Properties

Label 575.4.b.j.24.7
Level $575$
Weight $4$
Character 575.24
Analytic conductor $33.926$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 83x^{12} + 2715x^{10} + 44273x^{8} + 372280x^{6} + 1482448x^{4} + 2136384x^{2} + 746496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.7
Root \(-0.711047i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.4.b.j.24.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.711047i q^{2} +0.689108i q^{3} +7.49441 q^{4} +0.489988 q^{6} -19.0526i q^{7} -11.0173i q^{8} +26.5251 q^{9} +50.7019 q^{11} +5.16446i q^{12} -45.4342i q^{13} -13.5473 q^{14} +52.1215 q^{16} +53.0220i q^{17} -18.8606i q^{18} -58.8778 q^{19} +13.1293 q^{21} -36.0514i q^{22} +23.0000i q^{23} +7.59208 q^{24} -32.3058 q^{26} +36.8846i q^{27} -142.788i q^{28} +70.7345 q^{29} -286.748 q^{31} -125.199i q^{32} +34.9391i q^{33} +37.7011 q^{34} +198.790 q^{36} -175.393i q^{37} +41.8649i q^{38} +31.3091 q^{39} -95.0049 q^{41} -9.33557i q^{42} -148.383i q^{43} +379.981 q^{44} +16.3541 q^{46} +23.5469i q^{47} +35.9174i q^{48} -20.0033 q^{49} -36.5379 q^{51} -340.503i q^{52} -379.219i q^{53} +26.2267 q^{54} -209.908 q^{56} -40.5731i q^{57} -50.2956i q^{58} +741.332 q^{59} +5.17078 q^{61} +203.891i q^{62} -505.374i q^{63} +327.950 q^{64} +24.8433 q^{66} +974.454i q^{67} +397.368i q^{68} -15.8495 q^{69} -336.469 q^{71} -292.234i q^{72} +317.142i q^{73} -124.713 q^{74} -441.254 q^{76} -966.005i q^{77} -22.2622i q^{78} +577.050 q^{79} +690.761 q^{81} +67.5530i q^{82} +225.514i q^{83} +98.3966 q^{84} -105.507 q^{86} +48.7438i q^{87} -558.596i q^{88} +1141.92 q^{89} -865.642 q^{91} +172.371i q^{92} -197.600i q^{93} +16.7429 q^{94} +86.2756 q^{96} -147.766i q^{97} +14.2233i q^{98} +1344.87 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 54 q^{4} - 82 q^{6} - 20 q^{9} - 104 q^{11} + 84 q^{14} - 170 q^{16} + 20 q^{19} - 404 q^{21} + 606 q^{24} - 52 q^{26} + 910 q^{29} - 1380 q^{31} + 1314 q^{34} + 408 q^{36} + 554 q^{39} - 460 q^{41}+ \cdots + 4286 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.711047i − 0.251393i −0.992069 0.125697i \(-0.959883\pi\)
0.992069 0.125697i \(-0.0401166\pi\)
\(3\) 0.689108i 0.132619i 0.997799 + 0.0663095i \(0.0211225\pi\)
−0.997799 + 0.0663095i \(0.978878\pi\)
\(4\) 7.49441 0.936802
\(5\) 0 0
\(6\) 0.489988 0.0333395
\(7\) − 19.0526i − 1.02875i −0.857566 0.514373i \(-0.828025\pi\)
0.857566 0.514373i \(-0.171975\pi\)
\(8\) − 11.0173i − 0.486899i
\(9\) 26.5251 0.982412
\(10\) 0 0
\(11\) 50.7019 1.38974 0.694872 0.719133i \(-0.255461\pi\)
0.694872 + 0.719133i \(0.255461\pi\)
\(12\) 5.16446i 0.124238i
\(13\) − 45.4342i − 0.969321i −0.874702 0.484661i \(-0.838943\pi\)
0.874702 0.484661i \(-0.161057\pi\)
\(14\) −13.5473 −0.258620
\(15\) 0 0
\(16\) 52.1215 0.814399
\(17\) 53.0220i 0.756454i 0.925713 + 0.378227i \(0.123466\pi\)
−0.925713 + 0.378227i \(0.876534\pi\)
\(18\) − 18.8606i − 0.246972i
\(19\) −58.8778 −0.710920 −0.355460 0.934691i \(-0.615676\pi\)
−0.355460 + 0.934691i \(0.615676\pi\)
\(20\) 0 0
\(21\) 13.1293 0.136431
\(22\) − 36.0514i − 0.349372i
\(23\) 23.0000i 0.208514i
\(24\) 7.59208 0.0645720
\(25\) 0 0
\(26\) −32.3058 −0.243681
\(27\) 36.8846i 0.262905i
\(28\) − 142.788i − 0.963731i
\(29\) 70.7345 0.452934 0.226467 0.974019i \(-0.427283\pi\)
0.226467 + 0.974019i \(0.427283\pi\)
\(30\) 0 0
\(31\) −286.748 −1.66134 −0.830669 0.556766i \(-0.812042\pi\)
−0.830669 + 0.556766i \(0.812042\pi\)
\(32\) − 125.199i − 0.691633i
\(33\) 34.9391i 0.184306i
\(34\) 37.7011 0.190167
\(35\) 0 0
\(36\) 198.790 0.920325
\(37\) − 175.393i − 0.779310i −0.920961 0.389655i \(-0.872594\pi\)
0.920961 0.389655i \(-0.127406\pi\)
\(38\) 41.8649i 0.178720i
\(39\) 31.3091 0.128550
\(40\) 0 0
\(41\) −95.0049 −0.361885 −0.180942 0.983494i \(-0.557915\pi\)
−0.180942 + 0.983494i \(0.557915\pi\)
\(42\) − 9.33557i − 0.0342979i
\(43\) − 148.383i − 0.526237i −0.964764 0.263118i \(-0.915249\pi\)
0.964764 0.263118i \(-0.0847510\pi\)
\(44\) 379.981 1.30191
\(45\) 0 0
\(46\) 16.3541 0.0524191
\(47\) 23.5469i 0.0730779i 0.999332 + 0.0365390i \(0.0116333\pi\)
−0.999332 + 0.0365390i \(0.988367\pi\)
\(48\) 35.9174i 0.108005i
\(49\) −20.0033 −0.0583188
\(50\) 0 0
\(51\) −36.5379 −0.100320
\(52\) − 340.503i − 0.908062i
\(53\) − 379.219i − 0.982825i −0.870927 0.491413i \(-0.836481\pi\)
0.870927 0.491413i \(-0.163519\pi\)
\(54\) 26.2267 0.0660926
\(55\) 0 0
\(56\) −209.908 −0.500895
\(57\) − 40.5731i − 0.0942815i
\(58\) − 50.2956i − 0.113864i
\(59\) 741.332 1.63582 0.817908 0.575349i \(-0.195134\pi\)
0.817908 + 0.575349i \(0.195134\pi\)
\(60\) 0 0
\(61\) 5.17078 0.0108533 0.00542664 0.999985i \(-0.498273\pi\)
0.00542664 + 0.999985i \(0.498273\pi\)
\(62\) 203.891i 0.417649i
\(63\) − 505.374i − 1.01065i
\(64\) 327.950 0.640527
\(65\) 0 0
\(66\) 24.8433 0.0463334
\(67\) 974.454i 1.77684i 0.459028 + 0.888422i \(0.348198\pi\)
−0.459028 + 0.888422i \(0.651802\pi\)
\(68\) 397.368i 0.708647i
\(69\) −15.8495 −0.0276530
\(70\) 0 0
\(71\) −336.469 −0.562416 −0.281208 0.959647i \(-0.590735\pi\)
−0.281208 + 0.959647i \(0.590735\pi\)
\(72\) − 292.234i − 0.478335i
\(73\) 317.142i 0.508474i 0.967142 + 0.254237i \(0.0818244\pi\)
−0.967142 + 0.254237i \(0.918176\pi\)
\(74\) −124.713 −0.195913
\(75\) 0 0
\(76\) −441.254 −0.665991
\(77\) − 966.005i − 1.42969i
\(78\) − 22.2622i − 0.0323167i
\(79\) 577.050 0.821812 0.410906 0.911678i \(-0.365212\pi\)
0.410906 + 0.911678i \(0.365212\pi\)
\(80\) 0 0
\(81\) 690.761 0.947546
\(82\) 67.5530i 0.0909754i
\(83\) 225.514i 0.298234i 0.988820 + 0.149117i \(0.0476430\pi\)
−0.988820 + 0.149117i \(0.952357\pi\)
\(84\) 98.3966 0.127809
\(85\) 0 0
\(86\) −105.507 −0.132292
\(87\) 48.7438i 0.0600676i
\(88\) − 558.596i − 0.676665i
\(89\) 1141.92 1.36003 0.680016 0.733197i \(-0.261973\pi\)
0.680016 + 0.733197i \(0.261973\pi\)
\(90\) 0 0
\(91\) −865.642 −0.997186
\(92\) 172.371i 0.195337i
\(93\) − 197.600i − 0.220325i
\(94\) 16.7429 0.0183713
\(95\) 0 0
\(96\) 86.2756 0.0917236
\(97\) − 147.766i − 0.154674i −0.997005 0.0773370i \(-0.975358\pi\)
0.997005 0.0773370i \(-0.0246417\pi\)
\(98\) 14.2233i 0.0146609i
\(99\) 1344.87 1.36530
\(100\) 0 0
\(101\) −909.233 −0.895763 −0.447881 0.894093i \(-0.647821\pi\)
−0.447881 + 0.894093i \(0.647821\pi\)
\(102\) 25.9801i 0.0252198i
\(103\) − 1330.08i − 1.27240i −0.771526 0.636198i \(-0.780506\pi\)
0.771526 0.636198i \(-0.219494\pi\)
\(104\) −500.560 −0.471961
\(105\) 0 0
\(106\) −269.643 −0.247075
\(107\) − 1209.82i − 1.09306i −0.837440 0.546529i \(-0.815949\pi\)
0.837440 0.546529i \(-0.184051\pi\)
\(108\) 276.428i 0.246290i
\(109\) −507.933 −0.446341 −0.223171 0.974779i \(-0.571641\pi\)
−0.223171 + 0.974779i \(0.571641\pi\)
\(110\) 0 0
\(111\) 120.865 0.103351
\(112\) − 993.053i − 0.837809i
\(113\) − 2.39609i − 0.00199474i −1.00000 0.000997369i \(-0.999683\pi\)
1.00000 0.000997369i \(-0.000317472\pi\)
\(114\) −28.8494 −0.0237017
\(115\) 0 0
\(116\) 530.114 0.424309
\(117\) − 1205.15i − 0.952273i
\(118\) − 527.122i − 0.411233i
\(119\) 1010.21 0.778199
\(120\) 0 0
\(121\) 1239.68 0.931390
\(122\) − 3.67666i − 0.00272844i
\(123\) − 65.4687i − 0.0479928i
\(124\) −2149.01 −1.55634
\(125\) 0 0
\(126\) −359.345 −0.254071
\(127\) − 1355.81i − 0.947310i −0.880710 0.473655i \(-0.842934\pi\)
0.880710 0.473655i \(-0.157066\pi\)
\(128\) − 1234.78i − 0.852657i
\(129\) 102.252 0.0697890
\(130\) 0 0
\(131\) −1701.47 −1.13479 −0.567397 0.823444i \(-0.692050\pi\)
−0.567397 + 0.823444i \(0.692050\pi\)
\(132\) 261.848i 0.172659i
\(133\) 1121.78i 0.731356i
\(134\) 692.883 0.446686
\(135\) 0 0
\(136\) 584.157 0.368316
\(137\) − 2505.35i − 1.56238i −0.624292 0.781191i \(-0.714613\pi\)
0.624292 0.781191i \(-0.285387\pi\)
\(138\) 11.2697i 0.00695176i
\(139\) 245.374 0.149729 0.0748646 0.997194i \(-0.476148\pi\)
0.0748646 + 0.997194i \(0.476148\pi\)
\(140\) 0 0
\(141\) −16.2263 −0.00969151
\(142\) 239.245i 0.141388i
\(143\) − 2303.60i − 1.34711i
\(144\) 1382.53 0.800075
\(145\) 0 0
\(146\) 225.503 0.127827
\(147\) − 13.7845i − 0.00773418i
\(148\) − 1314.47i − 0.730059i
\(149\) −2542.90 −1.39814 −0.699068 0.715055i \(-0.746402\pi\)
−0.699068 + 0.715055i \(0.746402\pi\)
\(150\) 0 0
\(151\) 2976.66 1.60422 0.802110 0.597176i \(-0.203711\pi\)
0.802110 + 0.597176i \(0.203711\pi\)
\(152\) 648.671i 0.346146i
\(153\) 1406.41i 0.743150i
\(154\) −686.875 −0.359415
\(155\) 0 0
\(156\) 234.643 0.120426
\(157\) 3622.21i 1.84130i 0.390393 + 0.920648i \(0.372339\pi\)
−0.390393 + 0.920648i \(0.627661\pi\)
\(158\) − 410.310i − 0.206598i
\(159\) 261.323 0.130341
\(160\) 0 0
\(161\) 438.211 0.214508
\(162\) − 491.164i − 0.238207i
\(163\) 3486.81i 1.67551i 0.546048 + 0.837754i \(0.316132\pi\)
−0.546048 + 0.837754i \(0.683868\pi\)
\(164\) −712.006 −0.339014
\(165\) 0 0
\(166\) 160.351 0.0749738
\(167\) 2818.90i 1.30618i 0.757278 + 0.653092i \(0.226529\pi\)
−0.757278 + 0.653092i \(0.773471\pi\)
\(168\) − 144.649i − 0.0664282i
\(169\) 132.734 0.0604161
\(170\) 0 0
\(171\) −1561.74 −0.698417
\(172\) − 1112.04i − 0.492980i
\(173\) 2919.22i 1.28291i 0.767159 + 0.641456i \(0.221670\pi\)
−0.767159 + 0.641456i \(0.778330\pi\)
\(174\) 34.6591 0.0151006
\(175\) 0 0
\(176\) 2642.66 1.13181
\(177\) 510.858i 0.216940i
\(178\) − 811.956i − 0.341903i
\(179\) 2992.42 1.24952 0.624761 0.780816i \(-0.285197\pi\)
0.624761 + 0.780816i \(0.285197\pi\)
\(180\) 0 0
\(181\) −3665.87 −1.50542 −0.752712 0.658350i \(-0.771255\pi\)
−0.752712 + 0.658350i \(0.771255\pi\)
\(182\) 615.512i 0.250686i
\(183\) 3.56322i 0.00143935i
\(184\) 253.397 0.101525
\(185\) 0 0
\(186\) −140.503 −0.0553882
\(187\) 2688.31i 1.05128i
\(188\) 176.470i 0.0684595i
\(189\) 702.749 0.270463
\(190\) 0 0
\(191\) −2159.35 −0.818035 −0.409018 0.912526i \(-0.634129\pi\)
−0.409018 + 0.912526i \(0.634129\pi\)
\(192\) 225.993i 0.0849460i
\(193\) 1865.76i 0.695856i 0.937521 + 0.347928i \(0.113115\pi\)
−0.937521 + 0.347928i \(0.886885\pi\)
\(194\) −105.069 −0.0388840
\(195\) 0 0
\(196\) −149.913 −0.0546331
\(197\) − 2638.16i − 0.954117i −0.878872 0.477058i \(-0.841703\pi\)
0.878872 0.477058i \(-0.158297\pi\)
\(198\) − 956.269i − 0.343228i
\(199\) −626.916 −0.223321 −0.111661 0.993746i \(-0.535617\pi\)
−0.111661 + 0.993746i \(0.535617\pi\)
\(200\) 0 0
\(201\) −671.504 −0.235643
\(202\) 646.507i 0.225189i
\(203\) − 1347.68i − 0.465954i
\(204\) −273.830 −0.0939800
\(205\) 0 0
\(206\) −945.751 −0.319872
\(207\) 610.078i 0.204847i
\(208\) − 2368.10i − 0.789414i
\(209\) −2985.21 −0.987998
\(210\) 0 0
\(211\) −3090.41 −1.00831 −0.504154 0.863614i \(-0.668196\pi\)
−0.504154 + 0.863614i \(0.668196\pi\)
\(212\) − 2842.02i − 0.920712i
\(213\) − 231.864i − 0.0745870i
\(214\) −860.236 −0.274787
\(215\) 0 0
\(216\) 406.367 0.128008
\(217\) 5463.31i 1.70910i
\(218\) 361.165i 0.112207i
\(219\) −218.545 −0.0674333
\(220\) 0 0
\(221\) 2409.01 0.733247
\(222\) − 85.9407i − 0.0259818i
\(223\) 5702.67i 1.71246i 0.516594 + 0.856230i \(0.327200\pi\)
−0.516594 + 0.856230i \(0.672800\pi\)
\(224\) −2385.37 −0.711515
\(225\) 0 0
\(226\) −1.70373 −0.000501463 0
\(227\) 3203.45i 0.936654i 0.883555 + 0.468327i \(0.155143\pi\)
−0.883555 + 0.468327i \(0.844857\pi\)
\(228\) − 304.072i − 0.0883230i
\(229\) −648.466 −0.187126 −0.0935630 0.995613i \(-0.529826\pi\)
−0.0935630 + 0.995613i \(0.529826\pi\)
\(230\) 0 0
\(231\) 665.682 0.189605
\(232\) − 779.301i − 0.220533i
\(233\) − 2556.98i − 0.718941i −0.933156 0.359470i \(-0.882957\pi\)
0.933156 0.359470i \(-0.117043\pi\)
\(234\) −856.917 −0.239395
\(235\) 0 0
\(236\) 5555.85 1.53244
\(237\) 397.650i 0.108988i
\(238\) − 718.306i − 0.195634i
\(239\) −4424.46 −1.19747 −0.598733 0.800949i \(-0.704329\pi\)
−0.598733 + 0.800949i \(0.704329\pi\)
\(240\) 0 0
\(241\) −3335.19 −0.891447 −0.445724 0.895171i \(-0.647054\pi\)
−0.445724 + 0.895171i \(0.647054\pi\)
\(242\) − 881.471i − 0.234145i
\(243\) 1471.89i 0.388568i
\(244\) 38.7519 0.0101674
\(245\) 0 0
\(246\) −46.5513 −0.0120651
\(247\) 2675.06i 0.689110i
\(248\) 3159.18i 0.808903i
\(249\) −155.404 −0.0395514
\(250\) 0 0
\(251\) 1952.47 0.490990 0.245495 0.969398i \(-0.421049\pi\)
0.245495 + 0.969398i \(0.421049\pi\)
\(252\) − 3787.48i − 0.946781i
\(253\) 1166.14i 0.289782i
\(254\) −964.042 −0.238147
\(255\) 0 0
\(256\) 1745.61 0.426175
\(257\) − 543.328i − 0.131875i −0.997824 0.0659374i \(-0.978996\pi\)
0.997824 0.0659374i \(-0.0210038\pi\)
\(258\) − 72.7059i − 0.0175445i
\(259\) −3341.71 −0.801713
\(260\) 0 0
\(261\) 1876.24 0.444968
\(262\) 1209.82i 0.285279i
\(263\) 3370.82i 0.790318i 0.918613 + 0.395159i \(0.129310\pi\)
−0.918613 + 0.395159i \(0.870690\pi\)
\(264\) 384.933 0.0897385
\(265\) 0 0
\(266\) 797.636 0.183858
\(267\) 786.904i 0.180366i
\(268\) 7302.96i 1.66455i
\(269\) 2778.40 0.629747 0.314873 0.949134i \(-0.398038\pi\)
0.314873 + 0.949134i \(0.398038\pi\)
\(270\) 0 0
\(271\) 6476.65 1.45177 0.725883 0.687819i \(-0.241432\pi\)
0.725883 + 0.687819i \(0.241432\pi\)
\(272\) 2763.59i 0.616055i
\(273\) − 596.521i − 0.132246i
\(274\) −1781.42 −0.392772
\(275\) 0 0
\(276\) −118.783 −0.0259053
\(277\) 1555.57i 0.337420i 0.985666 + 0.168710i \(0.0539602\pi\)
−0.985666 + 0.168710i \(0.946040\pi\)
\(278\) − 174.473i − 0.0376409i
\(279\) −7606.03 −1.63212
\(280\) 0 0
\(281\) 4311.09 0.915225 0.457612 0.889152i \(-0.348705\pi\)
0.457612 + 0.889152i \(0.348705\pi\)
\(282\) 11.5377i 0.00243638i
\(283\) 6866.82i 1.44237i 0.692744 + 0.721183i \(0.256402\pi\)
−0.692744 + 0.721183i \(0.743598\pi\)
\(284\) −2521.64 −0.526872
\(285\) 0 0
\(286\) −1637.97 −0.338654
\(287\) 1810.10i 0.372288i
\(288\) − 3320.92i − 0.679468i
\(289\) 2101.67 0.427777
\(290\) 0 0
\(291\) 101.827 0.0205127
\(292\) 2376.79i 0.476339i
\(293\) − 7215.56i − 1.43870i −0.694650 0.719348i \(-0.744441\pi\)
0.694650 0.719348i \(-0.255559\pi\)
\(294\) −9.80141 −0.00194432
\(295\) 0 0
\(296\) −1932.35 −0.379445
\(297\) 1870.12i 0.365371i
\(298\) 1808.12i 0.351482i
\(299\) 1044.99 0.202117
\(300\) 0 0
\(301\) −2827.09 −0.541364
\(302\) − 2116.55i − 0.403290i
\(303\) − 626.560i − 0.118795i
\(304\) −3068.80 −0.578972
\(305\) 0 0
\(306\) 1000.03 0.186823
\(307\) − 3524.91i − 0.655300i −0.944799 0.327650i \(-0.893743\pi\)
0.944799 0.327650i \(-0.106257\pi\)
\(308\) − 7239.64i − 1.33934i
\(309\) 916.570 0.168744
\(310\) 0 0
\(311\) 3378.27 0.615962 0.307981 0.951393i \(-0.400347\pi\)
0.307981 + 0.951393i \(0.400347\pi\)
\(312\) − 344.940i − 0.0625910i
\(313\) 2962.83i 0.535045i 0.963552 + 0.267522i \(0.0862049\pi\)
−0.963552 + 0.267522i \(0.913795\pi\)
\(314\) 2575.56 0.462889
\(315\) 0 0
\(316\) 4324.65 0.769875
\(317\) − 553.945i − 0.0981472i −0.998795 0.0490736i \(-0.984373\pi\)
0.998795 0.0490736i \(-0.0156269\pi\)
\(318\) − 185.813i − 0.0327669i
\(319\) 3586.37 0.629462
\(320\) 0 0
\(321\) 833.694 0.144960
\(322\) − 311.589i − 0.0539259i
\(323\) − 3121.81i − 0.537778i
\(324\) 5176.85 0.887663
\(325\) 0 0
\(326\) 2479.28 0.421211
\(327\) − 350.021i − 0.0591933i
\(328\) 1046.69i 0.176201i
\(329\) 448.630 0.0751786
\(330\) 0 0
\(331\) −2236.93 −0.371458 −0.185729 0.982601i \(-0.559465\pi\)
−0.185729 + 0.982601i \(0.559465\pi\)
\(332\) 1690.10i 0.279386i
\(333\) − 4652.33i − 0.765604i
\(334\) 2004.37 0.328366
\(335\) 0 0
\(336\) 684.321 0.111109
\(337\) − 586.710i − 0.0948372i −0.998875 0.0474186i \(-0.984901\pi\)
0.998875 0.0474186i \(-0.0150995\pi\)
\(338\) − 94.3802i − 0.0151882i
\(339\) 1.65117 0.000264540 0
\(340\) 0 0
\(341\) −14538.7 −2.30884
\(342\) 1110.47i 0.175577i
\(343\) − 6153.94i − 0.968751i
\(344\) −1634.77 −0.256224
\(345\) 0 0
\(346\) 2075.70 0.322515
\(347\) 9174.08i 1.41928i 0.704564 + 0.709640i \(0.251143\pi\)
−0.704564 + 0.709640i \(0.748857\pi\)
\(348\) 365.306i 0.0562714i
\(349\) −5325.68 −0.816840 −0.408420 0.912794i \(-0.633920\pi\)
−0.408420 + 0.912794i \(0.633920\pi\)
\(350\) 0 0
\(351\) 1675.82 0.254840
\(352\) − 6347.82i − 0.961193i
\(353\) 9803.34i 1.47813i 0.673635 + 0.739064i \(0.264732\pi\)
−0.673635 + 0.739064i \(0.735268\pi\)
\(354\) 363.244 0.0545373
\(355\) 0 0
\(356\) 8557.99 1.27408
\(357\) 696.143i 0.103204i
\(358\) − 2127.75i − 0.314121i
\(359\) −10089.9 −1.48336 −0.741681 0.670753i \(-0.765971\pi\)
−0.741681 + 0.670753i \(0.765971\pi\)
\(360\) 0 0
\(361\) −3392.41 −0.494593
\(362\) 2606.60i 0.378453i
\(363\) 854.274i 0.123520i
\(364\) −6487.48 −0.934165
\(365\) 0 0
\(366\) 2.53362 0.000361843 0
\(367\) 8291.81i 1.17937i 0.807633 + 0.589685i \(0.200748\pi\)
−0.807633 + 0.589685i \(0.799252\pi\)
\(368\) 1198.79i 0.169814i
\(369\) −2520.02 −0.355520
\(370\) 0 0
\(371\) −7225.13 −1.01108
\(372\) − 1480.90i − 0.206401i
\(373\) 7493.58i 1.04022i 0.854098 + 0.520111i \(0.174110\pi\)
−0.854098 + 0.520111i \(0.825890\pi\)
\(374\) 1911.52 0.264284
\(375\) 0 0
\(376\) 259.422 0.0355815
\(377\) − 3213.77i − 0.439038i
\(378\) − 499.688i − 0.0679925i
\(379\) 3630.87 0.492099 0.246049 0.969257i \(-0.420867\pi\)
0.246049 + 0.969257i \(0.420867\pi\)
\(380\) 0 0
\(381\) 934.297 0.125631
\(382\) 1535.40i 0.205648i
\(383\) 952.474i 0.127074i 0.997979 + 0.0635368i \(0.0202380\pi\)
−0.997979 + 0.0635368i \(0.979762\pi\)
\(384\) 850.896 0.113078
\(385\) 0 0
\(386\) 1326.64 0.174933
\(387\) − 3935.88i − 0.516982i
\(388\) − 1107.42i − 0.144899i
\(389\) 4541.34 0.591916 0.295958 0.955201i \(-0.404361\pi\)
0.295958 + 0.955201i \(0.404361\pi\)
\(390\) 0 0
\(391\) −1219.51 −0.157732
\(392\) 220.382i 0.0283953i
\(393\) − 1172.50i − 0.150495i
\(394\) −1875.86 −0.239858
\(395\) 0 0
\(396\) 10079.0 1.27902
\(397\) − 14345.6i − 1.81356i −0.421604 0.906780i \(-0.638533\pi\)
0.421604 0.906780i \(-0.361467\pi\)
\(398\) 445.767i 0.0561414i
\(399\) −773.026 −0.0969917
\(400\) 0 0
\(401\) −6358.53 −0.791845 −0.395923 0.918284i \(-0.629575\pi\)
−0.395923 + 0.918284i \(0.629575\pi\)
\(402\) 477.471i 0.0592390i
\(403\) 13028.2i 1.61037i
\(404\) −6814.17 −0.839152
\(405\) 0 0
\(406\) −958.264 −0.117138
\(407\) − 8892.77i − 1.08304i
\(408\) 402.547i 0.0488457i
\(409\) 11543.2 1.39553 0.697767 0.716325i \(-0.254177\pi\)
0.697767 + 0.716325i \(0.254177\pi\)
\(410\) 0 0
\(411\) 1726.46 0.207201
\(412\) − 9968.18i − 1.19198i
\(413\) − 14124.3i − 1.68284i
\(414\) 433.794 0.0514971
\(415\) 0 0
\(416\) −5688.31 −0.670414
\(417\) 169.089i 0.0198569i
\(418\) 2122.63i 0.248376i
\(419\) 3691.25 0.430380 0.215190 0.976572i \(-0.430963\pi\)
0.215190 + 0.976572i \(0.430963\pi\)
\(420\) 0 0
\(421\) −7551.44 −0.874191 −0.437096 0.899415i \(-0.643993\pi\)
−0.437096 + 0.899415i \(0.643993\pi\)
\(422\) 2197.43i 0.253482i
\(423\) 624.583i 0.0717926i
\(424\) −4177.95 −0.478536
\(425\) 0 0
\(426\) −164.866 −0.0187507
\(427\) − 98.5170i − 0.0111653i
\(428\) − 9066.86i − 1.02398i
\(429\) 1587.43 0.178652
\(430\) 0 0
\(431\) −16426.2 −1.83578 −0.917891 0.396833i \(-0.870109\pi\)
−0.917891 + 0.396833i \(0.870109\pi\)
\(432\) 1922.48i 0.214110i
\(433\) 6363.88i 0.706301i 0.935566 + 0.353151i \(0.114890\pi\)
−0.935566 + 0.353151i \(0.885110\pi\)
\(434\) 3884.67 0.429655
\(435\) 0 0
\(436\) −3806.66 −0.418133
\(437\) − 1354.19i − 0.148237i
\(438\) 155.396i 0.0169523i
\(439\) 7513.99 0.816910 0.408455 0.912779i \(-0.366068\pi\)
0.408455 + 0.912779i \(0.366068\pi\)
\(440\) 0 0
\(441\) −530.591 −0.0572931
\(442\) − 1712.92i − 0.184333i
\(443\) 4413.43i 0.473337i 0.971590 + 0.236669i \(0.0760556\pi\)
−0.971590 + 0.236669i \(0.923944\pi\)
\(444\) 905.812 0.0968196
\(445\) 0 0
\(446\) 4054.86 0.430501
\(447\) − 1752.33i − 0.185419i
\(448\) − 6248.31i − 0.658940i
\(449\) 10795.9 1.13472 0.567361 0.823469i \(-0.307964\pi\)
0.567361 + 0.823469i \(0.307964\pi\)
\(450\) 0 0
\(451\) −4816.93 −0.502928
\(452\) − 17.9573i − 0.00186867i
\(453\) 2051.24i 0.212750i
\(454\) 2277.80 0.235468
\(455\) 0 0
\(456\) −447.005 −0.0459055
\(457\) 15726.1i 1.60971i 0.593473 + 0.804854i \(0.297756\pi\)
−0.593473 + 0.804854i \(0.702244\pi\)
\(458\) 461.090i 0.0470422i
\(459\) −1955.69 −0.198876
\(460\) 0 0
\(461\) −997.530 −0.100780 −0.0503900 0.998730i \(-0.516046\pi\)
−0.0503900 + 0.998730i \(0.516046\pi\)
\(462\) − 473.331i − 0.0476653i
\(463\) − 13338.6i − 1.33887i −0.742872 0.669434i \(-0.766537\pi\)
0.742872 0.669434i \(-0.233463\pi\)
\(464\) 3686.79 0.368869
\(465\) 0 0
\(466\) −1818.13 −0.180737
\(467\) 5767.52i 0.571496i 0.958305 + 0.285748i \(0.0922421\pi\)
−0.958305 + 0.285748i \(0.907758\pi\)
\(468\) − 9031.87i − 0.892091i
\(469\) 18565.9 1.82792
\(470\) 0 0
\(471\) −2496.09 −0.244191
\(472\) − 8167.44i − 0.796477i
\(473\) − 7523.29i − 0.731335i
\(474\) 282.748 0.0273988
\(475\) 0 0
\(476\) 7570.92 0.729018
\(477\) − 10058.8i − 0.965540i
\(478\) 3146.00i 0.301035i
\(479\) −9581.36 −0.913953 −0.456977 0.889479i \(-0.651068\pi\)
−0.456977 + 0.889479i \(0.651068\pi\)
\(480\) 0 0
\(481\) −7968.85 −0.755402
\(482\) 2371.48i 0.224104i
\(483\) 301.975i 0.0284479i
\(484\) 9290.68 0.872528
\(485\) 0 0
\(486\) 1046.59 0.0976833
\(487\) 4204.25i 0.391197i 0.980684 + 0.195598i \(0.0626649\pi\)
−0.980684 + 0.195598i \(0.937335\pi\)
\(488\) − 56.9678i − 0.00528444i
\(489\) −2402.79 −0.222204
\(490\) 0 0
\(491\) 5650.56 0.519361 0.259681 0.965695i \(-0.416383\pi\)
0.259681 + 0.965695i \(0.416383\pi\)
\(492\) − 490.649i − 0.0449597i
\(493\) 3750.48i 0.342623i
\(494\) 1902.10 0.173238
\(495\) 0 0
\(496\) −14945.7 −1.35299
\(497\) 6410.63i 0.578583i
\(498\) 110.499i 0.00994295i
\(499\) 19210.6 1.72341 0.861706 0.507408i \(-0.169396\pi\)
0.861706 + 0.507408i \(0.169396\pi\)
\(500\) 0 0
\(501\) −1942.53 −0.173225
\(502\) − 1388.30i − 0.123432i
\(503\) 10429.5i 0.924506i 0.886748 + 0.462253i \(0.152959\pi\)
−0.886748 + 0.462253i \(0.847041\pi\)
\(504\) −5567.83 −0.492085
\(505\) 0 0
\(506\) 829.183 0.0728491
\(507\) 91.4682i 0.00801231i
\(508\) − 10161.0i − 0.887442i
\(509\) 10350.4 0.901324 0.450662 0.892695i \(-0.351188\pi\)
0.450662 + 0.892695i \(0.351188\pi\)
\(510\) 0 0
\(511\) 6042.39 0.523091
\(512\) − 11119.4i − 0.959794i
\(513\) − 2171.68i − 0.186905i
\(514\) −386.331 −0.0331524
\(515\) 0 0
\(516\) 766.318 0.0653784
\(517\) 1193.87i 0.101560i
\(518\) 2376.11i 0.201545i
\(519\) −2011.66 −0.170139
\(520\) 0 0
\(521\) 12477.6 1.04924 0.524620 0.851336i \(-0.324207\pi\)
0.524620 + 0.851336i \(0.324207\pi\)
\(522\) − 1334.10i − 0.111862i
\(523\) − 11220.6i − 0.938134i −0.883163 0.469067i \(-0.844590\pi\)
0.883163 0.469067i \(-0.155410\pi\)
\(524\) −12751.5 −1.06308
\(525\) 0 0
\(526\) 2396.81 0.198680
\(527\) − 15204.0i − 1.25673i
\(528\) 1821.08i 0.150099i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 19663.9 1.60705
\(532\) 8407.06i 0.685136i
\(533\) 4316.47i 0.350783i
\(534\) 559.525 0.0453428
\(535\) 0 0
\(536\) 10735.8 0.865143
\(537\) 2062.10i 0.165710i
\(538\) − 1975.57i − 0.158314i
\(539\) −1014.21 −0.0810482
\(540\) 0 0
\(541\) −4220.58 −0.335410 −0.167705 0.985837i \(-0.553636\pi\)
−0.167705 + 0.985837i \(0.553636\pi\)
\(542\) − 4605.20i − 0.364964i
\(543\) − 2526.18i − 0.199648i
\(544\) 6638.29 0.523188
\(545\) 0 0
\(546\) −424.154 −0.0332457
\(547\) − 298.329i − 0.0233193i −0.999932 0.0116596i \(-0.996289\pi\)
0.999932 0.0116596i \(-0.00371146\pi\)
\(548\) − 18776.1i − 1.46364i
\(549\) 137.155 0.0106624
\(550\) 0 0
\(551\) −4164.69 −0.322000
\(552\) 174.618i 0.0134642i
\(553\) − 10994.3i − 0.845436i
\(554\) 1106.09 0.0848251
\(555\) 0 0
\(556\) 1838.93 0.140267
\(557\) 1097.07i 0.0834545i 0.999129 + 0.0417272i \(0.0132860\pi\)
−0.999129 + 0.0417272i \(0.986714\pi\)
\(558\) 5408.25i 0.410303i
\(559\) −6741.66 −0.510093
\(560\) 0 0
\(561\) −1852.54 −0.139419
\(562\) − 3065.39i − 0.230081i
\(563\) 5409.44i 0.404939i 0.979289 + 0.202469i \(0.0648967\pi\)
−0.979289 + 0.202469i \(0.935103\pi\)
\(564\) −121.607 −0.00907902
\(565\) 0 0
\(566\) 4882.63 0.362601
\(567\) − 13160.8i − 0.974784i
\(568\) 3706.97i 0.273840i
\(569\) −10942.8 −0.806231 −0.403115 0.915149i \(-0.632073\pi\)
−0.403115 + 0.915149i \(0.632073\pi\)
\(570\) 0 0
\(571\) −1144.71 −0.0838959 −0.0419480 0.999120i \(-0.513356\pi\)
−0.0419480 + 0.999120i \(0.513356\pi\)
\(572\) − 17264.1i − 1.26197i
\(573\) − 1488.02i − 0.108487i
\(574\) 1287.06 0.0935906
\(575\) 0 0
\(576\) 8698.91 0.629261
\(577\) 9892.27i 0.713727i 0.934157 + 0.356864i \(0.116154\pi\)
−0.934157 + 0.356864i \(0.883846\pi\)
\(578\) − 1494.39i − 0.107540i
\(579\) −1285.71 −0.0922836
\(580\) 0 0
\(581\) 4296.64 0.306807
\(582\) − 72.4036i − 0.00515675i
\(583\) − 19227.1i − 1.36588i
\(584\) 3494.03 0.247575
\(585\) 0 0
\(586\) −5130.60 −0.361678
\(587\) − 12528.8i − 0.880950i −0.897765 0.440475i \(-0.854810\pi\)
0.897765 0.440475i \(-0.145190\pi\)
\(588\) − 103.307i − 0.00724539i
\(589\) 16883.1 1.18108
\(590\) 0 0
\(591\) 1817.98 0.126534
\(592\) − 9141.76i − 0.634669i
\(593\) − 10978.3i − 0.760241i −0.924937 0.380121i \(-0.875882\pi\)
0.924937 0.380121i \(-0.124118\pi\)
\(594\) 1329.74 0.0918518
\(595\) 0 0
\(596\) −19057.5 −1.30978
\(597\) − 432.013i − 0.0296166i
\(598\) − 743.035i − 0.0508109i
\(599\) 583.723 0.0398168 0.0199084 0.999802i \(-0.493663\pi\)
0.0199084 + 0.999802i \(0.493663\pi\)
\(600\) 0 0
\(601\) −4111.87 −0.279080 −0.139540 0.990216i \(-0.544562\pi\)
−0.139540 + 0.990216i \(0.544562\pi\)
\(602\) 2010.19i 0.136095i
\(603\) 25847.5i 1.74559i
\(604\) 22308.3 1.50284
\(605\) 0 0
\(606\) −445.514 −0.0298643
\(607\) 15367.4i 1.02758i 0.857915 + 0.513792i \(0.171760\pi\)
−0.857915 + 0.513792i \(0.828240\pi\)
\(608\) 7371.43i 0.491696i
\(609\) 928.697 0.0617943
\(610\) 0 0
\(611\) 1069.83 0.0708360
\(612\) 10540.3i 0.696184i
\(613\) − 14127.7i − 0.930853i −0.885087 0.465426i \(-0.845901\pi\)
0.885087 0.465426i \(-0.154099\pi\)
\(614\) −2506.38 −0.164738
\(615\) 0 0
\(616\) −10642.7 −0.696116
\(617\) − 24427.9i − 1.59389i −0.604053 0.796944i \(-0.706448\pi\)
0.604053 0.796944i \(-0.293552\pi\)
\(618\) − 651.724i − 0.0424210i
\(619\) −23038.8 −1.49597 −0.747987 0.663713i \(-0.768980\pi\)
−0.747987 + 0.663713i \(0.768980\pi\)
\(620\) 0 0
\(621\) −848.346 −0.0548196
\(622\) − 2402.11i − 0.154848i
\(623\) − 21756.5i − 1.39913i
\(624\) 1631.88 0.104691
\(625\) 0 0
\(626\) 2106.71 0.134507
\(627\) − 2057.13i − 0.131027i
\(628\) 27146.3i 1.72493i
\(629\) 9299.70 0.589512
\(630\) 0 0
\(631\) −11336.7 −0.715223 −0.357611 0.933871i \(-0.616409\pi\)
−0.357611 + 0.933871i \(0.616409\pi\)
\(632\) − 6357.50i − 0.400139i
\(633\) − 2129.63i − 0.133721i
\(634\) −393.881 −0.0246735
\(635\) 0 0
\(636\) 1958.46 0.122104
\(637\) 908.836i 0.0565297i
\(638\) − 2550.08i − 0.158242i
\(639\) −8924.89 −0.552524
\(640\) 0 0
\(641\) 27030.1 1.66556 0.832782 0.553601i \(-0.186747\pi\)
0.832782 + 0.553601i \(0.186747\pi\)
\(642\) − 592.795i − 0.0364420i
\(643\) − 6776.53i − 0.415615i −0.978170 0.207807i \(-0.933367\pi\)
0.978170 0.207807i \(-0.0666327\pi\)
\(644\) 3284.13 0.200952
\(645\) 0 0
\(646\) −2219.76 −0.135194
\(647\) 25310.7i 1.53797i 0.639268 + 0.768984i \(0.279237\pi\)
−0.639268 + 0.768984i \(0.720763\pi\)
\(648\) − 7610.29i − 0.461359i
\(649\) 37586.9 2.27337
\(650\) 0 0
\(651\) −3764.81 −0.226658
\(652\) 26131.6i 1.56962i
\(653\) 24830.6i 1.48805i 0.668153 + 0.744024i \(0.267085\pi\)
−0.668153 + 0.744024i \(0.732915\pi\)
\(654\) −248.881 −0.0148808
\(655\) 0 0
\(656\) −4951.80 −0.294719
\(657\) 8412.22i 0.499531i
\(658\) − 318.997i − 0.0188994i
\(659\) −19514.4 −1.15353 −0.576764 0.816911i \(-0.695685\pi\)
−0.576764 + 0.816911i \(0.695685\pi\)
\(660\) 0 0
\(661\) −20107.4 −1.18319 −0.591594 0.806236i \(-0.701501\pi\)
−0.591594 + 0.806236i \(0.701501\pi\)
\(662\) 1590.56i 0.0933820i
\(663\) 1660.07i 0.0972424i
\(664\) 2484.55 0.145209
\(665\) 0 0
\(666\) −3308.03 −0.192468
\(667\) 1626.89i 0.0944432i
\(668\) 21126.0i 1.22364i
\(669\) −3929.75 −0.227105
\(670\) 0 0
\(671\) 262.168 0.0150833
\(672\) − 1643.78i − 0.0943603i
\(673\) 34488.4i 1.97538i 0.156432 + 0.987689i \(0.450001\pi\)
−0.156432 + 0.987689i \(0.549999\pi\)
\(674\) −417.179 −0.0238414
\(675\) 0 0
\(676\) 994.764 0.0565979
\(677\) − 20506.3i − 1.16414i −0.813139 0.582070i \(-0.802243\pi\)
0.813139 0.582070i \(-0.197757\pi\)
\(678\) − 1.17406i 0 6.65035e-5i
\(679\) −2815.33 −0.159120
\(680\) 0 0
\(681\) −2207.52 −0.124218
\(682\) 10337.7i 0.580425i
\(683\) − 2269.13i − 0.127124i −0.997978 0.0635620i \(-0.979754\pi\)
0.997978 0.0635620i \(-0.0202461\pi\)
\(684\) −11704.3 −0.654278
\(685\) 0 0
\(686\) −4375.74 −0.243537
\(687\) − 446.863i − 0.0248164i
\(688\) − 7733.94i − 0.428567i
\(689\) −17229.5 −0.952673
\(690\) 0 0
\(691\) −27891.7 −1.53553 −0.767764 0.640733i \(-0.778631\pi\)
−0.767764 + 0.640733i \(0.778631\pi\)
\(692\) 21877.8i 1.20183i
\(693\) − 25623.4i − 1.40455i
\(694\) 6523.20 0.356797
\(695\) 0 0
\(696\) 537.022 0.0292468
\(697\) − 5037.35i − 0.273749i
\(698\) 3786.81i 0.205348i
\(699\) 1762.03 0.0953452
\(700\) 0 0
\(701\) 27181.1 1.46450 0.732251 0.681034i \(-0.238470\pi\)
0.732251 + 0.681034i \(0.238470\pi\)
\(702\) − 1191.59i − 0.0640650i
\(703\) 10326.8i 0.554027i
\(704\) 16627.7 0.890169
\(705\) 0 0
\(706\) 6970.64 0.371591
\(707\) 17323.3i 0.921513i
\(708\) 3828.58i 0.203230i
\(709\) −2398.23 −0.127035 −0.0635173 0.997981i \(-0.520232\pi\)
−0.0635173 + 0.997981i \(0.520232\pi\)
\(710\) 0 0
\(711\) 15306.3 0.807358
\(712\) − 12580.8i − 0.662198i
\(713\) − 6595.21i − 0.346413i
\(714\) 494.991 0.0259448
\(715\) 0 0
\(716\) 22426.5 1.17055
\(717\) − 3048.93i − 0.158807i
\(718\) 7174.42i 0.372907i
\(719\) −11387.8 −0.590674 −0.295337 0.955393i \(-0.595432\pi\)
−0.295337 + 0.955393i \(0.595432\pi\)
\(720\) 0 0
\(721\) −25341.6 −1.30897
\(722\) 2412.16i 0.124337i
\(723\) − 2298.31i − 0.118223i
\(724\) −27473.5 −1.41028
\(725\) 0 0
\(726\) 607.429 0.0310521
\(727\) − 2762.84i − 0.140946i −0.997514 0.0704732i \(-0.977549\pi\)
0.997514 0.0704732i \(-0.0224509\pi\)
\(728\) 9537.00i 0.485528i
\(729\) 17636.3 0.896015
\(730\) 0 0
\(731\) 7867.56 0.398074
\(732\) 26.7043i 0.00134839i
\(733\) − 1782.84i − 0.0898370i −0.998991 0.0449185i \(-0.985697\pi\)
0.998991 0.0449185i \(-0.0143028\pi\)
\(734\) 5895.87 0.296486
\(735\) 0 0
\(736\) 2879.57 0.144215
\(737\) 49406.7i 2.46936i
\(738\) 1791.85i 0.0893753i
\(739\) 987.346 0.0491476 0.0245738 0.999698i \(-0.492177\pi\)
0.0245738 + 0.999698i \(0.492177\pi\)
\(740\) 0 0
\(741\) −1843.41 −0.0913890
\(742\) 5137.40i 0.254178i
\(743\) − 11744.8i − 0.579910i −0.957040 0.289955i \(-0.906360\pi\)
0.957040 0.289955i \(-0.0936404\pi\)
\(744\) −2177.01 −0.107276
\(745\) 0 0
\(746\) 5328.29 0.261505
\(747\) 5981.79i 0.292988i
\(748\) 20147.3i 0.984839i
\(749\) −23050.2 −1.12448
\(750\) 0 0
\(751\) −14156.0 −0.687828 −0.343914 0.939001i \(-0.611753\pi\)
−0.343914 + 0.939001i \(0.611753\pi\)
\(752\) 1227.30i 0.0595145i
\(753\) 1345.46i 0.0651146i
\(754\) −2285.14 −0.110371
\(755\) 0 0
\(756\) 5266.69 0.253370
\(757\) 35240.9i 1.69201i 0.533174 + 0.846005i \(0.320999\pi\)
−0.533174 + 0.846005i \(0.679001\pi\)
\(758\) − 2581.72i − 0.123710i
\(759\) −803.599 −0.0384306
\(760\) 0 0
\(761\) 15253.8 0.726609 0.363305 0.931670i \(-0.381648\pi\)
0.363305 + 0.931670i \(0.381648\pi\)
\(762\) − 664.329i − 0.0315828i
\(763\) 9677.48i 0.459172i
\(764\) −16183.0 −0.766337
\(765\) 0 0
\(766\) 677.254 0.0319454
\(767\) − 33681.8i − 1.58563i
\(768\) 1202.92i 0.0565189i
\(769\) −33344.6 −1.56364 −0.781818 0.623507i \(-0.785707\pi\)
−0.781818 + 0.623507i \(0.785707\pi\)
\(770\) 0 0
\(771\) 374.411 0.0174891
\(772\) 13982.8i 0.651879i
\(773\) − 14412.0i − 0.670587i −0.942114 0.335294i \(-0.891164\pi\)
0.942114 0.335294i \(-0.108836\pi\)
\(774\) −2798.59 −0.129966
\(775\) 0 0
\(776\) −1627.98 −0.0753105
\(777\) − 2302.80i − 0.106322i
\(778\) − 3229.11i − 0.148803i
\(779\) 5593.68 0.257271
\(780\) 0 0
\(781\) −17059.6 −0.781615
\(782\) 867.126i 0.0396526i
\(783\) 2609.02i 0.119079i
\(784\) −1042.60 −0.0474947
\(785\) 0 0
\(786\) −833.700 −0.0378335
\(787\) 15474.1i 0.700880i 0.936585 + 0.350440i \(0.113968\pi\)
−0.936585 + 0.350440i \(0.886032\pi\)
\(788\) − 19771.5i − 0.893818i
\(789\) −2322.86 −0.104811
\(790\) 0 0
\(791\) −45.6519 −0.00205208
\(792\) − 14816.8i − 0.664764i
\(793\) − 234.930i − 0.0105203i
\(794\) −10200.4 −0.455916
\(795\) 0 0
\(796\) −4698.37 −0.209208
\(797\) − 15561.2i − 0.691603i −0.938308 0.345802i \(-0.887607\pi\)
0.938308 0.345802i \(-0.112393\pi\)
\(798\) 549.658i 0.0243830i
\(799\) −1248.50 −0.0552801
\(800\) 0 0
\(801\) 30289.5 1.33611
\(802\) 4521.21i 0.199064i
\(803\) 16079.7i 0.706649i
\(804\) −5032.53 −0.220751
\(805\) 0 0
\(806\) 9263.64 0.404836
\(807\) 1914.62i 0.0835163i
\(808\) 10017.3i 0.436146i
\(809\) −14327.9 −0.622674 −0.311337 0.950299i \(-0.600777\pi\)
−0.311337 + 0.950299i \(0.600777\pi\)
\(810\) 0 0
\(811\) −8539.31 −0.369736 −0.184868 0.982763i \(-0.559186\pi\)
−0.184868 + 0.982763i \(0.559186\pi\)
\(812\) − 10100.1i − 0.436506i
\(813\) 4463.11i 0.192532i
\(814\) −6323.18 −0.272269
\(815\) 0 0
\(816\) −1904.41 −0.0817005
\(817\) 8736.45i 0.374112i
\(818\) − 8207.74i − 0.350828i
\(819\) −22961.3 −0.979647
\(820\) 0 0
\(821\) 42664.3 1.81364 0.906818 0.421523i \(-0.138504\pi\)
0.906818 + 0.421523i \(0.138504\pi\)
\(822\) − 1227.59i − 0.0520890i
\(823\) 7687.86i 0.325616i 0.986658 + 0.162808i \(0.0520551\pi\)
−0.986658 + 0.162808i \(0.947945\pi\)
\(824\) −14653.8 −0.619528
\(825\) 0 0
\(826\) −10043.1 −0.423054
\(827\) − 27712.7i − 1.16525i −0.812740 0.582627i \(-0.802025\pi\)
0.812740 0.582627i \(-0.197975\pi\)
\(828\) 4572.18i 0.191901i
\(829\) 13667.8 0.572619 0.286310 0.958137i \(-0.407571\pi\)
0.286310 + 0.958137i \(0.407571\pi\)
\(830\) 0 0
\(831\) −1071.96 −0.0447483
\(832\) − 14900.1i − 0.620876i
\(833\) − 1060.62i − 0.0441155i
\(834\) 120.230 0.00499189
\(835\) 0 0
\(836\) −22372.4 −0.925558
\(837\) − 10576.6i − 0.436775i
\(838\) − 2624.65i − 0.108195i
\(839\) 13429.4 0.552604 0.276302 0.961071i \(-0.410891\pi\)
0.276302 + 0.961071i \(0.410891\pi\)
\(840\) 0 0
\(841\) −19385.6 −0.794851
\(842\) 5369.43i 0.219766i
\(843\) 2970.81i 0.121376i
\(844\) −23160.8 −0.944584
\(845\) 0 0
\(846\) 444.108 0.0180482
\(847\) − 23619.2i − 0.958164i
\(848\) − 19765.5i − 0.800411i
\(849\) −4731.98 −0.191285
\(850\) 0 0
\(851\) 4034.05 0.162497
\(852\) − 1737.68i − 0.0698732i
\(853\) − 1540.70i − 0.0618434i −0.999522 0.0309217i \(-0.990156\pi\)
0.999522 0.0309217i \(-0.00984425\pi\)
\(854\) −70.0502 −0.00280687
\(855\) 0 0
\(856\) −13328.8 −0.532209
\(857\) − 33588.2i − 1.33880i −0.742903 0.669399i \(-0.766552\pi\)
0.742903 0.669399i \(-0.233448\pi\)
\(858\) − 1128.74i − 0.0449119i
\(859\) −4955.28 −0.196824 −0.0984122 0.995146i \(-0.531376\pi\)
−0.0984122 + 0.995146i \(0.531376\pi\)
\(860\) 0 0
\(861\) −1247.35 −0.0493724
\(862\) 11679.8i 0.461503i
\(863\) 41833.5i 1.65009i 0.565066 + 0.825046i \(0.308851\pi\)
−0.565066 + 0.825046i \(0.691149\pi\)
\(864\) 4617.91 0.181834
\(865\) 0 0
\(866\) 4525.02 0.177559
\(867\) 1448.28i 0.0567314i
\(868\) 40944.3i 1.60108i
\(869\) 29257.5 1.14211
\(870\) 0 0
\(871\) 44273.5 1.72233
\(872\) 5596.03i 0.217323i
\(873\) − 3919.51i − 0.151954i
\(874\) −962.892 −0.0372658
\(875\) 0 0
\(876\) −1637.87 −0.0631716
\(877\) − 34708.9i − 1.33642i −0.743974 0.668208i \(-0.767062\pi\)
0.743974 0.668208i \(-0.232938\pi\)
\(878\) − 5342.80i − 0.205365i
\(879\) 4972.30 0.190798
\(880\) 0 0
\(881\) −6072.43 −0.232219 −0.116110 0.993236i \(-0.537042\pi\)
−0.116110 + 0.993236i \(0.537042\pi\)
\(882\) 377.275i 0.0144031i
\(883\) 18884.3i 0.719712i 0.933008 + 0.359856i \(0.117174\pi\)
−0.933008 + 0.359856i \(0.882826\pi\)
\(884\) 18054.1 0.686907
\(885\) 0 0
\(886\) 3138.16 0.118994
\(887\) 46338.3i 1.75410i 0.480397 + 0.877051i \(0.340493\pi\)
−0.480397 + 0.877051i \(0.659507\pi\)
\(888\) − 1331.60i − 0.0503216i
\(889\) −25831.7 −0.974542
\(890\) 0 0
\(891\) 35022.9 1.31685
\(892\) 42738.1i 1.60424i
\(893\) − 1386.39i − 0.0519526i
\(894\) −1245.99 −0.0466132
\(895\) 0 0
\(896\) −23525.8 −0.877167
\(897\) 720.109i 0.0268046i
\(898\) − 7676.40i − 0.285261i
\(899\) −20283.0 −0.752476
\(900\) 0 0
\(901\) 20106.9 0.743462
\(902\) 3425.06i 0.126433i
\(903\) − 1948.17i − 0.0717951i
\(904\) −26.3984 −0.000971235 0
\(905\) 0 0
\(906\) 1458.53 0.0534839
\(907\) 22074.9i 0.808141i 0.914728 + 0.404070i \(0.132405\pi\)
−0.914728 + 0.404070i \(0.867595\pi\)
\(908\) 24008.0i 0.877459i
\(909\) −24117.5 −0.880008
\(910\) 0 0
\(911\) −16529.7 −0.601156 −0.300578 0.953757i \(-0.597180\pi\)
−0.300578 + 0.953757i \(0.597180\pi\)
\(912\) − 2114.73i − 0.0767827i
\(913\) 11434.0i 0.414468i
\(914\) 11182.0 0.404670
\(915\) 0 0
\(916\) −4859.87 −0.175300
\(917\) 32417.5i 1.16742i
\(918\) 1390.59i 0.0499960i
\(919\) −37282.7 −1.33824 −0.669120 0.743154i \(-0.733329\pi\)
−0.669120 + 0.743154i \(0.733329\pi\)
\(920\) 0 0
\(921\) 2429.04 0.0869052
\(922\) 709.291i 0.0253354i
\(923\) 15287.2i 0.545162i
\(924\) 4988.89 0.177622
\(925\) 0 0
\(926\) −9484.35 −0.336582
\(927\) − 35280.6i − 1.25002i
\(928\) − 8855.89i − 0.313264i
\(929\) −37919.2 −1.33917 −0.669585 0.742736i \(-0.733528\pi\)
−0.669585 + 0.742736i \(0.733528\pi\)
\(930\) 0 0
\(931\) 1177.75 0.0414600
\(932\) − 19163.0i − 0.673505i
\(933\) 2327.99i 0.0816882i
\(934\) 4100.97 0.143670
\(935\) 0 0
\(936\) −13277.4 −0.463660
\(937\) − 7139.87i − 0.248932i −0.992224 0.124466i \(-0.960278\pi\)
0.992224 0.124466i \(-0.0397218\pi\)
\(938\) − 13201.2i − 0.459527i
\(939\) −2041.71 −0.0709570
\(940\) 0 0
\(941\) 44548.2 1.54328 0.771642 0.636057i \(-0.219436\pi\)
0.771642 + 0.636057i \(0.219436\pi\)
\(942\) 1774.84i 0.0613879i
\(943\) − 2185.11i − 0.0754582i
\(944\) 38639.3 1.33221
\(945\) 0 0
\(946\) −5349.42 −0.183853
\(947\) 11796.3i 0.404782i 0.979305 + 0.202391i \(0.0648712\pi\)
−0.979305 + 0.202391i \(0.935129\pi\)
\(948\) 2980.15i 0.102100i
\(949\) 14409.1 0.492875
\(950\) 0 0
\(951\) 381.728 0.0130162
\(952\) − 11129.7i − 0.378904i
\(953\) − 16156.5i − 0.549171i −0.961563 0.274586i \(-0.911459\pi\)
0.961563 0.274586i \(-0.0885407\pi\)
\(954\) −7152.30 −0.242730
\(955\) 0 0
\(956\) −33158.7 −1.12179
\(957\) 2471.40i 0.0834786i
\(958\) 6812.80i 0.229762i
\(959\) −47733.5 −1.60729
\(960\) 0 0
\(961\) 52433.5 1.76004
\(962\) 5666.23i 0.189903i
\(963\) − 32090.5i − 1.07383i
\(964\) −24995.3 −0.835109
\(965\) 0 0
\(966\) 214.718 0.00715160
\(967\) 50550.0i 1.68105i 0.541770 + 0.840527i \(0.317754\pi\)
−0.541770 + 0.840527i \(0.682246\pi\)
\(968\) − 13657.9i − 0.453493i
\(969\) 2151.27 0.0713196
\(970\) 0 0
\(971\) 33282.9 1.10000 0.550000 0.835165i \(-0.314628\pi\)
0.550000 + 0.835165i \(0.314628\pi\)
\(972\) 11031.0i 0.364011i
\(973\) − 4675.03i − 0.154033i
\(974\) 2989.42 0.0983441
\(975\) 0 0
\(976\) 269.509 0.00883889
\(977\) − 2729.36i − 0.0893755i −0.999001 0.0446877i \(-0.985771\pi\)
0.999001 0.0446877i \(-0.0142293\pi\)
\(978\) 1708.49i 0.0558606i
\(979\) 57897.3 1.89010
\(980\) 0 0
\(981\) −13473.0 −0.438491
\(982\) − 4017.82i − 0.130564i
\(983\) − 14904.5i − 0.483600i −0.970326 0.241800i \(-0.922262\pi\)
0.970326 0.241800i \(-0.0777378\pi\)
\(984\) −721.285 −0.0233676
\(985\) 0 0
\(986\) 2666.77 0.0861332
\(987\) 309.154i 0.00997011i
\(988\) 20048.0i 0.645559i
\(989\) 3412.81 0.109728
\(990\) 0 0
\(991\) 39748.4 1.27412 0.637058 0.770816i \(-0.280151\pi\)
0.637058 + 0.770816i \(0.280151\pi\)
\(992\) 35900.5i 1.14904i
\(993\) − 1541.48i − 0.0492624i
\(994\) 4558.26 0.145452
\(995\) 0 0
\(996\) −1164.66 −0.0370518
\(997\) − 47343.4i − 1.50389i −0.659225 0.751946i \(-0.729116\pi\)
0.659225 0.751946i \(-0.270884\pi\)
\(998\) − 13659.6i − 0.433254i
\(999\) 6469.31 0.204885
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.b.j.24.7 14
5.2 odd 4 575.4.a.l.1.5 7
5.3 odd 4 575.4.a.m.1.3 yes 7
5.4 even 2 inner 575.4.b.j.24.8 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.4.a.l.1.5 7 5.2 odd 4
575.4.a.m.1.3 yes 7 5.3 odd 4
575.4.b.j.24.7 14 1.1 even 1 trivial
575.4.b.j.24.8 14 5.4 even 2 inner