Properties

Label 575.4.b.k.24.13
Level $575$
Weight $4$
Character 575.24
Analytic conductor $33.926$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 102 x^{14} + 4025 x^{12} + 79249 x^{10} + 832798 x^{8} + 4596761 x^{6} + 12272424 x^{4} + \cdots + 5760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.13
Root \(3.05234i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.4.b.k.24.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.05234i q^{2} +8.94300i q^{3} -8.42146 q^{4} -36.2401 q^{6} +32.7645i q^{7} -1.70790i q^{8} -52.9772 q^{9} +45.7496 q^{11} -75.3131i q^{12} -45.5638i q^{13} -132.773 q^{14} -60.4507 q^{16} -76.5649i q^{17} -214.681i q^{18} +32.0225 q^{19} -293.013 q^{21} +185.393i q^{22} -23.0000i q^{23} +15.2738 q^{24} +184.640 q^{26} -232.314i q^{27} -275.925i q^{28} -287.046 q^{29} -161.587 q^{31} -258.630i q^{32} +409.139i q^{33} +310.267 q^{34} +446.145 q^{36} +7.53926i q^{37} +129.766i q^{38} +407.476 q^{39} +216.246 q^{41} -1187.39i q^{42} +469.729i q^{43} -385.279 q^{44} +93.2038 q^{46} -210.315i q^{47} -540.610i q^{48} -730.514 q^{49} +684.719 q^{51} +383.713i q^{52} -58.7860i q^{53} +941.414 q^{54} +55.9587 q^{56} +286.377i q^{57} -1163.21i q^{58} +376.609 q^{59} -52.7319 q^{61} -654.805i q^{62} -1735.77i q^{63} +564.451 q^{64} -1657.97 q^{66} -16.7678i q^{67} +644.788i q^{68} +205.689 q^{69} -209.441 q^{71} +90.4800i q^{72} +811.910i q^{73} -30.5516 q^{74} -269.676 q^{76} +1498.96i q^{77} +1651.23i q^{78} -63.0408 q^{79} +647.197 q^{81} +876.300i q^{82} +1062.27i q^{83} +2467.60 q^{84} -1903.50 q^{86} -2567.05i q^{87} -78.1360i q^{88} -436.069 q^{89} +1492.87 q^{91} +193.694i q^{92} -1445.07i q^{93} +852.269 q^{94} +2312.93 q^{96} +655.840i q^{97} -2960.29i q^{98} -2423.68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 84 q^{4} - 316 q^{9} + 82 q^{11} - 322 q^{14} + 196 q^{16} - 354 q^{19} + 584 q^{21} - 354 q^{24} + 792 q^{26} - 450 q^{29} - 72 q^{31} + 2102 q^{34} - 792 q^{36} + 2154 q^{39} + 1240 q^{41} + 282 q^{44}+ \cdots - 2638 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.05234i 1.43272i 0.697732 + 0.716359i \(0.254193\pi\)
−0.697732 + 0.716359i \(0.745807\pi\)
\(3\) 8.94300i 1.72108i 0.509383 + 0.860540i \(0.329874\pi\)
−0.509383 + 0.860540i \(0.670126\pi\)
\(4\) −8.42146 −1.05268
\(5\) 0 0
\(6\) −36.2401 −2.46582
\(7\) 32.7645i 1.76912i 0.466429 + 0.884559i \(0.345540\pi\)
−0.466429 + 0.884559i \(0.654460\pi\)
\(8\) − 1.70790i − 0.0754794i
\(9\) −52.9772 −1.96212
\(10\) 0 0
\(11\) 45.7496 1.25400 0.627001 0.779018i \(-0.284282\pi\)
0.627001 + 0.779018i \(0.284282\pi\)
\(12\) − 75.3131i − 1.81175i
\(13\) − 45.5638i − 0.972086i −0.873935 0.486043i \(-0.838440\pi\)
0.873935 0.486043i \(-0.161560\pi\)
\(14\) −132.773 −2.53465
\(15\) 0 0
\(16\) −60.4507 −0.944542
\(17\) − 76.5649i − 1.09234i −0.837676 0.546168i \(-0.816086\pi\)
0.837676 0.546168i \(-0.183914\pi\)
\(18\) − 214.681i − 2.81116i
\(19\) 32.0225 0.386656 0.193328 0.981134i \(-0.438072\pi\)
0.193328 + 0.981134i \(0.438072\pi\)
\(20\) 0 0
\(21\) −293.013 −3.04479
\(22\) 185.393i 1.79663i
\(23\) − 23.0000i − 0.208514i
\(24\) 15.2738 0.129906
\(25\) 0 0
\(26\) 184.640 1.39273
\(27\) − 232.314i − 1.65588i
\(28\) − 275.925i − 1.86232i
\(29\) −287.046 −1.83804 −0.919019 0.394213i \(-0.871017\pi\)
−0.919019 + 0.394213i \(0.871017\pi\)
\(30\) 0 0
\(31\) −161.587 −0.936189 −0.468095 0.883678i \(-0.655059\pi\)
−0.468095 + 0.883678i \(0.655059\pi\)
\(32\) − 258.630i − 1.42874i
\(33\) 409.139i 2.15824i
\(34\) 310.267 1.56501
\(35\) 0 0
\(36\) 446.145 2.06549
\(37\) 7.53926i 0.0334986i 0.999860 + 0.0167493i \(0.00533171\pi\)
−0.999860 + 0.0167493i \(0.994668\pi\)
\(38\) 129.766i 0.553969i
\(39\) 407.476 1.67304
\(40\) 0 0
\(41\) 216.246 0.823704 0.411852 0.911251i \(-0.364882\pi\)
0.411852 + 0.911251i \(0.364882\pi\)
\(42\) − 1187.39i − 4.36233i
\(43\) 469.729i 1.66589i 0.553359 + 0.832943i \(0.313346\pi\)
−0.553359 + 0.832943i \(0.686654\pi\)
\(44\) −385.279 −1.32007
\(45\) 0 0
\(46\) 93.2038 0.298742
\(47\) − 210.315i − 0.652715i −0.945246 0.326358i \(-0.894179\pi\)
0.945246 0.326358i \(-0.105821\pi\)
\(48\) − 540.610i − 1.62563i
\(49\) −730.514 −2.12978
\(50\) 0 0
\(51\) 684.719 1.88000
\(52\) 383.713i 1.02330i
\(53\) − 58.7860i − 0.152356i −0.997094 0.0761781i \(-0.975728\pi\)
0.997094 0.0761781i \(-0.0242718\pi\)
\(54\) 941.414 2.37241
\(55\) 0 0
\(56\) 55.9587 0.133532
\(57\) 286.377i 0.665466i
\(58\) − 1163.21i − 2.63339i
\(59\) 376.609 0.831022 0.415511 0.909588i \(-0.363603\pi\)
0.415511 + 0.909588i \(0.363603\pi\)
\(60\) 0 0
\(61\) −52.7319 −0.110682 −0.0553412 0.998467i \(-0.517625\pi\)
−0.0553412 + 0.998467i \(0.517625\pi\)
\(62\) − 654.805i − 1.34130i
\(63\) − 1735.77i − 3.47122i
\(64\) 564.451 1.10244
\(65\) 0 0
\(66\) −1657.97 −3.09215
\(67\) − 16.7678i − 0.0305748i −0.999883 0.0152874i \(-0.995134\pi\)
0.999883 0.0152874i \(-0.00486633\pi\)
\(68\) 644.788i 1.14988i
\(69\) 205.689 0.358870
\(70\) 0 0
\(71\) −209.441 −0.350086 −0.175043 0.984561i \(-0.556006\pi\)
−0.175043 + 0.984561i \(0.556006\pi\)
\(72\) 90.4800i 0.148100i
\(73\) 811.910i 1.30174i 0.759190 + 0.650869i \(0.225595\pi\)
−0.759190 + 0.650869i \(0.774405\pi\)
\(74\) −30.5516 −0.0479940
\(75\) 0 0
\(76\) −269.676 −0.407026
\(77\) 1498.96i 2.21848i
\(78\) 1651.23i 2.39699i
\(79\) −63.0408 −0.0897803 −0.0448902 0.998992i \(-0.514294\pi\)
−0.0448902 + 0.998992i \(0.514294\pi\)
\(80\) 0 0
\(81\) 647.197 0.887787
\(82\) 876.300i 1.18014i
\(83\) 1062.27i 1.40481i 0.711779 + 0.702404i \(0.247890\pi\)
−0.711779 + 0.702404i \(0.752110\pi\)
\(84\) 2467.60 3.20520
\(85\) 0 0
\(86\) −1903.50 −2.38674
\(87\) − 2567.05i − 3.16341i
\(88\) − 78.1360i − 0.0946514i
\(89\) −436.069 −0.519362 −0.259681 0.965694i \(-0.583617\pi\)
−0.259681 + 0.965694i \(0.583617\pi\)
\(90\) 0 0
\(91\) 1492.87 1.71973
\(92\) 193.694i 0.219500i
\(93\) − 1445.07i − 1.61126i
\(94\) 852.269 0.935158
\(95\) 0 0
\(96\) 2312.93 2.45898
\(97\) 655.840i 0.686499i 0.939244 + 0.343250i \(0.111528\pi\)
−0.939244 + 0.343250i \(0.888472\pi\)
\(98\) − 2960.29i − 3.05137i
\(99\) −2423.68 −2.46050
\(100\) 0 0
\(101\) 831.308 0.818993 0.409496 0.912312i \(-0.365704\pi\)
0.409496 + 0.912312i \(0.365704\pi\)
\(102\) 2774.72i 2.69351i
\(103\) 801.275i 0.766524i 0.923640 + 0.383262i \(0.125199\pi\)
−0.923640 + 0.383262i \(0.874801\pi\)
\(104\) −77.8186 −0.0733725
\(105\) 0 0
\(106\) 238.221 0.218284
\(107\) 901.921i 0.814879i 0.913232 + 0.407439i \(0.133578\pi\)
−0.913232 + 0.407439i \(0.866422\pi\)
\(108\) 1956.42i 1.74312i
\(109\) −328.880 −0.289000 −0.144500 0.989505i \(-0.546157\pi\)
−0.144500 + 0.989505i \(0.546157\pi\)
\(110\) 0 0
\(111\) −67.4236 −0.0576537
\(112\) − 1980.64i − 1.67101i
\(113\) 2209.02i 1.83900i 0.393090 + 0.919500i \(0.371406\pi\)
−0.393090 + 0.919500i \(0.628594\pi\)
\(114\) −1160.50 −0.953426
\(115\) 0 0
\(116\) 2417.35 1.93487
\(117\) 2413.84i 1.90735i
\(118\) 1526.15i 1.19062i
\(119\) 2508.61 1.93247
\(120\) 0 0
\(121\) 762.027 0.572522
\(122\) − 213.688i − 0.158577i
\(123\) 1933.88i 1.41766i
\(124\) 1360.80 0.985510
\(125\) 0 0
\(126\) 7033.94 4.97328
\(127\) 107.788i 0.0753124i 0.999291 + 0.0376562i \(0.0119892\pi\)
−0.999291 + 0.0376562i \(0.988011\pi\)
\(128\) 218.308i 0.150749i
\(129\) −4200.79 −2.86712
\(130\) 0 0
\(131\) −985.156 −0.657050 −0.328525 0.944495i \(-0.606551\pi\)
−0.328525 + 0.944495i \(0.606551\pi\)
\(132\) − 3445.54i − 2.27194i
\(133\) 1049.20i 0.684040i
\(134\) 67.9489 0.0438051
\(135\) 0 0
\(136\) −130.766 −0.0824489
\(137\) 65.3753i 0.0407692i 0.999792 + 0.0203846i \(0.00648908\pi\)
−0.999792 + 0.0203846i \(0.993511\pi\)
\(138\) 833.521i 0.514160i
\(139\) 547.498 0.334088 0.167044 0.985949i \(-0.446578\pi\)
0.167044 + 0.985949i \(0.446578\pi\)
\(140\) 0 0
\(141\) 1880.85 1.12338
\(142\) − 848.727i − 0.501574i
\(143\) − 2084.52i − 1.21900i
\(144\) 3202.51 1.85330
\(145\) 0 0
\(146\) −3290.14 −1.86503
\(147\) − 6532.98i − 3.66552i
\(148\) − 63.4916i − 0.0352633i
\(149\) −3316.98 −1.82374 −0.911871 0.410476i \(-0.865363\pi\)
−0.911871 + 0.410476i \(0.865363\pi\)
\(150\) 0 0
\(151\) −1645.53 −0.886831 −0.443415 0.896316i \(-0.646233\pi\)
−0.443415 + 0.896316i \(0.646233\pi\)
\(152\) − 54.6914i − 0.0291846i
\(153\) 4056.19i 2.14329i
\(154\) −6074.31 −3.17845
\(155\) 0 0
\(156\) −3431.55 −1.76118
\(157\) − 2088.75i − 1.06179i −0.847439 0.530893i \(-0.821857\pi\)
0.847439 0.530893i \(-0.178143\pi\)
\(158\) − 255.463i − 0.128630i
\(159\) 525.723 0.262217
\(160\) 0 0
\(161\) 753.584 0.368887
\(162\) 2622.66i 1.27195i
\(163\) − 3160.08i − 1.51851i −0.650796 0.759253i \(-0.725565\pi\)
0.650796 0.759253i \(-0.274435\pi\)
\(164\) −1821.10 −0.867099
\(165\) 0 0
\(166\) −4304.67 −2.01269
\(167\) − 1886.30i − 0.874047i −0.899450 0.437024i \(-0.856033\pi\)
0.899450 0.437024i \(-0.143967\pi\)
\(168\) 500.438i 0.229819i
\(169\) 120.944 0.0550495
\(170\) 0 0
\(171\) −1696.46 −0.758664
\(172\) − 3955.81i − 1.75365i
\(173\) 425.628i 0.187051i 0.995617 + 0.0935256i \(0.0298137\pi\)
−0.995617 + 0.0935256i \(0.970186\pi\)
\(174\) 10402.6 4.53228
\(175\) 0 0
\(176\) −2765.59 −1.18446
\(177\) 3368.01i 1.43026i
\(178\) − 1767.10i − 0.744100i
\(179\) −4680.83 −1.95453 −0.977266 0.212016i \(-0.931997\pi\)
−0.977266 + 0.212016i \(0.931997\pi\)
\(180\) 0 0
\(181\) −380.264 −0.156159 −0.0780796 0.996947i \(-0.524879\pi\)
−0.0780796 + 0.996947i \(0.524879\pi\)
\(182\) 6049.64i 2.46389i
\(183\) − 471.581i − 0.190493i
\(184\) −39.2818 −0.0157386
\(185\) 0 0
\(186\) 5855.92 2.30848
\(187\) − 3502.81i − 1.36979i
\(188\) 1771.16i 0.687102i
\(189\) 7611.64 2.92945
\(190\) 0 0
\(191\) 1466.03 0.555383 0.277691 0.960670i \(-0.410431\pi\)
0.277691 + 0.960670i \(0.410431\pi\)
\(192\) 5047.88i 1.89739i
\(193\) 2129.58i 0.794253i 0.917764 + 0.397126i \(0.129993\pi\)
−0.917764 + 0.397126i \(0.870007\pi\)
\(194\) −2657.69 −0.983561
\(195\) 0 0
\(196\) 6151.99 2.24198
\(197\) − 1146.95i − 0.414807i −0.978256 0.207403i \(-0.933499\pi\)
0.978256 0.207403i \(-0.0665013\pi\)
\(198\) − 9821.59i − 3.52520i
\(199\) 3857.88 1.37426 0.687130 0.726535i \(-0.258870\pi\)
0.687130 + 0.726535i \(0.258870\pi\)
\(200\) 0 0
\(201\) 149.954 0.0526217
\(202\) 3368.74i 1.17339i
\(203\) − 9404.93i − 3.25171i
\(204\) −5766.34 −1.97904
\(205\) 0 0
\(206\) −3247.04 −1.09821
\(207\) 1218.47i 0.409130i
\(208\) 2754.36i 0.918176i
\(209\) 1465.02 0.484868
\(210\) 0 0
\(211\) 1880.22 0.613458 0.306729 0.951797i \(-0.400765\pi\)
0.306729 + 0.951797i \(0.400765\pi\)
\(212\) 495.064i 0.160383i
\(213\) − 1873.03i − 0.602526i
\(214\) −3654.89 −1.16749
\(215\) 0 0
\(216\) −396.770 −0.124985
\(217\) − 5294.32i − 1.65623i
\(218\) − 1332.73i − 0.414056i
\(219\) −7260.91 −2.24040
\(220\) 0 0
\(221\) −3488.58 −1.06184
\(222\) − 273.223i − 0.0826015i
\(223\) 3181.06i 0.955246i 0.878565 + 0.477623i \(0.158501\pi\)
−0.878565 + 0.477623i \(0.841499\pi\)
\(224\) 8473.89 2.52761
\(225\) 0 0
\(226\) −8951.70 −2.63477
\(227\) 4817.24i 1.40851i 0.709947 + 0.704255i \(0.248719\pi\)
−0.709947 + 0.704255i \(0.751281\pi\)
\(228\) − 2411.71i − 0.700525i
\(229\) 1440.61 0.415714 0.207857 0.978159i \(-0.433351\pi\)
0.207857 + 0.978159i \(0.433351\pi\)
\(230\) 0 0
\(231\) −13405.2 −3.81818
\(232\) 490.247i 0.138734i
\(233\) − 2313.68i − 0.650533i −0.945622 0.325266i \(-0.894546\pi\)
0.945622 0.325266i \(-0.105454\pi\)
\(234\) −9781.70 −2.73269
\(235\) 0 0
\(236\) −3171.60 −0.874803
\(237\) − 563.774i − 0.154519i
\(238\) 10165.7i 2.76869i
\(239\) 2798.09 0.757293 0.378647 0.925541i \(-0.376390\pi\)
0.378647 + 0.925541i \(0.376390\pi\)
\(240\) 0 0
\(241\) −1809.31 −0.483600 −0.241800 0.970326i \(-0.577738\pi\)
−0.241800 + 0.970326i \(0.577738\pi\)
\(242\) 3087.99i 0.820263i
\(243\) − 484.593i − 0.127929i
\(244\) 444.080 0.116514
\(245\) 0 0
\(246\) −7836.75 −2.03111
\(247\) − 1459.07i − 0.375863i
\(248\) 275.975i 0.0706630i
\(249\) −9499.86 −2.41779
\(250\) 0 0
\(251\) 5814.80 1.46226 0.731129 0.682239i \(-0.238994\pi\)
0.731129 + 0.682239i \(0.238994\pi\)
\(252\) 14617.7i 3.65409i
\(253\) − 1052.24i − 0.261478i
\(254\) −436.795 −0.107901
\(255\) 0 0
\(256\) 3630.95 0.886462
\(257\) 1886.38i 0.457856i 0.973443 + 0.228928i \(0.0735220\pi\)
−0.973443 + 0.228928i \(0.926478\pi\)
\(258\) − 17023.0i − 4.10778i
\(259\) −247.020 −0.0592629
\(260\) 0 0
\(261\) 15206.9 3.60645
\(262\) − 3992.19i − 0.941367i
\(263\) 6017.91i 1.41095i 0.708734 + 0.705476i \(0.249267\pi\)
−0.708734 + 0.705476i \(0.750733\pi\)
\(264\) 698.770 0.162903
\(265\) 0 0
\(266\) −4251.72 −0.980037
\(267\) − 3899.77i − 0.893864i
\(268\) 141.209i 0.0321856i
\(269\) 3189.16 0.722848 0.361424 0.932401i \(-0.382291\pi\)
0.361424 + 0.932401i \(0.382291\pi\)
\(270\) 0 0
\(271\) 1167.43 0.261683 0.130841 0.991403i \(-0.458232\pi\)
0.130841 + 0.991403i \(0.458232\pi\)
\(272\) 4628.40i 1.03176i
\(273\) 13350.8i 2.95980i
\(274\) −264.923 −0.0584109
\(275\) 0 0
\(276\) −1732.20 −0.377776
\(277\) − 4164.36i − 0.903293i −0.892197 0.451646i \(-0.850837\pi\)
0.892197 0.451646i \(-0.149163\pi\)
\(278\) 2218.65i 0.478654i
\(279\) 8560.42 1.83691
\(280\) 0 0
\(281\) 4958.59 1.05269 0.526343 0.850273i \(-0.323563\pi\)
0.526343 + 0.850273i \(0.323563\pi\)
\(282\) 7621.84i 1.60948i
\(283\) − 2171.54i − 0.456129i −0.973646 0.228065i \(-0.926760\pi\)
0.973646 0.228065i \(-0.0732397\pi\)
\(284\) 1763.80 0.368529
\(285\) 0 0
\(286\) 8447.20 1.74648
\(287\) 7085.18i 1.45723i
\(288\) 13701.5i 2.80336i
\(289\) −949.183 −0.193198
\(290\) 0 0
\(291\) −5865.17 −1.18152
\(292\) − 6837.47i − 1.37032i
\(293\) − 5170.00i − 1.03083i −0.856939 0.515417i \(-0.827637\pi\)
0.856939 0.515417i \(-0.172363\pi\)
\(294\) 26473.9 5.25166
\(295\) 0 0
\(296\) 12.8763 0.00252845
\(297\) − 10628.3i − 2.07648i
\(298\) − 13441.5i − 2.61291i
\(299\) −1047.97 −0.202694
\(300\) 0 0
\(301\) −15390.5 −2.94715
\(302\) − 6668.25i − 1.27058i
\(303\) 7434.39i 1.40955i
\(304\) −1935.78 −0.365213
\(305\) 0 0
\(306\) −16437.1 −3.07073
\(307\) 9189.38i 1.70836i 0.519980 + 0.854178i \(0.325939\pi\)
−0.519980 + 0.854178i \(0.674061\pi\)
\(308\) − 12623.5i − 2.33535i
\(309\) −7165.80 −1.31925
\(310\) 0 0
\(311\) 2264.59 0.412903 0.206452 0.978457i \(-0.433808\pi\)
0.206452 + 0.978457i \(0.433808\pi\)
\(312\) − 695.931i − 0.126280i
\(313\) − 2467.42i − 0.445581i −0.974866 0.222791i \(-0.928483\pi\)
0.974866 0.222791i \(-0.0715166\pi\)
\(314\) 8464.32 1.52124
\(315\) 0 0
\(316\) 530.896 0.0945102
\(317\) 7178.08i 1.27180i 0.771771 + 0.635901i \(0.219371\pi\)
−0.771771 + 0.635901i \(0.780629\pi\)
\(318\) 2130.41i 0.375684i
\(319\) −13132.2 −2.30490
\(320\) 0 0
\(321\) −8065.88 −1.40247
\(322\) 3053.78i 0.528511i
\(323\) − 2451.80i − 0.422358i
\(324\) −5450.34 −0.934558
\(325\) 0 0
\(326\) 12805.7 2.17559
\(327\) − 2941.17i − 0.497392i
\(328\) − 369.327i − 0.0621727i
\(329\) 6890.88 1.15473
\(330\) 0 0
\(331\) −10304.2 −1.71109 −0.855545 0.517728i \(-0.826778\pi\)
−0.855545 + 0.517728i \(0.826778\pi\)
\(332\) − 8945.85i − 1.47882i
\(333\) − 399.409i − 0.0657281i
\(334\) 7643.91 1.25226
\(335\) 0 0
\(336\) 17712.8 2.87593
\(337\) − 1582.19i − 0.255749i −0.991790 0.127874i \(-0.959185\pi\)
0.991790 0.127874i \(-0.0408154\pi\)
\(338\) 490.105i 0.0788705i
\(339\) −19755.2 −3.16507
\(340\) 0 0
\(341\) −7392.54 −1.17398
\(342\) − 6874.64i − 1.08695i
\(343\) − 12696.7i − 1.99871i
\(344\) 802.253 0.125740
\(345\) 0 0
\(346\) −1724.79 −0.267992
\(347\) 2566.92i 0.397117i 0.980089 + 0.198559i \(0.0636260\pi\)
−0.980089 + 0.198559i \(0.936374\pi\)
\(348\) 21618.3i 3.33007i
\(349\) 215.226 0.0330108 0.0165054 0.999864i \(-0.494746\pi\)
0.0165054 + 0.999864i \(0.494746\pi\)
\(350\) 0 0
\(351\) −10585.1 −1.60966
\(352\) − 11832.2i − 1.79165i
\(353\) 5111.32i 0.770675i 0.922776 + 0.385338i \(0.125915\pi\)
−0.922776 + 0.385338i \(0.874085\pi\)
\(354\) −13648.3 −2.04915
\(355\) 0 0
\(356\) 3672.34 0.546724
\(357\) 22434.5i 3.32594i
\(358\) − 18968.3i − 2.80029i
\(359\) 4317.14 0.634680 0.317340 0.948312i \(-0.397210\pi\)
0.317340 + 0.948312i \(0.397210\pi\)
\(360\) 0 0
\(361\) −5833.56 −0.850497
\(362\) − 1540.96i − 0.223732i
\(363\) 6814.80i 0.985356i
\(364\) −12572.2 −1.81033
\(365\) 0 0
\(366\) 1911.01 0.272923
\(367\) − 7628.24i − 1.08499i −0.840059 0.542495i \(-0.817480\pi\)
0.840059 0.542495i \(-0.182520\pi\)
\(368\) 1390.37i 0.196951i
\(369\) −11456.1 −1.61620
\(370\) 0 0
\(371\) 1926.10 0.269536
\(372\) 12169.6i 1.69614i
\(373\) − 8487.60i − 1.17821i −0.808057 0.589104i \(-0.799481\pi\)
0.808057 0.589104i \(-0.200519\pi\)
\(374\) 14194.6 1.96253
\(375\) 0 0
\(376\) −359.198 −0.0492666
\(377\) 13078.9i 1.78673i
\(378\) 30845.0i 4.19707i
\(379\) 1227.48 0.166363 0.0831815 0.996534i \(-0.473492\pi\)
0.0831815 + 0.996534i \(0.473492\pi\)
\(380\) 0 0
\(381\) −963.951 −0.129619
\(382\) 5940.85i 0.795707i
\(383\) 4106.30i 0.547838i 0.961753 + 0.273919i \(0.0883201\pi\)
−0.961753 + 0.273919i \(0.911680\pi\)
\(384\) −1952.33 −0.259452
\(385\) 0 0
\(386\) −8629.80 −1.13794
\(387\) − 24884.9i − 3.26866i
\(388\) − 5523.13i − 0.722666i
\(389\) 11206.6 1.46066 0.730328 0.683097i \(-0.239367\pi\)
0.730328 + 0.683097i \(0.239367\pi\)
\(390\) 0 0
\(391\) −1760.99 −0.227768
\(392\) 1247.65i 0.160754i
\(393\) − 8810.25i − 1.13084i
\(394\) 4647.84 0.594301
\(395\) 0 0
\(396\) 20411.0 2.59013
\(397\) 7629.81i 0.964557i 0.876018 + 0.482278i \(0.160191\pi\)
−0.876018 + 0.482278i \(0.839809\pi\)
\(398\) 15633.4i 1.96893i
\(399\) −9383.01 −1.17729
\(400\) 0 0
\(401\) 1221.46 0.152112 0.0760560 0.997104i \(-0.475767\pi\)
0.0760560 + 0.997104i \(0.475767\pi\)
\(402\) 607.666i 0.0753921i
\(403\) 7362.51i 0.910056i
\(404\) −7000.83 −0.862140
\(405\) 0 0
\(406\) 38112.0 4.65878
\(407\) 344.918i 0.0420073i
\(408\) − 1169.44i − 0.141901i
\(409\) −16112.2 −1.94791 −0.973957 0.226731i \(-0.927196\pi\)
−0.973957 + 0.226731i \(0.927196\pi\)
\(410\) 0 0
\(411\) −584.651 −0.0701672
\(412\) − 6747.91i − 0.806907i
\(413\) 12339.4i 1.47018i
\(414\) −4937.67 −0.586168
\(415\) 0 0
\(416\) −11784.2 −1.38886
\(417\) 4896.27i 0.574992i
\(418\) 5936.75i 0.694679i
\(419\) −1997.98 −0.232954 −0.116477 0.993193i \(-0.537160\pi\)
−0.116477 + 0.993193i \(0.537160\pi\)
\(420\) 0 0
\(421\) −4849.75 −0.561431 −0.280715 0.959791i \(-0.590572\pi\)
−0.280715 + 0.959791i \(0.590572\pi\)
\(422\) 7619.29i 0.878913i
\(423\) 11141.9i 1.28070i
\(424\) −100.401 −0.0114998
\(425\) 0 0
\(426\) 7590.16 0.863250
\(427\) − 1727.74i − 0.195810i
\(428\) − 7595.49i − 0.857809i
\(429\) 18641.9 2.09799
\(430\) 0 0
\(431\) 13262.3 1.48219 0.741094 0.671402i \(-0.234307\pi\)
0.741094 + 0.671402i \(0.234307\pi\)
\(432\) 14043.5i 1.56405i
\(433\) − 13656.0i − 1.51562i −0.652473 0.757812i \(-0.726269\pi\)
0.652473 0.757812i \(-0.273731\pi\)
\(434\) 21454.4 2.37291
\(435\) 0 0
\(436\) 2769.65 0.304225
\(437\) − 736.517i − 0.0806234i
\(438\) − 29423.7i − 3.20986i
\(439\) 1132.68 0.123143 0.0615717 0.998103i \(-0.480389\pi\)
0.0615717 + 0.998103i \(0.480389\pi\)
\(440\) 0 0
\(441\) 38700.5 4.17887
\(442\) − 14136.9i − 1.52132i
\(443\) − 6583.81i − 0.706109i −0.935603 0.353054i \(-0.885143\pi\)
0.935603 0.353054i \(-0.114857\pi\)
\(444\) 567.805 0.0606910
\(445\) 0 0
\(446\) −12890.8 −1.36860
\(447\) − 29663.7i − 3.13881i
\(448\) 18494.0i 1.95035i
\(449\) 12407.9 1.30416 0.652078 0.758152i \(-0.273897\pi\)
0.652078 + 0.758152i \(0.273897\pi\)
\(450\) 0 0
\(451\) 9893.15 1.03293
\(452\) − 18603.2i − 1.93588i
\(453\) − 14716.0i − 1.52631i
\(454\) −19521.1 −2.01800
\(455\) 0 0
\(456\) 489.105 0.0502290
\(457\) 17336.1i 1.77450i 0.461286 + 0.887251i \(0.347388\pi\)
−0.461286 + 0.887251i \(0.652612\pi\)
\(458\) 5837.86i 0.595601i
\(459\) −17787.1 −1.80878
\(460\) 0 0
\(461\) 9940.64 1.00430 0.502150 0.864781i \(-0.332543\pi\)
0.502150 + 0.864781i \(0.332543\pi\)
\(462\) − 54322.5i − 5.47037i
\(463\) − 6459.56i − 0.648383i −0.945991 0.324191i \(-0.894908\pi\)
0.945991 0.324191i \(-0.105092\pi\)
\(464\) 17352.1 1.73610
\(465\) 0 0
\(466\) 9375.82 0.932031
\(467\) 8151.66i 0.807739i 0.914817 + 0.403869i \(0.132335\pi\)
−0.914817 + 0.403869i \(0.867665\pi\)
\(468\) − 20328.1i − 2.00783i
\(469\) 549.389 0.0540905
\(470\) 0 0
\(471\) 18679.7 1.82742
\(472\) − 643.212i − 0.0627251i
\(473\) 21489.9i 2.08902i
\(474\) 2284.60 0.221382
\(475\) 0 0
\(476\) −21126.2 −2.03428
\(477\) 3114.32i 0.298941i
\(478\) 11338.8i 1.08499i
\(479\) 214.878 0.0204969 0.0102485 0.999947i \(-0.496738\pi\)
0.0102485 + 0.999947i \(0.496738\pi\)
\(480\) 0 0
\(481\) 343.517 0.0325635
\(482\) − 7331.92i − 0.692863i
\(483\) 6739.30i 0.634883i
\(484\) −6417.38 −0.602684
\(485\) 0 0
\(486\) 1963.74 0.183286
\(487\) 6216.61i 0.578442i 0.957262 + 0.289221i \(0.0933963\pi\)
−0.957262 + 0.289221i \(0.906604\pi\)
\(488\) 90.0611i 0.00835425i
\(489\) 28260.6 2.61347
\(490\) 0 0
\(491\) −17480.8 −1.60671 −0.803356 0.595499i \(-0.796954\pi\)
−0.803356 + 0.595499i \(0.796954\pi\)
\(492\) − 16286.1i − 1.49235i
\(493\) 21977.7i 2.00776i
\(494\) 5912.63 0.538506
\(495\) 0 0
\(496\) 9768.04 0.884270
\(497\) − 6862.24i − 0.619343i
\(498\) − 38496.7i − 3.46401i
\(499\) 17884.0 1.60440 0.802200 0.597055i \(-0.203663\pi\)
0.802200 + 0.597055i \(0.203663\pi\)
\(500\) 0 0
\(501\) 16869.1 1.50431
\(502\) 23563.5i 2.09501i
\(503\) − 3215.45i − 0.285029i −0.989793 0.142515i \(-0.954481\pi\)
0.989793 0.142515i \(-0.0455188\pi\)
\(504\) −2964.53 −0.262005
\(505\) 0 0
\(506\) 4264.04 0.374624
\(507\) 1081.60i 0.0947446i
\(508\) − 907.736i − 0.0792801i
\(509\) −6737.65 −0.586721 −0.293360 0.956002i \(-0.594774\pi\)
−0.293360 + 0.956002i \(0.594774\pi\)
\(510\) 0 0
\(511\) −26601.9 −2.30293
\(512\) 16460.3i 1.42080i
\(513\) − 7439.26i − 0.640256i
\(514\) −7644.24 −0.655979
\(515\) 0 0
\(516\) 35376.8 3.01817
\(517\) − 9621.84i − 0.818507i
\(518\) − 1001.01i − 0.0849070i
\(519\) −3806.39 −0.321930
\(520\) 0 0
\(521\) 13464.5 1.13223 0.566114 0.824327i \(-0.308446\pi\)
0.566114 + 0.824327i \(0.308446\pi\)
\(522\) 61623.5i 5.16702i
\(523\) 21370.5i 1.78674i 0.449317 + 0.893372i \(0.351667\pi\)
−0.449317 + 0.893372i \(0.648333\pi\)
\(524\) 8296.46 0.691665
\(525\) 0 0
\(526\) −24386.6 −2.02150
\(527\) 12371.9i 1.02263i
\(528\) − 24732.7i − 2.03855i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −19951.7 −1.63056
\(532\) − 8835.81i − 0.720077i
\(533\) − 9852.96i − 0.800711i
\(534\) 15803.2 1.28066
\(535\) 0 0
\(536\) −28.6378 −0.00230777
\(537\) − 41860.6i − 3.36391i
\(538\) 12923.5i 1.03564i
\(539\) −33420.7 −2.67075
\(540\) 0 0
\(541\) −14485.2 −1.15114 −0.575572 0.817751i \(-0.695221\pi\)
−0.575572 + 0.817751i \(0.695221\pi\)
\(542\) 4730.81i 0.374918i
\(543\) − 3400.70i − 0.268763i
\(544\) −19802.0 −1.56067
\(545\) 0 0
\(546\) −54101.9 −4.24056
\(547\) − 18926.7i − 1.47943i −0.672922 0.739714i \(-0.734961\pi\)
0.672922 0.739714i \(-0.265039\pi\)
\(548\) − 550.555i − 0.0429171i
\(549\) 2793.59 0.217172
\(550\) 0 0
\(551\) −9191.93 −0.710689
\(552\) − 351.297i − 0.0270873i
\(553\) − 2065.50i − 0.158832i
\(554\) 16875.4 1.29416
\(555\) 0 0
\(556\) −4610.73 −0.351688
\(557\) 2146.15i 0.163259i 0.996663 + 0.0816294i \(0.0260124\pi\)
−0.996663 + 0.0816294i \(0.973988\pi\)
\(558\) 34689.7i 2.63178i
\(559\) 21402.6 1.61938
\(560\) 0 0
\(561\) 31325.6 2.35752
\(562\) 20093.9i 1.50820i
\(563\) 14066.3i 1.05297i 0.850183 + 0.526487i \(0.176491\pi\)
−0.850183 + 0.526487i \(0.823509\pi\)
\(564\) −15839.5 −1.18256
\(565\) 0 0
\(566\) 8799.81 0.653505
\(567\) 21205.1i 1.57060i
\(568\) 357.706i 0.0264243i
\(569\) 1253.22 0.0923337 0.0461668 0.998934i \(-0.485299\pi\)
0.0461668 + 0.998934i \(0.485299\pi\)
\(570\) 0 0
\(571\) 12499.6 0.916097 0.458048 0.888927i \(-0.348549\pi\)
0.458048 + 0.888927i \(0.348549\pi\)
\(572\) 17554.7i 1.28322i
\(573\) 13110.7i 0.955858i
\(574\) −28711.6 −2.08780
\(575\) 0 0
\(576\) −29903.0 −2.16312
\(577\) − 7260.56i − 0.523849i −0.965088 0.261925i \(-0.915643\pi\)
0.965088 0.261925i \(-0.0843572\pi\)
\(578\) − 3846.41i − 0.276799i
\(579\) −19044.9 −1.36697
\(580\) 0 0
\(581\) −34804.7 −2.48527
\(582\) − 23767.7i − 1.69279i
\(583\) − 2689.44i − 0.191055i
\(584\) 1386.67 0.0982545
\(585\) 0 0
\(586\) 20950.6 1.47690
\(587\) 14411.6i 1.01334i 0.862139 + 0.506671i \(0.169124\pi\)
−0.862139 + 0.506671i \(0.830876\pi\)
\(588\) 55017.2i 3.85863i
\(589\) −5174.42 −0.361983
\(590\) 0 0
\(591\) 10257.2 0.713916
\(592\) − 455.753i − 0.0316408i
\(593\) − 21665.4i − 1.50032i −0.661256 0.750160i \(-0.729976\pi\)
0.661256 0.750160i \(-0.270024\pi\)
\(594\) 43069.3 2.97501
\(595\) 0 0
\(596\) 27933.8 1.91982
\(597\) 34501.0i 2.36521i
\(598\) − 4246.72i − 0.290403i
\(599\) 23174.4 1.58077 0.790384 0.612612i \(-0.209881\pi\)
0.790384 + 0.612612i \(0.209881\pi\)
\(600\) 0 0
\(601\) −22969.1 −1.55895 −0.779475 0.626433i \(-0.784514\pi\)
−0.779475 + 0.626433i \(0.784514\pi\)
\(602\) − 62367.4i − 4.22243i
\(603\) 888.311i 0.0599914i
\(604\) 13857.8 0.933551
\(605\) 0 0
\(606\) −30126.7 −2.01949
\(607\) − 4606.78i − 0.308045i −0.988067 0.154023i \(-0.950777\pi\)
0.988067 0.154023i \(-0.0492229\pi\)
\(608\) − 8281.98i − 0.552432i
\(609\) 84108.2 5.59645
\(610\) 0 0
\(611\) −9582.75 −0.634495
\(612\) − 34159.1i − 2.25621i
\(613\) − 7780.72i − 0.512660i −0.966589 0.256330i \(-0.917487\pi\)
0.966589 0.256330i \(-0.0825133\pi\)
\(614\) −37238.5 −2.44759
\(615\) 0 0
\(616\) 2560.09 0.167449
\(617\) 2438.43i 0.159105i 0.996831 + 0.0795523i \(0.0253491\pi\)
−0.996831 + 0.0795523i \(0.974651\pi\)
\(618\) − 29038.3i − 1.89011i
\(619\) −6821.13 −0.442915 −0.221458 0.975170i \(-0.571081\pi\)
−0.221458 + 0.975170i \(0.571081\pi\)
\(620\) 0 0
\(621\) −5343.21 −0.345275
\(622\) 9176.88i 0.591574i
\(623\) − 14287.6i − 0.918813i
\(624\) −24632.2 −1.58025
\(625\) 0 0
\(626\) 9998.83 0.638393
\(627\) 13101.6i 0.834496i
\(628\) 17590.3i 1.11772i
\(629\) 577.242 0.0365917
\(630\) 0 0
\(631\) −15698.7 −0.990420 −0.495210 0.868773i \(-0.664909\pi\)
−0.495210 + 0.868773i \(0.664909\pi\)
\(632\) 107.668i 0.00677657i
\(633\) 16814.8i 1.05581i
\(634\) −29088.0 −1.82213
\(635\) 0 0
\(636\) −4427.36 −0.276032
\(637\) 33284.9i 2.07033i
\(638\) − 53216.3i − 3.30228i
\(639\) 11095.6 0.686909
\(640\) 0 0
\(641\) 15360.1 0.946472 0.473236 0.880936i \(-0.343086\pi\)
0.473236 + 0.880936i \(0.343086\pi\)
\(642\) − 32685.7i − 2.00935i
\(643\) 14107.3i 0.865221i 0.901581 + 0.432610i \(0.142407\pi\)
−0.901581 + 0.432610i \(0.857593\pi\)
\(644\) −6346.28 −0.388320
\(645\) 0 0
\(646\) 9935.52 0.605121
\(647\) 8107.22i 0.492624i 0.969191 + 0.246312i \(0.0792188\pi\)
−0.969191 + 0.246312i \(0.920781\pi\)
\(648\) − 1105.35i − 0.0670097i
\(649\) 17229.7 1.04210
\(650\) 0 0
\(651\) 47347.0 2.85050
\(652\) 26612.5i 1.59850i
\(653\) 25123.5i 1.50560i 0.658247 + 0.752802i \(0.271298\pi\)
−0.658247 + 0.752802i \(0.728702\pi\)
\(654\) 11918.6 0.712623
\(655\) 0 0
\(656\) −13072.2 −0.778023
\(657\) − 43012.7i − 2.55416i
\(658\) 27924.2i 1.65440i
\(659\) 809.773 0.0478669 0.0239334 0.999714i \(-0.492381\pi\)
0.0239334 + 0.999714i \(0.492381\pi\)
\(660\) 0 0
\(661\) 4086.36 0.240455 0.120228 0.992746i \(-0.461638\pi\)
0.120228 + 0.992746i \(0.461638\pi\)
\(662\) − 41756.2i − 2.45151i
\(663\) − 31198.4i − 1.82752i
\(664\) 1814.25 0.106034
\(665\) 0 0
\(666\) 1618.54 0.0941699
\(667\) 6602.06i 0.383258i
\(668\) 15885.4i 0.920095i
\(669\) −28448.2 −1.64405
\(670\) 0 0
\(671\) −2412.47 −0.138796
\(672\) 75781.9i 4.35022i
\(673\) 8985.56i 0.514662i 0.966323 + 0.257331i \(0.0828431\pi\)
−0.966323 + 0.257331i \(0.917157\pi\)
\(674\) 6411.56 0.366416
\(675\) 0 0
\(676\) −1018.52 −0.0579497
\(677\) 10328.0i 0.586316i 0.956064 + 0.293158i \(0.0947061\pi\)
−0.956064 + 0.293158i \(0.905294\pi\)
\(678\) − 80055.0i − 4.53465i
\(679\) −21488.3 −1.21450
\(680\) 0 0
\(681\) −43080.6 −2.42416
\(682\) − 29957.1i − 1.68199i
\(683\) − 4516.74i − 0.253043i −0.991964 0.126521i \(-0.959619\pi\)
0.991964 0.126521i \(-0.0403812\pi\)
\(684\) 14286.7 0.798633
\(685\) 0 0
\(686\) 51451.3 2.86359
\(687\) 12883.4i 0.715476i
\(688\) − 28395.5i − 1.57350i
\(689\) −2678.51 −0.148103
\(690\) 0 0
\(691\) 7957.06 0.438062 0.219031 0.975718i \(-0.429710\pi\)
0.219031 + 0.975718i \(0.429710\pi\)
\(692\) − 3584.41i − 0.196906i
\(693\) − 79410.9i − 4.35291i
\(694\) −10402.0 −0.568957
\(695\) 0 0
\(696\) −4384.28 −0.238773
\(697\) − 16556.8i − 0.899762i
\(698\) 872.167i 0.0472951i
\(699\) 20691.2 1.11962
\(700\) 0 0
\(701\) 7970.58 0.429450 0.214725 0.976675i \(-0.431114\pi\)
0.214725 + 0.976675i \(0.431114\pi\)
\(702\) − 42894.4i − 2.30619i
\(703\) 241.426i 0.0129524i
\(704\) 25823.4 1.38247
\(705\) 0 0
\(706\) −20712.8 −1.10416
\(707\) 27237.4i 1.44889i
\(708\) − 28363.6i − 1.50561i
\(709\) −2079.18 −0.110134 −0.0550672 0.998483i \(-0.517537\pi\)
−0.0550672 + 0.998483i \(0.517537\pi\)
\(710\) 0 0
\(711\) 3339.72 0.176159
\(712\) 744.765i 0.0392012i
\(713\) 3716.50i 0.195209i
\(714\) −90912.2 −4.76513
\(715\) 0 0
\(716\) 39419.4 2.05750
\(717\) 25023.3i 1.30336i
\(718\) 17494.5i 0.909318i
\(719\) −29046.5 −1.50661 −0.753305 0.657671i \(-0.771542\pi\)
−0.753305 + 0.657671i \(0.771542\pi\)
\(720\) 0 0
\(721\) −26253.4 −1.35607
\(722\) − 23639.6i − 1.21852i
\(723\) − 16180.6i − 0.832315i
\(724\) 3202.38 0.164386
\(725\) 0 0
\(726\) −27615.9 −1.41174
\(727\) 14037.7i 0.716133i 0.933696 + 0.358067i \(0.116564\pi\)
−0.933696 + 0.358067i \(0.883436\pi\)
\(728\) − 2549.69i − 0.129805i
\(729\) 21808.0 1.10796
\(730\) 0 0
\(731\) 35964.8 1.81971
\(732\) 3971.40i 0.200529i
\(733\) − 10862.5i − 0.547358i −0.961821 0.273679i \(-0.911759\pi\)
0.961821 0.273679i \(-0.0882407\pi\)
\(734\) 30912.2 1.55448
\(735\) 0 0
\(736\) −5948.49 −0.297913
\(737\) − 767.121i − 0.0383409i
\(738\) − 46423.9i − 2.31557i
\(739\) 8660.65 0.431106 0.215553 0.976492i \(-0.430845\pi\)
0.215553 + 0.976492i \(0.430845\pi\)
\(740\) 0 0
\(741\) 13048.4 0.646890
\(742\) 7805.20i 0.386170i
\(743\) 33484.3i 1.65332i 0.562700 + 0.826661i \(0.309762\pi\)
−0.562700 + 0.826661i \(0.690238\pi\)
\(744\) −2468.04 −0.121617
\(745\) 0 0
\(746\) 34394.7 1.68804
\(747\) − 56275.9i − 2.75640i
\(748\) 29498.8i 1.44196i
\(749\) −29551.0 −1.44162
\(750\) 0 0
\(751\) 29209.3 1.41926 0.709628 0.704577i \(-0.248863\pi\)
0.709628 + 0.704577i \(0.248863\pi\)
\(752\) 12713.7i 0.616517i
\(753\) 52001.7i 2.51666i
\(754\) −53000.1 −2.55988
\(755\) 0 0
\(756\) −64101.2 −3.08378
\(757\) 3283.09i 0.157630i 0.996889 + 0.0788151i \(0.0251137\pi\)
−0.996889 + 0.0788151i \(0.974886\pi\)
\(758\) 4974.18i 0.238351i
\(759\) 9410.19 0.450024
\(760\) 0 0
\(761\) 22957.1 1.09355 0.546776 0.837279i \(-0.315855\pi\)
0.546776 + 0.837279i \(0.315855\pi\)
\(762\) − 3906.26i − 0.185707i
\(763\) − 10775.6i − 0.511275i
\(764\) −12346.1 −0.584642
\(765\) 0 0
\(766\) −16640.1 −0.784898
\(767\) − 17159.7i − 0.807825i
\(768\) 32471.6i 1.52567i
\(769\) 2510.87 0.117743 0.0588714 0.998266i \(-0.481250\pi\)
0.0588714 + 0.998266i \(0.481250\pi\)
\(770\) 0 0
\(771\) −16869.9 −0.788007
\(772\) − 17934.2i − 0.836096i
\(773\) 11566.1i 0.538167i 0.963117 + 0.269084i \(0.0867208\pi\)
−0.963117 + 0.269084i \(0.913279\pi\)
\(774\) 100842. 4.68307
\(775\) 0 0
\(776\) 1120.11 0.0518166
\(777\) − 2209.10i − 0.101996i
\(778\) 45412.8i 2.09271i
\(779\) 6924.72 0.318490
\(780\) 0 0
\(781\) −9581.85 −0.439008
\(782\) − 7136.14i − 0.326327i
\(783\) 66684.7i 3.04357i
\(784\) 44160.0 2.01166
\(785\) 0 0
\(786\) 35702.1 1.62017
\(787\) − 751.934i − 0.0340579i −0.999855 0.0170289i \(-0.994579\pi\)
0.999855 0.0170289i \(-0.00542074\pi\)
\(788\) 9659.01i 0.436660i
\(789\) −53818.1 −2.42836
\(790\) 0 0
\(791\) −72377.4 −3.25341
\(792\) 4139.42i 0.185717i
\(793\) 2402.66i 0.107593i
\(794\) −30918.6 −1.38194
\(795\) 0 0
\(796\) −32489.0 −1.44666
\(797\) − 15898.3i − 0.706585i −0.935513 0.353292i \(-0.885062\pi\)
0.935513 0.353292i \(-0.114938\pi\)
\(798\) − 38023.1i − 1.68672i
\(799\) −16102.8 −0.712985
\(800\) 0 0
\(801\) 23101.7 1.01905
\(802\) 4949.78i 0.217934i
\(803\) 37144.6i 1.63238i
\(804\) −1262.84 −0.0553940
\(805\) 0 0
\(806\) −29835.4 −1.30385
\(807\) 28520.6i 1.24408i
\(808\) − 1419.80i − 0.0618171i
\(809\) 30018.9 1.30458 0.652292 0.757967i \(-0.273807\pi\)
0.652292 + 0.757967i \(0.273807\pi\)
\(810\) 0 0
\(811\) 5012.47 0.217030 0.108515 0.994095i \(-0.465390\pi\)
0.108515 + 0.994095i \(0.465390\pi\)
\(812\) 79203.2i 3.42301i
\(813\) 10440.3i 0.450377i
\(814\) −1397.73 −0.0601846
\(815\) 0 0
\(816\) −41391.8 −1.77574
\(817\) 15041.9i 0.644125i
\(818\) − 65292.1i − 2.79081i
\(819\) −79088.3 −3.37432
\(820\) 0 0
\(821\) −2707.44 −0.115092 −0.0575459 0.998343i \(-0.518328\pi\)
−0.0575459 + 0.998343i \(0.518328\pi\)
\(822\) − 2369.20i − 0.100530i
\(823\) − 15781.8i − 0.668431i −0.942497 0.334215i \(-0.891529\pi\)
0.942497 0.334215i \(-0.108471\pi\)
\(824\) 1368.50 0.0578568
\(825\) 0 0
\(826\) −50003.5 −2.10635
\(827\) − 21176.8i − 0.890435i −0.895422 0.445218i \(-0.853126\pi\)
0.895422 0.445218i \(-0.146874\pi\)
\(828\) − 10261.3i − 0.430684i
\(829\) −20905.6 −0.875852 −0.437926 0.899011i \(-0.644287\pi\)
−0.437926 + 0.899011i \(0.644287\pi\)
\(830\) 0 0
\(831\) 37241.8 1.55464
\(832\) − 25718.5i − 1.07167i
\(833\) 55931.7i 2.32643i
\(834\) −19841.4 −0.823801
\(835\) 0 0
\(836\) −12337.6 −0.510412
\(837\) 37538.8i 1.55022i
\(838\) − 8096.51i − 0.333758i
\(839\) −28724.8 −1.18199 −0.590995 0.806675i \(-0.701265\pi\)
−0.590995 + 0.806675i \(0.701265\pi\)
\(840\) 0 0
\(841\) 58006.4 2.37839
\(842\) − 19652.8i − 0.804372i
\(843\) 44344.6i 1.81176i
\(844\) −15834.2 −0.645777
\(845\) 0 0
\(846\) −45150.8 −1.83489
\(847\) 24967.4i 1.01286i
\(848\) 3553.66i 0.143907i
\(849\) 19420.1 0.785035
\(850\) 0 0
\(851\) 173.403 0.00698493
\(852\) 15773.7i 0.634268i
\(853\) 37511.5i 1.50571i 0.658188 + 0.752854i \(0.271323\pi\)
−0.658188 + 0.752854i \(0.728677\pi\)
\(854\) 7001.37 0.280541
\(855\) 0 0
\(856\) 1540.40 0.0615066
\(857\) 26541.3i 1.05792i 0.848648 + 0.528958i \(0.177417\pi\)
−0.848648 + 0.528958i \(0.822583\pi\)
\(858\) 75543.3i 3.00583i
\(859\) −20535.4 −0.815667 −0.407833 0.913056i \(-0.633716\pi\)
−0.407833 + 0.913056i \(0.633716\pi\)
\(860\) 0 0
\(861\) −63362.7 −2.50801
\(862\) 53743.4i 2.12356i
\(863\) − 21337.9i − 0.841660i −0.907140 0.420830i \(-0.861739\pi\)
0.907140 0.420830i \(-0.138261\pi\)
\(864\) −60083.3 −2.36583
\(865\) 0 0
\(866\) 55338.7 2.17146
\(867\) − 8488.54i − 0.332510i
\(868\) 44585.9i 1.74348i
\(869\) −2884.09 −0.112585
\(870\) 0 0
\(871\) −764.004 −0.0297214
\(872\) 561.696i 0.0218136i
\(873\) − 34744.5i − 1.34699i
\(874\) 2984.62 0.115511
\(875\) 0 0
\(876\) 61147.5 2.35843
\(877\) − 42216.5i − 1.62548i −0.582624 0.812742i \(-0.697974\pi\)
0.582624 0.812742i \(-0.302026\pi\)
\(878\) 4590.01i 0.176430i
\(879\) 46235.3 1.77415
\(880\) 0 0
\(881\) −33457.6 −1.27947 −0.639737 0.768594i \(-0.720957\pi\)
−0.639737 + 0.768594i \(0.720957\pi\)
\(882\) 156828.i 5.98715i
\(883\) − 22192.2i − 0.845785i −0.906180 0.422893i \(-0.861015\pi\)
0.906180 0.422893i \(-0.138985\pi\)
\(884\) 29379.0 1.11779
\(885\) 0 0
\(886\) 26679.8 1.01165
\(887\) 17904.9i 0.677777i 0.940826 + 0.338889i \(0.110051\pi\)
−0.940826 + 0.338889i \(0.889949\pi\)
\(888\) 115.153i 0.00435167i
\(889\) −3531.64 −0.133237
\(890\) 0 0
\(891\) 29609.0 1.11329
\(892\) − 26789.2i − 1.00557i
\(893\) − 6734.82i − 0.252376i
\(894\) 120208. 4.49703
\(895\) 0 0
\(896\) −7152.77 −0.266693
\(897\) − 9371.96i − 0.348852i
\(898\) 50281.1i 1.86849i
\(899\) 46382.9 1.72075
\(900\) 0 0
\(901\) −4500.95 −0.166424
\(902\) 40090.4i 1.47989i
\(903\) − 137637.i − 5.07228i
\(904\) 3772.79 0.138807
\(905\) 0 0
\(906\) 59634.1 2.18677
\(907\) 9482.20i 0.347135i 0.984822 + 0.173567i \(0.0555295\pi\)
−0.984822 + 0.173567i \(0.944471\pi\)
\(908\) − 40568.2i − 1.48271i
\(909\) −44040.4 −1.60696
\(910\) 0 0
\(911\) 24018.2 0.873499 0.436750 0.899583i \(-0.356130\pi\)
0.436750 + 0.899583i \(0.356130\pi\)
\(912\) − 17311.7i − 0.628561i
\(913\) 48598.3i 1.76163i
\(914\) −70251.7 −2.54236
\(915\) 0 0
\(916\) −12132.1 −0.437615
\(917\) − 32278.2i − 1.16240i
\(918\) − 72079.3i − 2.59147i
\(919\) 39263.9 1.40935 0.704677 0.709528i \(-0.251092\pi\)
0.704677 + 0.709528i \(0.251092\pi\)
\(920\) 0 0
\(921\) −82180.5 −2.94022
\(922\) 40282.9i 1.43888i
\(923\) 9542.92i 0.340313i
\(924\) 112892. 4.01933
\(925\) 0 0
\(926\) 26176.3 0.928950
\(927\) − 42449.3i − 1.50401i
\(928\) 74238.7i 2.62608i
\(929\) −30536.7 −1.07845 −0.539223 0.842163i \(-0.681282\pi\)
−0.539223 + 0.842163i \(0.681282\pi\)
\(930\) 0 0
\(931\) −23392.9 −0.823491
\(932\) 19484.6i 0.684805i
\(933\) 20252.2i 0.710640i
\(934\) −33033.3 −1.15726
\(935\) 0 0
\(936\) 4122.61 0.143965
\(937\) − 37724.9i − 1.31528i −0.753332 0.657640i \(-0.771555\pi\)
0.753332 0.657640i \(-0.228445\pi\)
\(938\) 2226.31i 0.0774964i
\(939\) 22066.1 0.766881
\(940\) 0 0
\(941\) 33414.9 1.15759 0.578797 0.815472i \(-0.303522\pi\)
0.578797 + 0.815472i \(0.303522\pi\)
\(942\) 75696.4i 2.61817i
\(943\) − 4973.65i − 0.171754i
\(944\) −22766.3 −0.784935
\(945\) 0 0
\(946\) −87084.5 −2.99298
\(947\) − 11604.7i − 0.398205i −0.979979 0.199103i \(-0.936197\pi\)
0.979979 0.199103i \(-0.0638027\pi\)
\(948\) 4747.80i 0.162660i
\(949\) 36993.7 1.26540
\(950\) 0 0
\(951\) −64193.5 −2.18887
\(952\) − 4284.47i − 0.145862i
\(953\) − 33381.8i − 1.13467i −0.823487 0.567336i \(-0.807974\pi\)
0.823487 0.567336i \(-0.192026\pi\)
\(954\) −12620.3 −0.428298
\(955\) 0 0
\(956\) −23564.0 −0.797190
\(957\) − 117442.i − 3.96693i
\(958\) 870.758i 0.0293663i
\(959\) −2141.99 −0.0721256
\(960\) 0 0
\(961\) −3680.68 −0.123550
\(962\) 1392.05i 0.0466543i
\(963\) − 47781.2i − 1.59889i
\(964\) 15237.0 0.509078
\(965\) 0 0
\(966\) −27309.9 −0.909609
\(967\) 44013.3i 1.46367i 0.681479 + 0.731837i \(0.261337\pi\)
−0.681479 + 0.731837i \(0.738663\pi\)
\(968\) − 1301.47i − 0.0432136i
\(969\) 21926.4 0.726913
\(970\) 0 0
\(971\) 54941.3 1.81581 0.907905 0.419176i \(-0.137681\pi\)
0.907905 + 0.419176i \(0.137681\pi\)
\(972\) 4080.98i 0.134668i
\(973\) 17938.5i 0.591040i
\(974\) −25191.8 −0.828745
\(975\) 0 0
\(976\) 3187.68 0.104544
\(977\) 52377.7i 1.71516i 0.514351 + 0.857580i \(0.328033\pi\)
−0.514351 + 0.857580i \(0.671967\pi\)
\(978\) 114521.i 3.74437i
\(979\) −19950.0 −0.651282
\(980\) 0 0
\(981\) 17423.1 0.567052
\(982\) − 70838.0i − 2.30197i
\(983\) 18746.9i 0.608275i 0.952628 + 0.304137i \(0.0983682\pi\)
−0.952628 + 0.304137i \(0.901632\pi\)
\(984\) 3302.89 0.107004
\(985\) 0 0
\(986\) −89060.9 −2.87655
\(987\) 61625.1i 1.98738i
\(988\) 12287.5i 0.395664i
\(989\) 10803.8 0.347361
\(990\) 0 0
\(991\) 51116.6 1.63852 0.819260 0.573423i \(-0.194385\pi\)
0.819260 + 0.573423i \(0.194385\pi\)
\(992\) 41791.2i 1.33757i
\(993\) − 92150.5i − 2.94492i
\(994\) 27808.1 0.887344
\(995\) 0 0
\(996\) 80002.7 2.54516
\(997\) − 36176.5i − 1.14917i −0.818445 0.574584i \(-0.805164\pi\)
0.818445 0.574584i \(-0.194836\pi\)
\(998\) 72471.9i 2.29865i
\(999\) 1751.47 0.0554696
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.b.k.24.13 16
5.2 odd 4 575.4.a.n.1.3 8
5.3 odd 4 115.4.a.f.1.6 8
5.4 even 2 inner 575.4.b.k.24.4 16
15.8 even 4 1035.4.a.r.1.3 8
20.3 even 4 1840.4.a.v.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.4.a.f.1.6 8 5.3 odd 4
575.4.a.n.1.3 8 5.2 odd 4
575.4.b.k.24.4 16 5.4 even 2 inner
575.4.b.k.24.13 16 1.1 even 1 trivial
1035.4.a.r.1.3 8 15.8 even 4
1840.4.a.v.1.7 8 20.3 even 4