Properties

Label 575.4.a.m.1.7
Level $575$
Weight $4$
Character 575.1
Self dual yes
Analytic conductor $33.926$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(1,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9260982533\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 37x^{5} + 123x^{4} + 304x^{3} - 1196x^{2} + 264x + 864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(4.39200\) of defining polynomial
Character \(\chi\) \(=\) 575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.39200 q^{2} -3.27927 q^{3} +11.2896 q^{4} -14.4025 q^{6} +13.7978 q^{7} +14.4481 q^{8} -16.2464 q^{9} -16.7024 q^{11} -37.0218 q^{12} -68.7171 q^{13} +60.5997 q^{14} -26.8610 q^{16} -40.7204 q^{17} -71.3541 q^{18} +40.6147 q^{19} -45.2466 q^{21} -73.3568 q^{22} -23.0000 q^{23} -47.3793 q^{24} -301.805 q^{26} +141.817 q^{27} +155.772 q^{28} +41.4829 q^{29} -234.349 q^{31} -233.559 q^{32} +54.7716 q^{33} -178.844 q^{34} -183.416 q^{36} +101.472 q^{37} +178.380 q^{38} +225.342 q^{39} +9.09912 q^{41} -198.723 q^{42} -146.349 q^{43} -188.564 q^{44} -101.016 q^{46} -383.965 q^{47} +88.0845 q^{48} -152.622 q^{49} +133.533 q^{51} -775.792 q^{52} +430.635 q^{53} +622.858 q^{54} +199.352 q^{56} -133.187 q^{57} +182.193 q^{58} -441.067 q^{59} +73.6756 q^{61} -1029.26 q^{62} -224.164 q^{63} -810.901 q^{64} +240.557 q^{66} -245.433 q^{67} -459.719 q^{68} +75.4232 q^{69} -241.613 q^{71} -234.730 q^{72} +187.130 q^{73} +445.667 q^{74} +458.526 q^{76} -230.455 q^{77} +989.701 q^{78} +109.404 q^{79} -26.4023 q^{81} +39.9633 q^{82} -1198.92 q^{83} -510.818 q^{84} -642.765 q^{86} -136.034 q^{87} -241.318 q^{88} +148.942 q^{89} -948.142 q^{91} -259.662 q^{92} +768.492 q^{93} -1686.38 q^{94} +765.902 q^{96} +1829.68 q^{97} -670.314 q^{98} +271.353 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} + q^{3} + 27 q^{4} - 41 q^{6} + q^{7} - 57 q^{8} + 10 q^{9} - 52 q^{11} + 65 q^{12} + 45 q^{13} - 42 q^{14} - 85 q^{16} + 85 q^{17} + 18 q^{18} - 10 q^{19} - 202 q^{21} - 71 q^{22} - 161 q^{23}+ \cdots - 2143 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.39200 1.55281 0.776403 0.630237i \(-0.217042\pi\)
0.776403 + 0.630237i \(0.217042\pi\)
\(3\) −3.27927 −0.631096 −0.315548 0.948910i \(-0.602188\pi\)
−0.315548 + 0.948910i \(0.602188\pi\)
\(4\) 11.2896 1.41121
\(5\) 0 0
\(6\) −14.4025 −0.979969
\(7\) 13.7978 0.745009 0.372505 0.928030i \(-0.378499\pi\)
0.372505 + 0.928030i \(0.378499\pi\)
\(8\) 14.4481 0.638523
\(9\) −16.2464 −0.601718
\(10\) 0 0
\(11\) −16.7024 −0.457814 −0.228907 0.973448i \(-0.573515\pi\)
−0.228907 + 0.973448i \(0.573515\pi\)
\(12\) −37.0218 −0.890606
\(13\) −68.7171 −1.46605 −0.733027 0.680200i \(-0.761893\pi\)
−0.733027 + 0.680200i \(0.761893\pi\)
\(14\) 60.5997 1.15685
\(15\) 0 0
\(16\) −26.8610 −0.419703
\(17\) −40.7204 −0.580950 −0.290475 0.956883i \(-0.593813\pi\)
−0.290475 + 0.956883i \(0.593813\pi\)
\(18\) −71.3541 −0.934351
\(19\) 40.6147 0.490403 0.245201 0.969472i \(-0.421146\pi\)
0.245201 + 0.969472i \(0.421146\pi\)
\(20\) 0 0
\(21\) −45.2466 −0.470172
\(22\) −73.3568 −0.710897
\(23\) −23.0000 −0.208514
\(24\) −47.3793 −0.402969
\(25\) 0 0
\(26\) −301.805 −2.27650
\(27\) 141.817 1.01084
\(28\) 155.772 1.05136
\(29\) 41.4829 0.265627 0.132814 0.991141i \(-0.457599\pi\)
0.132814 + 0.991141i \(0.457599\pi\)
\(30\) 0 0
\(31\) −234.349 −1.35775 −0.678875 0.734254i \(-0.737532\pi\)
−0.678875 + 0.734254i \(0.737532\pi\)
\(32\) −233.559 −1.29024
\(33\) 54.7716 0.288925
\(34\) −178.844 −0.902103
\(35\) 0 0
\(36\) −183.416 −0.849148
\(37\) 101.472 0.450864 0.225432 0.974259i \(-0.427621\pi\)
0.225432 + 0.974259i \(0.427621\pi\)
\(38\) 178.380 0.761500
\(39\) 225.342 0.925220
\(40\) 0 0
\(41\) 9.09912 0.0346596 0.0173298 0.999850i \(-0.494483\pi\)
0.0173298 + 0.999850i \(0.494483\pi\)
\(42\) −198.723 −0.730086
\(43\) −146.349 −0.519024 −0.259512 0.965740i \(-0.583562\pi\)
−0.259512 + 0.965740i \(0.583562\pi\)
\(44\) −188.564 −0.646070
\(45\) 0 0
\(46\) −101.016 −0.323782
\(47\) −383.965 −1.19164 −0.595820 0.803118i \(-0.703173\pi\)
−0.595820 + 0.803118i \(0.703173\pi\)
\(48\) 88.0845 0.264873
\(49\) −152.622 −0.444961
\(50\) 0 0
\(51\) 133.533 0.366635
\(52\) −775.792 −2.06890
\(53\) 430.635 1.11608 0.558040 0.829814i \(-0.311553\pi\)
0.558040 + 0.829814i \(0.311553\pi\)
\(54\) 622.858 1.56963
\(55\) 0 0
\(56\) 199.352 0.475706
\(57\) −133.187 −0.309491
\(58\) 182.193 0.412467
\(59\) −441.067 −0.973255 −0.486627 0.873610i \(-0.661773\pi\)
−0.486627 + 0.873610i \(0.661773\pi\)
\(60\) 0 0
\(61\) 73.6756 0.154643 0.0773213 0.997006i \(-0.475363\pi\)
0.0773213 + 0.997006i \(0.475363\pi\)
\(62\) −1029.26 −2.10832
\(63\) −224.164 −0.448286
\(64\) −810.901 −1.58379
\(65\) 0 0
\(66\) 240.557 0.448644
\(67\) −245.433 −0.447529 −0.223765 0.974643i \(-0.571835\pi\)
−0.223765 + 0.974643i \(0.571835\pi\)
\(68\) −459.719 −0.819841
\(69\) 75.4232 0.131593
\(70\) 0 0
\(71\) −241.613 −0.403862 −0.201931 0.979400i \(-0.564722\pi\)
−0.201931 + 0.979400i \(0.564722\pi\)
\(72\) −234.730 −0.384211
\(73\) 187.130 0.300026 0.150013 0.988684i \(-0.452068\pi\)
0.150013 + 0.988684i \(0.452068\pi\)
\(74\) 445.667 0.700104
\(75\) 0 0
\(76\) 458.526 0.692059
\(77\) −230.455 −0.341076
\(78\) 989.701 1.43669
\(79\) 109.404 0.155808 0.0779041 0.996961i \(-0.475177\pi\)
0.0779041 + 0.996961i \(0.475177\pi\)
\(80\) 0 0
\(81\) −26.4023 −0.0362171
\(82\) 39.9633 0.0538196
\(83\) −1198.92 −1.58552 −0.792761 0.609533i \(-0.791357\pi\)
−0.792761 + 0.609533i \(0.791357\pi\)
\(84\) −510.818 −0.663510
\(85\) 0 0
\(86\) −642.765 −0.805944
\(87\) −136.034 −0.167636
\(88\) −241.318 −0.292325
\(89\) 148.942 0.177391 0.0886953 0.996059i \(-0.471730\pi\)
0.0886953 + 0.996059i \(0.471730\pi\)
\(90\) 0 0
\(91\) −948.142 −1.09222
\(92\) −259.662 −0.294257
\(93\) 768.492 0.856870
\(94\) −1686.38 −1.85039
\(95\) 0 0
\(96\) 765.902 0.814266
\(97\) 1829.68 1.91521 0.957606 0.288082i \(-0.0930176\pi\)
0.957606 + 0.288082i \(0.0930176\pi\)
\(98\) −670.314 −0.690939
\(99\) 271.353 0.275475
\(100\) 0 0
\(101\) −628.795 −0.619479 −0.309740 0.950821i \(-0.600242\pi\)
−0.309740 + 0.950821i \(0.600242\pi\)
\(102\) 586.478 0.569313
\(103\) 1577.66 1.50924 0.754620 0.656162i \(-0.227821\pi\)
0.754620 + 0.656162i \(0.227821\pi\)
\(104\) −992.834 −0.936109
\(105\) 0 0
\(106\) 1891.35 1.73306
\(107\) 1253.21 1.13226 0.566130 0.824316i \(-0.308440\pi\)
0.566130 + 0.824316i \(0.308440\pi\)
\(108\) 1601.06 1.42650
\(109\) −1271.40 −1.11723 −0.558615 0.829427i \(-0.688667\pi\)
−0.558615 + 0.829427i \(0.688667\pi\)
\(110\) 0 0
\(111\) −332.756 −0.284538
\(112\) −370.622 −0.312683
\(113\) 1469.50 1.22336 0.611678 0.791107i \(-0.290495\pi\)
0.611678 + 0.791107i \(0.290495\pi\)
\(114\) −584.955 −0.480579
\(115\) 0 0
\(116\) 468.328 0.374855
\(117\) 1116.40 0.882151
\(118\) −1937.17 −1.51128
\(119\) −561.851 −0.432813
\(120\) 0 0
\(121\) −1052.03 −0.790406
\(122\) 323.583 0.240130
\(123\) −29.8385 −0.0218735
\(124\) −2645.71 −1.91607
\(125\) 0 0
\(126\) −984.527 −0.696100
\(127\) −445.611 −0.311351 −0.155676 0.987808i \(-0.549755\pi\)
−0.155676 + 0.987808i \(0.549755\pi\)
\(128\) −1693.01 −1.16908
\(129\) 479.918 0.327554
\(130\) 0 0
\(131\) 630.681 0.420632 0.210316 0.977633i \(-0.432551\pi\)
0.210316 + 0.977633i \(0.432551\pi\)
\(132\) 618.352 0.407732
\(133\) 560.392 0.365354
\(134\) −1077.94 −0.694926
\(135\) 0 0
\(136\) −588.334 −0.370950
\(137\) 479.846 0.299241 0.149621 0.988743i \(-0.452195\pi\)
0.149621 + 0.988743i \(0.452195\pi\)
\(138\) 331.259 0.204338
\(139\) −202.400 −0.123506 −0.0617531 0.998091i \(-0.519669\pi\)
−0.0617531 + 0.998091i \(0.519669\pi\)
\(140\) 0 0
\(141\) 1259.13 0.752039
\(142\) −1061.16 −0.627119
\(143\) 1147.74 0.671180
\(144\) 436.395 0.252543
\(145\) 0 0
\(146\) 821.874 0.465882
\(147\) 500.488 0.280813
\(148\) 1145.59 0.636262
\(149\) −739.957 −0.406843 −0.203422 0.979091i \(-0.565206\pi\)
−0.203422 + 0.979091i \(0.565206\pi\)
\(150\) 0 0
\(151\) −1278.96 −0.689274 −0.344637 0.938736i \(-0.611998\pi\)
−0.344637 + 0.938736i \(0.611998\pi\)
\(152\) 586.806 0.313133
\(153\) 661.560 0.349568
\(154\) −1012.16 −0.529624
\(155\) 0 0
\(156\) 2544.03 1.30568
\(157\) 713.690 0.362794 0.181397 0.983410i \(-0.441938\pi\)
0.181397 + 0.983410i \(0.441938\pi\)
\(158\) 480.500 0.241940
\(159\) −1412.17 −0.704354
\(160\) 0 0
\(161\) −317.349 −0.155345
\(162\) −115.959 −0.0562382
\(163\) 215.300 0.103458 0.0517288 0.998661i \(-0.483527\pi\)
0.0517288 + 0.998661i \(0.483527\pi\)
\(164\) 102.726 0.0489118
\(165\) 0 0
\(166\) −5265.64 −2.46201
\(167\) 4086.64 1.89362 0.946808 0.321800i \(-0.104288\pi\)
0.946808 + 0.321800i \(0.104288\pi\)
\(168\) −653.729 −0.300216
\(169\) 2525.04 1.14931
\(170\) 0 0
\(171\) −659.842 −0.295084
\(172\) −1652.23 −0.732450
\(173\) 858.878 0.377453 0.188726 0.982030i \(-0.439564\pi\)
0.188726 + 0.982030i \(0.439564\pi\)
\(174\) −597.460 −0.260306
\(175\) 0 0
\(176\) 448.643 0.192146
\(177\) 1446.38 0.614217
\(178\) 654.151 0.275453
\(179\) 1668.46 0.696683 0.348342 0.937368i \(-0.386745\pi\)
0.348342 + 0.937368i \(0.386745\pi\)
\(180\) 0 0
\(181\) −347.888 −0.142864 −0.0714319 0.997445i \(-0.522757\pi\)
−0.0714319 + 0.997445i \(0.522757\pi\)
\(182\) −4164.24 −1.69601
\(183\) −241.602 −0.0975942
\(184\) −332.307 −0.133141
\(185\) 0 0
\(186\) 3375.22 1.33055
\(187\) 680.128 0.265967
\(188\) −4334.83 −1.68165
\(189\) 1956.75 0.753083
\(190\) 0 0
\(191\) 2316.47 0.877559 0.438780 0.898595i \(-0.355411\pi\)
0.438780 + 0.898595i \(0.355411\pi\)
\(192\) 2659.16 0.999524
\(193\) 1530.07 0.570658 0.285329 0.958430i \(-0.407897\pi\)
0.285329 + 0.958430i \(0.407897\pi\)
\(194\) 8035.94 2.97395
\(195\) 0 0
\(196\) −1723.05 −0.627932
\(197\) −1798.69 −0.650513 −0.325257 0.945626i \(-0.605451\pi\)
−0.325257 + 0.945626i \(0.605451\pi\)
\(198\) 1191.78 0.427759
\(199\) 3231.92 1.15128 0.575640 0.817703i \(-0.304753\pi\)
0.575640 + 0.817703i \(0.304753\pi\)
\(200\) 0 0
\(201\) 804.842 0.282434
\(202\) −2761.67 −0.961931
\(203\) 572.372 0.197895
\(204\) 1507.54 0.517398
\(205\) 0 0
\(206\) 6929.09 2.34356
\(207\) 373.667 0.125467
\(208\) 1845.81 0.615308
\(209\) −678.362 −0.224513
\(210\) 0 0
\(211\) −5199.79 −1.69653 −0.848266 0.529570i \(-0.822353\pi\)
−0.848266 + 0.529570i \(0.822353\pi\)
\(212\) 4861.72 1.57502
\(213\) 792.314 0.254875
\(214\) 5504.07 1.75818
\(215\) 0 0
\(216\) 2048.98 0.645443
\(217\) −3233.49 −1.01154
\(218\) −5583.99 −1.73484
\(219\) −613.649 −0.189345
\(220\) 0 0
\(221\) 2798.19 0.851704
\(222\) −1461.46 −0.441833
\(223\) 3144.43 0.944246 0.472123 0.881533i \(-0.343488\pi\)
0.472123 + 0.881533i \(0.343488\pi\)
\(224\) −3222.59 −0.961242
\(225\) 0 0
\(226\) 6454.06 1.89964
\(227\) −262.640 −0.0767931 −0.0383966 0.999263i \(-0.512225\pi\)
−0.0383966 + 0.999263i \(0.512225\pi\)
\(228\) −1503.63 −0.436756
\(229\) −5559.69 −1.60434 −0.802172 0.597093i \(-0.796322\pi\)
−0.802172 + 0.597093i \(0.796322\pi\)
\(230\) 0 0
\(231\) 755.726 0.215251
\(232\) 599.351 0.169609
\(233\) −4405.25 −1.23862 −0.619308 0.785148i \(-0.712587\pi\)
−0.619308 + 0.785148i \(0.712587\pi\)
\(234\) 4903.25 1.36981
\(235\) 0 0
\(236\) −4979.49 −1.37346
\(237\) −358.764 −0.0983300
\(238\) −2467.65 −0.672075
\(239\) 6444.99 1.74432 0.872158 0.489224i \(-0.162720\pi\)
0.872158 + 0.489224i \(0.162720\pi\)
\(240\) 0 0
\(241\) −6708.71 −1.79314 −0.896569 0.442905i \(-0.853948\pi\)
−0.896569 + 0.442905i \(0.853948\pi\)
\(242\) −4620.52 −1.22735
\(243\) −3742.47 −0.987981
\(244\) 831.772 0.218232
\(245\) 0 0
\(246\) −131.051 −0.0339653
\(247\) −2790.92 −0.718956
\(248\) −3385.90 −0.866955
\(249\) 3931.57 1.00062
\(250\) 0 0
\(251\) −289.397 −0.0727752 −0.0363876 0.999338i \(-0.511585\pi\)
−0.0363876 + 0.999338i \(0.511585\pi\)
\(252\) −2530.73 −0.632623
\(253\) 384.155 0.0954609
\(254\) −1957.12 −0.483468
\(255\) 0 0
\(256\) −948.473 −0.231561
\(257\) −4040.24 −0.980635 −0.490318 0.871544i \(-0.663119\pi\)
−0.490318 + 0.871544i \(0.663119\pi\)
\(258\) 2107.80 0.508628
\(259\) 1400.09 0.335898
\(260\) 0 0
\(261\) −673.948 −0.159833
\(262\) 2769.95 0.653160
\(263\) −5250.65 −1.23106 −0.615530 0.788114i \(-0.711058\pi\)
−0.615530 + 0.788114i \(0.711058\pi\)
\(264\) 791.347 0.184485
\(265\) 0 0
\(266\) 2461.24 0.567324
\(267\) −488.419 −0.111951
\(268\) −2770.86 −0.631556
\(269\) −2417.55 −0.547958 −0.273979 0.961736i \(-0.588340\pi\)
−0.273979 + 0.961736i \(0.588340\pi\)
\(270\) 0 0
\(271\) −6593.83 −1.47803 −0.739016 0.673688i \(-0.764709\pi\)
−0.739016 + 0.673688i \(0.764709\pi\)
\(272\) 1093.79 0.243827
\(273\) 3109.21 0.689297
\(274\) 2107.48 0.464663
\(275\) 0 0
\(276\) 851.501 0.185704
\(277\) 2826.91 0.613186 0.306593 0.951841i \(-0.400811\pi\)
0.306593 + 0.951841i \(0.400811\pi\)
\(278\) −888.941 −0.191781
\(279\) 3807.32 0.816983
\(280\) 0 0
\(281\) −2036.17 −0.432269 −0.216134 0.976364i \(-0.569345\pi\)
−0.216134 + 0.976364i \(0.569345\pi\)
\(282\) 5530.08 1.16777
\(283\) 4470.17 0.938954 0.469477 0.882945i \(-0.344442\pi\)
0.469477 + 0.882945i \(0.344442\pi\)
\(284\) −2727.73 −0.569932
\(285\) 0 0
\(286\) 5040.87 1.04221
\(287\) 125.548 0.0258217
\(288\) 3794.48 0.776362
\(289\) −3254.85 −0.662497
\(290\) 0 0
\(291\) −6000.00 −1.20868
\(292\) 2112.63 0.423398
\(293\) −9457.29 −1.88567 −0.942834 0.333263i \(-0.891850\pi\)
−0.942834 + 0.333263i \(0.891850\pi\)
\(294\) 2198.14 0.436048
\(295\) 0 0
\(296\) 1466.09 0.287887
\(297\) −2368.67 −0.462776
\(298\) −3249.89 −0.631749
\(299\) 1580.49 0.305693
\(300\) 0 0
\(301\) −2019.29 −0.386678
\(302\) −5617.19 −1.07031
\(303\) 2061.99 0.390951
\(304\) −1090.95 −0.205824
\(305\) 0 0
\(306\) 2905.57 0.542812
\(307\) −4576.54 −0.850804 −0.425402 0.905004i \(-0.639867\pi\)
−0.425402 + 0.905004i \(0.639867\pi\)
\(308\) −2601.76 −0.481328
\(309\) −5173.58 −0.952475
\(310\) 0 0
\(311\) −3691.20 −0.673018 −0.336509 0.941680i \(-0.609246\pi\)
−0.336509 + 0.941680i \(0.609246\pi\)
\(312\) 3255.77 0.590774
\(313\) −9771.57 −1.76461 −0.882303 0.470682i \(-0.844008\pi\)
−0.882303 + 0.470682i \(0.844008\pi\)
\(314\) 3134.53 0.563349
\(315\) 0 0
\(316\) 1235.13 0.219878
\(317\) 9653.06 1.71032 0.855158 0.518368i \(-0.173460\pi\)
0.855158 + 0.518368i \(0.173460\pi\)
\(318\) −6202.24 −1.09372
\(319\) −692.864 −0.121608
\(320\) 0 0
\(321\) −4109.60 −0.714565
\(322\) −1393.79 −0.241221
\(323\) −1653.85 −0.284900
\(324\) −298.073 −0.0511098
\(325\) 0 0
\(326\) 945.597 0.160650
\(327\) 4169.26 0.705079
\(328\) 131.465 0.0221310
\(329\) −5297.86 −0.887783
\(330\) 0 0
\(331\) 2920.59 0.484985 0.242492 0.970153i \(-0.422035\pi\)
0.242492 + 0.970153i \(0.422035\pi\)
\(332\) −13535.4 −2.23750
\(333\) −1648.56 −0.271293
\(334\) 17948.5 2.94042
\(335\) 0 0
\(336\) 1215.37 0.197333
\(337\) 7794.72 1.25996 0.629978 0.776613i \(-0.283064\pi\)
0.629978 + 0.776613i \(0.283064\pi\)
\(338\) 11090.0 1.78466
\(339\) −4818.90 −0.772055
\(340\) 0 0
\(341\) 3914.18 0.621597
\(342\) −2898.03 −0.458208
\(343\) −6838.47 −1.07651
\(344\) −2114.47 −0.331409
\(345\) 0 0
\(346\) 3772.19 0.586111
\(347\) 7025.93 1.08695 0.543475 0.839425i \(-0.317108\pi\)
0.543475 + 0.839425i \(0.317108\pi\)
\(348\) −1535.77 −0.236569
\(349\) 6338.40 0.972168 0.486084 0.873912i \(-0.338425\pi\)
0.486084 + 0.873912i \(0.338425\pi\)
\(350\) 0 0
\(351\) −9745.22 −1.48194
\(352\) 3900.98 0.590691
\(353\) −8834.31 −1.33202 −0.666010 0.745943i \(-0.731999\pi\)
−0.666010 + 0.745943i \(0.731999\pi\)
\(354\) 6352.49 0.953760
\(355\) 0 0
\(356\) 1681.50 0.250335
\(357\) 1842.46 0.273147
\(358\) 7327.86 1.08181
\(359\) −917.755 −0.134923 −0.0674613 0.997722i \(-0.521490\pi\)
−0.0674613 + 0.997722i \(0.521490\pi\)
\(360\) 0 0
\(361\) −5209.45 −0.759505
\(362\) −1527.93 −0.221840
\(363\) 3449.89 0.498822
\(364\) −10704.2 −1.54135
\(365\) 0 0
\(366\) −1061.12 −0.151545
\(367\) 5451.98 0.775453 0.387727 0.921774i \(-0.373260\pi\)
0.387727 + 0.921774i \(0.373260\pi\)
\(368\) 617.804 0.0875142
\(369\) −147.828 −0.0208553
\(370\) 0 0
\(371\) 5941.80 0.831491
\(372\) 8676.01 1.20922
\(373\) 9583.17 1.33029 0.665144 0.746715i \(-0.268370\pi\)
0.665144 + 0.746715i \(0.268370\pi\)
\(374\) 2987.12 0.412996
\(375\) 0 0
\(376\) −5547.58 −0.760890
\(377\) −2850.59 −0.389424
\(378\) 8594.05 1.16939
\(379\) 5560.92 0.753681 0.376841 0.926278i \(-0.377010\pi\)
0.376841 + 0.926278i \(0.377010\pi\)
\(380\) 0 0
\(381\) 1461.28 0.196493
\(382\) 10173.9 1.36268
\(383\) −4847.50 −0.646725 −0.323363 0.946275i \(-0.604813\pi\)
−0.323363 + 0.946275i \(0.604813\pi\)
\(384\) 5551.82 0.737800
\(385\) 0 0
\(386\) 6720.07 0.886120
\(387\) 2377.65 0.312306
\(388\) 20656.4 2.70276
\(389\) −11572.6 −1.50837 −0.754184 0.656663i \(-0.771967\pi\)
−0.754184 + 0.656663i \(0.771967\pi\)
\(390\) 0 0
\(391\) 936.570 0.121137
\(392\) −2205.10 −0.284118
\(393\) −2068.17 −0.265459
\(394\) −7899.83 −1.01012
\(395\) 0 0
\(396\) 3063.48 0.388752
\(397\) −5767.82 −0.729165 −0.364582 0.931171i \(-0.618788\pi\)
−0.364582 + 0.931171i \(0.618788\pi\)
\(398\) 14194.6 1.78771
\(399\) −1837.68 −0.230574
\(400\) 0 0
\(401\) 14990.1 1.86675 0.933377 0.358897i \(-0.116847\pi\)
0.933377 + 0.358897i \(0.116847\pi\)
\(402\) 3534.87 0.438565
\(403\) 16103.8 1.99053
\(404\) −7098.87 −0.874213
\(405\) 0 0
\(406\) 2513.86 0.307292
\(407\) −1694.83 −0.206412
\(408\) 1929.31 0.234105
\(409\) −1487.95 −0.179888 −0.0899442 0.995947i \(-0.528669\pi\)
−0.0899442 + 0.995947i \(0.528669\pi\)
\(410\) 0 0
\(411\) −1573.55 −0.188850
\(412\) 17811.2 2.12985
\(413\) −6085.74 −0.725084
\(414\) 1641.14 0.194826
\(415\) 0 0
\(416\) 16049.5 1.89156
\(417\) 663.725 0.0779442
\(418\) −2979.36 −0.348625
\(419\) −2739.23 −0.319380 −0.159690 0.987167i \(-0.551049\pi\)
−0.159690 + 0.987167i \(0.551049\pi\)
\(420\) 0 0
\(421\) 2205.79 0.255353 0.127676 0.991816i \(-0.459248\pi\)
0.127676 + 0.991816i \(0.459248\pi\)
\(422\) −22837.5 −2.63439
\(423\) 6238.05 0.717032
\(424\) 6221.87 0.712644
\(425\) 0 0
\(426\) 3479.84 0.395772
\(427\) 1016.56 0.115210
\(428\) 14148.2 1.59785
\(429\) −3763.75 −0.423579
\(430\) 0 0
\(431\) 12377.3 1.38329 0.691643 0.722240i \(-0.256887\pi\)
0.691643 + 0.722240i \(0.256887\pi\)
\(432\) −3809.34 −0.424252
\(433\) −11610.5 −1.28860 −0.644299 0.764774i \(-0.722851\pi\)
−0.644299 + 0.764774i \(0.722851\pi\)
\(434\) −14201.5 −1.57072
\(435\) 0 0
\(436\) −14353.7 −1.57664
\(437\) −934.138 −0.102256
\(438\) −2695.15 −0.294016
\(439\) −10585.8 −1.15087 −0.575433 0.817849i \(-0.695167\pi\)
−0.575433 + 0.817849i \(0.695167\pi\)
\(440\) 0 0
\(441\) 2479.55 0.267741
\(442\) 12289.6 1.32253
\(443\) 13572.0 1.45559 0.727796 0.685794i \(-0.240545\pi\)
0.727796 + 0.685794i \(0.240545\pi\)
\(444\) −3756.69 −0.401542
\(445\) 0 0
\(446\) 13810.3 1.46623
\(447\) 2426.52 0.256757
\(448\) −11188.6 −1.17994
\(449\) 8401.73 0.883079 0.441539 0.897242i \(-0.354433\pi\)
0.441539 + 0.897242i \(0.354433\pi\)
\(450\) 0 0
\(451\) −151.977 −0.0158677
\(452\) 16590.2 1.72641
\(453\) 4194.06 0.434998
\(454\) −1153.52 −0.119245
\(455\) 0 0
\(456\) −1924.30 −0.197617
\(457\) −10406.0 −1.06515 −0.532573 0.846384i \(-0.678775\pi\)
−0.532573 + 0.846384i \(0.678775\pi\)
\(458\) −24418.2 −2.49124
\(459\) −5774.83 −0.587246
\(460\) 0 0
\(461\) 11789.6 1.19110 0.595548 0.803320i \(-0.296935\pi\)
0.595548 + 0.803320i \(0.296935\pi\)
\(462\) 3319.15 0.334244
\(463\) −15713.0 −1.57721 −0.788604 0.614902i \(-0.789196\pi\)
−0.788604 + 0.614902i \(0.789196\pi\)
\(464\) −1114.27 −0.111485
\(465\) 0 0
\(466\) −19347.9 −1.92333
\(467\) −5213.88 −0.516637 −0.258319 0.966060i \(-0.583168\pi\)
−0.258319 + 0.966060i \(0.583168\pi\)
\(468\) 12603.8 1.24490
\(469\) −3386.43 −0.333413
\(470\) 0 0
\(471\) −2340.38 −0.228958
\(472\) −6372.59 −0.621446
\(473\) 2444.38 0.237617
\(474\) −1575.69 −0.152687
\(475\) 0 0
\(476\) −6343.10 −0.610789
\(477\) −6996.27 −0.671566
\(478\) 28306.4 2.70858
\(479\) −7912.84 −0.754796 −0.377398 0.926051i \(-0.623181\pi\)
−0.377398 + 0.926051i \(0.623181\pi\)
\(480\) 0 0
\(481\) −6972.89 −0.660991
\(482\) −29464.6 −2.78439
\(483\) 1040.67 0.0980377
\(484\) −11877.1 −1.11543
\(485\) 0 0
\(486\) −16436.9 −1.53414
\(487\) −2710.59 −0.252215 −0.126108 0.992017i \(-0.540248\pi\)
−0.126108 + 0.992017i \(0.540248\pi\)
\(488\) 1064.47 0.0987428
\(489\) −706.026 −0.0652917
\(490\) 0 0
\(491\) −17283.4 −1.58858 −0.794288 0.607541i \(-0.792156\pi\)
−0.794288 + 0.607541i \(0.792156\pi\)
\(492\) −336.866 −0.0308681
\(493\) −1689.20 −0.154316
\(494\) −12257.7 −1.11640
\(495\) 0 0
\(496\) 6294.84 0.569853
\(497\) −3333.72 −0.300881
\(498\) 17267.5 1.55376
\(499\) 16521.7 1.48219 0.741096 0.671399i \(-0.234306\pi\)
0.741096 + 0.671399i \(0.234306\pi\)
\(500\) 0 0
\(501\) −13401.2 −1.19505
\(502\) −1271.03 −0.113006
\(503\) −16269.1 −1.44215 −0.721075 0.692857i \(-0.756352\pi\)
−0.721075 + 0.692857i \(0.756352\pi\)
\(504\) −3238.75 −0.286241
\(505\) 0 0
\(506\) 1687.21 0.148232
\(507\) −8280.29 −0.725326
\(508\) −5030.80 −0.439381
\(509\) −9299.84 −0.809839 −0.404920 0.914352i \(-0.632701\pi\)
−0.404920 + 0.914352i \(0.632701\pi\)
\(510\) 0 0
\(511\) 2581.97 0.223522
\(512\) 9378.36 0.809509
\(513\) 5759.84 0.495717
\(514\) −17744.7 −1.52274
\(515\) 0 0
\(516\) 5418.11 0.462246
\(517\) 6413.13 0.545550
\(518\) 6149.21 0.521584
\(519\) −2816.49 −0.238209
\(520\) 0 0
\(521\) −23076.6 −1.94050 −0.970252 0.242096i \(-0.922165\pi\)
−0.970252 + 0.242096i \(0.922165\pi\)
\(522\) −2959.98 −0.248189
\(523\) −10348.3 −0.865200 −0.432600 0.901586i \(-0.642404\pi\)
−0.432600 + 0.901586i \(0.642404\pi\)
\(524\) 7120.17 0.593599
\(525\) 0 0
\(526\) −23060.8 −1.91160
\(527\) 9542.78 0.788785
\(528\) −1471.22 −0.121263
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 7165.75 0.585625
\(532\) 6326.63 0.515590
\(533\) −625.265 −0.0508128
\(534\) −2145.14 −0.173837
\(535\) 0 0
\(536\) −3546.05 −0.285758
\(537\) −5471.32 −0.439674
\(538\) −10617.9 −0.850872
\(539\) 2549.15 0.203710
\(540\) 0 0
\(541\) 2078.43 0.165173 0.0825867 0.996584i \(-0.473682\pi\)
0.0825867 + 0.996584i \(0.473682\pi\)
\(542\) −28960.1 −2.29510
\(543\) 1140.82 0.0901607
\(544\) 9510.61 0.749566
\(545\) 0 0
\(546\) 13655.7 1.07035
\(547\) 16340.5 1.27727 0.638637 0.769509i \(-0.279499\pi\)
0.638637 + 0.769509i \(0.279499\pi\)
\(548\) 5417.29 0.422291
\(549\) −1196.96 −0.0930512
\(550\) 0 0
\(551\) 1684.82 0.130264
\(552\) 1089.72 0.0840249
\(553\) 1509.52 0.116079
\(554\) 12415.8 0.952159
\(555\) 0 0
\(556\) −2285.03 −0.174293
\(557\) −4738.43 −0.360455 −0.180228 0.983625i \(-0.557683\pi\)
−0.180228 + 0.983625i \(0.557683\pi\)
\(558\) 16721.7 1.26862
\(559\) 10056.7 0.760917
\(560\) 0 0
\(561\) −2230.32 −0.167851
\(562\) −8942.84 −0.671230
\(563\) −19003.9 −1.42259 −0.711294 0.702894i \(-0.751891\pi\)
−0.711294 + 0.702894i \(0.751891\pi\)
\(564\) 14215.1 1.06128
\(565\) 0 0
\(566\) 19633.0 1.45801
\(567\) −364.293 −0.0269821
\(568\) −3490.86 −0.257875
\(569\) −2789.77 −0.205542 −0.102771 0.994705i \(-0.532771\pi\)
−0.102771 + 0.994705i \(0.532771\pi\)
\(570\) 0 0
\(571\) −1154.31 −0.0845998 −0.0422999 0.999105i \(-0.513468\pi\)
−0.0422999 + 0.999105i \(0.513468\pi\)
\(572\) 12957.6 0.947173
\(573\) −7596.33 −0.553824
\(574\) 551.404 0.0400961
\(575\) 0 0
\(576\) 13174.2 0.952996
\(577\) 2360.98 0.170345 0.0851723 0.996366i \(-0.472856\pi\)
0.0851723 + 0.996366i \(0.472856\pi\)
\(578\) −14295.3 −1.02873
\(579\) −5017.52 −0.360140
\(580\) 0 0
\(581\) −16542.4 −1.18123
\(582\) −26352.0 −1.87685
\(583\) −7192.63 −0.510958
\(584\) 2703.68 0.191573
\(585\) 0 0
\(586\) −41536.4 −2.92808
\(587\) 6641.99 0.467026 0.233513 0.972354i \(-0.424978\pi\)
0.233513 + 0.972354i \(0.424978\pi\)
\(588\) 5650.33 0.396285
\(589\) −9518.00 −0.665844
\(590\) 0 0
\(591\) 5898.38 0.410536
\(592\) −2725.65 −0.189229
\(593\) −3879.68 −0.268667 −0.134334 0.990936i \(-0.542889\pi\)
−0.134334 + 0.990936i \(0.542889\pi\)
\(594\) −10403.2 −0.718601
\(595\) 0 0
\(596\) −8353.86 −0.574140
\(597\) −10598.3 −0.726568
\(598\) 6941.52 0.474682
\(599\) −8316.59 −0.567290 −0.283645 0.958929i \(-0.591544\pi\)
−0.283645 + 0.958929i \(0.591544\pi\)
\(600\) 0 0
\(601\) 14526.1 0.985908 0.492954 0.870055i \(-0.335917\pi\)
0.492954 + 0.870055i \(0.335917\pi\)
\(602\) −8868.72 −0.600435
\(603\) 3987.41 0.269286
\(604\) −14439.0 −0.972707
\(605\) 0 0
\(606\) 9056.25 0.607071
\(607\) −12982.3 −0.868097 −0.434049 0.900890i \(-0.642915\pi\)
−0.434049 + 0.900890i \(0.642915\pi\)
\(608\) −9485.91 −0.632738
\(609\) −1876.96 −0.124890
\(610\) 0 0
\(611\) 26385.0 1.74701
\(612\) 7468.78 0.493313
\(613\) −23179.5 −1.52726 −0.763631 0.645653i \(-0.776585\pi\)
−0.763631 + 0.645653i \(0.776585\pi\)
\(614\) −20100.2 −1.32113
\(615\) 0 0
\(616\) −3329.65 −0.217785
\(617\) −6322.17 −0.412514 −0.206257 0.978498i \(-0.566128\pi\)
−0.206257 + 0.978498i \(0.566128\pi\)
\(618\) −22722.4 −1.47901
\(619\) 10500.8 0.681849 0.340924 0.940091i \(-0.389260\pi\)
0.340924 + 0.940091i \(0.389260\pi\)
\(620\) 0 0
\(621\) −3261.78 −0.210774
\(622\) −16211.7 −1.04507
\(623\) 2055.06 0.132158
\(624\) −6052.91 −0.388318
\(625\) 0 0
\(626\) −42916.7 −2.74009
\(627\) 2224.53 0.141689
\(628\) 8057.31 0.511977
\(629\) −4132.00 −0.261930
\(630\) 0 0
\(631\) 15399.7 0.971554 0.485777 0.874083i \(-0.338537\pi\)
0.485777 + 0.874083i \(0.338537\pi\)
\(632\) 1580.68 0.0994872
\(633\) 17051.5 1.07067
\(634\) 42396.2 2.65579
\(635\) 0 0
\(636\) −15942.9 −0.993989
\(637\) 10487.7 0.652337
\(638\) −3043.06 −0.188833
\(639\) 3925.34 0.243011
\(640\) 0 0
\(641\) 2873.00 0.177030 0.0885152 0.996075i \(-0.471788\pi\)
0.0885152 + 0.996075i \(0.471788\pi\)
\(642\) −18049.3 −1.10958
\(643\) −15141.3 −0.928638 −0.464319 0.885668i \(-0.653701\pi\)
−0.464319 + 0.885668i \(0.653701\pi\)
\(644\) −3582.75 −0.219224
\(645\) 0 0
\(646\) −7263.70 −0.442394
\(647\) −5086.61 −0.309081 −0.154540 0.987986i \(-0.549390\pi\)
−0.154540 + 0.987986i \(0.549390\pi\)
\(648\) −381.464 −0.0231255
\(649\) 7366.87 0.445570
\(650\) 0 0
\(651\) 10603.5 0.638376
\(652\) 2430.66 0.146000
\(653\) 15214.0 0.911744 0.455872 0.890045i \(-0.349327\pi\)
0.455872 + 0.890045i \(0.349327\pi\)
\(654\) 18311.4 1.09485
\(655\) 0 0
\(656\) −244.412 −0.0145468
\(657\) −3040.18 −0.180531
\(658\) −23268.2 −1.37855
\(659\) 20029.9 1.18400 0.591999 0.805938i \(-0.298339\pi\)
0.591999 + 0.805938i \(0.298339\pi\)
\(660\) 0 0
\(661\) −92.3018 −0.00543135 −0.00271568 0.999996i \(-0.500864\pi\)
−0.00271568 + 0.999996i \(0.500864\pi\)
\(662\) 12827.2 0.753087
\(663\) −9176.02 −0.537507
\(664\) −17322.1 −1.01239
\(665\) 0 0
\(666\) −7240.48 −0.421265
\(667\) −954.107 −0.0553871
\(668\) 46136.7 2.67228
\(669\) −10311.4 −0.595910
\(670\) 0 0
\(671\) −1230.56 −0.0707975
\(672\) 10567.7 0.606635
\(673\) −15452.2 −0.885048 −0.442524 0.896757i \(-0.645917\pi\)
−0.442524 + 0.896757i \(0.645917\pi\)
\(674\) 34234.4 1.95647
\(675\) 0 0
\(676\) 28506.8 1.62192
\(677\) −19199.7 −1.08996 −0.544980 0.838449i \(-0.683463\pi\)
−0.544980 + 0.838449i \(0.683463\pi\)
\(678\) −21164.6 −1.19885
\(679\) 25245.4 1.42685
\(680\) 0 0
\(681\) 861.268 0.0484638
\(682\) 17191.1 0.965220
\(683\) 20090.5 1.12554 0.562769 0.826614i \(-0.309736\pi\)
0.562769 + 0.826614i \(0.309736\pi\)
\(684\) −7449.38 −0.416424
\(685\) 0 0
\(686\) −30034.6 −1.67161
\(687\) 18231.7 1.01250
\(688\) 3931.09 0.217836
\(689\) −29592.0 −1.63623
\(690\) 0 0
\(691\) 17376.4 0.956629 0.478315 0.878189i \(-0.341248\pi\)
0.478315 + 0.878189i \(0.341248\pi\)
\(692\) 9696.43 0.532663
\(693\) 3744.07 0.205231
\(694\) 30857.9 1.68782
\(695\) 0 0
\(696\) −1965.43 −0.107040
\(697\) −370.520 −0.0201355
\(698\) 27838.2 1.50959
\(699\) 14446.0 0.781686
\(700\) 0 0
\(701\) 11240.9 0.605651 0.302825 0.953046i \(-0.402070\pi\)
0.302825 + 0.953046i \(0.402070\pi\)
\(702\) −42801.0 −2.30117
\(703\) 4121.27 0.221105
\(704\) 13544.0 0.725082
\(705\) 0 0
\(706\) −38800.3 −2.06837
\(707\) −8675.96 −0.461518
\(708\) 16329.1 0.866787
\(709\) −35667.3 −1.88930 −0.944649 0.328082i \(-0.893598\pi\)
−0.944649 + 0.328082i \(0.893598\pi\)
\(710\) 0 0
\(711\) −1777.41 −0.0937527
\(712\) 2151.93 0.113268
\(713\) 5390.02 0.283111
\(714\) 8092.08 0.424144
\(715\) 0 0
\(716\) 18836.3 0.983164
\(717\) −21134.9 −1.10083
\(718\) −4030.78 −0.209509
\(719\) −25533.1 −1.32437 −0.662187 0.749339i \(-0.730371\pi\)
−0.662187 + 0.749339i \(0.730371\pi\)
\(720\) 0 0
\(721\) 21768.2 1.12440
\(722\) −22879.9 −1.17936
\(723\) 21999.7 1.13164
\(724\) −3927.54 −0.201610
\(725\) 0 0
\(726\) 15151.9 0.774574
\(727\) −27933.1 −1.42501 −0.712504 0.701668i \(-0.752439\pi\)
−0.712504 + 0.701668i \(0.752439\pi\)
\(728\) −13698.9 −0.697410
\(729\) 12985.4 0.659728
\(730\) 0 0
\(731\) 5959.40 0.301527
\(732\) −2727.60 −0.137726
\(733\) 29359.9 1.47945 0.739723 0.672912i \(-0.234957\pi\)
0.739723 + 0.672912i \(0.234957\pi\)
\(734\) 23945.1 1.20413
\(735\) 0 0
\(736\) 5371.85 0.269034
\(737\) 4099.32 0.204885
\(738\) −649.260 −0.0323843
\(739\) −29310.8 −1.45902 −0.729510 0.683970i \(-0.760252\pi\)
−0.729510 + 0.683970i \(0.760252\pi\)
\(740\) 0 0
\(741\) 9152.19 0.453730
\(742\) 26096.4 1.29114
\(743\) −17147.7 −0.846688 −0.423344 0.905969i \(-0.639144\pi\)
−0.423344 + 0.905969i \(0.639144\pi\)
\(744\) 11103.3 0.547132
\(745\) 0 0
\(746\) 42089.3 2.06568
\(747\) 19478.1 0.954037
\(748\) 7678.41 0.375335
\(749\) 17291.4 0.843545
\(750\) 0 0
\(751\) −37105.7 −1.80294 −0.901469 0.432843i \(-0.857511\pi\)
−0.901469 + 0.432843i \(0.857511\pi\)
\(752\) 10313.7 0.500136
\(753\) 949.011 0.0459281
\(754\) −12519.8 −0.604699
\(755\) 0 0
\(756\) 22091.0 1.06276
\(757\) 26843.4 1.28883 0.644413 0.764678i \(-0.277102\pi\)
0.644413 + 0.764678i \(0.277102\pi\)
\(758\) 24423.5 1.17032
\(759\) −1259.75 −0.0602449
\(760\) 0 0
\(761\) −38055.7 −1.81277 −0.906384 0.422455i \(-0.861168\pi\)
−0.906384 + 0.422455i \(0.861168\pi\)
\(762\) 6417.94 0.305115
\(763\) −17542.5 −0.832347
\(764\) 26152.1 1.23842
\(765\) 0 0
\(766\) −21290.2 −1.00424
\(767\) 30308.8 1.42684
\(768\) 3110.30 0.146137
\(769\) 11248.9 0.527496 0.263748 0.964592i \(-0.415041\pi\)
0.263748 + 0.964592i \(0.415041\pi\)
\(770\) 0 0
\(771\) 13249.0 0.618875
\(772\) 17274.0 0.805315
\(773\) 22704.0 1.05641 0.528205 0.849117i \(-0.322865\pi\)
0.528205 + 0.849117i \(0.322865\pi\)
\(774\) 10442.6 0.484951
\(775\) 0 0
\(776\) 26435.4 1.22291
\(777\) −4591.28 −0.211984
\(778\) −50826.9 −2.34220
\(779\) 369.558 0.0169972
\(780\) 0 0
\(781\) 4035.51 0.184894
\(782\) 4113.41 0.188101
\(783\) 5882.97 0.268506
\(784\) 4099.58 0.186752
\(785\) 0 0
\(786\) −9083.41 −0.412207
\(787\) 24801.6 1.12336 0.561678 0.827356i \(-0.310156\pi\)
0.561678 + 0.827356i \(0.310156\pi\)
\(788\) −20306.5 −0.918008
\(789\) 17218.3 0.776917
\(790\) 0 0
\(791\) 20275.9 0.911412
\(792\) 3920.55 0.175897
\(793\) −5062.77 −0.226714
\(794\) −25332.2 −1.13225
\(795\) 0 0
\(796\) 36487.2 1.62469
\(797\) 10289.9 0.457323 0.228662 0.973506i \(-0.426565\pi\)
0.228662 + 0.973506i \(0.426565\pi\)
\(798\) −8071.07 −0.358036
\(799\) 15635.2 0.692284
\(800\) 0 0
\(801\) −2419.76 −0.106739
\(802\) 65836.4 2.89871
\(803\) −3125.51 −0.137356
\(804\) 9086.38 0.398572
\(805\) 0 0
\(806\) 70727.7 3.09091
\(807\) 7927.80 0.345814
\(808\) −9084.91 −0.395552
\(809\) −17890.5 −0.777500 −0.388750 0.921343i \(-0.627093\pi\)
−0.388750 + 0.921343i \(0.627093\pi\)
\(810\) 0 0
\(811\) −19915.9 −0.862322 −0.431161 0.902275i \(-0.641896\pi\)
−0.431161 + 0.902275i \(0.641896\pi\)
\(812\) 6461.87 0.279270
\(813\) 21622.9 0.932779
\(814\) −7443.70 −0.320518
\(815\) 0 0
\(816\) −3586.84 −0.153878
\(817\) −5943.93 −0.254531
\(818\) −6535.07 −0.279332
\(819\) 15403.9 0.657211
\(820\) 0 0
\(821\) −13709.3 −0.582776 −0.291388 0.956605i \(-0.594117\pi\)
−0.291388 + 0.956605i \(0.594117\pi\)
\(822\) −6911.01 −0.293247
\(823\) −26399.7 −1.11815 −0.559074 0.829118i \(-0.688843\pi\)
−0.559074 + 0.829118i \(0.688843\pi\)
\(824\) 22794.3 0.963684
\(825\) 0 0
\(826\) −26728.6 −1.12591
\(827\) 18410.9 0.774135 0.387067 0.922051i \(-0.373488\pi\)
0.387067 + 0.922051i \(0.373488\pi\)
\(828\) 4218.57 0.177060
\(829\) 8828.44 0.369873 0.184936 0.982750i \(-0.440792\pi\)
0.184936 + 0.982750i \(0.440792\pi\)
\(830\) 0 0
\(831\) −9270.20 −0.386979
\(832\) 55722.8 2.32192
\(833\) 6214.82 0.258500
\(834\) 2915.08 0.121032
\(835\) 0 0
\(836\) −7658.47 −0.316834
\(837\) −33234.5 −1.37246
\(838\) −12030.7 −0.495935
\(839\) −18062.0 −0.743231 −0.371616 0.928387i \(-0.621196\pi\)
−0.371616 + 0.928387i \(0.621196\pi\)
\(840\) 0 0
\(841\) −22668.2 −0.929442
\(842\) 9687.81 0.396513
\(843\) 6677.14 0.272803
\(844\) −58703.8 −2.39416
\(845\) 0 0
\(846\) 27397.5 1.11341
\(847\) −14515.7 −0.588860
\(848\) −11567.3 −0.468423
\(849\) −14658.9 −0.592570
\(850\) 0 0
\(851\) −2333.87 −0.0940116
\(852\) 8944.95 0.359682
\(853\) −5289.59 −0.212324 −0.106162 0.994349i \(-0.533856\pi\)
−0.106162 + 0.994349i \(0.533856\pi\)
\(854\) 4464.72 0.178899
\(855\) 0 0
\(856\) 18106.5 0.722975
\(857\) 11311.0 0.450846 0.225423 0.974261i \(-0.427624\pi\)
0.225423 + 0.974261i \(0.427624\pi\)
\(858\) −16530.4 −0.657736
\(859\) 2466.99 0.0979892 0.0489946 0.998799i \(-0.484398\pi\)
0.0489946 + 0.998799i \(0.484398\pi\)
\(860\) 0 0
\(861\) −411.704 −0.0162960
\(862\) 54361.3 2.14797
\(863\) 8715.03 0.343758 0.171879 0.985118i \(-0.445016\pi\)
0.171879 + 0.985118i \(0.445016\pi\)
\(864\) −33122.5 −1.30422
\(865\) 0 0
\(866\) −50993.1 −2.00094
\(867\) 10673.5 0.418099
\(868\) −36504.9 −1.42749
\(869\) −1827.30 −0.0713313
\(870\) 0 0
\(871\) 16865.5 0.656102
\(872\) −18369.4 −0.713377
\(873\) −29725.6 −1.15242
\(874\) −4102.73 −0.158784
\(875\) 0 0
\(876\) −6927.88 −0.267205
\(877\) 2707.70 0.104256 0.0521280 0.998640i \(-0.483400\pi\)
0.0521280 + 0.998640i \(0.483400\pi\)
\(878\) −46492.6 −1.78707
\(879\) 31013.0 1.19004
\(880\) 0 0
\(881\) 50363.6 1.92599 0.962993 0.269527i \(-0.0868675\pi\)
0.962993 + 0.269527i \(0.0868675\pi\)
\(882\) 10890.2 0.415750
\(883\) 29515.0 1.12487 0.562434 0.826842i \(-0.309865\pi\)
0.562434 + 0.826842i \(0.309865\pi\)
\(884\) 31590.6 1.20193
\(885\) 0 0
\(886\) 59608.4 2.26025
\(887\) 16506.7 0.624849 0.312425 0.949943i \(-0.398859\pi\)
0.312425 + 0.949943i \(0.398859\pi\)
\(888\) −4807.70 −0.181684
\(889\) −6148.44 −0.231960
\(890\) 0 0
\(891\) 440.981 0.0165807
\(892\) 35499.5 1.33253
\(893\) −15594.6 −0.584383
\(894\) 10657.3 0.398694
\(895\) 0 0
\(896\) −23359.7 −0.870974
\(897\) −5182.86 −0.192922
\(898\) 36900.4 1.37125
\(899\) −9721.47 −0.360655
\(900\) 0 0
\(901\) −17535.6 −0.648388
\(902\) −667.482 −0.0246394
\(903\) 6621.80 0.244031
\(904\) 21231.6 0.781142
\(905\) 0 0
\(906\) 18420.3 0.675467
\(907\) 9107.76 0.333427 0.166713 0.986005i \(-0.446685\pi\)
0.166713 + 0.986005i \(0.446685\pi\)
\(908\) −2965.12 −0.108371
\(909\) 10215.6 0.372752
\(910\) 0 0
\(911\) 23664.9 0.860652 0.430326 0.902674i \(-0.358399\pi\)
0.430326 + 0.902674i \(0.358399\pi\)
\(912\) 3577.53 0.129894
\(913\) 20024.8 0.725874
\(914\) −45703.1 −1.65396
\(915\) 0 0
\(916\) −62767.0 −2.26406
\(917\) 8701.99 0.313375
\(918\) −25363.1 −0.911880
\(919\) 30834.5 1.10679 0.553393 0.832920i \(-0.313333\pi\)
0.553393 + 0.832920i \(0.313333\pi\)
\(920\) 0 0
\(921\) 15007.7 0.536939
\(922\) 51779.8 1.84954
\(923\) 16602.9 0.592083
\(924\) 8531.88 0.303764
\(925\) 0 0
\(926\) −69011.7 −2.44910
\(927\) −25631.3 −0.908137
\(928\) −9688.70 −0.342723
\(929\) 17648.9 0.623297 0.311648 0.950197i \(-0.399119\pi\)
0.311648 + 0.950197i \(0.399119\pi\)
\(930\) 0 0
\(931\) −6198.68 −0.218210
\(932\) −49733.8 −1.74794
\(933\) 12104.4 0.424739
\(934\) −22899.4 −0.802238
\(935\) 0 0
\(936\) 16130.0 0.563274
\(937\) −23621.9 −0.823580 −0.411790 0.911279i \(-0.635096\pi\)
−0.411790 + 0.911279i \(0.635096\pi\)
\(938\) −14873.2 −0.517726
\(939\) 32043.6 1.11364
\(940\) 0 0
\(941\) −8129.95 −0.281646 −0.140823 0.990035i \(-0.544975\pi\)
−0.140823 + 0.990035i \(0.544975\pi\)
\(942\) −10279.0 −0.355527
\(943\) −209.280 −0.00722703
\(944\) 11847.5 0.408478
\(945\) 0 0
\(946\) 10735.7 0.368972
\(947\) 52681.5 1.80773 0.903865 0.427818i \(-0.140718\pi\)
0.903865 + 0.427818i \(0.140718\pi\)
\(948\) −4050.31 −0.138764
\(949\) −12859.0 −0.439854
\(950\) 0 0
\(951\) −31655.0 −1.07937
\(952\) −8117.69 −0.276361
\(953\) 48109.3 1.63527 0.817636 0.575735i \(-0.195284\pi\)
0.817636 + 0.575735i \(0.195284\pi\)
\(954\) −30727.6 −1.04281
\(955\) 0 0
\(956\) 72761.6 2.46159
\(957\) 2272.09 0.0767462
\(958\) −34753.2 −1.17205
\(959\) 6620.80 0.222937
\(960\) 0 0
\(961\) 25128.3 0.843486
\(962\) −30624.9 −1.02639
\(963\) −20360.1 −0.681302
\(964\) −75739.0 −2.53049
\(965\) 0 0
\(966\) 4570.63 0.152233
\(967\) −41498.5 −1.38004 −0.690022 0.723789i \(-0.742399\pi\)
−0.690022 + 0.723789i \(0.742399\pi\)
\(968\) −15199.9 −0.504693
\(969\) 5423.41 0.179799
\(970\) 0 0
\(971\) 2030.35 0.0671031 0.0335515 0.999437i \(-0.489318\pi\)
0.0335515 + 0.999437i \(0.489318\pi\)
\(972\) −42251.1 −1.39424
\(973\) −2792.67 −0.0920132
\(974\) −11904.9 −0.391641
\(975\) 0 0
\(976\) −1979.00 −0.0649040
\(977\) 42161.7 1.38063 0.690313 0.723511i \(-0.257473\pi\)
0.690313 + 0.723511i \(0.257473\pi\)
\(978\) −3100.87 −0.101385
\(979\) −2487.68 −0.0812120
\(980\) 0 0
\(981\) 20655.7 0.672258
\(982\) −75908.9 −2.46675
\(983\) 44619.0 1.44774 0.723869 0.689938i \(-0.242362\pi\)
0.723869 + 0.689938i \(0.242362\pi\)
\(984\) −431.110 −0.0139668
\(985\) 0 0
\(986\) −7418.98 −0.239623
\(987\) 17373.1 0.560276
\(988\) −31508.5 −1.01460
\(989\) 3366.03 0.108224
\(990\) 0 0
\(991\) −18737.8 −0.600633 −0.300316 0.953840i \(-0.597092\pi\)
−0.300316 + 0.953840i \(0.597092\pi\)
\(992\) 54734.1 1.75183
\(993\) −9577.39 −0.306072
\(994\) −14641.7 −0.467209
\(995\) 0 0
\(996\) 44386.1 1.41208
\(997\) −48629.2 −1.54474 −0.772368 0.635175i \(-0.780928\pi\)
−0.772368 + 0.635175i \(0.780928\pi\)
\(998\) 72563.3 2.30156
\(999\) 14390.5 0.455750
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.a.m.1.7 yes 7
5.2 odd 4 575.4.b.j.24.13 14
5.3 odd 4 575.4.b.j.24.2 14
5.4 even 2 575.4.a.l.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.4.a.l.1.1 7 5.4 even 2
575.4.a.m.1.7 yes 7 1.1 even 1 trivial
575.4.b.j.24.2 14 5.3 odd 4
575.4.b.j.24.13 14 5.2 odd 4