472123i \(0.156512\pi\)
−0.881533 + 0.472123i \(0.843488\pi\)
\(224\) 3222.59 0.961242
\(225\) 0 0
\(226\) 6454.06 1.89964
\(227\) 262.640i 0.0767931i 0.999263 + 0.0383966i \(0.0122250\pi\)
−0.999263 + 0.0383966i \(0.987775\pi\)
\(228\) − 1503.63i − 0.436756i
\(229\) 5559.69 1.60434 0.802172 0.597093i \(-0.203678\pi\)
0.802172 + 0.597093i \(0.203678\pi\)
\(230\) 0 0
\(231\) 755.726 0.215251
\(232\) − 599.351i − 0.169609i
\(233\) − 4405.25i − 1.23862i −0.785148 0.619308i \(-0.787413\pi\)
0.785148 0.619308i \(-0.212587\pi\)
\(234\) −4903.25 −1.36981
\(235\) 0 0
\(236\) −4979.49 −1.37346
\(237\) 358.764i 0.0983300i
\(238\) − 2467.65i − 0.672075i
\(239\) −6444.99 −1.74432 −0.872158 0.489224i \(-0.837280\pi\)
−0.872158 + 0.489224i \(0.837280\pi\)
\(240\) 0 0
\(241\) −6708.71 −1.79314 −0.896569 0.442905i \(-0.853948\pi\)
−0.896569 + 0.442905i \(0.853948\pi\)
\(242\) 4620.52i 1.22735i
\(243\) − 3742.47i − 0.987981i
\(244\) −831.772 −0.218232
\(245\) 0 0
\(246\) −131.051 −0.0339653
\(247\) 2790.92i 0.718956i
\(248\) − 3385.90i − 0.866955i
\(249\) −3931.57 −1.00062
\(250\) 0 0
\(251\) −289.397 −0.0727752 −0.0363876 0.999338i \(-0.511585\pi\)
−0.0363876 + 0.999338i \(0.511585\pi\)
\(252\) 2530.73i 0.632623i
\(253\) 384.155i 0.0954609i
\(254\) 1957.12 0.483468
\(255\) 0 0
\(256\) −948.473 −0.231561
\(257\) 4040.24i 0.980635i 0.871544 + 0.490318i \(0.163119\pi\)
−0.871544 + 0.490318i \(0.836881\pi\)
\(258\) 2107.80i 0.508628i
\(259\) −1400.09 −0.335898
\(260\) 0 0
\(261\) −673.948 −0.159833
\(262\) − 2769.95i − 0.653160i
\(263\) − 5250.65i − 1.23106i −0.788114 0.615530i \(-0.788942\pi\)
0.788114 0.615530i \(-0.211058\pi\)
\(264\) −791.347 −0.184485
\(265\) 0 0
\(266\) 2461.24 0.567324
\(267\) 488.419i 0.111951i
\(268\) − 2770.86i − 0.631556i
\(269\) 2417.55 0.547958 0.273979 0.961736i \(-0.411660\pi\)
0.273979 + 0.961736i \(0.411660\pi\)
\(270\) 0 0
\(271\) −6593.83 −1.47803 −0.739016 0.673688i \(-0.764709\pi\)
−0.739016 + 0.673688i \(0.764709\pi\)
\(272\) − 1093.79i − 0.243827i
\(273\) 3109.21i 0.689297i
\(274\) −2107.48 −0.464663
\(275\) 0 0
\(276\) 851.501 0.185704
\(277\) − 2826.91i − 0.613186i −0.951841 0.306593i \(-0.900811\pi\)
0.951841 0.306593i \(-0.0991891\pi\)
\(278\) − 888.941i − 0.191781i
\(279\) −3807.32 −0.816983
\(280\) 0 0
\(281\) −2036.17 −0.432269 −0.216134 0.976364i \(-0.569345\pi\)
−0.216134 + 0.976364i \(0.569345\pi\)
\(282\) − 5530.08i − 1.16777i
\(283\) 4470.17i 0.938954i 0.882945 + 0.469477i \(0.155558\pi\)
−0.882945 + 0.469477i \(0.844442\pi\)
\(284\) 2727.73 0.569932
\(285\) 0 0
\(286\) 5040.87 1.04221
\(287\) − 125.548i − 0.0258217i
\(288\) 3794.48i 0.776362i
\(289\) 3254.85 0.662497
\(290\) 0 0
\(291\) −6000.00 −1.20868
\(292\) − 2112.63i − 0.423398i
\(293\) − 9457.29i − 1.88567i −0.333263 0.942834i \(-0.608150\pi\)
0.333263 0.942834i \(-0.391850\pi\)
\(294\) −2198.14 −0.436048
\(295\) 0 0
\(296\) 1466.09 0.287887
\(297\) 2368.67i 0.462776i
\(298\) − 3249.89i − 0.631749i
\(299\) −1580.49 −0.305693
\(300\) 0 0
\(301\) −2019.29 −0.386678
\(302\) 5617.19i 1.07031i
\(303\) 2061.99i 0.390951i
\(304\) 1090.95 0.205824
\(305\) 0 0
\(306\) 2905.57 0.542812
\(307\) 4576.54i 0.850804i 0.905004 + 0.425402i \(0.139867\pi\)
−0.905004 + 0.425402i \(0.860133\pi\)
\(308\) − 2601.76i − 0.481328i
\(309\) 5173.58 0.952475
\(310\) 0 0
\(311\) −3691.20 −0.673018 −0.336509 0.941680i \(-0.609246\pi\)
−0.336509 + 0.941680i \(0.609246\pi\)
\(312\) − 3255.77i − 0.590774i
\(313\) − 9771.57i − 1.76461i −0.470682 0.882303i \(-0.655992\pi\)
0.470682 0.882303i \(-0.344008\pi\)
\(314\) −3134.53 −0.563349
\(315\) 0 0
\(316\) 1235.13 0.219878
\(317\) − 9653.06i − 1.71032i −0.518368 0.855158i \(-0.673460\pi\)
0.518368 0.855158i \(-0.326540\pi\)
\(318\) − 6202.24i − 1.09372i
\(319\) 692.864 0.121608
\(320\) 0 0
\(321\) −4109.60 −0.714565
\(322\) 1393.79i 0.241221i
\(323\) − 1653.85i − 0.284900i
\(324\) 298.073 0.0511098
\(325\) 0 0
\(326\) 945.597 0.160650
\(327\) − 4169.26i − 0.705079i
\(328\) 131.465i 0.0221310i
\(329\) 5297.86 0.887783
\(330\) 0 0
\(331\) 2920.59 0.484985 0.242492 0.970153i \(-0.422035\pi\)
0.242492 + 0.970153i \(0.422035\pi\)
\(332\) 13535.4i 2.23750i
\(333\) − 1648.56i − 0.271293i
\(334\) −17948.5 −2.94042
\(335\) 0 0
\(336\) 1215.37 0.197333
\(337\) − 7794.72i − 1.25996i −0.776613 0.629978i \(-0.783064\pi\)
0.776613 0.629978i \(-0.216936\pi\)
\(338\) 11090.0i 1.78466i
\(339\) 4818.90 0.772055
\(340\) 0 0
\(341\) 3914.18 0.621597
\(342\) 2898.03i 0.458208i
\(343\) − 6838.47i − 1.07651i
\(344\) 2114.47 0.331409
\(345\) 0 0
\(346\) 3772.19 0.586111
\(347\) − 7025.93i − 1.08695i −0.839425 0.543475i \(-0.817108\pi\)
0.839425 0.543475i \(-0.182892\pi\)
\(348\) − 1535.77i − 0.236569i
\(349\) −6338.40 −0.972168 −0.486084 0.873912i \(-0.661575\pi\)
−0.486084 + 0.873912i \(0.661575\pi\)
\(350\) 0 0
\(351\) −9745.22 −1.48194
\(352\) − 3900.98i − 0.590691i
\(353\) − 8834.31i − 1.33202i −0.745943 0.666010i \(-0.768001\pi\)
0.745943 0.666010i \(-0.231999\pi\)
\(354\) −6352.49 −0.953760
\(355\) 0 0
\(356\) 1681.50 0.250335
\(357\) − 1842.46i − 0.273147i
\(358\) 7327.86i 1.08181i
\(359\) 917.755 0.134923 0.0674613 0.997722i \(-0.478510\pi\)
0.0674613 + 0.997722i \(0.478510\pi\)
\(360\) 0 0
\(361\) −5209.45 −0.759505
\(362\) 1527.93i 0.221840i
\(363\) 3449.89i 0.498822i
\(364\) 10704.2 1.54135
\(365\) 0 0
\(366\) −1061.12 −0.151545
\(367\) − 5451.98i − 0.775453i −0.921774 0.387727i \(-0.873260\pi\)
0.921774 0.387727i \(-0.126740\pi\)
\(368\) 617.804i 0.0875142i
\(369\) 147.828 0.0208553
\(370\) 0 0
\(371\) 5941.80 0.831491
\(372\) − 8676.01i − 1.20922i
\(373\) 9583.17i 1.33029i 0.746715 + 0.665144i \(0.231630\pi\)
−0.746715 + 0.665144i \(0.768370\pi\)
\(374\) −2987.12 −0.412996
\(375\) 0 0
\(376\) −5547.58 −0.760890
\(377\) 2850.59i 0.389424i
\(378\) 8594.05i 1.16939i
\(379\) −5560.92 −0.753681 −0.376841 0.926278i \(-0.622990\pi\)
−0.376841 + 0.926278i \(0.622990\pi\)
\(380\) 0 0
\(381\) 1461.28 0.196493
\(382\) − 10173.9i − 1.36268i
\(383\) − 4847.50i − 0.646725i −0.946275 0.323363i \(-0.895187\pi\)
0.946275 0.323363i \(-0.104813\pi\)
\(384\) −5551.82 −0.737800
\(385\) 0 0
\(386\) 6720.07 0.886120
\(387\) − 2377.65i − 0.312306i
\(388\) 20656.4i 2.70276i
\(389\) 11572.6 1.50837 0.754184 0.656663i \(-0.228033\pi\)
0.754184 + 0.656663i \(0.228033\pi\)
\(390\) 0 0
\(391\) 936.570 0.121137
\(392\) 2205.10i 0.284118i
\(393\) − 2068.17i − 0.265459i
\(394\) 7899.83 1.01012
\(395\) 0 0
\(396\) 3063.48 0.388752
\(397\) 5767.82i 0.729165i 0.931171 + 0.364582i \(0.118788\pi\)
−0.931171 + 0.364582i \(0.881212\pi\)
\(398\) 14194.6i 1.78771i
\(399\) 1837.68 0.230574
\(400\) 0 0
\(401\) 14990.1 1.86675 0.933377 0.358897i \(-0.116847\pi\)
0.933377 + 0.358897i \(0.116847\pi\)
\(402\) − 3534.87i − 0.438565i
\(403\) 16103.8i 1.99053i
\(404\) 7098.87 0.874213
\(405\) 0 0
\(406\) 2513.86 0.307292
\(407\) 1694.83i 0.206412i
\(408\) 1929.31i 0.234105i
\(409\) 1487.95 0.179888 0.0899442 0.995947i \(-0.471331\pi\)
0.0899442 + 0.995947i \(0.471331\pi\)
\(410\) 0 0
\(411\) −1573.55 −0.188850
\(412\) − 17811.2i − 2.12985i
\(413\) − 6085.74i − 0.725084i
\(414\) −1641.14 −0.194826
\(415\) 0 0
\(416\) 16049.5 1.89156
\(417\) − 663.725i − 0.0779442i
\(418\) − 2979.36i − 0.348625i
\(419\) 2739.23 0.319380 0.159690 0.987167i \(-0.448951\pi\)
0.159690 + 0.987167i \(0.448951\pi\)
\(420\) 0 0
\(421\) 2205.79 0.255353 0.127676 0.991816i \(-0.459248\pi\)
0.127676 + 0.991816i \(0.459248\pi\)
\(422\) 22837.5i 2.63439i
\(423\) 6238.05i 0.717032i
\(424\) −6221.87 −0.712644
\(425\) 0 0
\(426\) 3479.84 0.395772
\(427\) − 1016.56i − 0.115210i
\(428\) 14148.2i 1.59785i
\(429\) 3763.75 0.423579
\(430\) 0 0
\(431\) 12377.3 1.38329 0.691643 0.722240i \(-0.256887\pi\)
0.691643 + 0.722240i \(0.256887\pi\)
\(432\) 3809.34i 0.424252i
\(433\) − 11610.5i − 1.28860i −0.764774 0.644299i \(-0.777149\pi\)
0.764774 0.644299i \(-0.222851\pi\)
\(434\) 14201.5 1.57072
\(435\) 0 0
\(436\) −14353.7 −1.57664
\(437\) 934.138i 0.102256i
\(438\) − 2695.15i − 0.294016i
\(439\) 10585.8 1.15087 0.575433 0.817849i \(-0.304833\pi\)
0.575433 + 0.817849i \(0.304833\pi\)
\(440\) 0 0
\(441\) 2479.55 0.267741
\(442\) − 12289.6i − 1.32253i
\(443\) 13572.0i 1.45559i 0.685794 + 0.727796i \(0.259455\pi\)
−0.685794 + 0.727796i \(0.740545\pi\)
\(444\) 3756.69 0.401542
\(445\) 0 0
\(446\) 13810.3 1.46623
\(447\) − 2426.52i − 0.256757i
\(448\) − 11188.6i − 1.17994i
\(449\) −8401.73 −0.883079 −0.441539 0.897242i \(-0.645567\pi\)
−0.441539 + 0.897242i \(0.645567\pi\)
\(450\) 0 0
\(451\) −151.977 −0.0158677
\(452\) − 16590.2i − 1.72641i
\(453\) 4194.06i 0.434998i
\(454\) 1153.52 0.119245
\(455\) 0 0
\(456\) −1924.30 −0.197617
\(457\) 10406.0i 1.06515i 0.846384 + 0.532573i \(0.178775\pi\)
−0.846384 + 0.532573i \(0.821225\pi\)
\(458\) − 24418.2i − 2.49124i
\(459\) 5774.83 0.587246
\(460\) 0 0
\(461\) 11789.6 1.19110 0.595548 0.803320i \(-0.296935\pi\)
0.595548 + 0.803320i \(0.296935\pi\)
\(462\) − 3319.15i − 0.334244i
\(463\) − 15713.0i − 1.57721i −0.614902 0.788604i \(-0.710804\pi\)
0.614902 0.788604i \(-0.289196\pi\)
\(464\) 1114.27 0.111485
\(465\) 0 0
\(466\) −19347.9 −1.92333
\(467\) 5213.88i 0.516637i 0.966060 + 0.258319i \(0.0831685\pi\)
−0.966060 + 0.258319i \(0.916832\pi\)
\(468\) 12603.8i 1.24490i
\(469\) 3386.43 0.333413
\(470\) 0 0
\(471\) −2340.38 −0.228958
\(472\) 6372.59i 0.621446i
\(473\) 2444.38i 0.237617i
\(474\) 1575.69 0.152687
\(475\) 0 0
\(476\) −6343.10 −0.610789
\(477\) 6996.27i 0.671566i
\(478\) 28306.4i 2.70858i
\(479\) 7912.84 0.754796 0.377398 0.926051i \(-0.376819\pi\)
0.377398 + 0.926051i \(0.376819\pi\)
\(480\) 0 0
\(481\) −6972.89 −0.660991
\(482\) 29464.6i 2.78439i
\(483\) 1040.67i 0.0980377i
\(484\) 11877.1 1.11543
\(485\) 0 0
\(486\) −16436.9 −1.53414
\(487\) 2710.59i 0.252215i 0.992017 + 0.126108i \(0.0402484\pi\)
−0.992017 + 0.126108i \(0.959752\pi\)
\(488\) 1064.47i 0.0987428i
\(489\) 706.026 0.0652917
\(490\) 0 0
\(491\) −17283.4 −1.58858 −0.794288 0.607541i \(-0.792156\pi\)
−0.794288 + 0.607541i \(0.792156\pi\)
\(492\) 336.866i 0.0308681i
\(493\) − 1689.20i − 0.154316i
\(494\) 12257.7 1.11640
\(495\) 0 0
\(496\) 6294.84 0.569853
\(497\) 3333.72i 0.300881i
\(498\) 17267.5i 1.55376i
\(499\) −16521.7 −1.48219 −0.741096 0.671399i \(-0.765694\pi\)
−0.741096 + 0.671399i \(0.765694\pi\)
\(500\) 0 0
\(501\) −13401.2 −1.19505
\(502\) 1271.03i 0.113006i
\(503\) − 16269.1i − 1.44215i −0.692857 0.721075i \(-0.743648\pi\)
0.692857 0.721075i \(-0.256352\pi\)
\(504\) 3238.75 0.286241
\(505\) 0 0
\(506\) 1687.21 0.148232
\(507\) 8280.29i 0.725326i
\(508\) − 5030.80i − 0.439381i
\(509\) 9299.84 0.809839 0.404920 0.914352i \(-0.367299\pi\)
0.404920 + 0.914352i \(0.367299\pi\)
\(510\) 0 0
\(511\) 2581.97 0.223522
\(512\) − 9378.36i − 0.809509i
\(513\) 5759.84i 0.495717i
\(514\) 17744.7 1.52274
\(515\) 0 0
\(516\) 5418.11 0.462246
\(517\) − 6413.13i − 0.545550i
\(518\) 6149.21i 0.521584i
\(519\) 2816.49 0.238209
\(520\) 0 0
\(521\) −23076.6 −1.94050 −0.970252 0.242096i \(-0.922165\pi\)
−0.970252 + 0.242096i \(0.922165\pi\)
\(522\) 2959.98i 0.248189i
\(523\) − 10348.3i − 0.865200i −0.901586 0.432600i \(-0.857596\pi\)
0.901586 0.432600i \(-0.142404\pi\)
\(524\) −7120.17 −0.593599
\(525\) 0 0
\(526\) −23060.8 −1.91160
\(527\) − 9542.78i − 0.788785i
\(528\) − 1471.22i − 0.121263i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 7165.75 0.585625
\(532\) − 6326.63i − 0.515590i
\(533\) − 625.265i − 0.0508128i
\(534\) 2145.14 0.173837
\(535\) 0 0
\(536\) −3546.05 −0.285758
\(537\) 5471.32i 0.439674i
\(538\) − 10617.9i − 0.850872i
\(539\) −2549.15 −0.203710
\(540\) 0 0
\(541\) 2078.43 0.165173 0.0825867 0.996584i \(-0.473682\pi\)
0.0825867 + 0.996584i \(0.473682\pi\)
\(542\) 28960.1i 2.29510i
\(543\) 1140.82i 0.0901607i
\(544\) −9510.61 −0.749566
\(545\) 0 0
\(546\) 13655.7 1.07035
\(547\) − 16340.5i − 1.27727i −0.769509 0.638637i \(-0.779499\pi\)
0.769509 0.638637i \(-0.220501\pi\)
\(548\) 5417.29i 0.422291i
\(549\) 1196.96 0.0930512
\(550\) 0 0
\(551\) 1684.82 0.130264
\(552\) − 1089.72i − 0.0840249i
\(553\) 1509.52i 0.116079i
\(554\) −12415.8 −0.952159
\(555\) 0 0
\(556\) −2285.03 −0.174293
\(557\) 4738.43i 0.360455i 0.983625 + 0.180228i \(0.0576835\pi\)
−0.983625 + 0.180228i \(0.942317\pi\)
\(558\) 16721.7i 1.26862i
\(559\) −10056.7 −0.760917
\(560\) 0 0
\(561\) −2230.32 −0.167851
\(562\) 8942.84i 0.671230i
\(563\) − 19003.9i − 1.42259i −0.702894 0.711294i \(-0.748109\pi\)
0.702894 0.711294i \(-0.251891\pi\)
\(564\) −14215.1 −1.06128
\(565\) 0 0
\(566\) 19633.0 1.45801
\(567\) 364.293i 0.0269821i
\(568\) − 3490.86i − 0.257875i
\(569\) 2789.77 0.205542 0.102771 0.994705i \(-0.467229\pi\)
0.102771 + 0.994705i \(0.467229\pi\)
\(570\) 0 0
\(571\) −1154.31 −0.0845998 −0.0422999 0.999105i \(-0.513468\pi\)
−0.0422999 + 0.999105i \(0.513468\pi\)
\(572\) − 12957.6i − 0.947173i
\(573\) − 7596.33i − 0.553824i
\(574\) −551.404 −0.0400961
\(575\) 0 0
\(576\) 13174.2 0.952996
\(577\) − 2360.98i − 0.170345i −0.996366 0.0851723i \(-0.972856\pi\)
0.996366 0.0851723i \(-0.0271441\pi\)
\(578\) − 14295.3i − 1.02873i
\(579\) 5017.52 0.360140
\(580\) 0 0
\(581\) −16542.4 −1.18123
\(582\) 26352.0i 1.87685i
\(583\) − 7192.63i − 0.510958i
\(584\) −2703.68 −0.191573
\(585\) 0 0
\(586\) −41536.4 −2.92808
\(587\) − 6641.99i − 0.467026i −0.972354 0.233513i \(-0.924978\pi\)
0.972354 0.233513i \(-0.0750221\pi\)
\(588\) 5650.33i 0.396285i
\(589\) 9518.00 0.665844
\(590\) 0 0
\(591\) 5898.38 0.410536
\(592\) 2725.65i 0.189229i
\(593\) − 3879.68i − 0.268667i −0.990936 0.134334i \(-0.957111\pi\)
0.990936 0.134334i \(-0.0428893\pi\)
\(594\) 10403.2 0.718601
\(595\) 0 0
\(596\) −8353.86 −0.574140
\(597\) 10598.3i 0.726568i
\(598\) 6941.52i 0.474682i
\(599\) 8316.59 0.567290 0.283645 0.958929i \(-0.408456\pi\)
0.283645 + 0.958929i \(0.408456\pi\)
\(600\) 0 0
\(601\) 14526.1 0.985908 0.492954 0.870055i \(-0.335917\pi\)
0.492954 + 0.870055i \(0.335917\pi\)
\(602\) 8868.72i 0.600435i
\(603\) 3987.41i 0.269286i
\(604\) 14439.0 0.972707
\(605\) 0 0
\(606\) 9056.25 0.607071
\(607\) 12982.3i 0.868097i 0.900890 + 0.434049i \(0.142915\pi\)
−0.900890 + 0.434049i \(0.857085\pi\)
\(608\) − 9485.91i − 0.632738i
\(609\) 1876.96 0.124890
\(610\) 0 0
\(611\) 26385.0 1.74701
\(612\) − 7468.78i − 0.493313i
\(613\) − 23179.5i − 1.52726i −0.645653 0.763631i \(-0.723415\pi\)
0.645653 0.763631i \(-0.276585\pi\)
\(614\) 20100.2 1.32113
\(615\) 0 0
\(616\) −3329.65 −0.217785
\(617\) 6322.17i 0.412514i 0.978498 + 0.206257i \(0.0661283\pi\)
−0.978498 + 0.206257i \(0.933872\pi\)
\(618\) − 22722.4i − 1.47901i
\(619\) −10500.8 −0.681849 −0.340924 0.940091i \(-0.610740\pi\)
−0.340924 + 0.940091i \(0.610740\pi\)
\(620\) 0 0
\(621\) −3261.78 −0.210774
\(622\) 16211.7i 1.04507i
\(623\) 2055.06i 0.132158i
\(624\) 6052.91 0.388318
\(625\) 0 0
\(626\) −42916.7 −2.74009
\(627\) − 2224.53i − 0.141689i
\(628\) 8057.31i 0.511977i
\(629\) 4132.00 0.261930
\(630\) 0 0
\(631\) 15399.7 0.971554 0.485777 0.874083i \(-0.338537\pi\)
0.485777 + 0.874083i \(0.338537\pi\)
\(632\) − 1580.68i − 0.0994872i
\(633\) 17051.5i 1.07067i
\(634\) −42396.2 −2.65579
\(635\) 0 0
\(636\) −15942.9 −0.993989
\(637\) − 10487.7i − 0.652337i
\(638\) − 3043.06i − 0.188833i
\(639\) −3925.34 −0.243011
\(640\) 0 0
\(641\) 2873.00 0.177030 0.0885152 0.996075i \(-0.471788\pi\)
0.0885152 + 0.996075i \(0.471788\pi\)
\(642\) 18049.3i 1.10958i
\(643\) − 15141.3i − 0.928638i −0.885668 0.464319i \(-0.846299\pi\)
0.885668 0.464319i \(-0.153701\pi\)
\(644\) 3582.75 0.219224
\(645\) 0 0
\(646\) −7263.70 −0.442394
\(647\) 5086.61i 0.309081i 0.987986 + 0.154540i \(0.0493897\pi\)
−0.987986 + 0.154540i \(0.950610\pi\)
\(648\) − 381.464i − 0.0231255i
\(649\) −7366.87 −0.445570
\(650\) 0 0
\(651\) 10603.5 0.638376
\(652\) − 2430.66i − 0.146000i
\(653\) 15214.0i 0.911744i 0.890045 + 0.455872i \(0.150673\pi\)
−0.890045 + 0.455872i \(0.849327\pi\)
\(654\) −18311.4 −1.09485
\(655\) 0 0
\(656\) −244.412 −0.0145468
\(657\) 3040.18i 0.180531i
\(658\) − 23268.2i − 1.37855i
\(659\) −20029.9 −1.18400 −0.591999 0.805938i \(-0.701661\pi\)
−0.591999 + 0.805938i \(0.701661\pi\)
\(660\) 0 0
\(661\) −92.3018 −0.00543135 −0.00271568 0.999996i \(-0.500864\pi\)
−0.00271568 + 0.999996i \(0.500864\pi\)
\(662\) − 12827.2i − 0.753087i
\(663\) − 9176.02i − 0.537507i
\(664\) 17322.1 1.01239
\(665\) 0 0
\(666\) −7240.48 −0.421265
\(667\) 954.107i 0.0553871i
\(668\) 46136.7i 2.67228i
\(669\) 10311.4 0.595910
\(670\) 0 0
\(671\) −1230.56 −0.0707975
\(672\) − 10567.7i − 0.606635i
\(673\) − 15452.2i − 0.885048i −0.896757 0.442524i \(-0.854083\pi\)
0.896757 0.442524i \(-0.145917\pi\)
\(674\) −34234.4 −1.95647
\(675\) 0 0
\(676\) 28506.8 1.62192
\(677\) 19199.7i 1.08996i 0.838449 + 0.544980i \(0.183463\pi\)
−0.838449 + 0.544980i \(0.816537\pi\)
\(678\) − 21164.6i − 1.19885i
\(679\) −25245.4 −1.42685
\(680\) 0 0
\(681\) 861.268 0.0484638
\(682\) − 17191.1i − 0.965220i
\(683\) 20090.5i 1.12554i 0.826614 + 0.562769i \(0.190264\pi\)
−0.826614 + 0.562769i \(0.809736\pi\)
\(684\) 7449.38 0.416424
\(685\) 0 0
\(686\) −30034.6 −1.67161
\(687\) − 18231.7i − 1.01250i
\(688\) 3931.09i 0.217836i
\(689\) 29592.0 1.63623
\(690\) 0 0
\(691\) 17376.4 0.956629 0.478315 0.878189i \(-0.341248\pi\)
0.478315 + 0.878189i \(0.341248\pi\)
\(692\) − 9696.43i − 0.532663i
\(693\) 3744.07i 0.205231i
\(694\) −30857.9 −1.68782
\(695\) 0 0
\(696\) −1965.43 −0.107040
\(697\) 370.520i 0.0201355i
\(698\) 27838.2i 1.50959i
\(699\) −14446.0 −0.781686
\(700\) 0 0
\(701\) 11240.9 0.605651 0.302825 0.953046i \(-0.402070\pi\)
0.302825 + 0.953046i \(0.402070\pi\)
\(702\) 42801.0i 2.30117i
\(703\) 4121.27i 0.221105i
\(704\) −13544.0 −0.725082
\(705\) 0 0
\(706\) −38800.3 −2.06837
\(707\) 8675.96i 0.461518i
\(708\) 16329.1i 0.866787i
\(709\) 35667.3 1.88930 0.944649 0.328082i \(-0.106402\pi\)
0.944649 + 0.328082i \(0.106402\pi\)
\(710\) 0 0
\(711\) −1777.41 −0.0937527
\(712\) − 2151.93i − 0.113268i
\(713\) 5390.02i 0.283111i
\(714\) −8092.08 −0.424144
\(715\) 0 0
\(716\) 18836.3 0.983164
\(717\) 21134.9i 1.10083i
\(718\) − 4030.78i − 0.209509i
\(719\) 25533.1 1.32437 0.662187 0.749339i \(-0.269629\pi\)
0.662187 + 0.749339i \(0.269629\pi\)
\(720\) 0 0
\(721\) 21768.2 1.12440
\(722\) 22879.9i 1.17936i
\(723\) 21999.7i 1.13164i
\(724\) 3927.54 0.201610
\(725\) 0 0
\(726\) 15151.9 0.774574
\(727\) 27933.1i 1.42501i 0.701668 + 0.712504i \(0.252439\pi\)
−0.701668 + 0.712504i \(0.747561\pi\)
\(728\) − 13698.9i − 0.697410i
\(729\) −12985.4 −0.659728
\(730\) 0 0
\(731\) 5959.40 0.301527
\(732\) 2727.60i 0.137726i
\(733\) 29359.9i 1.47945i 0.672912 + 0.739723i \(0.265043\pi\)
−0.672912 + 0.739723i \(0.734957\pi\)
\(734\) −23945.1 −1.20413
\(735\) 0 0
\(736\) 5371.85 0.269034
\(737\) − 4099.32i − 0.204885i
\(738\) − 649.260i − 0.0323843i
\(739\) 29310.8 1.45902 0.729510 0.683970i \(-0.239748\pi\)
0.729510 + 0.683970i \(0.239748\pi\)
\(740\) 0 0
\(741\) 9152.19 0.453730
\(742\) − 26096.4i − 1.29114i
\(743\) − 17147.7i − 0.846688i −0.905969 0.423344i \(-0.860856\pi\)
0.905969 0.423344i \(-0.139144\pi\)
\(744\) −11103.3 −0.547132
\(745\) 0 0
\(746\) 42089.3 2.06568
\(747\) − 19478.1i − 0.954037i
\(748\) 7678.41i 0.375335i
\(749\) −17291.4 −0.843545
\(750\) 0 0
\(751\) −37105.7 −1.80294 −0.901469 0.432843i \(-0.857511\pi\)
−0.901469 + 0.432843i \(0.857511\pi\)
\(752\) − 10313.7i − 0.500136i
\(753\) 949.011i 0.0459281i
\(754\) 12519.8 0.604699
\(755\) 0 0
\(756\) 22091.0 1.06276
\(757\) − 26843.4i − 1.28883i −0.764678 0.644413i \(-0.777102\pi\)
0.764678 0.644413i \(-0.222898\pi\)
\(758\) 24423.5i 1.17032i
\(759\) 1259.75 0.0602449
\(760\) 0 0
\(761\) −38055.7 −1.81277 −0.906384 0.422455i \(-0.861168\pi\)
−0.906384 + 0.422455i \(0.861168\pi\)
\(762\) − 6417.94i − 0.305115i
\(763\) − 17542.5i − 0.832347i
\(764\) −26152.1 −1.23842
\(765\) 0 0
\(766\) −21290.2 −1.00424
\(767\) − 30308.8i − 1.42684i
\(768\) 3110.30i 0.146137i
\(769\) −11248.9 −0.527496 −0.263748 0.964592i \(-0.584959\pi\)
−0.263748 + 0.964592i \(0.584959\pi\)
\(770\) 0 0
\(771\) 13249.0 0.618875
\(772\) − 17274.0i − 0.805315i
\(773\) 22704.0i 1.05641i 0.849117 + 0.528205i \(0.177135\pi\)
−0.849117 + 0.528205i \(0.822865\pi\)
\(774\) −10442.6 −0.484951
\(775\) 0 0
\(776\) 26435.4 1.22291
\(777\) 4591.28i 0.211984i
\(778\) − 50826.9i − 2.34220i
\(779\) −369.558 −0.0169972
\(780\) 0 0
\(781\) 4035.51 0.184894
\(782\) − 4113.41i − 0.188101i
\(783\) 5882.97i 0.268506i
\(784\) −4099.58 −0.186752
\(785\) 0 0
\(786\) −9083.41 −0.412207
\(787\) − 24801.6i − 1.12336i −0.827356 0.561678i \(-0.810156\pi\)
0.827356 0.561678i \(-0.189844\pi\)
\(788\) − 20306.5i − 0.918008i
\(789\) −17218.3 −0.776917
\(790\) 0 0
\(791\) 20275.9 0.911412
\(792\) − 3920.55i − 0.175897i
\(793\) − 5062.77i − 0.226714i
\(794\) 25332.2 1.13225
\(795\) 0 0
\(796\) 36487.2 1.62469
\(797\) − 10289.9i − 0.457323i −0.973506 0.228662i \(-0.926565\pi\)
0.973506 0.228662i \(-0.0734349\pi\)
\(798\) − 8071.07i − 0.358036i
\(799\) −15635.2 −0.692284
\(800\) 0 0
\(801\) −2419.76 −0.106739
\(802\) − 65836.4i − 2.89871i
\(803\) − 3125.51i − 0.137356i
\(804\) −9086.38 −0.398572
\(805\) 0 0
\(806\) 70727.7 3.09091
\(807\) − 7927.80i − 0.345814i
\(808\) − 9084.91i − 0.395552i
\(809\) 17890.5 0.777500 0.388750 0.921343i \(-0.372907\pi\)
0.388750 + 0.921343i \(0.372907\pi\)
\(810\) 0 0
\(811\) −19915.9 −0.862322 −0.431161 0.902275i \(-0.641896\pi\)
−0.431161 + 0.902275i \(0.641896\pi\)
\(812\) − 6461.87i − 0.279270i
\(813\) 21622.9i 0.932779i
\(814\) 7443.70 0.320518
\(815\) 0 0
\(816\) −3586.84 −0.153878
\(817\) 5943.93i 0.254531i
\(818\) − 6535.07i − 0.279332i
\(819\) −15403.9 −0.657211
\(820\) 0 0
\(821\) −13709.3 −0.582776 −0.291388 0.956605i \(-0.594117\pi\)
−0.291388 + 0.956605i \(0.594117\pi\)
\(822\) 6911.01i 0.293247i
\(823\) − 26399.7i − 1.11815i −0.829118 0.559074i \(-0.811157\pi\)
0.829118 0.559074i \(-0.188843\pi\)
\(824\) −22794.3 −0.963684
\(825\) 0 0
\(826\) −26728.6 −1.12591
\(827\) − 18410.9i − 0.774135i −0.922051 0.387067i \(-0.873488\pi\)
0.922051 0.387067i \(-0.126512\pi\)
\(828\) 4218.57i 0.177060i
\(829\) −8828.44 −0.369873 −0.184936 0.982750i \(-0.559208\pi\)
−0.184936 + 0.982750i \(0.559208\pi\)
\(830\) 0 0
\(831\) −9270.20 −0.386979
\(832\) − 55722.8i − 2.32192i
\(833\) 6214.82i 0.258500i
\(834\) −2915.08 −0.121032
\(835\) 0 0
\(836\) −7658.47 −0.316834
\(837\) 33234.5i 1.37246i
\(838\) − 12030.7i − 0.495935i
\(839\) 18062.0 0.743231 0.371616 0.928387i \(-0.378804\pi\)
0.371616 + 0.928387i \(0.378804\pi\)
\(840\) 0 0
\(841\) −22668.2 −0.929442
\(842\) − 9687.81i − 0.396513i
\(843\) 6677.14i 0.272803i
\(844\) 58703.8 2.39416
\(845\) 0 0
\(846\) 27397.5 1.11341
\(847\) 14515.7i 0.588860i
\(848\) − 11567.3i − 0.468423i
\(849\) 14658.9 0.592570
\(850\) 0 0
\(851\) −2333.87 −0.0940116
\(852\) − 8944.95i − 0.359682i
\(853\) − 5289.59i − 0.212324i −0.994349 0.106162i \(-0.966144\pi\)
0.994349 0.106162i \(-0.0338562\pi\)
\(854\) −4464.72 −0.178899
\(855\) 0 0
\(856\) 18106.5 0.722975
\(857\) − 11311.0i − 0.450846i −0.974261 0.225423i \(-0.927624\pi\)
0.974261 0.225423i \(-0.0723764\pi\)
\(858\) − 16530.4i − 0.657736i
\(859\) −2466.99 −0.0979892 −0.0489946 0.998799i \(-0.515602\pi\)
−0.0489946 + 0.998799i \(0.515602\pi\)
\(860\) 0 0
\(861\) −411.704 −0.0162960
\(862\) − 54361.3i − 2.14797i
\(863\) 8715.03i 0.343758i 0.985118 + 0.171879i \(0.0549838\pi\)
−0.985118 + 0.171879i \(0.945016\pi\)
\(864\) 33122.5 1.30422
\(865\) 0 0
\(866\) −50993.1 −2.00094
\(867\) − 10673.5i − 0.418099i
\(868\) − 36504.9i − 1.42749i
\(869\) 1827.30 0.0713313
\(870\) 0 0
\(871\) 16865.5 0.656102
\(872\) 18369.4i 0.713377i
\(873\) − 29725.6i − 1.15242i
\(874\) 4102.73 0.158784
\(875\) 0 0
\(876\) −6927.88 −0.267205
\(877\) − 2707.70i − 0.104256i −0.998640 0.0521280i \(-0.983400\pi\)
0.998640 0.0521280i \(-0.0166004\pi\)
\(878\) − 46492.6i − 1.78707i
\(879\) −31013.0 −1.19004
\(880\) 0 0
\(881\) 50363.6 1.92599 0.962993 0.269527i \(-0.0868675\pi\)
0.962993 + 0.269527i \(0.0868675\pi\)
\(882\) − 10890.2i − 0.415750i
\(883\) 29515.0i 1.12487i 0.826842 + 0.562434i \(0.190135\pi\)
−0.826842 + 0.562434i \(0.809865\pi\)
\(884\) −31590.6 −1.20193
\(885\) 0 0
\(886\) 59608.4 2.26025
\(887\) − 16506.7i − 0.624849i −0.949943 0.312425i \(-0.898859\pi\)
0.949943 0.312425i \(-0.101141\pi\)
\(888\) − 4807.70i − 0.181684i
\(889\) 6148.44 0.231960
\(890\) 0 0
\(891\) 440.981 0.0165807
\(892\) − 35499.5i − 1.33253i
\(893\) − 15594.6i − 0.584383i
\(894\) −10657.3 −0.398694
\(895\) 0 0
\(896\) −23359.7 −0.870974
\(897\) 5182.86i 0.192922i
\(898\) 36900.4i 1.37125i
\(899\) 9721.47 0.360655
\(900\) 0 0
\(901\) −17535.6 −0.648388
\(902\) 667.482i 0.0246394i
\(903\) 6621.80i 0.244031i
\(904\) −21231.6 −0.781142
\(905\) 0 0
\(906\) 18420.3 0.675467
\(907\) − 9107.76i − 0.333427i −0.986005 0.166713i \(-0.946685\pi\)
0.986005 0.166713i \(-0.0533155\pi\)
\(908\) − 2965.12i − 0.108371i
\(909\) −10215.6 −0.372752
\(910\) 0 0
\(911\) 23664.9 0.860652 0.430326 0.902674i \(-0.358399\pi\)
0.430326 + 0.902674i \(0.358399\pi\)
\(912\) − 3577.53i − 0.129894i
\(913\) 20024.8i 0.725874i
\(914\) 45703.1 1.65396
\(915\) 0 0
\(916\) −62767.0 −2.26406
\(917\) − 8701.99i − 0.313375i
\(918\) − 25363.1i − 0.911880i
\(919\) −30834.5 −1.10679 −0.553393 0.832920i \(-0.686667\pi\)
−0.553393 + 0.832920i \(0.686667\pi\)
\(920\) 0 0
\(921\) 15007.7 0.536939
\(922\) − 51779.8i − 1.84954i
\(923\) 16602.9i 0.592083i
\(924\) −8531.88 −0.303764
\(925\) 0 0
\(926\) −69011.7 −2.44910
\(927\) 25631.3i 0.908137i
\(928\) − 9688.70i − 0.342723i
\(929\) −17648.9 −0.623297 −0.311648 0.950197i \(-0.600881\pi\)
−0.311648 + 0.950197i \(0.600881\pi\)
\(930\) 0 0
\(931\) −6198.68 −0.218210
\(932\) 49733.8i 1.74794i
\(933\) 12104.4i 0.424739i
\(934\) 22899.4 0.802238
\(935\) 0 0
\(936\) 16130.0 0.563274
\(937\) 23621.9i 0.823580i 0.911279 + 0.411790i \(0.135096\pi\)
−0.911279 + 0.411790i \(0.864904\pi\)
\(938\) − 14873.2i − 0.517726i
\(939\) −32043.6 −1.11364
\(940\) 0 0
\(941\) −8129.95 −0.281646 −0.140823 0.990035i \(-0.544975\pi\)
−0.140823 + 0.990035i \(0.544975\pi\)
\(942\) 10279.0i 0.355527i
\(943\) − 209.280i − 0.00722703i
\(944\) −11847.5 −0.408478
\(945\) 0 0
\(946\) 10735.7 0.368972
\(947\) − 52681.5i − 1.80773i −0.427818 0.903865i \(-0.640718\pi\)
0.427818 0.903865i \(-0.359282\pi\)
\(948\) − 4050.31i − 0.138764i
\(949\) 12859.0 0.439854
\(950\) 0 0
\(951\) −31655.0 −1.07937
\(952\) 8117.69i 0.276361i
\(953\) 48109.3i 1.63527i 0.575735 + 0.817636i \(0.304716\pi\)
−0.575735 + 0.817636i \(0.695284\pi\)
\(954\) 30727.6 1.04281
\(955\) 0 0
\(956\) 72761.6 2.46159
\(957\) − 2272.09i − 0.0767462i
\(958\) − 34753.2i − 1.17205i
\(959\) −6620.80 −0.222937
\(960\) 0 0
\(961\) 25128.3 0.843486
\(962\) 30624.9i 1.02639i
\(963\) − 20360.1i − 0.681302i
\(964\) 75739.0 2.53049
\(965\) 0 0
\(966\) 4570.63 0.152233
\(967\) 41498.5i 1.38004i 0.723789 + 0.690022i \(0.242399\pi\)
−0.723789 + 0.690022i \(0.757601\pi\)
\(968\) − 15199.9i − 0.504693i
\(969\) −5423.41 −0.179799
\(970\) 0 0
\(971\) 2030.35 0.0671031 0.0335515 0.999437i \(-0.489318\pi\)
0.0335515 + 0.999437i \(0.489318\pi\)
\(972\) 42251.1i 1.39424i
\(973\) − 2792.67i − 0.0920132i
\(974\) 11904.9 0.391641
\(975\) 0 0
\(976\) −1979.00 −0.0649040
\(977\) − 42161.7i − 1.38063i −0.723511 0.690313i \(-0.757473\pi\)
0.723511 0.690313i \(-0.242527\pi\)
\(978\) − 3100.87i − 0.101385i
\(979\) 2487.68 0.0812120
\(980\) 0 0
\(981\) 20655.7 0.672258
\(982\) 75908.9i 2.46675i
\(983\) 44619.0i 1.44774i 0.689938 + 0.723869i \(0.257638\pi\)
−0.689938 + 0.723869i \(0.742362\pi\)
\(984\) 431.110 0.0139668
\(985\) 0 0
\(986\) −7418.98 −0.239623
\(987\) − 17373.1i − 0.560276i
\(988\) − 31508.5i − 1.01460i
\(989\) −3366.03 −0.108224
\(990\) 0 0
\(991\) −18737.8 −0.600633 −0.300316 0.953840i \(-0.597092\pi\)
−0.300316 + 0.953840i \(0.597092\pi\)
\(992\) − 54734.1i − 1.75183i
\(993\) − 9577.39i − 0.306072i
\(994\) 14641.7 0.467209
\(995\) 0 0
\(996\) 44386.1 1.41208
\(997\) 48629.2i 1.54474i 0.635175 + 0.772368i \(0.280928\pi\)
−0.635175 + 0.772368i \(0.719072\pi\)
\(998\) 72563.3i 2.30156i
\(999\) −14390.5 −0.455750
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.b.j.24.2 14
5.2 odd 4 575.4.a.m.1.7 yes 7
5.3 odd 4 575.4.a.l.1.1 7
5.4 even 2 inner 575.4.b.j.24.13 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.4.a.l.1.1 7 5.3 odd 4
575.4.a.m.1.7 yes 7 5.2 odd 4
575.4.b.j.24.2 14 1.1 even 1 trivial
575.4.b.j.24.13 14 5.4 even 2 inner