Properties

Label 576.3.o.b.511.1
Level $576$
Weight $3$
Character 576.511
Analytic conductor $15.695$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,3,Mod(319,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.319");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 511.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 576.511
Dual form 576.3.o.b.319.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{3} +(2.00000 + 3.46410i) q^{5} +(-3.00000 - 1.73205i) q^{7} +(-4.50000 - 7.79423i) q^{9} +(10.5000 + 6.06218i) q^{11} +(-11.0000 - 19.0526i) q^{13} +12.0000 q^{15} -11.0000 q^{17} -15.5885i q^{19} +(-9.00000 + 5.19615i) q^{21} +(21.0000 - 12.1244i) q^{23} +(4.50000 - 7.79423i) q^{25} -27.0000 q^{27} +(17.0000 - 29.4449i) q^{29} +(6.00000 - 3.46410i) q^{31} +(31.5000 - 18.1865i) q^{33} -13.8564i q^{35} +16.0000 q^{37} -66.0000 q^{39} +(-6.50000 - 11.2583i) q^{41} +(43.5000 + 25.1147i) q^{43} +(18.0000 - 31.1769i) q^{45} +(3.00000 + 1.73205i) q^{47} +(-18.5000 - 32.0429i) q^{49} +(-16.5000 + 28.5788i) q^{51} -52.0000 q^{53} +48.4974i q^{55} +(-40.5000 - 23.3827i) q^{57} +(46.5000 - 26.8468i) q^{59} +(-8.00000 + 13.8564i) q^{61} +31.1769i q^{63} +(44.0000 - 76.2102i) q^{65} +(-100.500 + 58.0237i) q^{67} -72.7461i q^{69} -25.0000 q^{73} +(-13.5000 - 23.3827i) q^{75} +(-21.0000 - 36.3731i) q^{77} +(24.0000 + 13.8564i) q^{79} +(-40.5000 + 70.1481i) q^{81} +(-30.0000 - 17.3205i) q^{83} +(-22.0000 - 38.1051i) q^{85} +(-51.0000 - 88.3346i) q^{87} -2.00000 q^{89} +76.2102i q^{91} -20.7846i q^{93} +(54.0000 - 31.1769i) q^{95} +(21.5000 - 37.2391i) q^{97} -109.119i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 4 q^{5} - 6 q^{7} - 9 q^{9} + 21 q^{11} - 22 q^{13} + 24 q^{15} - 22 q^{17} - 18 q^{21} + 42 q^{23} + 9 q^{25} - 54 q^{27} + 34 q^{29} + 12 q^{31} + 63 q^{33} + 32 q^{37} - 132 q^{39} - 13 q^{41}+ \cdots + 43 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 2.59808i 0.500000 0.866025i
\(4\) 0 0
\(5\) 2.00000 + 3.46410i 0.400000 + 0.692820i 0.993725 0.111847i \(-0.0356768\pi\)
−0.593725 + 0.804668i \(0.702343\pi\)
\(6\) 0 0
\(7\) −3.00000 1.73205i −0.428571 0.247436i 0.270166 0.962814i \(-0.412921\pi\)
−0.698738 + 0.715378i \(0.746255\pi\)
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.500000 0.866025i
\(10\) 0 0
\(11\) 10.5000 + 6.06218i 0.954545 + 0.551107i 0.894490 0.447088i \(-0.147539\pi\)
0.0600555 + 0.998195i \(0.480872\pi\)
\(12\) 0 0
\(13\) −11.0000 19.0526i −0.846154 1.46558i −0.884615 0.466321i \(-0.845579\pi\)
0.0384615 0.999260i \(-0.487754\pi\)
\(14\) 0 0
\(15\) 12.0000 0.800000
\(16\) 0 0
\(17\) −11.0000 −0.647059 −0.323529 0.946218i \(-0.604869\pi\)
−0.323529 + 0.946218i \(0.604869\pi\)
\(18\) 0 0
\(19\) 15.5885i 0.820445i −0.911985 0.410223i \(-0.865451\pi\)
0.911985 0.410223i \(-0.134549\pi\)
\(20\) 0 0
\(21\) −9.00000 + 5.19615i −0.428571 + 0.247436i
\(22\) 0 0
\(23\) 21.0000 12.1244i 0.913043 0.527146i 0.0316343 0.999500i \(-0.489929\pi\)
0.881409 + 0.472354i \(0.156595\pi\)
\(24\) 0 0
\(25\) 4.50000 7.79423i 0.180000 0.311769i
\(26\) 0 0
\(27\) −27.0000 −1.00000
\(28\) 0 0
\(29\) 17.0000 29.4449i 0.586207 1.01534i −0.408517 0.912751i \(-0.633954\pi\)
0.994724 0.102589i \(-0.0327128\pi\)
\(30\) 0 0
\(31\) 6.00000 3.46410i 0.193548 0.111745i −0.400094 0.916474i \(-0.631023\pi\)
0.593643 + 0.804729i \(0.297689\pi\)
\(32\) 0 0
\(33\) 31.5000 18.1865i 0.954545 0.551107i
\(34\) 0 0
\(35\) 13.8564i 0.395897i
\(36\) 0 0
\(37\) 16.0000 0.432432 0.216216 0.976346i \(-0.430628\pi\)
0.216216 + 0.976346i \(0.430628\pi\)
\(38\) 0 0
\(39\) −66.0000 −1.69231
\(40\) 0 0
\(41\) −6.50000 11.2583i −0.158537 0.274593i 0.775805 0.630973i \(-0.217344\pi\)
−0.934341 + 0.356380i \(0.884011\pi\)
\(42\) 0 0
\(43\) 43.5000 + 25.1147i 1.01163 + 0.584064i 0.911668 0.410928i \(-0.134795\pi\)
0.0999600 + 0.994991i \(0.468129\pi\)
\(44\) 0 0
\(45\) 18.0000 31.1769i 0.400000 0.692820i
\(46\) 0 0
\(47\) 3.00000 + 1.73205i 0.0638298 + 0.0368521i 0.531575 0.847011i \(-0.321600\pi\)
−0.467745 + 0.883863i \(0.654934\pi\)
\(48\) 0 0
\(49\) −18.5000 32.0429i −0.377551 0.653938i
\(50\) 0 0
\(51\) −16.5000 + 28.5788i −0.323529 + 0.560369i
\(52\) 0 0
\(53\) −52.0000 −0.981132 −0.490566 0.871404i \(-0.663210\pi\)
−0.490566 + 0.871404i \(0.663210\pi\)
\(54\) 0 0
\(55\) 48.4974i 0.881771i
\(56\) 0 0
\(57\) −40.5000 23.3827i −0.710526 0.410223i
\(58\) 0 0
\(59\) 46.5000 26.8468i 0.788136 0.455030i −0.0511702 0.998690i \(-0.516295\pi\)
0.839306 + 0.543660i \(0.182962\pi\)
\(60\) 0 0
\(61\) −8.00000 + 13.8564i −0.131148 + 0.227154i −0.924119 0.382104i \(-0.875199\pi\)
0.792972 + 0.609259i \(0.208533\pi\)
\(62\) 0 0
\(63\) 31.1769i 0.494872i
\(64\) 0 0
\(65\) 44.0000 76.2102i 0.676923 1.17247i
\(66\) 0 0
\(67\) −100.500 + 58.0237i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 72.7461i 1.05429i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −25.0000 −0.342466 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(74\) 0 0
\(75\) −13.5000 23.3827i −0.180000 0.311769i
\(76\) 0 0
\(77\) −21.0000 36.3731i −0.272727 0.472377i
\(78\) 0 0
\(79\) 24.0000 + 13.8564i 0.303797 + 0.175398i 0.644148 0.764901i \(-0.277212\pi\)
−0.340350 + 0.940299i \(0.610546\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −30.0000 17.3205i −0.361446 0.208681i 0.308269 0.951299i \(-0.400250\pi\)
−0.669715 + 0.742618i \(0.733584\pi\)
\(84\) 0 0
\(85\) −22.0000 38.1051i −0.258824 0.448296i
\(86\) 0 0
\(87\) −51.0000 88.3346i −0.586207 1.01534i
\(88\) 0 0
\(89\) −2.00000 −0.0224719 −0.0112360 0.999937i \(-0.503577\pi\)
−0.0112360 + 0.999937i \(0.503577\pi\)
\(90\) 0 0
\(91\) 76.2102i 0.837475i
\(92\) 0 0
\(93\) 20.7846i 0.223490i
\(94\) 0 0
\(95\) 54.0000 31.1769i 0.568421 0.328178i
\(96\) 0 0
\(97\) 21.5000 37.2391i 0.221649 0.383908i −0.733659 0.679517i \(-0.762189\pi\)
0.955309 + 0.295609i \(0.0955226\pi\)
\(98\) 0 0
\(99\) 109.119i 1.10221i
\(100\) 0 0
\(101\) −10.0000 + 17.3205i −0.0990099 + 0.171490i −0.911275 0.411798i \(-0.864901\pi\)
0.812265 + 0.583288i \(0.198234\pi\)
\(102\) 0 0
\(103\) −21.0000 + 12.1244i −0.203883 + 0.117712i −0.598466 0.801148i \(-0.704223\pi\)
0.394582 + 0.918861i \(0.370889\pi\)
\(104\) 0 0
\(105\) −36.0000 20.7846i −0.342857 0.197949i
\(106\) 0 0
\(107\) 15.5885i 0.145687i −0.997343 0.0728433i \(-0.976793\pi\)
0.997343 0.0728433i \(-0.0232073\pi\)
\(108\) 0 0
\(109\) 88.0000 0.807339 0.403670 0.914905i \(-0.367734\pi\)
0.403670 + 0.914905i \(0.367734\pi\)
\(110\) 0 0
\(111\) 24.0000 41.5692i 0.216216 0.374497i
\(112\) 0 0
\(113\) 25.0000 + 43.3013i 0.221239 + 0.383197i 0.955184 0.296011i \(-0.0956566\pi\)
−0.733946 + 0.679208i \(0.762323\pi\)
\(114\) 0 0
\(115\) 84.0000 + 48.4974i 0.730435 + 0.421717i
\(116\) 0 0
\(117\) −99.0000 + 171.473i −0.846154 + 1.46558i
\(118\) 0 0
\(119\) 33.0000 + 19.0526i 0.277311 + 0.160106i
\(120\) 0 0
\(121\) 13.0000 + 22.5167i 0.107438 + 0.186088i
\(122\) 0 0
\(123\) −39.0000 −0.317073
\(124\) 0 0
\(125\) 136.000 1.08800
\(126\) 0 0
\(127\) 218.238i 1.71841i 0.511629 + 0.859206i \(0.329042\pi\)
−0.511629 + 0.859206i \(0.670958\pi\)
\(128\) 0 0
\(129\) 130.500 75.3442i 1.01163 0.584064i
\(130\) 0 0
\(131\) 168.000 96.9948i 1.28244 0.740419i 0.305148 0.952305i \(-0.401294\pi\)
0.977294 + 0.211886i \(0.0679606\pi\)
\(132\) 0 0
\(133\) −27.0000 + 46.7654i −0.203008 + 0.351619i
\(134\) 0 0
\(135\) −54.0000 93.5307i −0.400000 0.692820i
\(136\) 0 0
\(137\) −84.5000 + 146.358i −0.616788 + 1.06831i 0.373280 + 0.927719i \(0.378233\pi\)
−0.990068 + 0.140590i \(0.955100\pi\)
\(138\) 0 0
\(139\) 169.500 97.8609i 1.21942 0.704035i 0.254630 0.967039i \(-0.418046\pi\)
0.964795 + 0.263004i \(0.0847131\pi\)
\(140\) 0 0
\(141\) 9.00000 5.19615i 0.0638298 0.0368521i
\(142\) 0 0
\(143\) 266.736i 1.86529i
\(144\) 0 0
\(145\) 136.000 0.937931
\(146\) 0 0
\(147\) −111.000 −0.755102
\(148\) 0 0
\(149\) 65.0000 + 112.583i 0.436242 + 0.755593i 0.997396 0.0721185i \(-0.0229760\pi\)
−0.561154 + 0.827711i \(0.689643\pi\)
\(150\) 0 0
\(151\) 105.000 + 60.6218i 0.695364 + 0.401469i 0.805618 0.592435i \(-0.201833\pi\)
−0.110254 + 0.993903i \(0.535167\pi\)
\(152\) 0 0
\(153\) 49.5000 + 85.7365i 0.323529 + 0.560369i
\(154\) 0 0
\(155\) 24.0000 + 13.8564i 0.154839 + 0.0893962i
\(156\) 0 0
\(157\) −2.00000 3.46410i −0.0127389 0.0220643i 0.859586 0.510992i \(-0.170722\pi\)
−0.872325 + 0.488927i \(0.837388\pi\)
\(158\) 0 0
\(159\) −78.0000 + 135.100i −0.490566 + 0.849685i
\(160\) 0 0
\(161\) −84.0000 −0.521739
\(162\) 0 0
\(163\) 311.769i 1.91269i 0.292233 + 0.956347i \(0.405602\pi\)
−0.292233 + 0.956347i \(0.594398\pi\)
\(164\) 0 0
\(165\) 126.000 + 72.7461i 0.763636 + 0.440886i
\(166\) 0 0
\(167\) 156.000 90.0666i 0.934132 0.539321i 0.0460158 0.998941i \(-0.485348\pi\)
0.888116 + 0.459620i \(0.152014\pi\)
\(168\) 0 0
\(169\) −157.500 + 272.798i −0.931953 + 1.61419i
\(170\) 0 0
\(171\) −121.500 + 70.1481i −0.710526 + 0.410223i
\(172\) 0 0
\(173\) −1.00000 + 1.73205i −0.00578035 + 0.0100119i −0.868901 0.494986i \(-0.835173\pi\)
0.863121 + 0.504998i \(0.168507\pi\)
\(174\) 0 0
\(175\) −27.0000 + 15.5885i −0.154286 + 0.0890769i
\(176\) 0 0
\(177\) 161.081i 0.910061i
\(178\) 0 0
\(179\) 187.061i 1.04504i −0.852628 0.522518i \(-0.824993\pi\)
0.852628 0.522518i \(-0.175007\pi\)
\(180\) 0 0
\(181\) −254.000 −1.40331 −0.701657 0.712514i \(-0.747556\pi\)
−0.701657 + 0.712514i \(0.747556\pi\)
\(182\) 0 0
\(183\) 24.0000 + 41.5692i 0.131148 + 0.227154i
\(184\) 0 0
\(185\) 32.0000 + 55.4256i 0.172973 + 0.299598i
\(186\) 0 0
\(187\) −115.500 66.6840i −0.617647 0.356599i
\(188\) 0 0
\(189\) 81.0000 + 46.7654i 0.428571 + 0.247436i
\(190\) 0 0
\(191\) 3.00000 + 1.73205i 0.0157068 + 0.00906833i 0.507833 0.861456i \(-0.330447\pi\)
−0.492126 + 0.870524i \(0.663780\pi\)
\(192\) 0 0
\(193\) 33.5000 + 58.0237i 0.173575 + 0.300641i 0.939667 0.342090i \(-0.111135\pi\)
−0.766092 + 0.642731i \(0.777801\pi\)
\(194\) 0 0
\(195\) −132.000 228.631i −0.676923 1.17247i
\(196\) 0 0
\(197\) −268.000 −1.36041 −0.680203 0.733024i \(-0.738108\pi\)
−0.680203 + 0.733024i \(0.738108\pi\)
\(198\) 0 0
\(199\) 31.1769i 0.156668i −0.996927 0.0783340i \(-0.975040\pi\)
0.996927 0.0783340i \(-0.0249600\pi\)
\(200\) 0 0
\(201\) 348.142i 1.73205i
\(202\) 0 0
\(203\) −102.000 + 58.8897i −0.502463 + 0.290097i
\(204\) 0 0
\(205\) 26.0000 45.0333i 0.126829 0.219675i
\(206\) 0 0
\(207\) −189.000 109.119i −0.913043 0.527146i
\(208\) 0 0
\(209\) 94.5000 163.679i 0.452153 0.783152i
\(210\) 0 0
\(211\) −114.000 + 65.8179i −0.540284 + 0.311933i −0.745194 0.666848i \(-0.767643\pi\)
0.204910 + 0.978781i \(0.434310\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 200.918i 0.934502i
\(216\) 0 0
\(217\) −24.0000 −0.110599
\(218\) 0 0
\(219\) −37.5000 + 64.9519i −0.171233 + 0.296584i
\(220\) 0 0
\(221\) 121.000 + 209.578i 0.547511 + 0.948317i
\(222\) 0 0
\(223\) 51.0000 + 29.4449i 0.228700 + 0.132040i 0.609972 0.792423i \(-0.291181\pi\)
−0.381272 + 0.924463i \(0.624514\pi\)
\(224\) 0 0
\(225\) −81.0000 −0.360000
\(226\) 0 0
\(227\) 388.500 + 224.301i 1.71145 + 0.988108i 0.932607 + 0.360894i \(0.117529\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(228\) 0 0
\(229\) 205.000 + 355.070i 0.895197 + 1.55053i 0.833561 + 0.552427i \(0.186298\pi\)
0.0616353 + 0.998099i \(0.480368\pi\)
\(230\) 0 0
\(231\) −126.000 −0.545455
\(232\) 0 0
\(233\) −65.0000 −0.278970 −0.139485 0.990224i \(-0.544545\pi\)
−0.139485 + 0.990224i \(0.544545\pi\)
\(234\) 0 0
\(235\) 13.8564i 0.0589634i
\(236\) 0 0
\(237\) 72.0000 41.5692i 0.303797 0.175398i
\(238\) 0 0
\(239\) −33.0000 + 19.0526i −0.138075 + 0.0797178i −0.567446 0.823410i \(-0.692069\pi\)
0.429371 + 0.903128i \(0.358735\pi\)
\(240\) 0 0
\(241\) 111.500 193.124i 0.462656 0.801343i −0.536437 0.843941i \(-0.680230\pi\)
0.999092 + 0.0425975i \(0.0135633\pi\)
\(242\) 0 0
\(243\) 121.500 + 210.444i 0.500000 + 0.866025i
\(244\) 0 0
\(245\) 74.0000 128.172i 0.302041 0.523150i
\(246\) 0 0
\(247\) −297.000 + 171.473i −1.20243 + 0.694223i
\(248\) 0 0
\(249\) −90.0000 + 51.9615i −0.361446 + 0.208681i
\(250\) 0 0
\(251\) 109.119i 0.434738i −0.976090 0.217369i \(-0.930253\pi\)
0.976090 0.217369i \(-0.0697475\pi\)
\(252\) 0 0
\(253\) 294.000 1.16206
\(254\) 0 0
\(255\) −132.000 −0.517647
\(256\) 0 0
\(257\) 218.500 + 378.453i 0.850195 + 1.47258i 0.881032 + 0.473056i \(0.156849\pi\)
−0.0308379 + 0.999524i \(0.509818\pi\)
\(258\) 0 0
\(259\) −48.0000 27.7128i −0.185328 0.106999i
\(260\) 0 0
\(261\) −306.000 −1.17241
\(262\) 0 0
\(263\) 273.000 + 157.617i 1.03802 + 0.599303i 0.919273 0.393621i \(-0.128778\pi\)
0.118750 + 0.992924i \(0.462111\pi\)
\(264\) 0 0
\(265\) −104.000 180.133i −0.392453 0.679748i
\(266\) 0 0
\(267\) −3.00000 + 5.19615i −0.0112360 + 0.0194612i
\(268\) 0 0
\(269\) −304.000 −1.13011 −0.565056 0.825053i \(-0.691145\pi\)
−0.565056 + 0.825053i \(0.691145\pi\)
\(270\) 0 0
\(271\) 311.769i 1.15044i −0.817999 0.575220i \(-0.804917\pi\)
0.817999 0.575220i \(-0.195083\pi\)
\(272\) 0 0
\(273\) 198.000 + 114.315i 0.725275 + 0.418738i
\(274\) 0 0
\(275\) 94.5000 54.5596i 0.343636 0.198399i
\(276\) 0 0
\(277\) −17.0000 + 29.4449i −0.0613718 + 0.106299i −0.895079 0.445908i \(-0.852881\pi\)
0.833707 + 0.552207i \(0.186214\pi\)
\(278\) 0 0
\(279\) −54.0000 31.1769i −0.193548 0.111745i
\(280\) 0 0
\(281\) 109.000 188.794i 0.387900 0.671863i −0.604267 0.796782i \(-0.706534\pi\)
0.992167 + 0.124919i \(0.0398671\pi\)
\(282\) 0 0
\(283\) −6.00000 + 3.46410i −0.0212014 + 0.0122406i −0.510563 0.859840i \(-0.670563\pi\)
0.489362 + 0.872081i \(0.337230\pi\)
\(284\) 0 0
\(285\) 187.061i 0.656356i
\(286\) 0 0
\(287\) 45.0333i 0.156911i
\(288\) 0 0
\(289\) −168.000 −0.581315
\(290\) 0 0
\(291\) −64.5000 111.717i −0.221649 0.383908i
\(292\) 0 0
\(293\) 101.000 + 174.937i 0.344710 + 0.597055i 0.985301 0.170827i \(-0.0546440\pi\)
−0.640591 + 0.767882i \(0.721311\pi\)
\(294\) 0 0
\(295\) 186.000 + 107.387i 0.630508 + 0.364024i
\(296\) 0 0
\(297\) −283.500 163.679i −0.954545 0.551107i
\(298\) 0 0
\(299\) −462.000 266.736i −1.54515 0.892093i
\(300\) 0 0
\(301\) −87.0000 150.688i −0.289037 0.500626i
\(302\) 0 0
\(303\) 30.0000 + 51.9615i 0.0990099 + 0.171490i
\(304\) 0 0
\(305\) −64.0000 −0.209836
\(306\) 0 0
\(307\) 109.119i 0.355437i −0.984081 0.177719i \(-0.943128\pi\)
0.984081 0.177719i \(-0.0568717\pi\)
\(308\) 0 0
\(309\) 72.7461i 0.235424i
\(310\) 0 0
\(311\) 237.000 136.832i 0.762058 0.439974i −0.0679762 0.997687i \(-0.521654\pi\)
0.830034 + 0.557713i \(0.188321\pi\)
\(312\) 0 0
\(313\) 39.5000 68.4160i 0.126198 0.218581i −0.796003 0.605293i \(-0.793056\pi\)
0.922201 + 0.386712i \(0.126389\pi\)
\(314\) 0 0
\(315\) −108.000 + 62.3538i −0.342857 + 0.197949i
\(316\) 0 0
\(317\) 251.000 434.745i 0.791798 1.37143i −0.133054 0.991109i \(-0.542479\pi\)
0.924853 0.380326i \(-0.124188\pi\)
\(318\) 0 0
\(319\) 357.000 206.114i 1.11912 0.646126i
\(320\) 0 0
\(321\) −40.5000 23.3827i −0.126168 0.0728433i
\(322\) 0 0
\(323\) 171.473i 0.530876i
\(324\) 0 0
\(325\) −198.000 −0.609231
\(326\) 0 0
\(327\) 132.000 228.631i 0.403670 0.699176i
\(328\) 0 0
\(329\) −6.00000 10.3923i −0.0182371 0.0315876i
\(330\) 0 0
\(331\) 354.000 + 204.382i 1.06949 + 0.617468i 0.928041 0.372478i \(-0.121492\pi\)
0.141445 + 0.989946i \(0.454825\pi\)
\(332\) 0 0
\(333\) −72.0000 124.708i −0.216216 0.374497i
\(334\) 0 0
\(335\) −402.000 232.095i −1.20000 0.692820i
\(336\) 0 0
\(337\) 168.500 + 291.851i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 0 0
\(339\) 150.000 0.442478
\(340\) 0 0
\(341\) 84.0000 0.246334
\(342\) 0 0
\(343\) 297.913i 0.868550i
\(344\) 0 0
\(345\) 252.000 145.492i 0.730435 0.421717i
\(346\) 0 0
\(347\) 235.500 135.966i 0.678674 0.391833i −0.120681 0.992691i \(-0.538508\pi\)
0.799355 + 0.600859i \(0.205174\pi\)
\(348\) 0 0
\(349\) 136.000 235.559i 0.389685 0.674954i −0.602722 0.797951i \(-0.705917\pi\)
0.992407 + 0.122997i \(0.0392506\pi\)
\(350\) 0 0
\(351\) 297.000 + 514.419i 0.846154 + 1.46558i
\(352\) 0 0
\(353\) 230.500 399.238i 0.652975 1.13099i −0.329423 0.944182i \(-0.606854\pi\)
0.982397 0.186803i \(-0.0598125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 99.0000 57.1577i 0.277311 0.160106i
\(358\) 0 0
\(359\) 530.008i 1.47634i −0.674612 0.738172i \(-0.735689\pi\)
0.674612 0.738172i \(-0.264311\pi\)
\(360\) 0 0
\(361\) 118.000 0.326870
\(362\) 0 0
\(363\) 78.0000 0.214876
\(364\) 0 0
\(365\) −50.0000 86.6025i −0.136986 0.237267i
\(366\) 0 0
\(367\) −84.0000 48.4974i −0.228883 0.132146i 0.381174 0.924503i \(-0.375520\pi\)
−0.610057 + 0.792358i \(0.708853\pi\)
\(368\) 0 0
\(369\) −58.5000 + 101.325i −0.158537 + 0.274593i
\(370\) 0 0
\(371\) 156.000 + 90.0666i 0.420485 + 0.242767i
\(372\) 0 0
\(373\) −173.000 299.645i −0.463807 0.803337i 0.535340 0.844637i \(-0.320184\pi\)
−0.999147 + 0.0412995i \(0.986850\pi\)
\(374\) 0 0
\(375\) 204.000 353.338i 0.544000 0.942236i
\(376\) 0 0
\(377\) −748.000 −1.98408
\(378\) 0 0
\(379\) 327.358i 0.863740i −0.901936 0.431870i \(-0.857854\pi\)
0.901936 0.431870i \(-0.142146\pi\)
\(380\) 0 0
\(381\) 567.000 + 327.358i 1.48819 + 0.859206i
\(382\) 0 0
\(383\) −546.000 + 315.233i −1.42559 + 0.823063i −0.996769 0.0803272i \(-0.974403\pi\)
−0.428819 + 0.903390i \(0.641070\pi\)
\(384\) 0 0
\(385\) 84.0000 145.492i 0.218182 0.377902i
\(386\) 0 0
\(387\) 452.065i 1.16813i
\(388\) 0 0
\(389\) −73.0000 + 126.440i −0.187661 + 0.325038i −0.944470 0.328598i \(-0.893424\pi\)
0.756809 + 0.653636i \(0.226757\pi\)
\(390\) 0 0
\(391\) −231.000 + 133.368i −0.590793 + 0.341094i
\(392\) 0 0
\(393\) 581.969i 1.48084i
\(394\) 0 0
\(395\) 110.851i 0.280636i
\(396\) 0 0
\(397\) −488.000 −1.22922 −0.614610 0.788831i \(-0.710686\pi\)
−0.614610 + 0.788831i \(0.710686\pi\)
\(398\) 0 0
\(399\) 81.0000 + 140.296i 0.203008 + 0.351619i
\(400\) 0 0
\(401\) −222.500 385.381i −0.554863 0.961051i −0.997914 0.0645544i \(-0.979437\pi\)
0.443051 0.896496i \(-0.353896\pi\)
\(402\) 0 0
\(403\) −132.000 76.2102i −0.327543 0.189107i
\(404\) 0 0
\(405\) −324.000 −0.800000
\(406\) 0 0
\(407\) 168.000 + 96.9948i 0.412776 + 0.238317i
\(408\) 0 0
\(409\) 33.5000 + 58.0237i 0.0819071 + 0.141867i 0.904069 0.427386i \(-0.140566\pi\)
−0.822162 + 0.569254i \(0.807232\pi\)
\(410\) 0 0
\(411\) 253.500 + 439.075i 0.616788 + 1.06831i
\(412\) 0 0
\(413\) −186.000 −0.450363
\(414\) 0 0
\(415\) 138.564i 0.333889i
\(416\) 0 0
\(417\) 587.165i 1.40807i
\(418\) 0 0
\(419\) −534.000 + 308.305i −1.27446 + 0.735812i −0.975825 0.218555i \(-0.929866\pi\)
−0.298638 + 0.954366i \(0.596532\pi\)
\(420\) 0 0
\(421\) 136.000 235.559i 0.323040 0.559522i −0.658073 0.752954i \(-0.728628\pi\)
0.981114 + 0.193431i \(0.0619617\pi\)
\(422\) 0 0
\(423\) 31.1769i 0.0737043i
\(424\) 0 0
\(425\) −49.5000 + 85.7365i −0.116471 + 0.201733i
\(426\) 0 0
\(427\) 48.0000 27.7128i 0.112412 0.0649012i
\(428\) 0 0
\(429\) −693.000 400.104i −1.61538 0.932643i
\(430\) 0 0
\(431\) 405.300i 0.940371i 0.882568 + 0.470185i \(0.155813\pi\)
−0.882568 + 0.470185i \(0.844187\pi\)
\(432\) 0 0
\(433\) −439.000 −1.01386 −0.506928 0.861988i \(-0.669219\pi\)
−0.506928 + 0.861988i \(0.669219\pi\)
\(434\) 0 0
\(435\) 204.000 353.338i 0.468966 0.812272i
\(436\) 0 0
\(437\) −189.000 327.358i −0.432494 0.749102i
\(438\) 0 0
\(439\) −732.000 422.620i −1.66743 0.962689i −0.969018 0.246989i \(-0.920559\pi\)
−0.698408 0.715700i \(-0.746108\pi\)
\(440\) 0 0
\(441\) −166.500 + 288.386i −0.377551 + 0.653938i
\(442\) 0 0
\(443\) −286.500 165.411i −0.646727 0.373388i 0.140474 0.990084i \(-0.455137\pi\)
−0.787201 + 0.616696i \(0.788471\pi\)
\(444\) 0 0
\(445\) −4.00000 6.92820i −0.00898876 0.0155690i
\(446\) 0 0
\(447\) 390.000 0.872483
\(448\) 0 0
\(449\) −47.0000 −0.104677 −0.0523385 0.998629i \(-0.516667\pi\)
−0.0523385 + 0.998629i \(0.516667\pi\)
\(450\) 0 0
\(451\) 157.617i 0.349483i
\(452\) 0 0
\(453\) 315.000 181.865i 0.695364 0.401469i
\(454\) 0 0
\(455\) −264.000 + 152.420i −0.580220 + 0.334990i
\(456\) 0 0
\(457\) 165.500 286.654i 0.362144 0.627253i −0.626169 0.779687i \(-0.715378\pi\)
0.988314 + 0.152435i \(0.0487114\pi\)
\(458\) 0 0
\(459\) 297.000 0.647059
\(460\) 0 0
\(461\) 269.000 465.922i 0.583514 1.01068i −0.411545 0.911390i \(-0.635011\pi\)
0.995059 0.0992865i \(-0.0316560\pi\)
\(462\) 0 0
\(463\) 492.000 284.056i 1.06263 0.613513i 0.136475 0.990644i \(-0.456423\pi\)
0.926160 + 0.377131i \(0.123089\pi\)
\(464\) 0 0
\(465\) 72.0000 41.5692i 0.154839 0.0893962i
\(466\) 0 0
\(467\) 639.127i 1.36858i 0.729210 + 0.684290i \(0.239888\pi\)
−0.729210 + 0.684290i \(0.760112\pi\)
\(468\) 0 0
\(469\) 402.000 0.857143
\(470\) 0 0
\(471\) −12.0000 −0.0254777
\(472\) 0 0
\(473\) 304.500 + 527.409i 0.643763 + 1.11503i
\(474\) 0 0
\(475\) −121.500 70.1481i −0.255789 0.147680i
\(476\) 0 0
\(477\) 234.000 + 405.300i 0.490566 + 0.849685i
\(478\) 0 0
\(479\) −105.000 60.6218i −0.219207 0.126559i 0.386376 0.922341i \(-0.373727\pi\)
−0.605583 + 0.795782i \(0.707060\pi\)
\(480\) 0 0
\(481\) −176.000 304.841i −0.365904 0.633765i
\(482\) 0 0
\(483\) −126.000 + 218.238i −0.260870 + 0.451839i
\(484\) 0 0
\(485\) 172.000 0.354639
\(486\) 0 0
\(487\) 405.300i 0.832238i 0.909310 + 0.416119i \(0.136610\pi\)
−0.909310 + 0.416119i \(0.863390\pi\)
\(488\) 0 0
\(489\) 810.000 + 467.654i 1.65644 + 0.956347i
\(490\) 0 0
\(491\) −628.500 + 362.865i −1.28004 + 0.739032i −0.976856 0.213900i \(-0.931383\pi\)
−0.303185 + 0.952932i \(0.598050\pi\)
\(492\) 0 0
\(493\) −187.000 + 323.894i −0.379310 + 0.656985i
\(494\) 0 0
\(495\) 378.000 218.238i 0.763636 0.440886i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −451.500 + 260.674i −0.904810 + 0.522392i −0.878758 0.477269i \(-0.841627\pi\)
−0.0260521 + 0.999661i \(0.508294\pi\)
\(500\) 0 0
\(501\) 540.400i 1.07864i
\(502\) 0 0
\(503\) 872.954i 1.73549i 0.497006 + 0.867747i \(0.334433\pi\)
−0.497006 + 0.867747i \(0.665567\pi\)
\(504\) 0 0
\(505\) −80.0000 −0.158416
\(506\) 0 0
\(507\) 472.500 + 818.394i 0.931953 + 1.61419i
\(508\) 0 0
\(509\) 380.000 + 658.179i 0.746562 + 1.29308i 0.949461 + 0.313884i \(0.101630\pi\)
−0.202900 + 0.979200i \(0.565037\pi\)
\(510\) 0 0
\(511\) 75.0000 + 43.3013i 0.146771 + 0.0847383i
\(512\) 0 0
\(513\) 420.888i 0.820445i
\(514\) 0 0
\(515\) −84.0000 48.4974i −0.163107 0.0941698i
\(516\) 0 0
\(517\) 21.0000 + 36.3731i 0.0406190 + 0.0703541i
\(518\) 0 0
\(519\) 3.00000 + 5.19615i 0.00578035 + 0.0100119i
\(520\) 0 0
\(521\) 745.000 1.42994 0.714971 0.699154i \(-0.246440\pi\)
0.714971 + 0.699154i \(0.246440\pi\)
\(522\) 0 0
\(523\) 561.184i 1.07301i −0.843897 0.536505i \(-0.819744\pi\)
0.843897 0.536505i \(-0.180256\pi\)
\(524\) 0 0
\(525\) 93.5307i 0.178154i
\(526\) 0 0
\(527\) −66.0000 + 38.1051i −0.125237 + 0.0723057i
\(528\) 0 0
\(529\) 29.5000 51.0955i 0.0557656 0.0965888i
\(530\) 0 0
\(531\) −418.500 241.621i −0.788136 0.455030i
\(532\) 0 0
\(533\) −143.000 + 247.683i −0.268293 + 0.464697i
\(534\) 0 0
\(535\) 54.0000 31.1769i 0.100935 0.0582746i
\(536\) 0 0
\(537\) −486.000 280.592i −0.905028 0.522518i
\(538\) 0 0
\(539\) 448.601i 0.832284i
\(540\) 0 0
\(541\) 520.000 0.961183 0.480591 0.876945i \(-0.340422\pi\)
0.480591 + 0.876945i \(0.340422\pi\)
\(542\) 0 0
\(543\) −381.000 + 659.911i −0.701657 + 1.21531i
\(544\) 0 0
\(545\) 176.000 + 304.841i 0.322936 + 0.559341i
\(546\) 0 0
\(547\) −334.500 193.124i −0.611517 0.353060i 0.162042 0.986784i \(-0.448192\pi\)
−0.773559 + 0.633724i \(0.781525\pi\)
\(548\) 0 0
\(549\) 144.000 0.262295
\(550\) 0 0
\(551\) −459.000 265.004i −0.833031 0.480951i
\(552\) 0 0
\(553\) −48.0000 83.1384i −0.0867993 0.150341i
\(554\) 0 0
\(555\) 192.000 0.345946
\(556\) 0 0
\(557\) −934.000 −1.67684 −0.838420 0.545025i \(-0.816520\pi\)
−0.838420 + 0.545025i \(0.816520\pi\)
\(558\) 0 0
\(559\) 1105.05i 1.97683i
\(560\) 0 0
\(561\) −346.500 + 200.052i −0.617647 + 0.356599i
\(562\) 0 0
\(563\) 613.500 354.204i 1.08970 0.629137i 0.156202 0.987725i \(-0.450075\pi\)
0.933496 + 0.358588i \(0.116742\pi\)
\(564\) 0 0
\(565\) −100.000 + 173.205i −0.176991 + 0.306558i
\(566\) 0 0
\(567\) 243.000 140.296i 0.428571 0.247436i
\(568\) 0 0
\(569\) 347.500 601.888i 0.610721 1.05780i −0.380399 0.924823i \(-0.624213\pi\)
0.991119 0.132976i \(-0.0424535\pi\)
\(570\) 0 0
\(571\) 466.500 269.334i 0.816988 0.471688i −0.0323889 0.999475i \(-0.510311\pi\)
0.849377 + 0.527787i \(0.176978\pi\)
\(572\) 0 0
\(573\) 9.00000 5.19615i 0.0157068 0.00906833i
\(574\) 0 0
\(575\) 218.238i 0.379545i
\(576\) 0 0
\(577\) 227.000 0.393414 0.196707 0.980462i \(-0.436975\pi\)
0.196707 + 0.980462i \(0.436975\pi\)
\(578\) 0 0
\(579\) 201.000 0.347150
\(580\) 0 0
\(581\) 60.0000 + 103.923i 0.103270 + 0.178869i
\(582\) 0 0
\(583\) −546.000 315.233i −0.936535 0.540709i
\(584\) 0 0
\(585\) −792.000 −1.35385
\(586\) 0 0
\(587\) −124.500 71.8801i −0.212095 0.122453i 0.390189 0.920735i \(-0.372410\pi\)
−0.602285 + 0.798281i \(0.705743\pi\)
\(588\) 0 0
\(589\) −54.0000 93.5307i −0.0916808 0.158796i
\(590\) 0 0
\(591\) −402.000 + 696.284i −0.680203 + 1.17815i
\(592\) 0 0
\(593\) −506.000 −0.853288 −0.426644 0.904420i \(-0.640304\pi\)
−0.426644 + 0.904420i \(0.640304\pi\)
\(594\) 0 0
\(595\) 152.420i 0.256169i
\(596\) 0 0
\(597\) −81.0000 46.7654i −0.135678 0.0783340i
\(598\) 0 0
\(599\) 48.0000 27.7128i 0.0801336 0.0462651i −0.459398 0.888231i \(-0.651935\pi\)
0.539531 + 0.841965i \(0.318601\pi\)
\(600\) 0 0
\(601\) −167.500 + 290.119i −0.278702 + 0.482726i −0.971062 0.238826i \(-0.923238\pi\)
0.692360 + 0.721552i \(0.256571\pi\)
\(602\) 0 0
\(603\) 904.500 + 522.213i 1.50000 + 0.866025i
\(604\) 0 0
\(605\) −52.0000 + 90.0666i −0.0859504 + 0.148870i
\(606\) 0 0
\(607\) 546.000 315.233i 0.899506 0.519330i 0.0224660 0.999748i \(-0.492848\pi\)
0.877040 + 0.480418i \(0.159515\pi\)
\(608\) 0 0
\(609\) 353.338i 0.580194i
\(610\) 0 0
\(611\) 76.2102i 0.124730i
\(612\) 0 0
\(613\) 340.000 0.554649 0.277325 0.960776i \(-0.410552\pi\)
0.277325 + 0.960776i \(0.410552\pi\)
\(614\) 0 0
\(615\) −78.0000 135.100i −0.126829 0.219675i
\(616\) 0 0
\(617\) −195.500 338.616i −0.316856 0.548810i 0.662974 0.748642i \(-0.269294\pi\)
−0.979830 + 0.199832i \(0.935960\pi\)
\(618\) 0 0
\(619\) −10.5000 6.06218i −0.0169628 0.00979350i 0.491495 0.870881i \(-0.336451\pi\)
−0.508457 + 0.861087i \(0.669784\pi\)
\(620\) 0 0
\(621\) −567.000 + 327.358i −0.913043 + 0.527146i
\(622\) 0 0
\(623\) 6.00000 + 3.46410i 0.00963082 + 0.00556036i
\(624\) 0 0
\(625\) 159.500 + 276.262i 0.255200 + 0.442019i
\(626\) 0 0
\(627\) −283.500 491.036i −0.452153 0.783152i
\(628\) 0 0
\(629\) −176.000 −0.279809
\(630\) 0 0
\(631\) 436.477i 0.691722i −0.938286 0.345861i \(-0.887587\pi\)
0.938286 0.345861i \(-0.112413\pi\)
\(632\) 0 0
\(633\) 394.908i 0.623867i
\(634\) 0 0
\(635\) −756.000 + 436.477i −1.19055 + 0.687365i
\(636\) 0 0
\(637\) −407.000 + 704.945i −0.638932 + 1.10666i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −210.500 + 364.597i −0.328393 + 0.568794i −0.982193 0.187874i \(-0.939840\pi\)
0.653800 + 0.756667i \(0.273174\pi\)
\(642\) 0 0
\(643\) 358.500 206.980i 0.557543 0.321897i −0.194616 0.980880i \(-0.562346\pi\)
0.752159 + 0.658982i \(0.229013\pi\)
\(644\) 0 0
\(645\) 522.000 + 301.377i 0.809302 + 0.467251i
\(646\) 0 0
\(647\) 405.300i 0.626430i 0.949682 + 0.313215i \(0.101406\pi\)
−0.949682 + 0.313215i \(0.898594\pi\)
\(648\) 0 0
\(649\) 651.000 1.00308
\(650\) 0 0
\(651\) −36.0000 + 62.3538i −0.0552995 + 0.0957816i
\(652\) 0 0
\(653\) 443.000 + 767.299i 0.678407 + 1.17504i 0.975460 + 0.220175i \(0.0706628\pi\)
−0.297053 + 0.954861i \(0.596004\pi\)
\(654\) 0 0
\(655\) 672.000 + 387.979i 1.02595 + 0.592335i
\(656\) 0 0
\(657\) 112.500 + 194.856i 0.171233 + 0.296584i
\(658\) 0 0
\(659\) 726.000 + 419.156i 1.10167 + 0.636049i 0.936659 0.350243i \(-0.113901\pi\)
0.165010 + 0.986292i \(0.447234\pi\)
\(660\) 0 0
\(661\) 124.000 + 214.774i 0.187595 + 0.324923i 0.944448 0.328662i \(-0.106598\pi\)
−0.756853 + 0.653585i \(0.773264\pi\)
\(662\) 0 0
\(663\) 726.000 1.09502
\(664\) 0 0
\(665\) −216.000 −0.324812
\(666\) 0 0
\(667\) 824.456i 1.23607i
\(668\) 0 0
\(669\) 153.000 88.3346i 0.228700 0.132040i
\(670\) 0 0
\(671\) −168.000 + 96.9948i −0.250373 + 0.144553i
\(672\) 0 0
\(673\) −577.000 + 999.393i −0.857355 + 1.48498i 0.0170877 + 0.999854i \(0.494561\pi\)
−0.874443 + 0.485129i \(0.838773\pi\)
\(674\) 0 0
\(675\) −121.500 + 210.444i −0.180000 + 0.311769i
\(676\) 0 0
\(677\) 566.000 980.341i 0.836041 1.44807i −0.0571384 0.998366i \(-0.518198\pi\)
0.893180 0.449700i \(-0.148469\pi\)
\(678\) 0 0
\(679\) −129.000 + 74.4782i −0.189985 + 0.109688i
\(680\) 0 0
\(681\) 1165.50 672.902i 1.71145 0.988108i
\(682\) 0 0
\(683\) 795.011i 1.16400i 0.813189 + 0.582000i \(0.197729\pi\)
−0.813189 + 0.582000i \(0.802271\pi\)
\(684\) 0 0
\(685\) −676.000 −0.986861
\(686\) 0 0
\(687\) 1230.00 1.79039
\(688\) 0 0
\(689\) 572.000 + 990.733i 0.830189 + 1.43793i
\(690\) 0 0
\(691\) −780.000 450.333i −1.12880 0.651712i −0.185166 0.982707i \(-0.559282\pi\)
−0.943633 + 0.330995i \(0.892616\pi\)
\(692\) 0 0
\(693\) −189.000 + 327.358i −0.272727 + 0.472377i
\(694\) 0 0
\(695\) 678.000 + 391.443i 0.975540 + 0.563228i
\(696\) 0 0
\(697\) 71.5000 + 123.842i 0.102582 + 0.177678i
\(698\) 0 0
\(699\) −97.5000 + 168.875i −0.139485 + 0.241595i
\(700\) 0 0
\(701\) −142.000 −0.202568 −0.101284 0.994858i \(-0.532295\pi\)
−0.101284 + 0.994858i \(0.532295\pi\)
\(702\) 0 0
\(703\) 249.415i 0.354787i
\(704\) 0 0
\(705\) 36.0000 + 20.7846i 0.0510638 + 0.0294817i
\(706\) 0 0
\(707\) 60.0000 34.6410i 0.0848656 0.0489972i
\(708\) 0 0
\(709\) 370.000 640.859i 0.521862 0.903891i −0.477815 0.878461i \(-0.658571\pi\)
0.999677 0.0254305i \(-0.00809566\pi\)
\(710\) 0 0
\(711\) 249.415i 0.350795i
\(712\) 0 0
\(713\) 84.0000 145.492i 0.117812 0.204056i
\(714\) 0 0
\(715\) 924.000 533.472i 1.29231 0.746114i
\(716\) 0 0
\(717\) 114.315i 0.159436i
\(718\) 0 0
\(719\) 124.708i 0.173446i 0.996232 + 0.0867230i \(0.0276395\pi\)
−0.996232 + 0.0867230i \(0.972360\pi\)
\(720\) 0 0
\(721\) 84.0000 0.116505
\(722\) 0 0
\(723\) −334.500 579.371i −0.462656 0.801343i
\(724\) 0 0
\(725\) −153.000 265.004i −0.211034 0.365522i
\(726\) 0 0
\(727\) −705.000 407.032i −0.969739 0.559879i −0.0705821 0.997506i \(-0.522486\pi\)
−0.899157 + 0.437627i \(0.855819\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) −478.500 276.262i −0.654583 0.377924i
\(732\) 0 0
\(733\) 457.000 + 791.547i 0.623465 + 1.07987i 0.988836 + 0.149011i \(0.0476090\pi\)
−0.365370 + 0.930862i \(0.619058\pi\)
\(734\) 0 0
\(735\) −222.000 384.515i −0.302041 0.523150i
\(736\) 0 0
\(737\) −1407.00 −1.90909
\(738\) 0 0
\(739\) 358.535i 0.485162i 0.970131 + 0.242581i \(0.0779940\pi\)
−0.970131 + 0.242581i \(0.922006\pi\)
\(740\) 0 0
\(741\) 1028.84i 1.38845i
\(742\) 0 0
\(743\) 345.000 199.186i 0.464334 0.268083i −0.249531 0.968367i \(-0.580276\pi\)
0.713865 + 0.700284i \(0.246943\pi\)
\(744\) 0 0
\(745\) −260.000 + 450.333i −0.348993 + 0.604474i
\(746\) 0 0
\(747\) 311.769i 0.417362i
\(748\) 0 0
\(749\) −27.0000 + 46.7654i −0.0360481 + 0.0624371i
\(750\) 0 0
\(751\) −966.000 + 557.720i −1.28628 + 0.742637i −0.977990 0.208654i \(-0.933092\pi\)
−0.308295 + 0.951291i \(0.599759\pi\)
\(752\) 0 0
\(753\) −283.500 163.679i −0.376494 0.217369i
\(754\) 0 0
\(755\) 484.974i 0.642350i
\(756\) 0 0
\(757\) −758.000 −1.00132 −0.500661 0.865644i \(-0.666909\pi\)
−0.500661 + 0.865644i \(0.666909\pi\)
\(758\) 0 0
\(759\) 441.000 763.834i 0.581028 1.00637i
\(760\) 0 0
\(761\) 187.000 + 323.894i 0.245729 + 0.425616i 0.962336 0.271861i \(-0.0876392\pi\)
−0.716607 + 0.697477i \(0.754306\pi\)
\(762\) 0 0
\(763\) −264.000 152.420i −0.346003 0.199765i
\(764\) 0 0
\(765\) −198.000 + 342.946i −0.258824 + 0.448296i
\(766\) 0 0
\(767\) −1023.00 590.629i −1.33377 0.770051i
\(768\) 0 0
\(769\) 11.0000 + 19.0526i 0.0143043 + 0.0247758i 0.873089 0.487561i \(-0.162113\pi\)
−0.858785 + 0.512337i \(0.828780\pi\)
\(770\) 0 0
\(771\) 1311.00 1.70039
\(772\) 0 0
\(773\) 1334.00 1.72574 0.862872 0.505423i \(-0.168663\pi\)
0.862872 + 0.505423i \(0.168663\pi\)
\(774\) 0 0
\(775\) 62.3538i 0.0804566i
\(776\) 0 0
\(777\) −144.000 + 83.1384i −0.185328 + 0.106999i
\(778\) 0 0
\(779\) −175.500 + 101.325i −0.225289 + 0.130071i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −459.000 + 795.011i −0.586207 + 1.01534i
\(784\) 0 0
\(785\) 8.00000 13.8564i 0.0101911 0.0176515i
\(786\) 0 0
\(787\) −762.000 + 439.941i −0.968234 + 0.559010i −0.898697 0.438569i \(-0.855485\pi\)
−0.0695365 + 0.997579i \(0.522152\pi\)
\(788\) 0 0
\(789\) 819.000 472.850i 1.03802 0.599303i
\(790\) 0 0
\(791\) 173.205i 0.218970i
\(792\) 0 0
\(793\) 352.000 0.443884
\(794\) 0 0
\(795\) −624.000 −0.784906
\(796\) 0 0
\(797\) 416.000 + 720.533i 0.521957 + 0.904057i 0.999674 + 0.0255425i \(0.00813132\pi\)
−0.477716 + 0.878514i \(0.658535\pi\)
\(798\) 0 0
\(799\) −33.0000 19.0526i −0.0413016 0.0238455i
\(800\) 0 0
\(801\) 9.00000 + 15.5885i 0.0112360 + 0.0194612i
\(802\) 0 0
\(803\) −262.500 151.554i −0.326899 0.188735i
\(804\) 0 0
\(805\) −168.000 290.985i −0.208696 0.361471i
\(806\) 0 0
\(807\) −456.000 + 789.815i −0.565056 + 0.978705i
\(808\) 0 0
\(809\) 493.000 0.609394 0.304697 0.952449i \(-0.401445\pi\)
0.304697 + 0.952449i \(0.401445\pi\)
\(810\) 0 0
\(811\) 327.358i 0.403647i 0.979422 + 0.201823i \(0.0646867\pi\)
−0.979422 + 0.201823i \(0.935313\pi\)
\(812\) 0 0
\(813\) −810.000 467.654i −0.996310 0.575220i
\(814\) 0 0
\(815\) −1080.00 + 623.538i −1.32515 + 0.765078i
\(816\) 0 0
\(817\) 391.500 678.098i 0.479192 0.829985i
\(818\) 0 0
\(819\) 594.000 342.946i 0.725275 0.418738i
\(820\) 0 0
\(821\) −379.000 + 656.447i −0.461632 + 0.799570i −0.999042 0.0437505i \(-0.986069\pi\)
0.537410 + 0.843321i \(0.319403\pi\)
\(822\) 0 0
\(823\) −750.000 + 433.013i −0.911300 + 0.526139i −0.880849 0.473397i \(-0.843028\pi\)
−0.0304509 + 0.999536i \(0.509694\pi\)
\(824\) 0 0
\(825\) 327.358i 0.396797i
\(826\) 0 0
\(827\) 436.477i 0.527783i −0.964552 0.263892i \(-0.914994\pi\)
0.964552 0.263892i \(-0.0850061\pi\)
\(828\) 0 0
\(829\) 718.000 0.866104 0.433052 0.901369i \(-0.357437\pi\)
0.433052 + 0.901369i \(0.357437\pi\)
\(830\) 0 0
\(831\) 51.0000 + 88.3346i 0.0613718 + 0.106299i
\(832\) 0 0
\(833\) 203.500 + 352.472i 0.244298 + 0.423136i
\(834\) 0 0
\(835\) 624.000 + 360.267i 0.747305 + 0.431457i
\(836\) 0 0
\(837\) −162.000 + 93.5307i −0.193548 + 0.111745i
\(838\) 0 0
\(839\) 786.000 + 453.797i 0.936830 + 0.540879i 0.888965 0.457975i \(-0.151425\pi\)
0.0478645 + 0.998854i \(0.484758\pi\)
\(840\) 0 0
\(841\) −157.500 272.798i −0.187277 0.324373i
\(842\) 0 0
\(843\) −327.000 566.381i −0.387900 0.671863i
\(844\) 0 0
\(845\) −1260.00 −1.49112
\(846\) 0 0
\(847\) 90.0666i 0.106336i
\(848\) 0 0
\(849\) 20.7846i 0.0244813i
\(850\) 0 0
\(851\) 336.000 193.990i 0.394830 0.227955i
\(852\) 0 0
\(853\) 73.0000 126.440i 0.0855803 0.148229i −0.820058 0.572280i \(-0.806059\pi\)
0.905638 + 0.424051i \(0.139392\pi\)
\(854\) 0 0
\(855\) −486.000 280.592i −0.568421 0.328178i
\(856\) 0 0
\(857\) 73.0000 126.440i 0.0851809 0.147538i −0.820287 0.571952i \(-0.806187\pi\)
0.905468 + 0.424414i \(0.139520\pi\)
\(858\) 0 0
\(859\) −73.5000 + 42.4352i −0.0855646 + 0.0494008i −0.542172 0.840268i \(-0.682398\pi\)
0.456607 + 0.889668i \(0.349064\pi\)
\(860\) 0 0
\(861\) 117.000 + 67.5500i 0.135889 + 0.0784553i
\(862\) 0 0
\(863\) 1184.72i 1.37280i −0.727226 0.686398i \(-0.759191\pi\)
0.727226 0.686398i \(-0.240809\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.00924855
\(866\) 0 0
\(867\) −252.000 + 436.477i −0.290657 + 0.503433i
\(868\) 0 0
\(869\) 168.000 + 290.985i 0.193326 + 0.334850i
\(870\) 0 0
\(871\) 2211.00 + 1276.52i 2.53846 + 1.46558i
\(872\) 0 0
\(873\) −387.000 −0.443299
\(874\) 0 0
\(875\) −408.000 235.559i −0.466286 0.269210i
\(876\) 0 0
\(877\) −740.000 1281.72i −0.843786 1.46148i −0.886672 0.462400i \(-0.846989\pi\)
0.0428860 0.999080i \(-0.486345\pi\)
\(878\) 0 0
\(879\) 606.000 0.689420
\(880\) 0 0
\(881\) 142.000 0.161180 0.0805902 0.996747i \(-0.474319\pi\)
0.0805902 + 0.996747i \(0.474319\pi\)
\(882\) 0 0
\(883\) 1200.31i 1.35936i 0.733511 + 0.679678i \(0.237880\pi\)
−0.733511 + 0.679678i \(0.762120\pi\)
\(884\) 0 0
\(885\) 558.000 322.161i 0.630508 0.364024i
\(886\) 0 0
\(887\) −546.000 + 315.233i −0.615558 + 0.355393i −0.775138 0.631792i \(-0.782319\pi\)
0.159580 + 0.987185i \(0.448986\pi\)
\(888\) 0 0
\(889\) 378.000 654.715i 0.425197 0.736463i
\(890\) 0 0
\(891\) −850.500 + 491.036i −0.954545 + 0.551107i
\(892\) 0 0
\(893\) 27.0000 46.7654i 0.0302352 0.0523688i
\(894\) 0 0
\(895\) 648.000 374.123i 0.724022 0.418014i
\(896\) 0 0
\(897\) −1386.00 + 800.207i −1.54515 + 0.892093i
\(898\) 0 0
\(899\) 235.559i 0.262023i
\(900\) 0 0
\(901\) 572.000 0.634850
\(902\) 0 0
\(903\) −522.000 −0.578073
\(904\) 0 0
\(905\) −508.000 879.882i −0.561326 0.972245i
\(906\) 0 0
\(907\) 556.500 + 321.295i 0.613561 + 0.354240i 0.774358 0.632748i \(-0.218073\pi\)
−0.160797 + 0.986988i \(0.551406\pi\)
\(908\) 0 0
\(909\) 180.000 0.198020
\(910\) 0 0
\(911\) −348.000 200.918i −0.381998 0.220547i 0.296689 0.954974i \(-0.404117\pi\)
−0.678687 + 0.734428i \(0.737451\pi\)
\(912\) 0 0
\(913\) −210.000 363.731i −0.230011 0.398391i
\(914\) 0 0
\(915\) −96.0000 + 166.277i −0.104918 + 0.181723i
\(916\) 0 0
\(917\) −672.000 −0.732824
\(918\) 0 0
\(919\) 779.423i 0.848121i 0.905634 + 0.424060i \(0.139396\pi\)
−0.905634 + 0.424060i \(0.860604\pi\)
\(920\) 0 0
\(921\) −283.500 163.679i −0.307818 0.177719i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 72.0000 124.708i 0.0778378 0.134819i
\(926\) 0 0
\(927\) 189.000 + 109.119i 0.203883 + 0.117712i
\(928\) 0 0
\(929\) 379.000 656.447i 0.407966 0.706617i −0.586696 0.809807i \(-0.699572\pi\)
0.994662 + 0.103190i \(0.0329050\pi\)
\(930\) 0 0
\(931\) −499.500 + 288.386i −0.536520 + 0.309760i
\(932\) 0 0
\(933\) 820.992i 0.879949i
\(934\) 0 0
\(935\) 533.472i 0.570558i
\(936\) 0 0
\(937\) −754.000 −0.804696 −0.402348 0.915487i \(-0.631806\pi\)
−0.402348 + 0.915487i \(0.631806\pi\)
\(938\) 0 0
\(939\) −118.500 205.248i −0.126198 0.218581i
\(940\) 0 0
\(941\) −898.000 1555.38i −0.954304 1.65290i −0.735953 0.677033i \(-0.763266\pi\)
−0.218351 0.975870i \(-0.570068\pi\)
\(942\) 0 0
\(943\) −273.000 157.617i −0.289502 0.167144i
\(944\) 0 0
\(945\) 374.123i 0.395897i
\(946\) 0 0
\(947\) 91.5000 + 52.8275i 0.0966209 + 0.0557841i 0.547532 0.836785i \(-0.315567\pi\)
−0.450911 + 0.892569i \(0.648901\pi\)
\(948\) 0 0
\(949\) 275.000 + 476.314i 0.289779 + 0.501911i
\(950\) 0 0
\(951\) −753.000 1304.23i −0.791798 1.37143i
\(952\) 0 0
\(953\) 1213.00 1.27282 0.636411 0.771350i \(-0.280418\pi\)
0.636411 + 0.771350i \(0.280418\pi\)
\(954\) 0 0
\(955\) 13.8564i 0.0145093i
\(956\) 0 0
\(957\) 1236.68i 1.29225i
\(958\) 0 0
\(959\) 507.000 292.717i 0.528676 0.305231i
\(960\) 0 0
\(961\) −456.500 + 790.681i −0.475026 + 0.822769i
\(962\) 0 0
\(963\) −121.500 + 70.1481i −0.126168 + 0.0728433i
\(964\) 0 0
\(965\) −134.000 + 232.095i −0.138860 + 0.240513i
\(966\) 0 0
\(967\) 303.000 174.937i 0.313340 0.180907i −0.335080 0.942190i \(-0.608763\pi\)
0.648420 + 0.761283i \(0.275430\pi\)
\(968\) 0 0
\(969\) 445.500 + 257.210i 0.459752 + 0.265438i
\(970\) 0 0
\(971\) 1434.14i 1.47697i −0.674270 0.738485i \(-0.735542\pi\)
0.674270 0.738485i \(-0.264458\pi\)
\(972\) 0 0
\(973\) −678.000 −0.696814
\(974\) 0 0
\(975\) −297.000 + 514.419i −0.304615 + 0.527609i
\(976\) 0 0
\(977\) −78.5000 135.966i −0.0803480 0.139167i 0.823051 0.567967i \(-0.192270\pi\)
−0.903399 + 0.428800i \(0.858936\pi\)
\(978\) 0 0
\(979\) −21.0000 12.1244i −0.0214505 0.0123844i
\(980\) 0 0
\(981\) −396.000 685.892i −0.403670 0.699176i
\(982\) 0 0
\(983\) 1218.00 + 703.213i 1.23906 + 0.715374i 0.968903 0.247441i \(-0.0795897\pi\)
0.270161 + 0.962815i \(0.412923\pi\)
\(984\) 0 0
\(985\) −536.000 928.379i −0.544162 0.942517i
\(986\) 0 0
\(987\) −36.0000 −0.0364742
\(988\) 0 0
\(989\) 1218.00 1.23155
\(990\) 0 0
\(991\) 249.415i 0.251680i −0.992051 0.125840i \(-0.959837\pi\)
0.992051 0.125840i \(-0.0401627\pi\)
\(992\) 0 0
\(993\) 1062.00 613.146i 1.06949 0.617468i
\(994\) 0 0
\(995\) 108.000 62.3538i 0.108543 0.0626672i
\(996\) 0 0
\(997\) −206.000 + 356.802i −0.206620 + 0.357876i −0.950648 0.310273i \(-0.899580\pi\)
0.744028 + 0.668149i \(0.232913\pi\)
\(998\) 0 0
\(999\) −432.000 −0.432432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.o.b.511.1 2
3.2 odd 2 1728.3.o.a.127.1 2
4.3 odd 2 576.3.o.a.511.1 2
8.3 odd 2 36.3.f.a.7.1 2
8.5 even 2 36.3.f.b.7.1 yes 2
9.4 even 3 576.3.o.a.319.1 2
9.5 odd 6 1728.3.o.b.1279.1 2
12.11 even 2 1728.3.o.b.127.1 2
24.5 odd 2 108.3.f.a.19.1 2
24.11 even 2 108.3.f.b.19.1 2
36.23 even 6 1728.3.o.a.1279.1 2
36.31 odd 6 inner 576.3.o.b.319.1 2
72.5 odd 6 108.3.f.b.91.1 2
72.11 even 6 324.3.d.c.163.1 2
72.13 even 6 36.3.f.a.31.1 yes 2
72.29 odd 6 324.3.d.c.163.2 2
72.43 odd 6 324.3.d.b.163.2 2
72.59 even 6 108.3.f.a.91.1 2
72.61 even 6 324.3.d.b.163.1 2
72.67 odd 6 36.3.f.b.31.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.3.f.a.7.1 2 8.3 odd 2
36.3.f.a.31.1 yes 2 72.13 even 6
36.3.f.b.7.1 yes 2 8.5 even 2
36.3.f.b.31.1 yes 2 72.67 odd 6
108.3.f.a.19.1 2 24.5 odd 2
108.3.f.a.91.1 2 72.59 even 6
108.3.f.b.19.1 2 24.11 even 2
108.3.f.b.91.1 2 72.5 odd 6
324.3.d.b.163.1 2 72.61 even 6
324.3.d.b.163.2 2 72.43 odd 6
324.3.d.c.163.1 2 72.11 even 6
324.3.d.c.163.2 2 72.29 odd 6
576.3.o.a.319.1 2 9.4 even 3
576.3.o.a.511.1 2 4.3 odd 2
576.3.o.b.319.1 2 36.31 odd 6 inner
576.3.o.b.511.1 2 1.1 even 1 trivial
1728.3.o.a.127.1 2 3.2 odd 2
1728.3.o.a.1279.1 2 36.23 even 6
1728.3.o.b.127.1 2 12.11 even 2
1728.3.o.b.1279.1 2 9.5 odd 6