Properties

Label 575.4.a.m.1.3
Level $575$
Weight $4$
Character 575.1
Self dual yes
Analytic conductor $33.926$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(1,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9260982533\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 37x^{5} + 123x^{4} + 304x^{3} - 1196x^{2} + 264x + 864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.711047\) of defining polynomial
Character \(\chi\) \(=\) 575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.711047 q^{2} -0.689108 q^{3} -7.49441 q^{4} +0.489988 q^{6} -19.0526 q^{7} +11.0173 q^{8} -26.5251 q^{9} +50.7019 q^{11} +5.16446 q^{12} +45.4342 q^{13} +13.5473 q^{14} +52.1215 q^{16} +53.0220 q^{17} +18.8606 q^{18} +58.8778 q^{19} +13.1293 q^{21} -36.0514 q^{22} -23.0000 q^{23} -7.59208 q^{24} -32.3058 q^{26} +36.8846 q^{27} +142.788 q^{28} -70.7345 q^{29} -286.748 q^{31} -125.199 q^{32} -34.9391 q^{33} -37.7011 q^{34} +198.790 q^{36} -175.393 q^{37} -41.8649 q^{38} -31.3091 q^{39} -95.0049 q^{41} -9.33557 q^{42} +148.383 q^{43} -379.981 q^{44} +16.3541 q^{46} +23.5469 q^{47} -35.9174 q^{48} +20.0033 q^{49} -36.5379 q^{51} -340.503 q^{52} +379.219 q^{53} -26.2267 q^{54} -209.908 q^{56} -40.5731 q^{57} +50.2956 q^{58} -741.332 q^{59} +5.17078 q^{61} +203.891 q^{62} +505.374 q^{63} -327.950 q^{64} +24.8433 q^{66} +974.454 q^{67} -397.368 q^{68} +15.8495 q^{69} -336.469 q^{71} -292.234 q^{72} -317.142 q^{73} +124.713 q^{74} -441.254 q^{76} -966.005 q^{77} +22.2622 q^{78} -577.050 q^{79} +690.761 q^{81} +67.5530 q^{82} -225.514 q^{83} -98.3966 q^{84} -105.507 q^{86} +48.7438 q^{87} +558.596 q^{88} -1141.92 q^{89} -865.642 q^{91} +172.371 q^{92} +197.600 q^{93} -16.7429 q^{94} +86.2756 q^{96} -147.766 q^{97} -14.2233 q^{98} -1344.87 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} + q^{3} + 27 q^{4} - 41 q^{6} + q^{7} - 57 q^{8} + 10 q^{9} - 52 q^{11} + 65 q^{12} + 45 q^{13} - 42 q^{14} - 85 q^{16} + 85 q^{17} + 18 q^{18} - 10 q^{19} - 202 q^{21} - 71 q^{22} - 161 q^{23}+ \cdots - 2143 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.711047 −0.251393 −0.125697 0.992069i \(-0.540117\pi\)
−0.125697 + 0.992069i \(0.540117\pi\)
\(3\) −0.689108 −0.132619 −0.0663095 0.997799i \(-0.521122\pi\)
−0.0663095 + 0.997799i \(0.521122\pi\)
\(4\) −7.49441 −0.936802
\(5\) 0 0
\(6\) 0.489988 0.0333395
\(7\) −19.0526 −1.02875 −0.514373 0.857566i \(-0.671975\pi\)
−0.514373 + 0.857566i \(0.671975\pi\)
\(8\) 11.0173 0.486899
\(9\) −26.5251 −0.982412
\(10\) 0 0
\(11\) 50.7019 1.38974 0.694872 0.719133i \(-0.255461\pi\)
0.694872 + 0.719133i \(0.255461\pi\)
\(12\) 5.16446 0.124238
\(13\) 45.4342 0.969321 0.484661 0.874702i \(-0.338943\pi\)
0.484661 + 0.874702i \(0.338943\pi\)
\(14\) 13.5473 0.258620
\(15\) 0 0
\(16\) 52.1215 0.814399
\(17\) 53.0220 0.756454 0.378227 0.925713i \(-0.376534\pi\)
0.378227 + 0.925713i \(0.376534\pi\)
\(18\) 18.8606 0.246972
\(19\) 58.8778 0.710920 0.355460 0.934691i \(-0.384324\pi\)
0.355460 + 0.934691i \(0.384324\pi\)
\(20\) 0 0
\(21\) 13.1293 0.136431
\(22\) −36.0514 −0.349372
\(23\) −23.0000 −0.208514
\(24\) −7.59208 −0.0645720
\(25\) 0 0
\(26\) −32.3058 −0.243681
\(27\) 36.8846 0.262905
\(28\) 142.788 0.963731
\(29\) −70.7345 −0.452934 −0.226467 0.974019i \(-0.572717\pi\)
−0.226467 + 0.974019i \(0.572717\pi\)
\(30\) 0 0
\(31\) −286.748 −1.66134 −0.830669 0.556766i \(-0.812042\pi\)
−0.830669 + 0.556766i \(0.812042\pi\)
\(32\) −125.199 −0.691633
\(33\) −34.9391 −0.184306
\(34\) −37.7011 −0.190167
\(35\) 0 0
\(36\) 198.790 0.920325
\(37\) −175.393 −0.779310 −0.389655 0.920961i \(-0.627406\pi\)
−0.389655 + 0.920961i \(0.627406\pi\)
\(38\) −41.8649 −0.178720
\(39\) −31.3091 −0.128550
\(40\) 0 0
\(41\) −95.0049 −0.361885 −0.180942 0.983494i \(-0.557915\pi\)
−0.180942 + 0.983494i \(0.557915\pi\)
\(42\) −9.33557 −0.0342979
\(43\) 148.383 0.526237 0.263118 0.964764i \(-0.415249\pi\)
0.263118 + 0.964764i \(0.415249\pi\)
\(44\) −379.981 −1.30191
\(45\) 0 0
\(46\) 16.3541 0.0524191
\(47\) 23.5469 0.0730779 0.0365390 0.999332i \(-0.488367\pi\)
0.0365390 + 0.999332i \(0.488367\pi\)
\(48\) −35.9174 −0.108005
\(49\) 20.0033 0.0583188
\(50\) 0 0
\(51\) −36.5379 −0.100320
\(52\) −340.503 −0.908062
\(53\) 379.219 0.982825 0.491413 0.870927i \(-0.336481\pi\)
0.491413 + 0.870927i \(0.336481\pi\)
\(54\) −26.2267 −0.0660926
\(55\) 0 0
\(56\) −209.908 −0.500895
\(57\) −40.5731 −0.0942815
\(58\) 50.2956 0.113864
\(59\) −741.332 −1.63582 −0.817908 0.575349i \(-0.804866\pi\)
−0.817908 + 0.575349i \(0.804866\pi\)
\(60\) 0 0
\(61\) 5.17078 0.0108533 0.00542664 0.999985i \(-0.498273\pi\)
0.00542664 + 0.999985i \(0.498273\pi\)
\(62\) 203.891 0.417649
\(63\) 505.374 1.01065
\(64\) −327.950 −0.640527
\(65\) 0 0
\(66\) 24.8433 0.0463334
\(67\) 974.454 1.77684 0.888422 0.459028i \(-0.151802\pi\)
0.888422 + 0.459028i \(0.151802\pi\)
\(68\) −397.368 −0.708647
\(69\) 15.8495 0.0276530
\(70\) 0 0
\(71\) −336.469 −0.562416 −0.281208 0.959647i \(-0.590735\pi\)
−0.281208 + 0.959647i \(0.590735\pi\)
\(72\) −292.234 −0.478335
\(73\) −317.142 −0.508474 −0.254237 0.967142i \(-0.581824\pi\)
−0.254237 + 0.967142i \(0.581824\pi\)
\(74\) 124.713 0.195913
\(75\) 0 0
\(76\) −441.254 −0.665991
\(77\) −966.005 −1.42969
\(78\) 22.2622 0.0323167
\(79\) −577.050 −0.821812 −0.410906 0.911678i \(-0.634788\pi\)
−0.410906 + 0.911678i \(0.634788\pi\)
\(80\) 0 0
\(81\) 690.761 0.947546
\(82\) 67.5530 0.0909754
\(83\) −225.514 −0.298234 −0.149117 0.988820i \(-0.547643\pi\)
−0.149117 + 0.988820i \(0.547643\pi\)
\(84\) −98.3966 −0.127809
\(85\) 0 0
\(86\) −105.507 −0.132292
\(87\) 48.7438 0.0600676
\(88\) 558.596 0.676665
\(89\) −1141.92 −1.36003 −0.680016 0.733197i \(-0.738027\pi\)
−0.680016 + 0.733197i \(0.738027\pi\)
\(90\) 0 0
\(91\) −865.642 −0.997186
\(92\) 172.371 0.195337
\(93\) 197.600 0.220325
\(94\) −16.7429 −0.0183713
\(95\) 0 0
\(96\) 86.2756 0.0917236
\(97\) −147.766 −0.154674 −0.0773370 0.997005i \(-0.524642\pi\)
−0.0773370 + 0.997005i \(0.524642\pi\)
\(98\) −14.2233 −0.0146609
\(99\) −1344.87 −1.36530
\(100\) 0 0
\(101\) −909.233 −0.895763 −0.447881 0.894093i \(-0.647821\pi\)
−0.447881 + 0.894093i \(0.647821\pi\)
\(102\) 25.9801 0.0252198
\(103\) 1330.08 1.27240 0.636198 0.771526i \(-0.280506\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(104\) 500.560 0.471961
\(105\) 0 0
\(106\) −269.643 −0.247075
\(107\) −1209.82 −1.09306 −0.546529 0.837440i \(-0.684051\pi\)
−0.546529 + 0.837440i \(0.684051\pi\)
\(108\) −276.428 −0.246290
\(109\) 507.933 0.446341 0.223171 0.974779i \(-0.428359\pi\)
0.223171 + 0.974779i \(0.428359\pi\)
\(110\) 0 0
\(111\) 120.865 0.103351
\(112\) −993.053 −0.837809
\(113\) 2.39609 0.00199474 0.000997369 1.00000i \(-0.499683\pi\)
0.000997369 1.00000i \(0.499683\pi\)
\(114\) 28.8494 0.0237017
\(115\) 0 0
\(116\) 530.114 0.424309
\(117\) −1205.15 −0.952273
\(118\) 527.122 0.411233
\(119\) −1010.21 −0.778199
\(120\) 0 0
\(121\) 1239.68 0.931390
\(122\) −3.67666 −0.00272844
\(123\) 65.4687 0.0479928
\(124\) 2149.01 1.55634
\(125\) 0 0
\(126\) −359.345 −0.254071
\(127\) −1355.81 −0.947310 −0.473655 0.880710i \(-0.657066\pi\)
−0.473655 + 0.880710i \(0.657066\pi\)
\(128\) 1234.78 0.852657
\(129\) −102.252 −0.0697890
\(130\) 0 0
\(131\) −1701.47 −1.13479 −0.567397 0.823444i \(-0.692050\pi\)
−0.567397 + 0.823444i \(0.692050\pi\)
\(132\) 261.848 0.172659
\(133\) −1121.78 −0.731356
\(134\) −692.883 −0.446686
\(135\) 0 0
\(136\) 584.157 0.368316
\(137\) −2505.35 −1.56238 −0.781191 0.624292i \(-0.785387\pi\)
−0.781191 + 0.624292i \(0.785387\pi\)
\(138\) −11.2697 −0.00695176
\(139\) −245.374 −0.149729 −0.0748646 0.997194i \(-0.523852\pi\)
−0.0748646 + 0.997194i \(0.523852\pi\)
\(140\) 0 0
\(141\) −16.2263 −0.00969151
\(142\) 239.245 0.141388
\(143\) 2303.60 1.34711
\(144\) −1382.53 −0.800075
\(145\) 0 0
\(146\) 225.503 0.127827
\(147\) −13.7845 −0.00773418
\(148\) 1314.47 0.730059
\(149\) 2542.90 1.39814 0.699068 0.715055i \(-0.253598\pi\)
0.699068 + 0.715055i \(0.253598\pi\)
\(150\) 0 0
\(151\) 2976.66 1.60422 0.802110 0.597176i \(-0.203711\pi\)
0.802110 + 0.597176i \(0.203711\pi\)
\(152\) 648.671 0.346146
\(153\) −1406.41 −0.743150
\(154\) 686.875 0.359415
\(155\) 0 0
\(156\) 234.643 0.120426
\(157\) 3622.21 1.84130 0.920648 0.390393i \(-0.127661\pi\)
0.920648 + 0.390393i \(0.127661\pi\)
\(158\) 410.310 0.206598
\(159\) −261.323 −0.130341
\(160\) 0 0
\(161\) 438.211 0.214508
\(162\) −491.164 −0.238207
\(163\) −3486.81 −1.67551 −0.837754 0.546048i \(-0.816132\pi\)
−0.837754 + 0.546048i \(0.816132\pi\)
\(164\) 712.006 0.339014
\(165\) 0 0
\(166\) 160.351 0.0749738
\(167\) 2818.90 1.30618 0.653092 0.757278i \(-0.273471\pi\)
0.653092 + 0.757278i \(0.273471\pi\)
\(168\) 144.649 0.0664282
\(169\) −132.734 −0.0604161
\(170\) 0 0
\(171\) −1561.74 −0.698417
\(172\) −1112.04 −0.492980
\(173\) −2919.22 −1.28291 −0.641456 0.767159i \(-0.721670\pi\)
−0.641456 + 0.767159i \(0.721670\pi\)
\(174\) −34.6591 −0.0151006
\(175\) 0 0
\(176\) 2642.66 1.13181
\(177\) 510.858 0.216940
\(178\) 811.956 0.341903
\(179\) −2992.42 −1.24952 −0.624761 0.780816i \(-0.714803\pi\)
−0.624761 + 0.780816i \(0.714803\pi\)
\(180\) 0 0
\(181\) −3665.87 −1.50542 −0.752712 0.658350i \(-0.771255\pi\)
−0.752712 + 0.658350i \(0.771255\pi\)
\(182\) 615.512 0.250686
\(183\) −3.56322 −0.00143935
\(184\) −253.397 −0.101525
\(185\) 0 0
\(186\) −140.503 −0.0553882
\(187\) 2688.31 1.05128
\(188\) −176.470 −0.0684595
\(189\) −702.749 −0.270463
\(190\) 0 0
\(191\) −2159.35 −0.818035 −0.409018 0.912526i \(-0.634129\pi\)
−0.409018 + 0.912526i \(0.634129\pi\)
\(192\) 225.993 0.0849460
\(193\) −1865.76 −0.695856 −0.347928 0.937521i \(-0.613115\pi\)
−0.347928 + 0.937521i \(0.613115\pi\)
\(194\) 105.069 0.0388840
\(195\) 0 0
\(196\) −149.913 −0.0546331
\(197\) −2638.16 −0.954117 −0.477058 0.878872i \(-0.658297\pi\)
−0.477058 + 0.878872i \(0.658297\pi\)
\(198\) 956.269 0.343228
\(199\) 626.916 0.223321 0.111661 0.993746i \(-0.464383\pi\)
0.111661 + 0.993746i \(0.464383\pi\)
\(200\) 0 0
\(201\) −671.504 −0.235643
\(202\) 646.507 0.225189
\(203\) 1347.68 0.465954
\(204\) 273.830 0.0939800
\(205\) 0 0
\(206\) −945.751 −0.319872
\(207\) 610.078 0.204847
\(208\) 2368.10 0.789414
\(209\) 2985.21 0.987998
\(210\) 0 0
\(211\) −3090.41 −1.00831 −0.504154 0.863614i \(-0.668196\pi\)
−0.504154 + 0.863614i \(0.668196\pi\)
\(212\) −2842.02 −0.920712
\(213\) 231.864 0.0745870
\(214\) 860.236 0.274787
\(215\) 0 0
\(216\) 406.367 0.128008
\(217\) 5463.31 1.70910
\(218\) −361.165 −0.112207
\(219\) 218.545 0.0674333
\(220\) 0 0
\(221\) 2409.01 0.733247
\(222\) −85.9407 −0.0259818
\(223\) −5702.67 −1.71246 −0.856230 0.516594i \(-0.827200\pi\)
−0.856230 + 0.516594i \(0.827200\pi\)
\(224\) 2385.37 0.711515
\(225\) 0 0
\(226\) −1.70373 −0.000501463 0
\(227\) 3203.45 0.936654 0.468327 0.883555i \(-0.344857\pi\)
0.468327 + 0.883555i \(0.344857\pi\)
\(228\) 304.072 0.0883230
\(229\) 648.466 0.187126 0.0935630 0.995613i \(-0.470174\pi\)
0.0935630 + 0.995613i \(0.470174\pi\)
\(230\) 0 0
\(231\) 665.682 0.189605
\(232\) −779.301 −0.220533
\(233\) 2556.98 0.718941 0.359470 0.933156i \(-0.382957\pi\)
0.359470 + 0.933156i \(0.382957\pi\)
\(234\) 856.917 0.239395
\(235\) 0 0
\(236\) 5555.85 1.53244
\(237\) 397.650 0.108988
\(238\) 718.306 0.195634
\(239\) 4424.46 1.19747 0.598733 0.800949i \(-0.295671\pi\)
0.598733 + 0.800949i \(0.295671\pi\)
\(240\) 0 0
\(241\) −3335.19 −0.891447 −0.445724 0.895171i \(-0.647054\pi\)
−0.445724 + 0.895171i \(0.647054\pi\)
\(242\) −881.471 −0.234145
\(243\) −1471.89 −0.388568
\(244\) −38.7519 −0.0101674
\(245\) 0 0
\(246\) −46.5513 −0.0120651
\(247\) 2675.06 0.689110
\(248\) −3159.18 −0.808903
\(249\) 155.404 0.0395514
\(250\) 0 0
\(251\) 1952.47 0.490990 0.245495 0.969398i \(-0.421049\pi\)
0.245495 + 0.969398i \(0.421049\pi\)
\(252\) −3787.48 −0.946781
\(253\) −1166.14 −0.289782
\(254\) 964.042 0.238147
\(255\) 0 0
\(256\) 1745.61 0.426175
\(257\) −543.328 −0.131875 −0.0659374 0.997824i \(-0.521004\pi\)
−0.0659374 + 0.997824i \(0.521004\pi\)
\(258\) 72.7059 0.0175445
\(259\) 3341.71 0.801713
\(260\) 0 0
\(261\) 1876.24 0.444968
\(262\) 1209.82 0.285279
\(263\) −3370.82 −0.790318 −0.395159 0.918613i \(-0.629310\pi\)
−0.395159 + 0.918613i \(0.629310\pi\)
\(264\) −384.933 −0.0897385
\(265\) 0 0
\(266\) 797.636 0.183858
\(267\) 786.904 0.180366
\(268\) −7302.96 −1.66455
\(269\) −2778.40 −0.629747 −0.314873 0.949134i \(-0.601962\pi\)
−0.314873 + 0.949134i \(0.601962\pi\)
\(270\) 0 0
\(271\) 6476.65 1.45177 0.725883 0.687819i \(-0.241432\pi\)
0.725883 + 0.687819i \(0.241432\pi\)
\(272\) 2763.59 0.616055
\(273\) 596.521 0.132246
\(274\) 1781.42 0.392772
\(275\) 0 0
\(276\) −118.783 −0.0259053
\(277\) 1555.57 0.337420 0.168710 0.985666i \(-0.446040\pi\)
0.168710 + 0.985666i \(0.446040\pi\)
\(278\) 174.473 0.0376409
\(279\) 7606.03 1.63212
\(280\) 0 0
\(281\) 4311.09 0.915225 0.457612 0.889152i \(-0.348705\pi\)
0.457612 + 0.889152i \(0.348705\pi\)
\(282\) 11.5377 0.00243638
\(283\) −6866.82 −1.44237 −0.721183 0.692744i \(-0.756402\pi\)
−0.721183 + 0.692744i \(0.756402\pi\)
\(284\) 2521.64 0.526872
\(285\) 0 0
\(286\) −1637.97 −0.338654
\(287\) 1810.10 0.372288
\(288\) 3320.92 0.679468
\(289\) −2101.67 −0.427777
\(290\) 0 0
\(291\) 101.827 0.0205127
\(292\) 2376.79 0.476339
\(293\) 7215.56 1.43870 0.719348 0.694650i \(-0.244441\pi\)
0.719348 + 0.694650i \(0.244441\pi\)
\(294\) 9.80141 0.00194432
\(295\) 0 0
\(296\) −1932.35 −0.379445
\(297\) 1870.12 0.365371
\(298\) −1808.12 −0.351482
\(299\) −1044.99 −0.202117
\(300\) 0 0
\(301\) −2827.09 −0.541364
\(302\) −2116.55 −0.403290
\(303\) 626.560 0.118795
\(304\) 3068.80 0.578972
\(305\) 0 0
\(306\) 1000.03 0.186823
\(307\) −3524.91 −0.655300 −0.327650 0.944799i \(-0.606257\pi\)
−0.327650 + 0.944799i \(0.606257\pi\)
\(308\) 7239.64 1.33934
\(309\) −916.570 −0.168744
\(310\) 0 0
\(311\) 3378.27 0.615962 0.307981 0.951393i \(-0.400347\pi\)
0.307981 + 0.951393i \(0.400347\pi\)
\(312\) −344.940 −0.0625910
\(313\) −2962.83 −0.535045 −0.267522 0.963552i \(-0.586205\pi\)
−0.267522 + 0.963552i \(0.586205\pi\)
\(314\) −2575.56 −0.462889
\(315\) 0 0
\(316\) 4324.65 0.769875
\(317\) −553.945 −0.0981472 −0.0490736 0.998795i \(-0.515627\pi\)
−0.0490736 + 0.998795i \(0.515627\pi\)
\(318\) 185.813 0.0327669
\(319\) −3586.37 −0.629462
\(320\) 0 0
\(321\) 833.694 0.144960
\(322\) −311.589 −0.0539259
\(323\) 3121.81 0.537778
\(324\) −5176.85 −0.887663
\(325\) 0 0
\(326\) 2479.28 0.421211
\(327\) −350.021 −0.0591933
\(328\) −1046.69 −0.176201
\(329\) −448.630 −0.0751786
\(330\) 0 0
\(331\) −2236.93 −0.371458 −0.185729 0.982601i \(-0.559465\pi\)
−0.185729 + 0.982601i \(0.559465\pi\)
\(332\) 1690.10 0.279386
\(333\) 4652.33 0.765604
\(334\) −2004.37 −0.328366
\(335\) 0 0
\(336\) 684.321 0.111109
\(337\) −586.710 −0.0948372 −0.0474186 0.998875i \(-0.515099\pi\)
−0.0474186 + 0.998875i \(0.515099\pi\)
\(338\) 94.3802 0.0151882
\(339\) −1.65117 −0.000264540 0
\(340\) 0 0
\(341\) −14538.7 −2.30884
\(342\) 1110.47 0.175577
\(343\) 6153.94 0.968751
\(344\) 1634.77 0.256224
\(345\) 0 0
\(346\) 2075.70 0.322515
\(347\) 9174.08 1.41928 0.709640 0.704564i \(-0.248857\pi\)
0.709640 + 0.704564i \(0.248857\pi\)
\(348\) −365.306 −0.0562714
\(349\) 5325.68 0.816840 0.408420 0.912794i \(-0.366080\pi\)
0.408420 + 0.912794i \(0.366080\pi\)
\(350\) 0 0
\(351\) 1675.82 0.254840
\(352\) −6347.82 −0.961193
\(353\) −9803.34 −1.47813 −0.739064 0.673635i \(-0.764732\pi\)
−0.739064 + 0.673635i \(0.764732\pi\)
\(354\) −363.244 −0.0545373
\(355\) 0 0
\(356\) 8557.99 1.27408
\(357\) 696.143 0.103204
\(358\) 2127.75 0.314121
\(359\) 10089.9 1.48336 0.741681 0.670753i \(-0.234029\pi\)
0.741681 + 0.670753i \(0.234029\pi\)
\(360\) 0 0
\(361\) −3392.41 −0.494593
\(362\) 2606.60 0.378453
\(363\) −854.274 −0.123520
\(364\) 6487.48 0.934165
\(365\) 0 0
\(366\) 2.53362 0.000361843 0
\(367\) 8291.81 1.17937 0.589685 0.807633i \(-0.299252\pi\)
0.589685 + 0.807633i \(0.299252\pi\)
\(368\) −1198.79 −0.169814
\(369\) 2520.02 0.355520
\(370\) 0 0
\(371\) −7225.13 −1.01108
\(372\) −1480.90 −0.206401
\(373\) −7493.58 −1.04022 −0.520111 0.854098i \(-0.674110\pi\)
−0.520111 + 0.854098i \(0.674110\pi\)
\(374\) −1911.52 −0.264284
\(375\) 0 0
\(376\) 259.422 0.0355815
\(377\) −3213.77 −0.439038
\(378\) 499.688 0.0679925
\(379\) −3630.87 −0.492099 −0.246049 0.969257i \(-0.579133\pi\)
−0.246049 + 0.969257i \(0.579133\pi\)
\(380\) 0 0
\(381\) 934.297 0.125631
\(382\) 1535.40 0.205648
\(383\) −952.474 −0.127074 −0.0635368 0.997979i \(-0.520238\pi\)
−0.0635368 + 0.997979i \(0.520238\pi\)
\(384\) −850.896 −0.113078
\(385\) 0 0
\(386\) 1326.64 0.174933
\(387\) −3935.88 −0.516982
\(388\) 1107.42 0.144899
\(389\) −4541.34 −0.591916 −0.295958 0.955201i \(-0.595639\pi\)
−0.295958 + 0.955201i \(0.595639\pi\)
\(390\) 0 0
\(391\) −1219.51 −0.157732
\(392\) 220.382 0.0283953
\(393\) 1172.50 0.150495
\(394\) 1875.86 0.239858
\(395\) 0 0
\(396\) 10079.0 1.27902
\(397\) −14345.6 −1.81356 −0.906780 0.421604i \(-0.861467\pi\)
−0.906780 + 0.421604i \(0.861467\pi\)
\(398\) −445.767 −0.0561414
\(399\) 773.026 0.0969917
\(400\) 0 0
\(401\) −6358.53 −0.791845 −0.395923 0.918284i \(-0.629575\pi\)
−0.395923 + 0.918284i \(0.629575\pi\)
\(402\) 477.471 0.0592390
\(403\) −13028.2 −1.61037
\(404\) 6814.17 0.839152
\(405\) 0 0
\(406\) −958.264 −0.117138
\(407\) −8892.77 −1.08304
\(408\) −402.547 −0.0488457
\(409\) −11543.2 −1.39553 −0.697767 0.716325i \(-0.745823\pi\)
−0.697767 + 0.716325i \(0.745823\pi\)
\(410\) 0 0
\(411\) 1726.46 0.207201
\(412\) −9968.18 −1.19198
\(413\) 14124.3 1.68284
\(414\) −433.794 −0.0514971
\(415\) 0 0
\(416\) −5688.31 −0.670414
\(417\) 169.089 0.0198569
\(418\) −2122.63 −0.248376
\(419\) −3691.25 −0.430380 −0.215190 0.976572i \(-0.569037\pi\)
−0.215190 + 0.976572i \(0.569037\pi\)
\(420\) 0 0
\(421\) −7551.44 −0.874191 −0.437096 0.899415i \(-0.643993\pi\)
−0.437096 + 0.899415i \(0.643993\pi\)
\(422\) 2197.43 0.253482
\(423\) −624.583 −0.0717926
\(424\) 4177.95 0.478536
\(425\) 0 0
\(426\) −164.866 −0.0187507
\(427\) −98.5170 −0.0111653
\(428\) 9066.86 1.02398
\(429\) −1587.43 −0.178652
\(430\) 0 0
\(431\) −16426.2 −1.83578 −0.917891 0.396833i \(-0.870109\pi\)
−0.917891 + 0.396833i \(0.870109\pi\)
\(432\) 1922.48 0.214110
\(433\) −6363.88 −0.706301 −0.353151 0.935566i \(-0.614890\pi\)
−0.353151 + 0.935566i \(0.614890\pi\)
\(434\) −3884.67 −0.429655
\(435\) 0 0
\(436\) −3806.66 −0.418133
\(437\) −1354.19 −0.148237
\(438\) −155.396 −0.0169523
\(439\) −7513.99 −0.816910 −0.408455 0.912779i \(-0.633932\pi\)
−0.408455 + 0.912779i \(0.633932\pi\)
\(440\) 0 0
\(441\) −530.591 −0.0572931
\(442\) −1712.92 −0.184333
\(443\) −4413.43 −0.473337 −0.236669 0.971590i \(-0.576056\pi\)
−0.236669 + 0.971590i \(0.576056\pi\)
\(444\) −905.812 −0.0968196
\(445\) 0 0
\(446\) 4054.86 0.430501
\(447\) −1752.33 −0.185419
\(448\) 6248.31 0.658940
\(449\) −10795.9 −1.13472 −0.567361 0.823469i \(-0.692036\pi\)
−0.567361 + 0.823469i \(0.692036\pi\)
\(450\) 0 0
\(451\) −4816.93 −0.502928
\(452\) −17.9573 −0.00186867
\(453\) −2051.24 −0.212750
\(454\) −2277.80 −0.235468
\(455\) 0 0
\(456\) −447.005 −0.0459055
\(457\) 15726.1 1.60971 0.804854 0.593473i \(-0.202244\pi\)
0.804854 + 0.593473i \(0.202244\pi\)
\(458\) −461.090 −0.0470422
\(459\) 1955.69 0.198876
\(460\) 0 0
\(461\) −997.530 −0.100780 −0.0503900 0.998730i \(-0.516046\pi\)
−0.0503900 + 0.998730i \(0.516046\pi\)
\(462\) −473.331 −0.0476653
\(463\) 13338.6 1.33887 0.669434 0.742872i \(-0.266537\pi\)
0.669434 + 0.742872i \(0.266537\pi\)
\(464\) −3686.79 −0.368869
\(465\) 0 0
\(466\) −1818.13 −0.180737
\(467\) 5767.52 0.571496 0.285748 0.958305i \(-0.407758\pi\)
0.285748 + 0.958305i \(0.407758\pi\)
\(468\) 9031.87 0.892091
\(469\) −18565.9 −1.82792
\(470\) 0 0
\(471\) −2496.09 −0.244191
\(472\) −8167.44 −0.796477
\(473\) 7523.29 0.731335
\(474\) −282.748 −0.0273988
\(475\) 0 0
\(476\) 7570.92 0.729018
\(477\) −10058.8 −0.965540
\(478\) −3146.00 −0.301035
\(479\) 9581.36 0.913953 0.456977 0.889479i \(-0.348932\pi\)
0.456977 + 0.889479i \(0.348932\pi\)
\(480\) 0 0
\(481\) −7968.85 −0.755402
\(482\) 2371.48 0.224104
\(483\) −301.975 −0.0284479
\(484\) −9290.68 −0.872528
\(485\) 0 0
\(486\) 1046.59 0.0976833
\(487\) 4204.25 0.391197 0.195598 0.980684i \(-0.437335\pi\)
0.195598 + 0.980684i \(0.437335\pi\)
\(488\) 56.9678 0.00528444
\(489\) 2402.79 0.222204
\(490\) 0 0
\(491\) 5650.56 0.519361 0.259681 0.965695i \(-0.416383\pi\)
0.259681 + 0.965695i \(0.416383\pi\)
\(492\) −490.649 −0.0449597
\(493\) −3750.48 −0.342623
\(494\) −1902.10 −0.173238
\(495\) 0 0
\(496\) −14945.7 −1.35299
\(497\) 6410.63 0.578583
\(498\) −110.499 −0.00994295
\(499\) −19210.6 −1.72341 −0.861706 0.507408i \(-0.830604\pi\)
−0.861706 + 0.507408i \(0.830604\pi\)
\(500\) 0 0
\(501\) −1942.53 −0.173225
\(502\) −1388.30 −0.123432
\(503\) −10429.5 −0.924506 −0.462253 0.886748i \(-0.652959\pi\)
−0.462253 + 0.886748i \(0.652959\pi\)
\(504\) 5567.83 0.492085
\(505\) 0 0
\(506\) 829.183 0.0728491
\(507\) 91.4682 0.00801231
\(508\) 10161.0 0.887442
\(509\) −10350.4 −0.901324 −0.450662 0.892695i \(-0.648812\pi\)
−0.450662 + 0.892695i \(0.648812\pi\)
\(510\) 0 0
\(511\) 6042.39 0.523091
\(512\) −11119.4 −0.959794
\(513\) 2171.68 0.186905
\(514\) 386.331 0.0331524
\(515\) 0 0
\(516\) 766.318 0.0653784
\(517\) 1193.87 0.101560
\(518\) −2376.11 −0.201545
\(519\) 2011.66 0.170139
\(520\) 0 0
\(521\) 12477.6 1.04924 0.524620 0.851336i \(-0.324207\pi\)
0.524620 + 0.851336i \(0.324207\pi\)
\(522\) −1334.10 −0.111862
\(523\) 11220.6 0.938134 0.469067 0.883163i \(-0.344590\pi\)
0.469067 + 0.883163i \(0.344590\pi\)
\(524\) 12751.5 1.06308
\(525\) 0 0
\(526\) 2396.81 0.198680
\(527\) −15204.0 −1.25673
\(528\) −1821.08 −0.150099
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 19663.9 1.60705
\(532\) 8407.06 0.685136
\(533\) −4316.47 −0.350783
\(534\) −559.525 −0.0453428
\(535\) 0 0
\(536\) 10735.8 0.865143
\(537\) 2062.10 0.165710
\(538\) 1975.57 0.158314
\(539\) 1014.21 0.0810482
\(540\) 0 0
\(541\) −4220.58 −0.335410 −0.167705 0.985837i \(-0.553636\pi\)
−0.167705 + 0.985837i \(0.553636\pi\)
\(542\) −4605.20 −0.364964
\(543\) 2526.18 0.199648
\(544\) −6638.29 −0.523188
\(545\) 0 0
\(546\) −424.154 −0.0332457
\(547\) −298.329 −0.0233193 −0.0116596 0.999932i \(-0.503711\pi\)
−0.0116596 + 0.999932i \(0.503711\pi\)
\(548\) 18776.1 1.46364
\(549\) −137.155 −0.0106624
\(550\) 0 0
\(551\) −4164.69 −0.322000
\(552\) 174.618 0.0134642
\(553\) 10994.3 0.845436
\(554\) −1106.09 −0.0848251
\(555\) 0 0
\(556\) 1838.93 0.140267
\(557\) 1097.07 0.0834545 0.0417272 0.999129i \(-0.486714\pi\)
0.0417272 + 0.999129i \(0.486714\pi\)
\(558\) −5408.25 −0.410303
\(559\) 6741.66 0.510093
\(560\) 0 0
\(561\) −1852.54 −0.139419
\(562\) −3065.39 −0.230081
\(563\) −5409.44 −0.404939 −0.202469 0.979289i \(-0.564897\pi\)
−0.202469 + 0.979289i \(0.564897\pi\)
\(564\) 121.607 0.00907902
\(565\) 0 0
\(566\) 4882.63 0.362601
\(567\) −13160.8 −0.974784
\(568\) −3706.97 −0.273840
\(569\) 10942.8 0.806231 0.403115 0.915149i \(-0.367927\pi\)
0.403115 + 0.915149i \(0.367927\pi\)
\(570\) 0 0
\(571\) −1144.71 −0.0838959 −0.0419480 0.999120i \(-0.513356\pi\)
−0.0419480 + 0.999120i \(0.513356\pi\)
\(572\) −17264.1 −1.26197
\(573\) 1488.02 0.108487
\(574\) −1287.06 −0.0935906
\(575\) 0 0
\(576\) 8698.91 0.629261
\(577\) 9892.27 0.713727 0.356864 0.934157i \(-0.383846\pi\)
0.356864 + 0.934157i \(0.383846\pi\)
\(578\) 1494.39 0.107540
\(579\) 1285.71 0.0922836
\(580\) 0 0
\(581\) 4296.64 0.306807
\(582\) −72.4036 −0.00515675
\(583\) 19227.1 1.36588
\(584\) −3494.03 −0.247575
\(585\) 0 0
\(586\) −5130.60 −0.361678
\(587\) −12528.8 −0.880950 −0.440475 0.897765i \(-0.645190\pi\)
−0.440475 + 0.897765i \(0.645190\pi\)
\(588\) 103.307 0.00724539
\(589\) −16883.1 −1.18108
\(590\) 0 0
\(591\) 1817.98 0.126534
\(592\) −9141.76 −0.634669
\(593\) 10978.3 0.760241 0.380121 0.924937i \(-0.375882\pi\)
0.380121 + 0.924937i \(0.375882\pi\)
\(594\) −1329.74 −0.0918518
\(595\) 0 0
\(596\) −19057.5 −1.30978
\(597\) −432.013 −0.0296166
\(598\) 743.035 0.0508109
\(599\) −583.723 −0.0398168 −0.0199084 0.999802i \(-0.506337\pi\)
−0.0199084 + 0.999802i \(0.506337\pi\)
\(600\) 0 0
\(601\) −4111.87 −0.279080 −0.139540 0.990216i \(-0.544562\pi\)
−0.139540 + 0.990216i \(0.544562\pi\)
\(602\) 2010.19 0.136095
\(603\) −25847.5 −1.74559
\(604\) −22308.3 −1.50284
\(605\) 0 0
\(606\) −445.514 −0.0298643
\(607\) 15367.4 1.02758 0.513792 0.857915i \(-0.328240\pi\)
0.513792 + 0.857915i \(0.328240\pi\)
\(608\) −7371.43 −0.491696
\(609\) −928.697 −0.0617943
\(610\) 0 0
\(611\) 1069.83 0.0708360
\(612\) 10540.3 0.696184
\(613\) 14127.7 0.930853 0.465426 0.885087i \(-0.345901\pi\)
0.465426 + 0.885087i \(0.345901\pi\)
\(614\) 2506.38 0.164738
\(615\) 0 0
\(616\) −10642.7 −0.696116
\(617\) −24427.9 −1.59389 −0.796944 0.604053i \(-0.793552\pi\)
−0.796944 + 0.604053i \(0.793552\pi\)
\(618\) 651.724 0.0424210
\(619\) 23038.8 1.49597 0.747987 0.663713i \(-0.231020\pi\)
0.747987 + 0.663713i \(0.231020\pi\)
\(620\) 0 0
\(621\) −848.346 −0.0548196
\(622\) −2402.11 −0.154848
\(623\) 21756.5 1.39913
\(624\) −1631.88 −0.104691
\(625\) 0 0
\(626\) 2106.71 0.134507
\(627\) −2057.13 −0.131027
\(628\) −27146.3 −1.72493
\(629\) −9299.70 −0.589512
\(630\) 0 0
\(631\) −11336.7 −0.715223 −0.357611 0.933871i \(-0.616409\pi\)
−0.357611 + 0.933871i \(0.616409\pi\)
\(632\) −6357.50 −0.400139
\(633\) 2129.63 0.133721
\(634\) 393.881 0.0246735
\(635\) 0 0
\(636\) 1958.46 0.122104
\(637\) 908.836 0.0565297
\(638\) 2550.08 0.158242
\(639\) 8924.89 0.552524
\(640\) 0 0
\(641\) 27030.1 1.66556 0.832782 0.553601i \(-0.186747\pi\)
0.832782 + 0.553601i \(0.186747\pi\)
\(642\) −592.795 −0.0364420
\(643\) 6776.53 0.415615 0.207807 0.978170i \(-0.433367\pi\)
0.207807 + 0.978170i \(0.433367\pi\)
\(644\) −3284.13 −0.200952
\(645\) 0 0
\(646\) −2219.76 −0.135194
\(647\) 25310.7 1.53797 0.768984 0.639268i \(-0.220763\pi\)
0.768984 + 0.639268i \(0.220763\pi\)
\(648\) 7610.29 0.461359
\(649\) −37586.9 −2.27337
\(650\) 0 0
\(651\) −3764.81 −0.226658
\(652\) 26131.6 1.56962
\(653\) −24830.6 −1.48805 −0.744024 0.668153i \(-0.767085\pi\)
−0.744024 + 0.668153i \(0.767085\pi\)
\(654\) 248.881 0.0148808
\(655\) 0 0
\(656\) −4951.80 −0.294719
\(657\) 8412.22 0.499531
\(658\) 318.997 0.0188994
\(659\) 19514.4 1.15353 0.576764 0.816911i \(-0.304315\pi\)
0.576764 + 0.816911i \(0.304315\pi\)
\(660\) 0 0
\(661\) −20107.4 −1.18319 −0.591594 0.806236i \(-0.701501\pi\)
−0.591594 + 0.806236i \(0.701501\pi\)
\(662\) 1590.56 0.0933820
\(663\) −1660.07 −0.0972424
\(664\) −2484.55 −0.145209
\(665\) 0 0
\(666\) −3308.03 −0.192468
\(667\) 1626.89 0.0944432
\(668\) −21126.0 −1.22364
\(669\) 3929.75 0.227105
\(670\) 0 0
\(671\) 262.168 0.0150833
\(672\) −1643.78 −0.0943603
\(673\) −34488.4 −1.97538 −0.987689 0.156432i \(-0.950001\pi\)
−0.987689 + 0.156432i \(0.950001\pi\)
\(674\) 417.179 0.0238414
\(675\) 0 0
\(676\) 994.764 0.0565979
\(677\) −20506.3 −1.16414 −0.582070 0.813139i \(-0.697757\pi\)
−0.582070 + 0.813139i \(0.697757\pi\)
\(678\) 1.17406 6.65035e−5 0
\(679\) 2815.33 0.159120
\(680\) 0 0
\(681\) −2207.52 −0.124218
\(682\) 10337.7 0.580425
\(683\) 2269.13 0.127124 0.0635620 0.997978i \(-0.479754\pi\)
0.0635620 + 0.997978i \(0.479754\pi\)
\(684\) 11704.3 0.654278
\(685\) 0 0
\(686\) −4375.74 −0.243537
\(687\) −446.863 −0.0248164
\(688\) 7733.94 0.428567
\(689\) 17229.5 0.952673
\(690\) 0 0
\(691\) −27891.7 −1.53553 −0.767764 0.640733i \(-0.778631\pi\)
−0.767764 + 0.640733i \(0.778631\pi\)
\(692\) 21877.8 1.20183
\(693\) 25623.4 1.40455
\(694\) −6523.20 −0.356797
\(695\) 0 0
\(696\) 537.022 0.0292468
\(697\) −5037.35 −0.273749
\(698\) −3786.81 −0.205348
\(699\) −1762.03 −0.0953452
\(700\) 0 0
\(701\) 27181.1 1.46450 0.732251 0.681034i \(-0.238470\pi\)
0.732251 + 0.681034i \(0.238470\pi\)
\(702\) −1191.59 −0.0640650
\(703\) −10326.8 −0.554027
\(704\) −16627.7 −0.890169
\(705\) 0 0
\(706\) 6970.64 0.371591
\(707\) 17323.3 0.921513
\(708\) −3828.58 −0.203230
\(709\) 2398.23 0.127035 0.0635173 0.997981i \(-0.479768\pi\)
0.0635173 + 0.997981i \(0.479768\pi\)
\(710\) 0 0
\(711\) 15306.3 0.807358
\(712\) −12580.8 −0.662198
\(713\) 6595.21 0.346413
\(714\) −494.991 −0.0259448
\(715\) 0 0
\(716\) 22426.5 1.17055
\(717\) −3048.93 −0.158807
\(718\) −7174.42 −0.372907
\(719\) 11387.8 0.590674 0.295337 0.955393i \(-0.404568\pi\)
0.295337 + 0.955393i \(0.404568\pi\)
\(720\) 0 0
\(721\) −25341.6 −1.30897
\(722\) 2412.16 0.124337
\(723\) 2298.31 0.118223
\(724\) 27473.5 1.41028
\(725\) 0 0
\(726\) 607.429 0.0310521
\(727\) −2762.84 −0.140946 −0.0704732 0.997514i \(-0.522451\pi\)
−0.0704732 + 0.997514i \(0.522451\pi\)
\(728\) −9537.00 −0.485528
\(729\) −17636.3 −0.896015
\(730\) 0 0
\(731\) 7867.56 0.398074
\(732\) 26.7043 0.00134839
\(733\) 1782.84 0.0898370 0.0449185 0.998991i \(-0.485697\pi\)
0.0449185 + 0.998991i \(0.485697\pi\)
\(734\) −5895.87 −0.296486
\(735\) 0 0
\(736\) 2879.57 0.144215
\(737\) 49406.7 2.46936
\(738\) −1791.85 −0.0893753
\(739\) −987.346 −0.0491476 −0.0245738 0.999698i \(-0.507823\pi\)
−0.0245738 + 0.999698i \(0.507823\pi\)
\(740\) 0 0
\(741\) −1843.41 −0.0913890
\(742\) 5137.40 0.254178
\(743\) 11744.8 0.579910 0.289955 0.957040i \(-0.406360\pi\)
0.289955 + 0.957040i \(0.406360\pi\)
\(744\) 2177.01 0.107276
\(745\) 0 0
\(746\) 5328.29 0.261505
\(747\) 5981.79 0.292988
\(748\) −20147.3 −0.984839
\(749\) 23050.2 1.12448
\(750\) 0 0
\(751\) −14156.0 −0.687828 −0.343914 0.939001i \(-0.611753\pi\)
−0.343914 + 0.939001i \(0.611753\pi\)
\(752\) 1227.30 0.0595145
\(753\) −1345.46 −0.0651146
\(754\) 2285.14 0.110371
\(755\) 0 0
\(756\) 5266.69 0.253370
\(757\) 35240.9 1.69201 0.846005 0.533174i \(-0.179001\pi\)
0.846005 + 0.533174i \(0.179001\pi\)
\(758\) 2581.72 0.123710
\(759\) 803.599 0.0384306
\(760\) 0 0
\(761\) 15253.8 0.726609 0.363305 0.931670i \(-0.381648\pi\)
0.363305 + 0.931670i \(0.381648\pi\)
\(762\) −664.329 −0.0315828
\(763\) −9677.48 −0.459172
\(764\) 16183.0 0.766337
\(765\) 0 0
\(766\) 677.254 0.0319454
\(767\) −33681.8 −1.58563
\(768\) −1202.92 −0.0565189
\(769\) 33344.6 1.56364 0.781818 0.623507i \(-0.214293\pi\)
0.781818 + 0.623507i \(0.214293\pi\)
\(770\) 0 0
\(771\) 374.411 0.0174891
\(772\) 13982.8 0.651879
\(773\) 14412.0 0.670587 0.335294 0.942114i \(-0.391164\pi\)
0.335294 + 0.942114i \(0.391164\pi\)
\(774\) 2798.59 0.129966
\(775\) 0 0
\(776\) −1627.98 −0.0753105
\(777\) −2302.80 −0.106322
\(778\) 3229.11 0.148803
\(779\) −5593.68 −0.257271
\(780\) 0 0
\(781\) −17059.6 −0.781615
\(782\) 867.126 0.0396526
\(783\) −2609.02 −0.119079
\(784\) 1042.60 0.0474947
\(785\) 0 0
\(786\) −833.700 −0.0378335
\(787\) 15474.1 0.700880 0.350440 0.936585i \(-0.386032\pi\)
0.350440 + 0.936585i \(0.386032\pi\)
\(788\) 19771.5 0.893818
\(789\) 2322.86 0.104811
\(790\) 0 0
\(791\) −45.6519 −0.00205208
\(792\) −14816.8 −0.664764
\(793\) 234.930 0.0105203
\(794\) 10200.4 0.455916
\(795\) 0 0
\(796\) −4698.37 −0.209208
\(797\) −15561.2 −0.691603 −0.345802 0.938308i \(-0.612393\pi\)
−0.345802 + 0.938308i \(0.612393\pi\)
\(798\) −549.658 −0.0243830
\(799\) 1248.50 0.0552801
\(800\) 0 0
\(801\) 30289.5 1.33611
\(802\) 4521.21 0.199064
\(803\) −16079.7 −0.706649
\(804\) 5032.53 0.220751
\(805\) 0 0
\(806\) 9263.64 0.404836
\(807\) 1914.62 0.0835163
\(808\) −10017.3 −0.436146
\(809\) 14327.9 0.622674 0.311337 0.950299i \(-0.399223\pi\)
0.311337 + 0.950299i \(0.399223\pi\)
\(810\) 0 0
\(811\) −8539.31 −0.369736 −0.184868 0.982763i \(-0.559186\pi\)
−0.184868 + 0.982763i \(0.559186\pi\)
\(812\) −10100.1 −0.436506
\(813\) −4463.11 −0.192532
\(814\) 6323.18 0.272269
\(815\) 0 0
\(816\) −1904.41 −0.0817005
\(817\) 8736.45 0.374112
\(818\) 8207.74 0.350828
\(819\) 22961.3 0.979647
\(820\) 0 0
\(821\) 42664.3 1.81364 0.906818 0.421523i \(-0.138504\pi\)
0.906818 + 0.421523i \(0.138504\pi\)
\(822\) −1227.59 −0.0520890
\(823\) −7687.86 −0.325616 −0.162808 0.986658i \(-0.552055\pi\)
−0.162808 + 0.986658i \(0.552055\pi\)
\(824\) 14653.8 0.619528
\(825\) 0 0
\(826\) −10043.1 −0.423054
\(827\) −27712.7 −1.16525 −0.582627 0.812740i \(-0.697975\pi\)
−0.582627 + 0.812740i \(0.697975\pi\)
\(828\) −4572.18 −0.191901
\(829\) −13667.8 −0.572619 −0.286310 0.958137i \(-0.592429\pi\)
−0.286310 + 0.958137i \(0.592429\pi\)
\(830\) 0 0
\(831\) −1071.96 −0.0447483
\(832\) −14900.1 −0.620876
\(833\) 1060.62 0.0441155
\(834\) −120.230 −0.00499189
\(835\) 0 0
\(836\) −22372.4 −0.925558
\(837\) −10576.6 −0.436775
\(838\) 2624.65 0.108195
\(839\) −13429.4 −0.552604 −0.276302 0.961071i \(-0.589109\pi\)
−0.276302 + 0.961071i \(0.589109\pi\)
\(840\) 0 0
\(841\) −19385.6 −0.794851
\(842\) 5369.43 0.219766
\(843\) −2970.81 −0.121376
\(844\) 23160.8 0.944584
\(845\) 0 0
\(846\) 444.108 0.0180482
\(847\) −23619.2 −0.958164
\(848\) 19765.5 0.800411
\(849\) 4731.98 0.191285
\(850\) 0 0
\(851\) 4034.05 0.162497
\(852\) −1737.68 −0.0698732
\(853\) 1540.70 0.0618434 0.0309217 0.999522i \(-0.490156\pi\)
0.0309217 + 0.999522i \(0.490156\pi\)
\(854\) 70.0502 0.00280687
\(855\) 0 0
\(856\) −13328.8 −0.532209
\(857\) −33588.2 −1.33880 −0.669399 0.742903i \(-0.733448\pi\)
−0.669399 + 0.742903i \(0.733448\pi\)
\(858\) 1128.74 0.0449119
\(859\) 4955.28 0.196824 0.0984122 0.995146i \(-0.468624\pi\)
0.0984122 + 0.995146i \(0.468624\pi\)
\(860\) 0 0
\(861\) −1247.35 −0.0493724
\(862\) 11679.8 0.461503
\(863\) −41833.5 −1.65009 −0.825046 0.565066i \(-0.808851\pi\)
−0.825046 + 0.565066i \(0.808851\pi\)
\(864\) −4617.91 −0.181834
\(865\) 0 0
\(866\) 4525.02 0.177559
\(867\) 1448.28 0.0567314
\(868\) −40944.3 −1.60108
\(869\) −29257.5 −1.14211
\(870\) 0 0
\(871\) 44273.5 1.72233
\(872\) 5596.03 0.217323
\(873\) 3919.51 0.151954
\(874\) 962.892 0.0372658
\(875\) 0 0
\(876\) −1637.87 −0.0631716
\(877\) −34708.9 −1.33642 −0.668208 0.743974i \(-0.732938\pi\)
−0.668208 + 0.743974i \(0.732938\pi\)
\(878\) 5342.80 0.205365
\(879\) −4972.30 −0.190798
\(880\) 0 0
\(881\) −6072.43 −0.232219 −0.116110 0.993236i \(-0.537042\pi\)
−0.116110 + 0.993236i \(0.537042\pi\)
\(882\) 377.275 0.0144031
\(883\) −18884.3 −0.719712 −0.359856 0.933008i \(-0.617174\pi\)
−0.359856 + 0.933008i \(0.617174\pi\)
\(884\) −18054.1 −0.686907
\(885\) 0 0
\(886\) 3138.16 0.118994
\(887\) 46338.3 1.75410 0.877051 0.480397i \(-0.159507\pi\)
0.877051 + 0.480397i \(0.159507\pi\)
\(888\) 1331.60 0.0503216
\(889\) 25831.7 0.974542
\(890\) 0 0
\(891\) 35022.9 1.31685
\(892\) 42738.1 1.60424
\(893\) 1386.39 0.0519526
\(894\) 1245.99 0.0466132
\(895\) 0 0
\(896\) −23525.8 −0.877167
\(897\) 720.109 0.0268046
\(898\) 7676.40 0.285261
\(899\) 20283.0 0.752476
\(900\) 0 0
\(901\) 20106.9 0.743462
\(902\) 3425.06 0.126433
\(903\) 1948.17 0.0717951
\(904\) 26.3984 0.000971235 0
\(905\) 0 0
\(906\) 1458.53 0.0534839
\(907\) 22074.9 0.808141 0.404070 0.914728i \(-0.367595\pi\)
0.404070 + 0.914728i \(0.367595\pi\)
\(908\) −24008.0 −0.877459
\(909\) 24117.5 0.880008
\(910\) 0 0
\(911\) −16529.7 −0.601156 −0.300578 0.953757i \(-0.597180\pi\)
−0.300578 + 0.953757i \(0.597180\pi\)
\(912\) −2114.73 −0.0767827
\(913\) −11434.0 −0.414468
\(914\) −11182.0 −0.404670
\(915\) 0 0
\(916\) −4859.87 −0.175300
\(917\) 32417.5 1.16742
\(918\) −1390.59 −0.0499960
\(919\) 37282.7 1.33824 0.669120 0.743154i \(-0.266671\pi\)
0.669120 + 0.743154i \(0.266671\pi\)
\(920\) 0 0
\(921\) 2429.04 0.0869052
\(922\) 709.291 0.0253354
\(923\) −15287.2 −0.545162
\(924\) −4988.89 −0.177622
\(925\) 0 0
\(926\) −9484.35 −0.336582
\(927\) −35280.6 −1.25002
\(928\) 8855.89 0.313264
\(929\) 37919.2 1.33917 0.669585 0.742736i \(-0.266472\pi\)
0.669585 + 0.742736i \(0.266472\pi\)
\(930\) 0 0
\(931\) 1177.75 0.0414600
\(932\) −19163.0 −0.673505
\(933\) −2327.99 −0.0816882
\(934\) −4100.97 −0.143670
\(935\) 0 0
\(936\) −13277.4 −0.463660
\(937\) −7139.87 −0.248932 −0.124466 0.992224i \(-0.539722\pi\)
−0.124466 + 0.992224i \(0.539722\pi\)
\(938\) 13201.2 0.459527
\(939\) 2041.71 0.0709570
\(940\) 0 0
\(941\) 44548.2 1.54328 0.771642 0.636057i \(-0.219436\pi\)
0.771642 + 0.636057i \(0.219436\pi\)
\(942\) 1774.84 0.0613879
\(943\) 2185.11 0.0754582
\(944\) −38639.3 −1.33221
\(945\) 0 0
\(946\) −5349.42 −0.183853
\(947\) 11796.3 0.404782 0.202391 0.979305i \(-0.435129\pi\)
0.202391 + 0.979305i \(0.435129\pi\)
\(948\) −2980.15 −0.102100
\(949\) −14409.1 −0.492875
\(950\) 0 0
\(951\) 381.728 0.0130162
\(952\) −11129.7 −0.378904
\(953\) 16156.5 0.549171 0.274586 0.961563i \(-0.411459\pi\)
0.274586 + 0.961563i \(0.411459\pi\)
\(954\) 7152.30 0.242730
\(955\) 0 0
\(956\) −33158.7 −1.12179
\(957\) 2471.40 0.0834786
\(958\) −6812.80 −0.229762
\(959\) 47733.5 1.60729
\(960\) 0 0
\(961\) 52433.5 1.76004
\(962\) 5666.23 0.189903
\(963\) 32090.5 1.07383
\(964\) 24995.3 0.835109
\(965\) 0 0
\(966\) 214.718 0.00715160
\(967\) 50550.0 1.68105 0.840527 0.541770i \(-0.182246\pi\)
0.840527 + 0.541770i \(0.182246\pi\)
\(968\) 13657.9 0.453493
\(969\) −2151.27 −0.0713196
\(970\) 0 0
\(971\) 33282.9 1.10000 0.550000 0.835165i \(-0.314628\pi\)
0.550000 + 0.835165i \(0.314628\pi\)
\(972\) 11031.0 0.364011
\(973\) 4675.03 0.154033
\(974\) −2989.42 −0.0983441
\(975\) 0 0
\(976\) 269.509 0.00883889
\(977\) −2729.36 −0.0893755 −0.0446877 0.999001i \(-0.514229\pi\)
−0.0446877 + 0.999001i \(0.514229\pi\)
\(978\) −1708.49 −0.0558606
\(979\) −57897.3 −1.89010
\(980\) 0 0
\(981\) −13473.0 −0.438491
\(982\) −4017.82 −0.130564
\(983\) 14904.5 0.483600 0.241800 0.970326i \(-0.422262\pi\)
0.241800 + 0.970326i \(0.422262\pi\)
\(984\) 721.285 0.0233676
\(985\) 0 0
\(986\) 2666.77 0.0861332
\(987\) 309.154 0.00997011
\(988\) −20048.0 −0.645559
\(989\) −3412.81 −0.109728
\(990\) 0 0
\(991\) 39748.4 1.27412 0.637058 0.770816i \(-0.280151\pi\)
0.637058 + 0.770816i \(0.280151\pi\)
\(992\) 35900.5 1.14904
\(993\) 1541.48 0.0492624
\(994\) −4558.26 −0.145452
\(995\) 0 0
\(996\) −1164.66 −0.0370518
\(997\) −47343.4 −1.50389 −0.751946 0.659225i \(-0.770884\pi\)
−0.751946 + 0.659225i \(0.770884\pi\)
\(998\) 13659.6 0.433254
\(999\) −6469.31 −0.204885
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.a.m.1.3 yes 7
5.2 odd 4 575.4.b.j.24.7 14
5.3 odd 4 575.4.b.j.24.8 14
5.4 even 2 575.4.a.l.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.4.a.l.1.5 7 5.4 even 2
575.4.a.m.1.3 yes 7 1.1 even 1 trivial
575.4.b.j.24.7 14 5.2 odd 4
575.4.b.j.24.8 14 5.3 odd 4