Properties

Label 115.4.a.f.1.6
Level $115$
Weight $4$
Character 115.1
Self dual yes
Analytic conductor $6.785$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(1,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 49x^{6} + 31x^{5} + 750x^{4} + 249x^{3} - 2892x^{2} - 620x + 2400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-3.05234\) of defining polynomial
Character \(\chi\) \(=\) 115.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.05234 q^{2} -8.94300 q^{3} +8.42146 q^{4} +5.00000 q^{5} -36.2401 q^{6} +32.7645 q^{7} +1.70790 q^{8} +52.9772 q^{9} +20.2617 q^{10} +45.7496 q^{11} -75.3131 q^{12} +45.5638 q^{13} +132.773 q^{14} -44.7150 q^{15} -60.4507 q^{16} -76.5649 q^{17} +214.681 q^{18} -32.0225 q^{19} +42.1073 q^{20} -293.013 q^{21} +185.393 q^{22} +23.0000 q^{23} -15.2738 q^{24} +25.0000 q^{25} +184.640 q^{26} -232.314 q^{27} +275.925 q^{28} +287.046 q^{29} -181.200 q^{30} -161.587 q^{31} -258.630 q^{32} -409.139 q^{33} -310.267 q^{34} +163.823 q^{35} +446.145 q^{36} +7.53926 q^{37} -129.766 q^{38} -407.476 q^{39} +8.53952 q^{40} +216.246 q^{41} -1187.39 q^{42} -469.729 q^{43} +385.279 q^{44} +264.886 q^{45} +93.2038 q^{46} -210.315 q^{47} +540.610 q^{48} +730.514 q^{49} +101.309 q^{50} +684.719 q^{51} +383.713 q^{52} +58.7860 q^{53} -941.414 q^{54} +228.748 q^{55} +55.9587 q^{56} +286.377 q^{57} +1163.21 q^{58} -376.609 q^{59} -376.565 q^{60} -52.7319 q^{61} -654.805 q^{62} +1735.77 q^{63} -564.451 q^{64} +227.819 q^{65} -1657.97 q^{66} -16.7678 q^{67} -644.788 q^{68} -205.689 q^{69} +663.865 q^{70} -209.441 q^{71} +90.4800 q^{72} -811.910 q^{73} +30.5516 q^{74} -223.575 q^{75} -269.676 q^{76} +1498.96 q^{77} -1651.23 q^{78} +63.0408 q^{79} -302.253 q^{80} +647.197 q^{81} +876.300 q^{82} -1062.27 q^{83} -2467.60 q^{84} -382.824 q^{85} -1903.50 q^{86} -2567.05 q^{87} +78.1360 q^{88} +436.069 q^{89} +1073.41 q^{90} +1492.87 q^{91} +193.694 q^{92} +1445.07 q^{93} -852.269 q^{94} -160.112 q^{95} +2312.93 q^{96} +655.840 q^{97} +2960.29 q^{98} +2423.68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 42 q^{4} + 40 q^{5} + 11 q^{7} + 3 q^{8} + 158 q^{9} + 30 q^{10} + 41 q^{11} + 48 q^{12} + 28 q^{13} + 161 q^{14} + 98 q^{16} + 71 q^{17} + 84 q^{18} + 177 q^{19} + 210 q^{20} + 292 q^{21}+ \cdots + 1319 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.05234 1.43272 0.716359 0.697732i \(-0.245807\pi\)
0.716359 + 0.697732i \(0.245807\pi\)
\(3\) −8.94300 −1.72108 −0.860540 0.509383i \(-0.829874\pi\)
−0.860540 + 0.509383i \(0.829874\pi\)
\(4\) 8.42146 1.05268
\(5\) 5.00000 0.447214
\(6\) −36.2401 −2.46582
\(7\) 32.7645 1.76912 0.884559 0.466429i \(-0.154460\pi\)
0.884559 + 0.466429i \(0.154460\pi\)
\(8\) 1.70790 0.0754794
\(9\) 52.9772 1.96212
\(10\) 20.2617 0.640731
\(11\) 45.7496 1.25400 0.627001 0.779018i \(-0.284282\pi\)
0.627001 + 0.779018i \(0.284282\pi\)
\(12\) −75.3131 −1.81175
\(13\) 45.5638 0.972086 0.486043 0.873935i \(-0.338440\pi\)
0.486043 + 0.873935i \(0.338440\pi\)
\(14\) 132.773 2.53465
\(15\) −44.7150 −0.769690
\(16\) −60.4507 −0.944542
\(17\) −76.5649 −1.09234 −0.546168 0.837676i \(-0.683914\pi\)
−0.546168 + 0.837676i \(0.683914\pi\)
\(18\) 214.681 2.81116
\(19\) −32.0225 −0.386656 −0.193328 0.981134i \(-0.561928\pi\)
−0.193328 + 0.981134i \(0.561928\pi\)
\(20\) 42.1073 0.470774
\(21\) −293.013 −3.04479
\(22\) 185.393 1.79663
\(23\) 23.0000 0.208514
\(24\) −15.2738 −0.129906
\(25\) 25.0000 0.200000
\(26\) 184.640 1.39273
\(27\) −232.314 −1.65588
\(28\) 275.925 1.86232
\(29\) 287.046 1.83804 0.919019 0.394213i \(-0.128983\pi\)
0.919019 + 0.394213i \(0.128983\pi\)
\(30\) −181.200 −1.10275
\(31\) −161.587 −0.936189 −0.468095 0.883678i \(-0.655059\pi\)
−0.468095 + 0.883678i \(0.655059\pi\)
\(32\) −258.630 −1.42874
\(33\) −409.139 −2.15824
\(34\) −310.267 −1.56501
\(35\) 163.823 0.791173
\(36\) 446.145 2.06549
\(37\) 7.53926 0.0334986 0.0167493 0.999860i \(-0.494668\pi\)
0.0167493 + 0.999860i \(0.494668\pi\)
\(38\) −129.766 −0.553969
\(39\) −407.476 −1.67304
\(40\) 8.53952 0.0337554
\(41\) 216.246 0.823704 0.411852 0.911251i \(-0.364882\pi\)
0.411852 + 0.911251i \(0.364882\pi\)
\(42\) −1187.39 −4.36233
\(43\) −469.729 −1.66589 −0.832943 0.553359i \(-0.813346\pi\)
−0.832943 + 0.553359i \(0.813346\pi\)
\(44\) 385.279 1.32007
\(45\) 264.886 0.877485
\(46\) 93.2038 0.298742
\(47\) −210.315 −0.652715 −0.326358 0.945246i \(-0.605821\pi\)
−0.326358 + 0.945246i \(0.605821\pi\)
\(48\) 540.610 1.62563
\(49\) 730.514 2.12978
\(50\) 101.309 0.286544
\(51\) 684.719 1.88000
\(52\) 383.713 1.02330
\(53\) 58.7860 0.152356 0.0761781 0.997094i \(-0.475728\pi\)
0.0761781 + 0.997094i \(0.475728\pi\)
\(54\) −941.414 −2.37241
\(55\) 228.748 0.560807
\(56\) 55.9587 0.133532
\(57\) 286.377 0.665466
\(58\) 1163.21 2.63339
\(59\) −376.609 −0.831022 −0.415511 0.909588i \(-0.636397\pi\)
−0.415511 + 0.909588i \(0.636397\pi\)
\(60\) −376.565 −0.810240
\(61\) −52.7319 −0.110682 −0.0553412 0.998467i \(-0.517625\pi\)
−0.0553412 + 0.998467i \(0.517625\pi\)
\(62\) −654.805 −1.34130
\(63\) 1735.77 3.47122
\(64\) −564.451 −1.10244
\(65\) 227.819 0.434730
\(66\) −1657.97 −3.09215
\(67\) −16.7678 −0.0305748 −0.0152874 0.999883i \(-0.504866\pi\)
−0.0152874 + 0.999883i \(0.504866\pi\)
\(68\) −644.788 −1.14988
\(69\) −205.689 −0.358870
\(70\) 663.865 1.13353
\(71\) −209.441 −0.350086 −0.175043 0.984561i \(-0.556006\pi\)
−0.175043 + 0.984561i \(0.556006\pi\)
\(72\) 90.4800 0.148100
\(73\) −811.910 −1.30174 −0.650869 0.759190i \(-0.725595\pi\)
−0.650869 + 0.759190i \(0.725595\pi\)
\(74\) 30.5516 0.0479940
\(75\) −223.575 −0.344216
\(76\) −269.676 −0.407026
\(77\) 1498.96 2.21848
\(78\) −1651.23 −2.39699
\(79\) 63.0408 0.0897803 0.0448902 0.998992i \(-0.485706\pi\)
0.0448902 + 0.998992i \(0.485706\pi\)
\(80\) −302.253 −0.422412
\(81\) 647.197 0.887787
\(82\) 876.300 1.18014
\(83\) −1062.27 −1.40481 −0.702404 0.711779i \(-0.747890\pi\)
−0.702404 + 0.711779i \(0.747890\pi\)
\(84\) −2467.60 −3.20520
\(85\) −382.824 −0.488508
\(86\) −1903.50 −2.38674
\(87\) −2567.05 −3.16341
\(88\) 78.1360 0.0946514
\(89\) 436.069 0.519362 0.259681 0.965694i \(-0.416383\pi\)
0.259681 + 0.965694i \(0.416383\pi\)
\(90\) 1073.41 1.25719
\(91\) 1492.87 1.71973
\(92\) 193.694 0.219500
\(93\) 1445.07 1.61126
\(94\) −852.269 −0.935158
\(95\) −160.112 −0.172918
\(96\) 2312.93 2.45898
\(97\) 655.840 0.686499 0.343250 0.939244i \(-0.388472\pi\)
0.343250 + 0.939244i \(0.388472\pi\)
\(98\) 2960.29 3.05137
\(99\) 2423.68 2.46050
\(100\) 210.537 0.210537
\(101\) 831.308 0.818993 0.409496 0.912312i \(-0.365704\pi\)
0.409496 + 0.912312i \(0.365704\pi\)
\(102\) 2774.72 2.69351
\(103\) −801.275 −0.766524 −0.383262 0.923640i \(-0.625199\pi\)
−0.383262 + 0.923640i \(0.625199\pi\)
\(104\) 77.8186 0.0733725
\(105\) −1465.06 −1.36167
\(106\) 238.221 0.218284
\(107\) 901.921 0.814879 0.407439 0.913232i \(-0.366422\pi\)
0.407439 + 0.913232i \(0.366422\pi\)
\(108\) −1956.42 −1.74312
\(109\) 328.880 0.289000 0.144500 0.989505i \(-0.453843\pi\)
0.144500 + 0.989505i \(0.453843\pi\)
\(110\) 926.965 0.803478
\(111\) −67.4236 −0.0576537
\(112\) −1980.64 −1.67101
\(113\) −2209.02 −1.83900 −0.919500 0.393090i \(-0.871406\pi\)
−0.919500 + 0.393090i \(0.871406\pi\)
\(114\) 1160.50 0.953426
\(115\) 115.000 0.0932505
\(116\) 2417.35 1.93487
\(117\) 2413.84 1.90735
\(118\) −1526.15 −1.19062
\(119\) −2508.61 −1.93247
\(120\) −76.3689 −0.0580958
\(121\) 762.027 0.572522
\(122\) −213.688 −0.158577
\(123\) −1933.88 −1.41766
\(124\) −1360.80 −0.985510
\(125\) 125.000 0.0894427
\(126\) 7033.94 4.97328
\(127\) 107.788 0.0753124 0.0376562 0.999291i \(-0.488011\pi\)
0.0376562 + 0.999291i \(0.488011\pi\)
\(128\) −218.308 −0.150749
\(129\) 4200.79 2.86712
\(130\) 923.199 0.622846
\(131\) −985.156 −0.657050 −0.328525 0.944495i \(-0.606551\pi\)
−0.328525 + 0.944495i \(0.606551\pi\)
\(132\) −3445.54 −2.27194
\(133\) −1049.20 −0.684040
\(134\) −67.9489 −0.0438051
\(135\) −1161.57 −0.740532
\(136\) −130.766 −0.0824489
\(137\) 65.3753 0.0407692 0.0203846 0.999792i \(-0.493511\pi\)
0.0203846 + 0.999792i \(0.493511\pi\)
\(138\) −833.521 −0.514160
\(139\) −547.498 −0.334088 −0.167044 0.985949i \(-0.553422\pi\)
−0.167044 + 0.985949i \(0.553422\pi\)
\(140\) 1379.63 0.832855
\(141\) 1880.85 1.12338
\(142\) −848.727 −0.501574
\(143\) 2084.52 1.21900
\(144\) −3202.51 −1.85330
\(145\) 1435.23 0.821996
\(146\) −3290.14 −1.86503
\(147\) −6532.98 −3.66552
\(148\) 63.4916 0.0352633
\(149\) 3316.98 1.82374 0.911871 0.410476i \(-0.134637\pi\)
0.911871 + 0.410476i \(0.134637\pi\)
\(150\) −906.001 −0.493165
\(151\) −1645.53 −0.886831 −0.443415 0.896316i \(-0.646233\pi\)
−0.443415 + 0.896316i \(0.646233\pi\)
\(152\) −54.6914 −0.0291846
\(153\) −4056.19 −2.14329
\(154\) 6074.31 3.17845
\(155\) −807.934 −0.418676
\(156\) −3431.55 −1.76118
\(157\) −2088.75 −1.06179 −0.530893 0.847439i \(-0.678143\pi\)
−0.530893 + 0.847439i \(0.678143\pi\)
\(158\) 255.463 0.128630
\(159\) −525.723 −0.262217
\(160\) −1293.15 −0.638953
\(161\) 753.584 0.368887
\(162\) 2622.66 1.27195
\(163\) 3160.08 1.51851 0.759253 0.650796i \(-0.225565\pi\)
0.759253 + 0.650796i \(0.225565\pi\)
\(164\) 1821.10 0.867099
\(165\) −2045.69 −0.965194
\(166\) −4304.67 −2.01269
\(167\) −1886.30 −0.874047 −0.437024 0.899450i \(-0.643967\pi\)
−0.437024 + 0.899450i \(0.643967\pi\)
\(168\) −500.438 −0.229819
\(169\) −120.944 −0.0550495
\(170\) −1551.33 −0.699894
\(171\) −1696.46 −0.758664
\(172\) −3955.81 −1.75365
\(173\) −425.628 −0.187051 −0.0935256 0.995617i \(-0.529814\pi\)
−0.0935256 + 0.995617i \(0.529814\pi\)
\(174\) −10402.6 −4.53228
\(175\) 819.113 0.353824
\(176\) −2765.59 −1.18446
\(177\) 3368.01 1.43026
\(178\) 1767.10 0.744100
\(179\) 4680.83 1.95453 0.977266 0.212016i \(-0.0680029\pi\)
0.977266 + 0.212016i \(0.0680029\pi\)
\(180\) 2230.73 0.923714
\(181\) −380.264 −0.156159 −0.0780796 0.996947i \(-0.524879\pi\)
−0.0780796 + 0.996947i \(0.524879\pi\)
\(182\) 6049.64 2.46389
\(183\) 471.581 0.190493
\(184\) 39.2818 0.0157386
\(185\) 37.6963 0.0149810
\(186\) 5855.92 2.30848
\(187\) −3502.81 −1.36979
\(188\) −1771.16 −0.687102
\(189\) −7611.64 −2.92945
\(190\) −648.830 −0.247743
\(191\) 1466.03 0.555383 0.277691 0.960670i \(-0.410431\pi\)
0.277691 + 0.960670i \(0.410431\pi\)
\(192\) 5047.88 1.89739
\(193\) −2129.58 −0.794253 −0.397126 0.917764i \(-0.629993\pi\)
−0.397126 + 0.917764i \(0.629993\pi\)
\(194\) 2657.69 0.983561
\(195\) −2037.38 −0.748205
\(196\) 6151.99 2.24198
\(197\) −1146.95 −0.414807 −0.207403 0.978256i \(-0.566501\pi\)
−0.207403 + 0.978256i \(0.566501\pi\)
\(198\) 9821.59 3.52520
\(199\) −3857.88 −1.37426 −0.687130 0.726535i \(-0.741130\pi\)
−0.687130 + 0.726535i \(0.741130\pi\)
\(200\) 42.6976 0.0150959
\(201\) 149.954 0.0526217
\(202\) 3368.74 1.17339
\(203\) 9404.93 3.25171
\(204\) 5766.34 1.97904
\(205\) 1081.23 0.368372
\(206\) −3247.04 −1.09821
\(207\) 1218.47 0.409130
\(208\) −2754.36 −0.918176
\(209\) −1465.02 −0.484868
\(210\) −5936.94 −1.95089
\(211\) 1880.22 0.613458 0.306729 0.951797i \(-0.400765\pi\)
0.306729 + 0.951797i \(0.400765\pi\)
\(212\) 495.064 0.160383
\(213\) 1873.03 0.602526
\(214\) 3654.89 1.16749
\(215\) −2348.65 −0.745007
\(216\) −396.770 −0.124985
\(217\) −5294.32 −1.65623
\(218\) 1332.73 0.414056
\(219\) 7260.91 2.24040
\(220\) 1926.39 0.590352
\(221\) −3488.58 −1.06184
\(222\) −273.223 −0.0826015
\(223\) −3181.06 −0.955246 −0.477623 0.878565i \(-0.658501\pi\)
−0.477623 + 0.878565i \(0.658501\pi\)
\(224\) −8473.89 −2.52761
\(225\) 1324.43 0.392423
\(226\) −8951.70 −2.63477
\(227\) 4817.24 1.40851 0.704255 0.709947i \(-0.251281\pi\)
0.704255 + 0.709947i \(0.251281\pi\)
\(228\) 2411.71 0.700525
\(229\) −1440.61 −0.415714 −0.207857 0.978159i \(-0.566649\pi\)
−0.207857 + 0.978159i \(0.566649\pi\)
\(230\) 466.019 0.133602
\(231\) −13405.2 −3.81818
\(232\) 490.247 0.138734
\(233\) 2313.68 0.650533 0.325266 0.945622i \(-0.394546\pi\)
0.325266 + 0.945622i \(0.394546\pi\)
\(234\) 9781.70 2.73269
\(235\) −1051.58 −0.291903
\(236\) −3171.60 −0.874803
\(237\) −563.774 −0.154519
\(238\) −10165.7 −2.76869
\(239\) −2798.09 −0.757293 −0.378647 0.925541i \(-0.623610\pi\)
−0.378647 + 0.925541i \(0.623610\pi\)
\(240\) 2703.05 0.727005
\(241\) −1809.31 −0.483600 −0.241800 0.970326i \(-0.577738\pi\)
−0.241800 + 0.970326i \(0.577738\pi\)
\(242\) 3087.99 0.820263
\(243\) 484.593 0.127929
\(244\) −444.080 −0.116514
\(245\) 3652.57 0.952465
\(246\) −7836.75 −2.03111
\(247\) −1459.07 −0.375863
\(248\) −275.975 −0.0706630
\(249\) 9499.86 2.41779
\(250\) 506.543 0.128146
\(251\) 5814.80 1.46226 0.731129 0.682239i \(-0.238994\pi\)
0.731129 + 0.682239i \(0.238994\pi\)
\(252\) 14617.7 3.65409
\(253\) 1052.24 0.261478
\(254\) 436.795 0.107901
\(255\) 3423.60 0.840761
\(256\) 3630.95 0.886462
\(257\) 1886.38 0.457856 0.228928 0.973443i \(-0.426478\pi\)
0.228928 + 0.973443i \(0.426478\pi\)
\(258\) 17023.0 4.10778
\(259\) 247.020 0.0592629
\(260\) 1918.57 0.457633
\(261\) 15206.9 3.60645
\(262\) −3992.19 −0.941367
\(263\) −6017.91 −1.41095 −0.705476 0.708734i \(-0.749267\pi\)
−0.705476 + 0.708734i \(0.749267\pi\)
\(264\) −698.770 −0.162903
\(265\) 293.930 0.0681358
\(266\) −4251.72 −0.980037
\(267\) −3899.77 −0.893864
\(268\) −141.209 −0.0321856
\(269\) −3189.16 −0.722848 −0.361424 0.932401i \(-0.617709\pi\)
−0.361424 + 0.932401i \(0.617709\pi\)
\(270\) −4707.07 −1.06097
\(271\) 1167.43 0.261683 0.130841 0.991403i \(-0.458232\pi\)
0.130841 + 0.991403i \(0.458232\pi\)
\(272\) 4628.40 1.03176
\(273\) −13350.8 −2.95980
\(274\) 264.923 0.0584109
\(275\) 1143.74 0.250800
\(276\) −1732.20 −0.377776
\(277\) −4164.36 −0.903293 −0.451646 0.892197i \(-0.649163\pi\)
−0.451646 + 0.892197i \(0.649163\pi\)
\(278\) −2218.65 −0.478654
\(279\) −8560.42 −1.83691
\(280\) 279.793 0.0597173
\(281\) 4958.59 1.05269 0.526343 0.850273i \(-0.323563\pi\)
0.526343 + 0.850273i \(0.323563\pi\)
\(282\) 7621.84 1.60948
\(283\) 2171.54 0.456129 0.228065 0.973646i \(-0.426760\pi\)
0.228065 + 0.973646i \(0.426760\pi\)
\(284\) −1763.80 −0.368529
\(285\) 1431.89 0.297605
\(286\) 8447.20 1.74648
\(287\) 7085.18 1.45723
\(288\) −13701.5 −2.80336
\(289\) 949.183 0.193198
\(290\) 5816.04 1.17769
\(291\) −5865.17 −1.18152
\(292\) −6837.47 −1.37032
\(293\) 5170.00 1.03083 0.515417 0.856939i \(-0.327637\pi\)
0.515417 + 0.856939i \(0.327637\pi\)
\(294\) −26473.9 −5.25166
\(295\) −1883.04 −0.371644
\(296\) 12.8763 0.00252845
\(297\) −10628.3 −2.07648
\(298\) 13441.5 2.61291
\(299\) 1047.97 0.202694
\(300\) −1882.83 −0.362350
\(301\) −15390.5 −2.94715
\(302\) −6668.25 −1.27058
\(303\) −7434.39 −1.40955
\(304\) 1935.78 0.365213
\(305\) −263.660 −0.0494987
\(306\) −16437.1 −3.07073
\(307\) 9189.38 1.70836 0.854178 0.519980i \(-0.174061\pi\)
0.854178 + 0.519980i \(0.174061\pi\)
\(308\) 12623.5 2.33535
\(309\) 7165.80 1.31925
\(310\) −3274.03 −0.599846
\(311\) 2264.59 0.412903 0.206452 0.978457i \(-0.433808\pi\)
0.206452 + 0.978457i \(0.433808\pi\)
\(312\) −695.931 −0.126280
\(313\) 2467.42 0.445581 0.222791 0.974866i \(-0.428483\pi\)
0.222791 + 0.974866i \(0.428483\pi\)
\(314\) −8464.32 −1.52124
\(315\) 8678.86 1.55238
\(316\) 530.896 0.0945102
\(317\) 7178.08 1.27180 0.635901 0.771771i \(-0.280629\pi\)
0.635901 + 0.771771i \(0.280629\pi\)
\(318\) −2130.41 −0.375684
\(319\) 13132.2 2.30490
\(320\) −2822.26 −0.493028
\(321\) −8065.88 −1.40247
\(322\) 3053.78 0.528511
\(323\) 2451.80 0.422358
\(324\) 5450.34 0.934558
\(325\) 1139.09 0.194417
\(326\) 12805.7 2.17559
\(327\) −2941.17 −0.497392
\(328\) 369.327 0.0621727
\(329\) −6890.88 −1.15473
\(330\) −8289.84 −1.38285
\(331\) −10304.2 −1.71109 −0.855545 0.517728i \(-0.826778\pi\)
−0.855545 + 0.517728i \(0.826778\pi\)
\(332\) −8945.85 −1.47882
\(333\) 399.409 0.0657281
\(334\) −7643.91 −1.25226
\(335\) −83.8390 −0.0136735
\(336\) 17712.8 2.87593
\(337\) −1582.19 −0.255749 −0.127874 0.991790i \(-0.540815\pi\)
−0.127874 + 0.991790i \(0.540815\pi\)
\(338\) −490.105 −0.0788705
\(339\) 19755.2 3.16507
\(340\) −3223.94 −0.514243
\(341\) −7392.54 −1.17398
\(342\) −6874.64 −1.08695
\(343\) 12696.7 1.99871
\(344\) −802.253 −0.125740
\(345\) −1028.44 −0.160492
\(346\) −1724.79 −0.267992
\(347\) 2566.92 0.397117 0.198559 0.980089i \(-0.436374\pi\)
0.198559 + 0.980089i \(0.436374\pi\)
\(348\) −21618.3 −3.33007
\(349\) −215.226 −0.0330108 −0.0165054 0.999864i \(-0.505254\pi\)
−0.0165054 + 0.999864i \(0.505254\pi\)
\(350\) 3319.32 0.506930
\(351\) −10585.1 −1.60966
\(352\) −11832.2 −1.79165
\(353\) −5111.32 −0.770675 −0.385338 0.922776i \(-0.625915\pi\)
−0.385338 + 0.922776i \(0.625915\pi\)
\(354\) 13648.3 2.04915
\(355\) −1047.21 −0.156563
\(356\) 3672.34 0.546724
\(357\) 22434.5 3.32594
\(358\) 18968.3 2.80029
\(359\) −4317.14 −0.634680 −0.317340 0.948312i \(-0.602790\pi\)
−0.317340 + 0.948312i \(0.602790\pi\)
\(360\) 452.400 0.0662321
\(361\) −5833.56 −0.850497
\(362\) −1540.96 −0.223732
\(363\) −6814.80 −0.985356
\(364\) 12572.2 1.81033
\(365\) −4059.55 −0.582155
\(366\) 1911.01 0.272923
\(367\) −7628.24 −1.08499 −0.542495 0.840059i \(-0.682520\pi\)
−0.542495 + 0.840059i \(0.682520\pi\)
\(368\) −1390.37 −0.196951
\(369\) 11456.1 1.61620
\(370\) 152.758 0.0214636
\(371\) 1926.10 0.269536
\(372\) 12169.6 1.69614
\(373\) 8487.60 1.17821 0.589104 0.808057i \(-0.299481\pi\)
0.589104 + 0.808057i \(0.299481\pi\)
\(374\) −14194.6 −1.96253
\(375\) −1117.87 −0.153938
\(376\) −359.198 −0.0492666
\(377\) 13078.9 1.78673
\(378\) −30845.0 −4.19707
\(379\) −1227.48 −0.166363 −0.0831815 0.996534i \(-0.526508\pi\)
−0.0831815 + 0.996534i \(0.526508\pi\)
\(380\) −1348.38 −0.182028
\(381\) −963.951 −0.129619
\(382\) 5940.85 0.795707
\(383\) −4106.30 −0.547838 −0.273919 0.961753i \(-0.588320\pi\)
−0.273919 + 0.961753i \(0.588320\pi\)
\(384\) 1952.33 0.259452
\(385\) 7494.82 0.992133
\(386\) −8629.80 −1.13794
\(387\) −24884.9 −3.26866
\(388\) 5523.13 0.722666
\(389\) −11206.6 −1.46066 −0.730328 0.683097i \(-0.760633\pi\)
−0.730328 + 0.683097i \(0.760633\pi\)
\(390\) −8256.17 −1.07197
\(391\) −1760.99 −0.227768
\(392\) 1247.65 0.160754
\(393\) 8810.25 1.13084
\(394\) −4647.84 −0.594301
\(395\) 315.204 0.0401510
\(396\) 20411.0 2.59013
\(397\) 7629.81 0.964557 0.482278 0.876018i \(-0.339809\pi\)
0.482278 + 0.876018i \(0.339809\pi\)
\(398\) −15633.4 −1.96893
\(399\) 9383.01 1.17729
\(400\) −1511.27 −0.188908
\(401\) 1221.46 0.152112 0.0760560 0.997104i \(-0.475767\pi\)
0.0760560 + 0.997104i \(0.475767\pi\)
\(402\) 607.666 0.0753921
\(403\) −7362.51 −0.910056
\(404\) 7000.83 0.862140
\(405\) 3235.98 0.397030
\(406\) 38112.0 4.65878
\(407\) 344.918 0.0420073
\(408\) 1169.44 0.141901
\(409\) 16112.2 1.94791 0.973957 0.226731i \(-0.0728038\pi\)
0.973957 + 0.226731i \(0.0728038\pi\)
\(410\) 4381.50 0.527773
\(411\) −584.651 −0.0701672
\(412\) −6747.91 −0.806907
\(413\) −12339.4 −1.47018
\(414\) 4937.67 0.586168
\(415\) −5311.34 −0.628249
\(416\) −11784.2 −1.38886
\(417\) 4896.27 0.574992
\(418\) −5936.75 −0.694679
\(419\) 1997.98 0.232954 0.116477 0.993193i \(-0.462840\pi\)
0.116477 + 0.993193i \(0.462840\pi\)
\(420\) −12338.0 −1.43341
\(421\) −4849.75 −0.561431 −0.280715 0.959791i \(-0.590572\pi\)
−0.280715 + 0.959791i \(0.590572\pi\)
\(422\) 7619.29 0.878913
\(423\) −11141.9 −1.28070
\(424\) 100.401 0.0114998
\(425\) −1914.12 −0.218467
\(426\) 7590.16 0.863250
\(427\) −1727.74 −0.195810
\(428\) 7595.49 0.857809
\(429\) −18641.9 −2.09799
\(430\) −9517.52 −1.06738
\(431\) 13262.3 1.48219 0.741094 0.671402i \(-0.234307\pi\)
0.741094 + 0.671402i \(0.234307\pi\)
\(432\) 14043.5 1.56405
\(433\) 13656.0 1.51562 0.757812 0.652473i \(-0.226269\pi\)
0.757812 + 0.652473i \(0.226269\pi\)
\(434\) −21454.4 −2.37291
\(435\) −12835.3 −1.41472
\(436\) 2769.65 0.304225
\(437\) −736.517 −0.0806234
\(438\) 29423.7 3.20986
\(439\) −1132.68 −0.123143 −0.0615717 0.998103i \(-0.519611\pi\)
−0.0615717 + 0.998103i \(0.519611\pi\)
\(440\) 390.680 0.0423294
\(441\) 38700.5 4.17887
\(442\) −14136.9 −1.52132
\(443\) 6583.81 0.706109 0.353054 0.935603i \(-0.385143\pi\)
0.353054 + 0.935603i \(0.385143\pi\)
\(444\) −567.805 −0.0606910
\(445\) 2180.35 0.232266
\(446\) −12890.8 −1.36860
\(447\) −29663.7 −3.13881
\(448\) −18494.0 −1.95035
\(449\) −12407.9 −1.30416 −0.652078 0.758152i \(-0.726103\pi\)
−0.652078 + 0.758152i \(0.726103\pi\)
\(450\) 5367.04 0.562232
\(451\) 9893.15 1.03293
\(452\) −18603.2 −1.93588
\(453\) 14716.0 1.52631
\(454\) 19521.1 2.01800
\(455\) 7464.37 0.769088
\(456\) 489.105 0.0502290
\(457\) 17336.1 1.77450 0.887251 0.461286i \(-0.152612\pi\)
0.887251 + 0.461286i \(0.152612\pi\)
\(458\) −5837.86 −0.595601
\(459\) 17787.1 1.80878
\(460\) 968.468 0.0981632
\(461\) 9940.64 1.00430 0.502150 0.864781i \(-0.332543\pi\)
0.502150 + 0.864781i \(0.332543\pi\)
\(462\) −54322.5 −5.47037
\(463\) 6459.56 0.648383 0.324191 0.945991i \(-0.394908\pi\)
0.324191 + 0.945991i \(0.394908\pi\)
\(464\) −17352.1 −1.73610
\(465\) 7225.35 0.720576
\(466\) 9375.82 0.932031
\(467\) 8151.66 0.807739 0.403869 0.914817i \(-0.367665\pi\)
0.403869 + 0.914817i \(0.367665\pi\)
\(468\) 20328.1 2.00783
\(469\) −549.389 −0.0540905
\(470\) −4261.34 −0.418215
\(471\) 18679.7 1.82742
\(472\) −643.212 −0.0627251
\(473\) −21489.9 −2.08902
\(474\) −2284.60 −0.221382
\(475\) −800.562 −0.0773312
\(476\) −21126.2 −2.03428
\(477\) 3114.32 0.298941
\(478\) −11338.8 −1.08499
\(479\) −214.878 −0.0204969 −0.0102485 0.999947i \(-0.503262\pi\)
−0.0102485 + 0.999947i \(0.503262\pi\)
\(480\) 11564.6 1.09969
\(481\) 343.517 0.0325635
\(482\) −7331.92 −0.692863
\(483\) −6739.30 −0.634883
\(484\) 6417.38 0.602684
\(485\) 3279.20 0.307012
\(486\) 1963.74 0.183286
\(487\) 6216.61 0.578442 0.289221 0.957262i \(-0.406604\pi\)
0.289221 + 0.957262i \(0.406604\pi\)
\(488\) −90.0611 −0.00835425
\(489\) −28260.6 −2.61347
\(490\) 14801.4 1.36461
\(491\) −17480.8 −1.60671 −0.803356 0.595499i \(-0.796954\pi\)
−0.803356 + 0.595499i \(0.796954\pi\)
\(492\) −16286.1 −1.49235
\(493\) −21977.7 −2.00776
\(494\) −5912.63 −0.538506
\(495\) 12118.4 1.10037
\(496\) 9768.04 0.884270
\(497\) −6862.24 −0.619343
\(498\) 38496.7 3.46401
\(499\) −17884.0 −1.60440 −0.802200 0.597055i \(-0.796337\pi\)
−0.802200 + 0.597055i \(0.796337\pi\)
\(500\) 1052.68 0.0941548
\(501\) 16869.1 1.50431
\(502\) 23563.5 2.09501
\(503\) 3215.45 0.285029 0.142515 0.989793i \(-0.454481\pi\)
0.142515 + 0.989793i \(0.454481\pi\)
\(504\) 2964.53 0.262005
\(505\) 4156.54 0.366265
\(506\) 4264.04 0.374624
\(507\) 1081.60 0.0947446
\(508\) 907.736 0.0792801
\(509\) 6737.65 0.586721 0.293360 0.956002i \(-0.405226\pi\)
0.293360 + 0.956002i \(0.405226\pi\)
\(510\) 13873.6 1.20457
\(511\) −26601.9 −2.30293
\(512\) 16460.3 1.42080
\(513\) 7439.26 0.640256
\(514\) 7644.24 0.655979
\(515\) −4006.38 −0.342800
\(516\) 35376.8 3.01817
\(517\) −9621.84 −0.818507
\(518\) 1001.01 0.0849070
\(519\) 3806.39 0.321930
\(520\) 389.093 0.0328132
\(521\) 13464.5 1.13223 0.566114 0.824327i \(-0.308446\pi\)
0.566114 + 0.824327i \(0.308446\pi\)
\(522\) 61623.5 5.16702
\(523\) −21370.5 −1.78674 −0.893372 0.449317i \(-0.851667\pi\)
−0.893372 + 0.449317i \(0.851667\pi\)
\(524\) −8296.46 −0.691665
\(525\) −7325.32 −0.608959
\(526\) −24386.6 −2.02150
\(527\) 12371.9 1.02263
\(528\) 24732.7 2.03855
\(529\) 529.000 0.0434783
\(530\) 1191.11 0.0976194
\(531\) −19951.7 −1.63056
\(532\) −8835.81 −0.720077
\(533\) 9852.96 0.800711
\(534\) −15803.2 −1.28066
\(535\) 4509.61 0.364425
\(536\) −28.6378 −0.00230777
\(537\) −41860.6 −3.36391
\(538\) −12923.5 −1.03564
\(539\) 33420.7 2.67075
\(540\) −9782.10 −0.779546
\(541\) −14485.2 −1.15114 −0.575572 0.817751i \(-0.695221\pi\)
−0.575572 + 0.817751i \(0.695221\pi\)
\(542\) 4730.81 0.374918
\(543\) 3400.70 0.268763
\(544\) 19802.0 1.56067
\(545\) 1644.40 0.129245
\(546\) −54101.9 −4.24056
\(547\) −18926.7 −1.47943 −0.739714 0.672922i \(-0.765039\pi\)
−0.739714 + 0.672922i \(0.765039\pi\)
\(548\) 550.555 0.0429171
\(549\) −2793.59 −0.217172
\(550\) 4634.82 0.359327
\(551\) −9191.93 −0.710689
\(552\) −351.297 −0.0270873
\(553\) 2065.50 0.158832
\(554\) −16875.4 −1.29416
\(555\) −337.118 −0.0257835
\(556\) −4610.73 −0.351688
\(557\) 2146.15 0.163259 0.0816294 0.996663i \(-0.473988\pi\)
0.0816294 + 0.996663i \(0.473988\pi\)
\(558\) −34689.7 −2.63178
\(559\) −21402.6 −1.61938
\(560\) −9903.19 −0.747296
\(561\) 31325.6 2.35752
\(562\) 20093.9 1.50820
\(563\) −14066.3 −1.05297 −0.526487 0.850183i \(-0.676491\pi\)
−0.526487 + 0.850183i \(0.676491\pi\)
\(564\) 15839.5 1.18256
\(565\) −11045.1 −0.822426
\(566\) 8799.81 0.653505
\(567\) 21205.1 1.57060
\(568\) −357.706 −0.0264243
\(569\) −1253.22 −0.0923337 −0.0461668 0.998934i \(-0.514701\pi\)
−0.0461668 + 0.998934i \(0.514701\pi\)
\(570\) 5802.49 0.426385
\(571\) 12499.6 0.916097 0.458048 0.888927i \(-0.348549\pi\)
0.458048 + 0.888927i \(0.348549\pi\)
\(572\) 17554.7 1.28322
\(573\) −13110.7 −0.955858
\(574\) 28711.6 2.08780
\(575\) 575.000 0.0417029
\(576\) −29903.0 −2.16312
\(577\) −7260.56 −0.523849 −0.261925 0.965088i \(-0.584357\pi\)
−0.261925 + 0.965088i \(0.584357\pi\)
\(578\) 3846.41 0.276799
\(579\) 19044.9 1.36697
\(580\) 12086.7 0.865301
\(581\) −34804.7 −2.48527
\(582\) −23767.7 −1.69279
\(583\) 2689.44 0.191055
\(584\) −1386.67 −0.0982545
\(585\) 12069.2 0.852991
\(586\) 20950.6 1.47690
\(587\) 14411.6 1.01334 0.506671 0.862139i \(-0.330876\pi\)
0.506671 + 0.862139i \(0.330876\pi\)
\(588\) −55017.2 −3.85863
\(589\) 5174.42 0.361983
\(590\) −7630.74 −0.532462
\(591\) 10257.2 0.713916
\(592\) −455.753 −0.0316408
\(593\) 21665.4 1.50032 0.750160 0.661256i \(-0.229976\pi\)
0.750160 + 0.661256i \(0.229976\pi\)
\(594\) −43069.3 −2.97501
\(595\) −12543.1 −0.864227
\(596\) 27933.8 1.91982
\(597\) 34501.0 2.36521
\(598\) 4246.72 0.290403
\(599\) −23174.4 −1.58077 −0.790384 0.612612i \(-0.790119\pi\)
−0.790384 + 0.612612i \(0.790119\pi\)
\(600\) −381.845 −0.0259812
\(601\) −22969.1 −1.55895 −0.779475 0.626433i \(-0.784514\pi\)
−0.779475 + 0.626433i \(0.784514\pi\)
\(602\) −62367.4 −4.22243
\(603\) −888.311 −0.0599914
\(604\) −13857.8 −0.933551
\(605\) 3810.13 0.256040
\(606\) −30126.7 −2.01949
\(607\) −4606.78 −0.308045 −0.154023 0.988067i \(-0.549223\pi\)
−0.154023 + 0.988067i \(0.549223\pi\)
\(608\) 8281.98 0.552432
\(609\) −84108.2 −5.59645
\(610\) −1068.44 −0.0709177
\(611\) −9582.75 −0.634495
\(612\) −34159.1 −2.25621
\(613\) 7780.72 0.512660 0.256330 0.966589i \(-0.417487\pi\)
0.256330 + 0.966589i \(0.417487\pi\)
\(614\) 37238.5 2.44759
\(615\) −9669.41 −0.633997
\(616\) 2560.09 0.167449
\(617\) 2438.43 0.159105 0.0795523 0.996831i \(-0.474651\pi\)
0.0795523 + 0.996831i \(0.474651\pi\)
\(618\) 29038.3 1.89011
\(619\) 6821.13 0.442915 0.221458 0.975170i \(-0.428919\pi\)
0.221458 + 0.975170i \(0.428919\pi\)
\(620\) −6803.99 −0.440733
\(621\) −5343.21 −0.345275
\(622\) 9176.88 0.591574
\(623\) 14287.6 0.918813
\(624\) 24632.2 1.58025
\(625\) 625.000 0.0400000
\(626\) 9998.83 0.638393
\(627\) 13101.6 0.834496
\(628\) −17590.3 −1.11772
\(629\) −577.242 −0.0365917
\(630\) 35169.7 2.22412
\(631\) −15698.7 −0.990420 −0.495210 0.868773i \(-0.664909\pi\)
−0.495210 + 0.868773i \(0.664909\pi\)
\(632\) 107.668 0.00677657
\(633\) −16814.8 −1.05581
\(634\) 29088.0 1.82213
\(635\) 538.942 0.0336807
\(636\) −4427.36 −0.276032
\(637\) 33284.9 2.07033
\(638\) 53216.3 3.30228
\(639\) −11095.6 −0.686909
\(640\) −1091.54 −0.0674172
\(641\) 15360.1 0.946472 0.473236 0.880936i \(-0.343086\pi\)
0.473236 + 0.880936i \(0.343086\pi\)
\(642\) −32685.7 −2.00935
\(643\) −14107.3 −0.865221 −0.432610 0.901581i \(-0.642407\pi\)
−0.432610 + 0.901581i \(0.642407\pi\)
\(644\) 6346.28 0.388320
\(645\) 21003.9 1.28222
\(646\) 9935.52 0.605121
\(647\) 8107.22 0.492624 0.246312 0.969191i \(-0.420781\pi\)
0.246312 + 0.969191i \(0.420781\pi\)
\(648\) 1105.35 0.0670097
\(649\) −17229.7 −1.04210
\(650\) 4616.00 0.278545
\(651\) 47347.0 2.85050
\(652\) 26612.5 1.59850
\(653\) −25123.5 −1.50560 −0.752802 0.658247i \(-0.771298\pi\)
−0.752802 + 0.658247i \(0.771298\pi\)
\(654\) −11918.6 −0.712623
\(655\) −4925.78 −0.293842
\(656\) −13072.2 −0.778023
\(657\) −43012.7 −2.55416
\(658\) −27924.2 −1.65440
\(659\) −809.773 −0.0478669 −0.0239334 0.999714i \(-0.507619\pi\)
−0.0239334 + 0.999714i \(0.507619\pi\)
\(660\) −17227.7 −1.01604
\(661\) 4086.36 0.240455 0.120228 0.992746i \(-0.461638\pi\)
0.120228 + 0.992746i \(0.461638\pi\)
\(662\) −41756.2 −2.45151
\(663\) 31198.4 1.82752
\(664\) −1814.25 −0.106034
\(665\) −5246.01 −0.305912
\(666\) 1618.54 0.0941699
\(667\) 6602.06 0.383258
\(668\) −15885.4 −0.920095
\(669\) 28448.2 1.64405
\(670\) −339.744 −0.0195902
\(671\) −2412.47 −0.138796
\(672\) 75781.9 4.35022
\(673\) −8985.56 −0.514662 −0.257331 0.966323i \(-0.582843\pi\)
−0.257331 + 0.966323i \(0.582843\pi\)
\(674\) −6411.56 −0.366416
\(675\) −5807.84 −0.331176
\(676\) −1018.52 −0.0579497
\(677\) 10328.0 0.586316 0.293158 0.956064i \(-0.405294\pi\)
0.293158 + 0.956064i \(0.405294\pi\)
\(678\) 80055.0 4.53465
\(679\) 21488.3 1.21450
\(680\) −653.828 −0.0368723
\(681\) −43080.6 −2.42416
\(682\) −29957.1 −1.68199
\(683\) 4516.74 0.253043 0.126521 0.991964i \(-0.459619\pi\)
0.126521 + 0.991964i \(0.459619\pi\)
\(684\) −14286.7 −0.798633
\(685\) 326.876 0.0182326
\(686\) 51451.3 2.86359
\(687\) 12883.4 0.715476
\(688\) 28395.5 1.57350
\(689\) 2678.51 0.148103
\(690\) −4167.61 −0.229939
\(691\) 7957.06 0.438062 0.219031 0.975718i \(-0.429710\pi\)
0.219031 + 0.975718i \(0.429710\pi\)
\(692\) −3584.41 −0.196906
\(693\) 79410.9 4.35291
\(694\) 10402.0 0.568957
\(695\) −2737.49 −0.149409
\(696\) −4384.28 −0.238773
\(697\) −16556.8 −0.899762
\(698\) −872.167 −0.0472951
\(699\) −20691.2 −1.11962
\(700\) 6898.13 0.372464
\(701\) 7970.58 0.429450 0.214725 0.976675i \(-0.431114\pi\)
0.214725 + 0.976675i \(0.431114\pi\)
\(702\) −42894.4 −2.30619
\(703\) −241.426 −0.0129524
\(704\) −25823.4 −1.38247
\(705\) 9404.24 0.502389
\(706\) −20712.8 −1.10416
\(707\) 27237.4 1.44889
\(708\) 28363.6 1.50561
\(709\) 2079.18 0.110134 0.0550672 0.998483i \(-0.482463\pi\)
0.0550672 + 0.998483i \(0.482463\pi\)
\(710\) −4243.63 −0.224311
\(711\) 3339.72 0.176159
\(712\) 744.765 0.0392012
\(713\) −3716.50 −0.195209
\(714\) 90912.2 4.76513
\(715\) 10422.6 0.545152
\(716\) 39419.4 2.05750
\(717\) 25023.3 1.30336
\(718\) −17494.5 −0.909318
\(719\) 29046.5 1.50661 0.753305 0.657671i \(-0.228458\pi\)
0.753305 + 0.657671i \(0.228458\pi\)
\(720\) −16012.5 −0.828822
\(721\) −26253.4 −1.35607
\(722\) −23639.6 −1.21852
\(723\) 16180.6 0.832315
\(724\) −3202.38 −0.164386
\(725\) 7176.15 0.367608
\(726\) −27615.9 −1.41174
\(727\) 14037.7 0.716133 0.358067 0.933696i \(-0.383436\pi\)
0.358067 + 0.933696i \(0.383436\pi\)
\(728\) 2549.69 0.129805
\(729\) −21808.0 −1.10796
\(730\) −16450.7 −0.834065
\(731\) 35964.8 1.81971
\(732\) 3971.40 0.200529
\(733\) 10862.5 0.547358 0.273679 0.961821i \(-0.411759\pi\)
0.273679 + 0.961821i \(0.411759\pi\)
\(734\) −30912.2 −1.55448
\(735\) −32664.9 −1.63927
\(736\) −5948.49 −0.297913
\(737\) −767.121 −0.0383409
\(738\) 46423.9 2.31557
\(739\) −8660.65 −0.431106 −0.215553 0.976492i \(-0.569155\pi\)
−0.215553 + 0.976492i \(0.569155\pi\)
\(740\) 317.458 0.0157702
\(741\) 13048.4 0.646890
\(742\) 7805.20 0.386170
\(743\) −33484.3 −1.65332 −0.826661 0.562700i \(-0.809762\pi\)
−0.826661 + 0.562700i \(0.809762\pi\)
\(744\) 2468.04 0.121617
\(745\) 16584.9 0.815603
\(746\) 34394.7 1.68804
\(747\) −56275.9 −2.75640
\(748\) −29498.8 −1.44196
\(749\) 29551.0 1.44162
\(750\) −4530.01 −0.220550
\(751\) 29209.3 1.41926 0.709628 0.704577i \(-0.248863\pi\)
0.709628 + 0.704577i \(0.248863\pi\)
\(752\) 12713.7 0.616517
\(753\) −52001.7 −2.51666
\(754\) 53000.1 2.55988
\(755\) −8227.66 −0.396603
\(756\) −64101.2 −3.08378
\(757\) 3283.09 0.157630 0.0788151 0.996889i \(-0.474886\pi\)
0.0788151 + 0.996889i \(0.474886\pi\)
\(758\) −4974.18 −0.238351
\(759\) −9410.19 −0.450024
\(760\) −273.457 −0.0130517
\(761\) 22957.1 1.09355 0.546776 0.837279i \(-0.315855\pi\)
0.546776 + 0.837279i \(0.315855\pi\)
\(762\) −3906.26 −0.185707
\(763\) 10775.6 0.511275
\(764\) 12346.1 0.584642
\(765\) −20281.0 −0.958509
\(766\) −16640.1 −0.784898
\(767\) −17159.7 −0.807825
\(768\) −32471.6 −1.52567
\(769\) −2510.87 −0.117743 −0.0588714 0.998266i \(-0.518750\pi\)
−0.0588714 + 0.998266i \(0.518750\pi\)
\(770\) 30371.6 1.42145
\(771\) −16869.9 −0.788007
\(772\) −17934.2 −0.836096
\(773\) −11566.1 −0.538167 −0.269084 0.963117i \(-0.586721\pi\)
−0.269084 + 0.963117i \(0.586721\pi\)
\(774\) −100842. −4.68307
\(775\) −4039.67 −0.187238
\(776\) 1120.11 0.0518166
\(777\) −2209.10 −0.101996
\(778\) −45412.8 −2.09271
\(779\) −6924.72 −0.318490
\(780\) −17157.7 −0.787623
\(781\) −9581.85 −0.439008
\(782\) −7136.14 −0.326327
\(783\) −66684.7 −3.04357
\(784\) −44160.0 −2.01166
\(785\) −10443.7 −0.474845
\(786\) 35702.1 1.62017
\(787\) −751.934 −0.0340579 −0.0170289 0.999855i \(-0.505421\pi\)
−0.0170289 + 0.999855i \(0.505421\pi\)
\(788\) −9659.01 −0.436660
\(789\) 53818.1 2.42836
\(790\) 1277.31 0.0575250
\(791\) −72377.4 −3.25341
\(792\) 4139.42 0.185717
\(793\) −2402.66 −0.107593
\(794\) 30918.6 1.38194
\(795\) −2628.62 −0.117267
\(796\) −32489.0 −1.44666
\(797\) −15898.3 −0.706585 −0.353292 0.935513i \(-0.614938\pi\)
−0.353292 + 0.935513i \(0.614938\pi\)
\(798\) 38023.1 1.68672
\(799\) 16102.8 0.712985
\(800\) −6465.75 −0.285748
\(801\) 23101.7 1.01905
\(802\) 4949.78 0.217934
\(803\) −37144.6 −1.63238
\(804\) 1262.84 0.0553940
\(805\) 3767.92 0.164971
\(806\) −29835.4 −1.30385
\(807\) 28520.6 1.24408
\(808\) 1419.80 0.0618171
\(809\) −30018.9 −1.30458 −0.652292 0.757967i \(-0.726193\pi\)
−0.652292 + 0.757967i \(0.726193\pi\)
\(810\) 13113.3 0.568833
\(811\) 5012.47 0.217030 0.108515 0.994095i \(-0.465390\pi\)
0.108515 + 0.994095i \(0.465390\pi\)
\(812\) 79203.2 3.42301
\(813\) −10440.3 −0.450377
\(814\) 1397.73 0.0601846
\(815\) 15800.4 0.679096
\(816\) −41391.8 −1.77574
\(817\) 15041.9 0.644125
\(818\) 65292.1 2.79081
\(819\) 79088.3 3.37432
\(820\) 9105.52 0.387779
\(821\) −2707.44 −0.115092 −0.0575459 0.998343i \(-0.518328\pi\)
−0.0575459 + 0.998343i \(0.518328\pi\)
\(822\) −2369.20 −0.100530
\(823\) 15781.8 0.668431 0.334215 0.942497i \(-0.391529\pi\)
0.334215 + 0.942497i \(0.391529\pi\)
\(824\) −1368.50 −0.0578568
\(825\) −10228.5 −0.431648
\(826\) −50003.5 −2.10635
\(827\) −21176.8 −0.890435 −0.445218 0.895422i \(-0.646874\pi\)
−0.445218 + 0.895422i \(0.646874\pi\)
\(828\) 10261.3 0.430684
\(829\) 20905.6 0.875852 0.437926 0.899011i \(-0.355713\pi\)
0.437926 + 0.899011i \(0.355713\pi\)
\(830\) −21523.4 −0.900104
\(831\) 37241.8 1.55464
\(832\) −25718.5 −1.07167
\(833\) −55931.7 −2.32643
\(834\) 19841.4 0.823801
\(835\) −9431.48 −0.390886
\(836\) −12337.6 −0.510412
\(837\) 37538.8 1.55022
\(838\) 8096.51 0.333758
\(839\) 28724.8 1.18199 0.590995 0.806675i \(-0.298735\pi\)
0.590995 + 0.806675i \(0.298735\pi\)
\(840\) −2502.19 −0.102778
\(841\) 58006.4 2.37839
\(842\) −19652.8 −0.804372
\(843\) −44344.6 −1.81176
\(844\) 15834.2 0.645777
\(845\) −604.719 −0.0246189
\(846\) −45150.8 −1.83489
\(847\) 24967.4 1.01286
\(848\) −3553.66 −0.143907
\(849\) −19420.1 −0.785035
\(850\) −7756.67 −0.313002
\(851\) 173.403 0.00698493
\(852\) 15773.7 0.634268
\(853\) −37511.5 −1.50571 −0.752854 0.658188i \(-0.771323\pi\)
−0.752854 + 0.658188i \(0.771323\pi\)
\(854\) −7001.37 −0.280541
\(855\) −8482.31 −0.339285
\(856\) 1540.40 0.0615066
\(857\) 26541.3 1.05792 0.528958 0.848648i \(-0.322583\pi\)
0.528958 + 0.848648i \(0.322583\pi\)
\(858\) −75543.3 −3.00583
\(859\) 20535.4 0.815667 0.407833 0.913056i \(-0.366284\pi\)
0.407833 + 0.913056i \(0.366284\pi\)
\(860\) −19779.0 −0.784256
\(861\) −63362.7 −2.50801
\(862\) 53743.4 2.12356
\(863\) 21337.9 0.841660 0.420830 0.907140i \(-0.361739\pi\)
0.420830 + 0.907140i \(0.361739\pi\)
\(864\) 60083.3 2.36583
\(865\) −2128.14 −0.0836519
\(866\) 55338.7 2.17146
\(867\) −8488.54 −0.332510
\(868\) −44585.9 −1.74348
\(869\) 2884.09 0.112585
\(870\) −52012.8 −2.02690
\(871\) −764.004 −0.0297214
\(872\) 561.696 0.0218136
\(873\) 34744.5 1.34699
\(874\) −2984.62 −0.115511
\(875\) 4095.56 0.158235
\(876\) 61147.5 2.35843
\(877\) −42216.5 −1.62548 −0.812742 0.582624i \(-0.802026\pi\)
−0.812742 + 0.582624i \(0.802026\pi\)
\(878\) −4590.01 −0.176430
\(879\) −46235.3 −1.77415
\(880\) −13828.0 −0.529706
\(881\) −33457.6 −1.27947 −0.639737 0.768594i \(-0.720957\pi\)
−0.639737 + 0.768594i \(0.720957\pi\)
\(882\) 156828. 5.98715
\(883\) 22192.2 0.845785 0.422893 0.906180i \(-0.361015\pi\)
0.422893 + 0.906180i \(0.361015\pi\)
\(884\) −29379.0 −1.11779
\(885\) 16840.1 0.639630
\(886\) 26679.8 1.01165
\(887\) 17904.9 0.677777 0.338889 0.940826i \(-0.389949\pi\)
0.338889 + 0.940826i \(0.389949\pi\)
\(888\) −115.153 −0.00435167
\(889\) 3531.64 0.133237
\(890\) 8835.50 0.332772
\(891\) 29609.0 1.11329
\(892\) −26789.2 −1.00557
\(893\) 6734.82 0.252376
\(894\) −120208. −4.49703
\(895\) 23404.1 0.874093
\(896\) −7152.77 −0.266693
\(897\) −9371.96 −0.348852
\(898\) −50281.1 −1.86849
\(899\) −46382.9 −1.72075
\(900\) 11153.6 0.413097
\(901\) −4500.95 −0.166424
\(902\) 40090.4 1.47989
\(903\) 137637. 5.07228
\(904\) −3772.79 −0.138807
\(905\) −1901.32 −0.0698365
\(906\) 59634.1 2.18677
\(907\) 9482.20 0.347135 0.173567 0.984822i \(-0.444471\pi\)
0.173567 + 0.984822i \(0.444471\pi\)
\(908\) 40568.2 1.48271
\(909\) 44040.4 1.60696
\(910\) 30248.2 1.10189
\(911\) 24018.2 0.873499 0.436750 0.899583i \(-0.356130\pi\)
0.436750 + 0.899583i \(0.356130\pi\)
\(912\) −17311.7 −0.628561
\(913\) −48598.3 −1.76163
\(914\) 70251.7 2.54236
\(915\) 2357.91 0.0851913
\(916\) −12132.1 −0.437615
\(917\) −32278.2 −1.16240
\(918\) 72079.3 2.59147
\(919\) −39263.9 −1.40935 −0.704677 0.709528i \(-0.748908\pi\)
−0.704677 + 0.709528i \(0.748908\pi\)
\(920\) 196.409 0.00703849
\(921\) −82180.5 −2.94022
\(922\) 40282.9 1.43888
\(923\) −9542.92 −0.340313
\(924\) −112892. −4.01933
\(925\) 188.481 0.00669971
\(926\) 26176.3 0.928950
\(927\) −42449.3 −1.50401
\(928\) −74238.7 −2.62608
\(929\) 30536.7 1.07845 0.539223 0.842163i \(-0.318718\pi\)
0.539223 + 0.842163i \(0.318718\pi\)
\(930\) 29279.6 1.03238
\(931\) −23392.9 −0.823491
\(932\) 19484.6 0.684805
\(933\) −20252.2 −0.710640
\(934\) 33033.3 1.15726
\(935\) −17514.1 −0.612590
\(936\) 4122.61 0.143965
\(937\) −37724.9 −1.31528 −0.657640 0.753332i \(-0.728445\pi\)
−0.657640 + 0.753332i \(0.728445\pi\)
\(938\) −2226.31 −0.0774964
\(939\) −22066.1 −0.766881
\(940\) −8855.81 −0.307281
\(941\) 33414.9 1.15759 0.578797 0.815472i \(-0.303522\pi\)
0.578797 + 0.815472i \(0.303522\pi\)
\(942\) 75696.4 2.61817
\(943\) 4973.65 0.171754
\(944\) 22766.3 0.784935
\(945\) −38058.2 −1.31009
\(946\) −87084.5 −2.99298
\(947\) −11604.7 −0.398205 −0.199103 0.979979i \(-0.563803\pi\)
−0.199103 + 0.979979i \(0.563803\pi\)
\(948\) −4747.80 −0.162660
\(949\) −36993.7 −1.26540
\(950\) −3244.15 −0.110794
\(951\) −64193.5 −2.18887
\(952\) −4284.47 −0.145862
\(953\) 33381.8 1.13467 0.567336 0.823487i \(-0.307974\pi\)
0.567336 + 0.823487i \(0.307974\pi\)
\(954\) 12620.3 0.428298
\(955\) 7330.14 0.248375
\(956\) −23564.0 −0.797190
\(957\) −117442. −3.96693
\(958\) −870.758 −0.0293663
\(959\) 2141.99 0.0721256
\(960\) 25239.4 0.848540
\(961\) −3680.68 −0.123550
\(962\) 1392.05 0.0466543
\(963\) 47781.2 1.59889
\(964\) −15237.0 −0.509078
\(965\) −10647.9 −0.355201
\(966\) −27309.9 −0.909609
\(967\) 44013.3 1.46367 0.731837 0.681479i \(-0.238663\pi\)
0.731837 + 0.681479i \(0.238663\pi\)
\(968\) 1301.47 0.0432136
\(969\) −21926.4 −0.726913
\(970\) 13288.4 0.439862
\(971\) 54941.3 1.81581 0.907905 0.419176i \(-0.137681\pi\)
0.907905 + 0.419176i \(0.137681\pi\)
\(972\) 4080.98 0.134668
\(973\) −17938.5 −0.591040
\(974\) 25191.8 0.828745
\(975\) −10186.9 −0.334607
\(976\) 3187.68 0.104544
\(977\) 52377.7 1.71516 0.857580 0.514351i \(-0.171967\pi\)
0.857580 + 0.514351i \(0.171967\pi\)
\(978\) −114521. −3.74437
\(979\) 19950.0 0.651282
\(980\) 30760.0 1.00264
\(981\) 17423.1 0.567052
\(982\) −70838.0 −2.30197
\(983\) −18746.9 −0.608275 −0.304137 0.952628i \(-0.598368\pi\)
−0.304137 + 0.952628i \(0.598368\pi\)
\(984\) −3302.89 −0.107004
\(985\) −5734.76 −0.185507
\(986\) −89060.9 −2.87655
\(987\) 61625.1 1.98738
\(988\) −12287.5 −0.395664
\(989\) −10803.8 −0.347361
\(990\) 49108.0 1.57652
\(991\) 51116.6 1.63852 0.819260 0.573423i \(-0.194385\pi\)
0.819260 + 0.573423i \(0.194385\pi\)
\(992\) 41791.2 1.33757
\(993\) 92150.5 2.94492
\(994\) −27808.1 −0.887344
\(995\) −19289.4 −0.614587
\(996\) 80002.7 2.54516
\(997\) −36176.5 −1.14917 −0.574584 0.818445i \(-0.694836\pi\)
−0.574584 + 0.818445i \(0.694836\pi\)
\(998\) −72471.9 −2.29865
\(999\) −1751.47 −0.0554696
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.4.a.f.1.6 8
3.2 odd 2 1035.4.a.r.1.3 8
4.3 odd 2 1840.4.a.v.1.7 8
5.2 odd 4 575.4.b.k.24.13 16
5.3 odd 4 575.4.b.k.24.4 16
5.4 even 2 575.4.a.n.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.4.a.f.1.6 8 1.1 even 1 trivial
575.4.a.n.1.3 8 5.4 even 2
575.4.b.k.24.4 16 5.3 odd 4
575.4.b.k.24.13 16 5.2 odd 4
1035.4.a.r.1.3 8 3.2 odd 2
1840.4.a.v.1.7 8 4.3 odd 2