Properties

Label 108.3.f.a.19.1
Level $108$
Weight $3$
Character 108.19
Analytic conductor $2.943$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [108,3,Mod(19,108)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(108, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("108.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 108.19
Dual form 108.3.f.a.91.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +(2.00000 + 3.46410i) q^{5} +(-3.00000 - 1.73205i) q^{7} -8.00000 q^{8} +(-4.00000 - 6.92820i) q^{10} +(10.5000 + 6.06218i) q^{11} +(11.0000 + 19.0526i) q^{13} +(6.00000 + 3.46410i) q^{14} +16.0000 q^{16} +11.0000 q^{17} +15.5885i q^{19} +(8.00000 + 13.8564i) q^{20} +(-21.0000 - 12.1244i) q^{22} +(-21.0000 + 12.1244i) q^{23} +(4.50000 - 7.79423i) q^{25} +(-22.0000 - 38.1051i) q^{26} +(-12.0000 - 6.92820i) q^{28} +(17.0000 - 29.4449i) q^{29} +(6.00000 - 3.46410i) q^{31} -32.0000 q^{32} -22.0000 q^{34} -13.8564i q^{35} -16.0000 q^{37} -31.1769i q^{38} +(-16.0000 - 27.7128i) q^{40} +(6.50000 + 11.2583i) q^{41} +(-43.5000 - 25.1147i) q^{43} +(42.0000 + 24.2487i) q^{44} +(42.0000 - 24.2487i) q^{46} +(-3.00000 - 1.73205i) q^{47} +(-18.5000 - 32.0429i) q^{49} +(-9.00000 + 15.5885i) q^{50} +(44.0000 + 76.2102i) q^{52} -52.0000 q^{53} +48.4974i q^{55} +(24.0000 + 13.8564i) q^{56} +(-34.0000 + 58.8897i) q^{58} +(46.5000 - 26.8468i) q^{59} +(8.00000 - 13.8564i) q^{61} +(-12.0000 + 6.92820i) q^{62} +64.0000 q^{64} +(-44.0000 + 76.2102i) q^{65} +(100.500 - 58.0237i) q^{67} +44.0000 q^{68} +27.7128i q^{70} -25.0000 q^{73} +32.0000 q^{74} +62.3538i q^{76} +(-21.0000 - 36.3731i) q^{77} +(24.0000 + 13.8564i) q^{79} +(32.0000 + 55.4256i) q^{80} +(-13.0000 - 22.5167i) q^{82} +(-30.0000 - 17.3205i) q^{83} +(22.0000 + 38.1051i) q^{85} +(87.0000 + 50.2295i) q^{86} +(-84.0000 - 48.4974i) q^{88} +2.00000 q^{89} -76.2102i q^{91} +(-84.0000 + 48.4974i) q^{92} +(6.00000 + 3.46410i) q^{94} +(-54.0000 + 31.1769i) q^{95} +(21.5000 - 37.2391i) q^{97} +(37.0000 + 64.0859i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} + 4 q^{5} - 6 q^{7} - 16 q^{8} - 8 q^{10} + 21 q^{11} + 22 q^{13} + 12 q^{14} + 32 q^{16} + 22 q^{17} + 16 q^{20} - 42 q^{22} - 42 q^{23} + 9 q^{25} - 44 q^{26} - 24 q^{28} + 34 q^{29}+ \cdots + 74 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.00000
\(3\) 0 0
\(4\) 4.00000 1.00000
\(5\) 2.00000 + 3.46410i 0.400000 + 0.692820i 0.993725 0.111847i \(-0.0356768\pi\)
−0.593725 + 0.804668i \(0.702343\pi\)
\(6\) 0 0
\(7\) −3.00000 1.73205i −0.428571 0.247436i 0.270166 0.962814i \(-0.412921\pi\)
−0.698738 + 0.715378i \(0.746255\pi\)
\(8\) −8.00000 −1.00000
\(9\) 0 0
\(10\) −4.00000 6.92820i −0.400000 0.692820i
\(11\) 10.5000 + 6.06218i 0.954545 + 0.551107i 0.894490 0.447088i \(-0.147539\pi\)
0.0600555 + 0.998195i \(0.480872\pi\)
\(12\) 0 0
\(13\) 11.0000 + 19.0526i 0.846154 + 1.46558i 0.884615 + 0.466321i \(0.154421\pi\)
−0.0384615 + 0.999260i \(0.512246\pi\)
\(14\) 6.00000 + 3.46410i 0.428571 + 0.247436i
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 11.0000 0.647059 0.323529 0.946218i \(-0.395131\pi\)
0.323529 + 0.946218i \(0.395131\pi\)
\(18\) 0 0
\(19\) 15.5885i 0.820445i 0.911985 + 0.410223i \(0.134549\pi\)
−0.911985 + 0.410223i \(0.865451\pi\)
\(20\) 8.00000 + 13.8564i 0.400000 + 0.692820i
\(21\) 0 0
\(22\) −21.0000 12.1244i −0.954545 0.551107i
\(23\) −21.0000 + 12.1244i −0.913043 + 0.527146i −0.881409 0.472354i \(-0.843405\pi\)
−0.0316343 + 0.999500i \(0.510071\pi\)
\(24\) 0 0
\(25\) 4.50000 7.79423i 0.180000 0.311769i
\(26\) −22.0000 38.1051i −0.846154 1.46558i
\(27\) 0 0
\(28\) −12.0000 6.92820i −0.428571 0.247436i
\(29\) 17.0000 29.4449i 0.586207 1.01534i −0.408517 0.912751i \(-0.633954\pi\)
0.994724 0.102589i \(-0.0327128\pi\)
\(30\) 0 0
\(31\) 6.00000 3.46410i 0.193548 0.111745i −0.400094 0.916474i \(-0.631023\pi\)
0.593643 + 0.804729i \(0.297689\pi\)
\(32\) −32.0000 −1.00000
\(33\) 0 0
\(34\) −22.0000 −0.647059
\(35\) 13.8564i 0.395897i
\(36\) 0 0
\(37\) −16.0000 −0.432432 −0.216216 0.976346i \(-0.569372\pi\)
−0.216216 + 0.976346i \(0.569372\pi\)
\(38\) 31.1769i 0.820445i
\(39\) 0 0
\(40\) −16.0000 27.7128i −0.400000 0.692820i
\(41\) 6.50000 + 11.2583i 0.158537 + 0.274593i 0.934341 0.356380i \(-0.115989\pi\)
−0.775805 + 0.630973i \(0.782656\pi\)
\(42\) 0 0
\(43\) −43.5000 25.1147i −1.01163 0.584064i −0.0999600 0.994991i \(-0.531871\pi\)
−0.911668 + 0.410928i \(0.865205\pi\)
\(44\) 42.0000 + 24.2487i 0.954545 + 0.551107i
\(45\) 0 0
\(46\) 42.0000 24.2487i 0.913043 0.527146i
\(47\) −3.00000 1.73205i −0.0638298 0.0368521i 0.467745 0.883863i \(-0.345066\pi\)
−0.531575 + 0.847011i \(0.678400\pi\)
\(48\) 0 0
\(49\) −18.5000 32.0429i −0.377551 0.653938i
\(50\) −9.00000 + 15.5885i −0.180000 + 0.311769i
\(51\) 0 0
\(52\) 44.0000 + 76.2102i 0.846154 + 1.46558i
\(53\) −52.0000 −0.981132 −0.490566 0.871404i \(-0.663210\pi\)
−0.490566 + 0.871404i \(0.663210\pi\)
\(54\) 0 0
\(55\) 48.4974i 0.881771i
\(56\) 24.0000 + 13.8564i 0.428571 + 0.247436i
\(57\) 0 0
\(58\) −34.0000 + 58.8897i −0.586207 + 1.01534i
\(59\) 46.5000 26.8468i 0.788136 0.455030i −0.0511702 0.998690i \(-0.516295\pi\)
0.839306 + 0.543660i \(0.182962\pi\)
\(60\) 0 0
\(61\) 8.00000 13.8564i 0.131148 0.227154i −0.792972 0.609259i \(-0.791467\pi\)
0.924119 + 0.382104i \(0.124801\pi\)
\(62\) −12.0000 + 6.92820i −0.193548 + 0.111745i
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) −44.0000 + 76.2102i −0.676923 + 1.17247i
\(66\) 0 0
\(67\) 100.500 58.0237i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(68\) 44.0000 0.647059
\(69\) 0 0
\(70\) 27.7128i 0.395897i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −25.0000 −0.342466 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(74\) 32.0000 0.432432
\(75\) 0 0
\(76\) 62.3538i 0.820445i
\(77\) −21.0000 36.3731i −0.272727 0.472377i
\(78\) 0 0
\(79\) 24.0000 + 13.8564i 0.303797 + 0.175398i 0.644148 0.764901i \(-0.277212\pi\)
−0.340350 + 0.940299i \(0.610546\pi\)
\(80\) 32.0000 + 55.4256i 0.400000 + 0.692820i
\(81\) 0 0
\(82\) −13.0000 22.5167i −0.158537 0.274593i
\(83\) −30.0000 17.3205i −0.361446 0.208681i 0.308269 0.951299i \(-0.400250\pi\)
−0.669715 + 0.742618i \(0.733584\pi\)
\(84\) 0 0
\(85\) 22.0000 + 38.1051i 0.258824 + 0.448296i
\(86\) 87.0000 + 50.2295i 1.01163 + 0.584064i
\(87\) 0 0
\(88\) −84.0000 48.4974i −0.954545 0.551107i
\(89\) 2.00000 0.0224719 0.0112360 0.999937i \(-0.496423\pi\)
0.0112360 + 0.999937i \(0.496423\pi\)
\(90\) 0 0
\(91\) 76.2102i 0.837475i
\(92\) −84.0000 + 48.4974i −0.913043 + 0.527146i
\(93\) 0 0
\(94\) 6.00000 + 3.46410i 0.0638298 + 0.0368521i
\(95\) −54.0000 + 31.1769i −0.568421 + 0.328178i
\(96\) 0 0
\(97\) 21.5000 37.2391i 0.221649 0.383908i −0.733659 0.679517i \(-0.762189\pi\)
0.955309 + 0.295609i \(0.0955226\pi\)
\(98\) 37.0000 + 64.0859i 0.377551 + 0.653938i
\(99\) 0 0
\(100\) 18.0000 31.1769i 0.180000 0.311769i
\(101\) −10.0000 + 17.3205i −0.0990099 + 0.171490i −0.911275 0.411798i \(-0.864901\pi\)
0.812265 + 0.583288i \(0.198234\pi\)
\(102\) 0 0
\(103\) −21.0000 + 12.1244i −0.203883 + 0.117712i −0.598466 0.801148i \(-0.704223\pi\)
0.394582 + 0.918861i \(0.370889\pi\)
\(104\) −88.0000 152.420i −0.846154 1.46558i
\(105\) 0 0
\(106\) 104.000 0.981132
\(107\) 15.5885i 0.145687i −0.997343 0.0728433i \(-0.976793\pi\)
0.997343 0.0728433i \(-0.0232073\pi\)
\(108\) 0 0
\(109\) −88.0000 −0.807339 −0.403670 0.914905i \(-0.632266\pi\)
−0.403670 + 0.914905i \(0.632266\pi\)
\(110\) 96.9948i 0.881771i
\(111\) 0 0
\(112\) −48.0000 27.7128i −0.428571 0.247436i
\(113\) −25.0000 43.3013i −0.221239 0.383197i 0.733946 0.679208i \(-0.237677\pi\)
−0.955184 + 0.296011i \(0.904343\pi\)
\(114\) 0 0
\(115\) −84.0000 48.4974i −0.730435 0.421717i
\(116\) 68.0000 117.779i 0.586207 1.01534i
\(117\) 0 0
\(118\) −93.0000 + 53.6936i −0.788136 + 0.455030i
\(119\) −33.0000 19.0526i −0.277311 0.160106i
\(120\) 0 0
\(121\) 13.0000 + 22.5167i 0.107438 + 0.186088i
\(122\) −16.0000 + 27.7128i −0.131148 + 0.227154i
\(123\) 0 0
\(124\) 24.0000 13.8564i 0.193548 0.111745i
\(125\) 136.000 1.08800
\(126\) 0 0
\(127\) 218.238i 1.71841i 0.511629 + 0.859206i \(0.329042\pi\)
−0.511629 + 0.859206i \(0.670958\pi\)
\(128\) −128.000 −1.00000
\(129\) 0 0
\(130\) 88.0000 152.420i 0.676923 1.17247i
\(131\) 168.000 96.9948i 1.28244 0.740419i 0.305148 0.952305i \(-0.401294\pi\)
0.977294 + 0.211886i \(0.0679606\pi\)
\(132\) 0 0
\(133\) 27.0000 46.7654i 0.203008 0.351619i
\(134\) −201.000 + 116.047i −1.50000 + 0.866025i
\(135\) 0 0
\(136\) −88.0000 −0.647059
\(137\) 84.5000 146.358i 0.616788 1.06831i −0.373280 0.927719i \(-0.621767\pi\)
0.990068 0.140590i \(-0.0448999\pi\)
\(138\) 0 0
\(139\) −169.500 + 97.8609i −1.21942 + 0.704035i −0.964795 0.263004i \(-0.915287\pi\)
−0.254630 + 0.967039i \(0.581954\pi\)
\(140\) 55.4256i 0.395897i
\(141\) 0 0
\(142\) 0 0
\(143\) 266.736i 1.86529i
\(144\) 0 0
\(145\) 136.000 0.937931
\(146\) 50.0000 0.342466
\(147\) 0 0
\(148\) −64.0000 −0.432432
\(149\) 65.0000 + 112.583i 0.436242 + 0.755593i 0.997396 0.0721185i \(-0.0229760\pi\)
−0.561154 + 0.827711i \(0.689643\pi\)
\(150\) 0 0
\(151\) 105.000 + 60.6218i 0.695364 + 0.401469i 0.805618 0.592435i \(-0.201833\pi\)
−0.110254 + 0.993903i \(0.535167\pi\)
\(152\) 124.708i 0.820445i
\(153\) 0 0
\(154\) 42.0000 + 72.7461i 0.272727 + 0.472377i
\(155\) 24.0000 + 13.8564i 0.154839 + 0.0893962i
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.0127389 + 0.0220643i 0.872325 0.488927i \(-0.162612\pi\)
−0.859586 + 0.510992i \(0.829278\pi\)
\(158\) −48.0000 27.7128i −0.303797 0.175398i
\(159\) 0 0
\(160\) −64.0000 110.851i −0.400000 0.692820i
\(161\) 84.0000 0.521739
\(162\) 0 0
\(163\) 311.769i 1.91269i −0.292233 0.956347i \(-0.594398\pi\)
0.292233 0.956347i \(-0.405602\pi\)
\(164\) 26.0000 + 45.0333i 0.158537 + 0.274593i
\(165\) 0 0
\(166\) 60.0000 + 34.6410i 0.361446 + 0.208681i
\(167\) −156.000 + 90.0666i −0.934132 + 0.539321i −0.888116 0.459620i \(-0.847986\pi\)
−0.0460158 + 0.998941i \(0.514652\pi\)
\(168\) 0 0
\(169\) −157.500 + 272.798i −0.931953 + 1.61419i
\(170\) −44.0000 76.2102i −0.258824 0.448296i
\(171\) 0 0
\(172\) −174.000 100.459i −1.01163 0.584064i
\(173\) −1.00000 + 1.73205i −0.00578035 + 0.0100119i −0.868901 0.494986i \(-0.835173\pi\)
0.863121 + 0.504998i \(0.168507\pi\)
\(174\) 0 0
\(175\) −27.0000 + 15.5885i −0.154286 + 0.0890769i
\(176\) 168.000 + 96.9948i 0.954545 + 0.551107i
\(177\) 0 0
\(178\) −4.00000 −0.0224719
\(179\) 187.061i 1.04504i −0.852628 0.522518i \(-0.824993\pi\)
0.852628 0.522518i \(-0.175007\pi\)
\(180\) 0 0
\(181\) 254.000 1.40331 0.701657 0.712514i \(-0.252444\pi\)
0.701657 + 0.712514i \(0.252444\pi\)
\(182\) 152.420i 0.837475i
\(183\) 0 0
\(184\) 168.000 96.9948i 0.913043 0.527146i
\(185\) −32.0000 55.4256i −0.172973 0.299598i
\(186\) 0 0
\(187\) 115.500 + 66.6840i 0.617647 + 0.356599i
\(188\) −12.0000 6.92820i −0.0638298 0.0368521i
\(189\) 0 0
\(190\) 108.000 62.3538i 0.568421 0.328178i
\(191\) −3.00000 1.73205i −0.0157068 0.00906833i 0.492126 0.870524i \(-0.336220\pi\)
−0.507833 + 0.861456i \(0.669553\pi\)
\(192\) 0 0
\(193\) 33.5000 + 58.0237i 0.173575 + 0.300641i 0.939667 0.342090i \(-0.111135\pi\)
−0.766092 + 0.642731i \(0.777801\pi\)
\(194\) −43.0000 + 74.4782i −0.221649 + 0.383908i
\(195\) 0 0
\(196\) −74.0000 128.172i −0.377551 0.653938i
\(197\) −268.000 −1.36041 −0.680203 0.733024i \(-0.738108\pi\)
−0.680203 + 0.733024i \(0.738108\pi\)
\(198\) 0 0
\(199\) 31.1769i 0.156668i −0.996927 0.0783340i \(-0.975040\pi\)
0.996927 0.0783340i \(-0.0249600\pi\)
\(200\) −36.0000 + 62.3538i −0.180000 + 0.311769i
\(201\) 0 0
\(202\) 20.0000 34.6410i 0.0990099 0.171490i
\(203\) −102.000 + 58.8897i −0.502463 + 0.290097i
\(204\) 0 0
\(205\) −26.0000 + 45.0333i −0.126829 + 0.219675i
\(206\) 42.0000 24.2487i 0.203883 0.117712i
\(207\) 0 0
\(208\) 176.000 + 304.841i 0.846154 + 1.46558i
\(209\) −94.5000 + 163.679i −0.452153 + 0.783152i
\(210\) 0 0
\(211\) 114.000 65.8179i 0.540284 0.311933i −0.204910 0.978781i \(-0.565690\pi\)
0.745194 + 0.666848i \(0.232357\pi\)
\(212\) −208.000 −0.981132
\(213\) 0 0
\(214\) 31.1769i 0.145687i
\(215\) 200.918i 0.934502i
\(216\) 0 0
\(217\) −24.0000 −0.110599
\(218\) 176.000 0.807339
\(219\) 0 0
\(220\) 193.990i 0.881771i
\(221\) 121.000 + 209.578i 0.547511 + 0.948317i
\(222\) 0 0
\(223\) 51.0000 + 29.4449i 0.228700 + 0.132040i 0.609972 0.792423i \(-0.291181\pi\)
−0.381272 + 0.924463i \(0.624514\pi\)
\(224\) 96.0000 + 55.4256i 0.428571 + 0.247436i
\(225\) 0 0
\(226\) 50.0000 + 86.6025i 0.221239 + 0.383197i
\(227\) 388.500 + 224.301i 1.71145 + 0.988108i 0.932607 + 0.360894i \(0.117529\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(228\) 0 0
\(229\) −205.000 355.070i −0.895197 1.55053i −0.833561 0.552427i \(-0.813702\pi\)
−0.0616353 0.998099i \(-0.519632\pi\)
\(230\) 168.000 + 96.9948i 0.730435 + 0.421717i
\(231\) 0 0
\(232\) −136.000 + 235.559i −0.586207 + 1.01534i
\(233\) 65.0000 0.278970 0.139485 0.990224i \(-0.455455\pi\)
0.139485 + 0.990224i \(0.455455\pi\)
\(234\) 0 0
\(235\) 13.8564i 0.0589634i
\(236\) 186.000 107.387i 0.788136 0.455030i
\(237\) 0 0
\(238\) 66.0000 + 38.1051i 0.277311 + 0.160106i
\(239\) 33.0000 19.0526i 0.138075 0.0797178i −0.429371 0.903128i \(-0.641265\pi\)
0.567446 + 0.823410i \(0.307931\pi\)
\(240\) 0 0
\(241\) 111.500 193.124i 0.462656 0.801343i −0.536437 0.843941i \(-0.680230\pi\)
0.999092 + 0.0425975i \(0.0135633\pi\)
\(242\) −26.0000 45.0333i −0.107438 0.186088i
\(243\) 0 0
\(244\) 32.0000 55.4256i 0.131148 0.227154i
\(245\) 74.0000 128.172i 0.302041 0.523150i
\(246\) 0 0
\(247\) −297.000 + 171.473i −1.20243 + 0.694223i
\(248\) −48.0000 + 27.7128i −0.193548 + 0.111745i
\(249\) 0 0
\(250\) −272.000 −1.08800
\(251\) 109.119i 0.434738i −0.976090 0.217369i \(-0.930253\pi\)
0.976090 0.217369i \(-0.0697475\pi\)
\(252\) 0 0
\(253\) −294.000 −1.16206
\(254\) 436.477i 1.71841i
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) −218.500 378.453i −0.850195 1.47258i −0.881032 0.473056i \(-0.843151\pi\)
0.0308379 0.999524i \(-0.490182\pi\)
\(258\) 0 0
\(259\) 48.0000 + 27.7128i 0.185328 + 0.106999i
\(260\) −176.000 + 304.841i −0.676923 + 1.17247i
\(261\) 0 0
\(262\) −336.000 + 193.990i −1.28244 + 0.740419i
\(263\) −273.000 157.617i −1.03802 0.599303i −0.118750 0.992924i \(-0.537889\pi\)
−0.919273 + 0.393621i \(0.871222\pi\)
\(264\) 0 0
\(265\) −104.000 180.133i −0.392453 0.679748i
\(266\) −54.0000 + 93.5307i −0.203008 + 0.351619i
\(267\) 0 0
\(268\) 402.000 232.095i 1.50000 0.866025i
\(269\) −304.000 −1.13011 −0.565056 0.825053i \(-0.691145\pi\)
−0.565056 + 0.825053i \(0.691145\pi\)
\(270\) 0 0
\(271\) 311.769i 1.15044i −0.817999 0.575220i \(-0.804917\pi\)
0.817999 0.575220i \(-0.195083\pi\)
\(272\) 176.000 0.647059
\(273\) 0 0
\(274\) −169.000 + 292.717i −0.616788 + 1.06831i
\(275\) 94.5000 54.5596i 0.343636 0.198399i
\(276\) 0 0
\(277\) 17.0000 29.4449i 0.0613718 0.106299i −0.833707 0.552207i \(-0.813786\pi\)
0.895079 + 0.445908i \(0.147119\pi\)
\(278\) 339.000 195.722i 1.21942 0.704035i
\(279\) 0 0
\(280\) 110.851i 0.395897i
\(281\) −109.000 + 188.794i −0.387900 + 0.671863i −0.992167 0.124919i \(-0.960133\pi\)
0.604267 + 0.796782i \(0.293466\pi\)
\(282\) 0 0
\(283\) 6.00000 3.46410i 0.0212014 0.0122406i −0.489362 0.872081i \(-0.662770\pi\)
0.510563 + 0.859840i \(0.329437\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 533.472i 1.86529i
\(287\) 45.0333i 0.156911i
\(288\) 0 0
\(289\) −168.000 −0.581315
\(290\) −272.000 −0.937931
\(291\) 0 0
\(292\) −100.000 −0.342466
\(293\) 101.000 + 174.937i 0.344710 + 0.597055i 0.985301 0.170827i \(-0.0546440\pi\)
−0.640591 + 0.767882i \(0.721311\pi\)
\(294\) 0 0
\(295\) 186.000 + 107.387i 0.630508 + 0.364024i
\(296\) 128.000 0.432432
\(297\) 0 0
\(298\) −130.000 225.167i −0.436242 0.755593i
\(299\) −462.000 266.736i −1.54515 0.892093i
\(300\) 0 0
\(301\) 87.0000 + 150.688i 0.289037 + 0.500626i
\(302\) −210.000 121.244i −0.695364 0.401469i
\(303\) 0 0
\(304\) 249.415i 0.820445i
\(305\) 64.0000 0.209836
\(306\) 0 0
\(307\) 109.119i 0.355437i 0.984081 + 0.177719i \(0.0568717\pi\)
−0.984081 + 0.177719i \(0.943128\pi\)
\(308\) −84.0000 145.492i −0.272727 0.472377i
\(309\) 0 0
\(310\) −48.0000 27.7128i −0.154839 0.0893962i
\(311\) −237.000 + 136.832i −0.762058 + 0.439974i −0.830034 0.557713i \(-0.811679\pi\)
0.0679762 + 0.997687i \(0.478346\pi\)
\(312\) 0 0
\(313\) 39.5000 68.4160i 0.126198 0.218581i −0.796003 0.605293i \(-0.793056\pi\)
0.922201 + 0.386712i \(0.126389\pi\)
\(314\) −4.00000 6.92820i −0.0127389 0.0220643i
\(315\) 0 0
\(316\) 96.0000 + 55.4256i 0.303797 + 0.175398i
\(317\) 251.000 434.745i 0.791798 1.37143i −0.133054 0.991109i \(-0.542479\pi\)
0.924853 0.380326i \(-0.124188\pi\)
\(318\) 0 0
\(319\) 357.000 206.114i 1.11912 0.646126i
\(320\) 128.000 + 221.703i 0.400000 + 0.692820i
\(321\) 0 0
\(322\) −168.000 −0.521739
\(323\) 171.473i 0.530876i
\(324\) 0 0
\(325\) 198.000 0.609231
\(326\) 623.538i 1.91269i
\(327\) 0 0
\(328\) −52.0000 90.0666i −0.158537 0.274593i
\(329\) 6.00000 + 10.3923i 0.0182371 + 0.0315876i
\(330\) 0 0
\(331\) −354.000 204.382i −1.06949 0.617468i −0.141445 0.989946i \(-0.545175\pi\)
−0.928041 + 0.372478i \(0.878508\pi\)
\(332\) −120.000 69.2820i −0.361446 0.208681i
\(333\) 0 0
\(334\) 312.000 180.133i 0.934132 0.539321i
\(335\) 402.000 + 232.095i 1.20000 + 0.692820i
\(336\) 0 0
\(337\) 168.500 + 291.851i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 315.000 545.596i 0.931953 1.61419i
\(339\) 0 0
\(340\) 88.0000 + 152.420i 0.258824 + 0.448296i
\(341\) 84.0000 0.246334
\(342\) 0 0
\(343\) 297.913i 0.868550i
\(344\) 348.000 + 200.918i 1.01163 + 0.584064i
\(345\) 0 0
\(346\) 2.00000 3.46410i 0.00578035 0.0100119i
\(347\) 235.500 135.966i 0.678674 0.391833i −0.120681 0.992691i \(-0.538508\pi\)
0.799355 + 0.600859i \(0.205174\pi\)
\(348\) 0 0
\(349\) −136.000 + 235.559i −0.389685 + 0.674954i −0.992407 0.122997i \(-0.960749\pi\)
0.602722 + 0.797951i \(0.294083\pi\)
\(350\) 54.0000 31.1769i 0.154286 0.0890769i
\(351\) 0 0
\(352\) −336.000 193.990i −0.954545 0.551107i
\(353\) −230.500 + 399.238i −0.652975 + 1.13099i 0.329423 + 0.944182i \(0.393146\pi\)
−0.982397 + 0.186803i \(0.940188\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8.00000 0.0224719
\(357\) 0 0
\(358\) 374.123i 1.04504i
\(359\) 530.008i 1.47634i 0.674612 + 0.738172i \(0.264311\pi\)
−0.674612 + 0.738172i \(0.735689\pi\)
\(360\) 0 0
\(361\) 118.000 0.326870
\(362\) −508.000 −1.40331
\(363\) 0 0
\(364\) 304.841i 0.837475i
\(365\) −50.0000 86.6025i −0.136986 0.237267i
\(366\) 0 0
\(367\) −84.0000 48.4974i −0.228883 0.132146i 0.381174 0.924503i \(-0.375520\pi\)
−0.610057 + 0.792358i \(0.708853\pi\)
\(368\) −336.000 + 193.990i −0.913043 + 0.527146i
\(369\) 0 0
\(370\) 64.0000 + 110.851i 0.172973 + 0.299598i
\(371\) 156.000 + 90.0666i 0.420485 + 0.242767i
\(372\) 0 0
\(373\) 173.000 + 299.645i 0.463807 + 0.803337i 0.999147 0.0412995i \(-0.0131498\pi\)
−0.535340 + 0.844637i \(0.679816\pi\)
\(374\) −231.000 133.368i −0.617647 0.356599i
\(375\) 0 0
\(376\) 24.0000 + 13.8564i 0.0638298 + 0.0368521i
\(377\) 748.000 1.98408
\(378\) 0 0
\(379\) 327.358i 0.863740i 0.901936 + 0.431870i \(0.142146\pi\)
−0.901936 + 0.431870i \(0.857854\pi\)
\(380\) −216.000 + 124.708i −0.568421 + 0.328178i
\(381\) 0 0
\(382\) 6.00000 + 3.46410i 0.0157068 + 0.00906833i
\(383\) 546.000 315.233i 1.42559 0.823063i 0.428819 0.903390i \(-0.358930\pi\)
0.996769 + 0.0803272i \(0.0255965\pi\)
\(384\) 0 0
\(385\) 84.0000 145.492i 0.218182 0.377902i
\(386\) −67.0000 116.047i −0.173575 0.300641i
\(387\) 0 0
\(388\) 86.0000 148.956i 0.221649 0.383908i
\(389\) −73.0000 + 126.440i −0.187661 + 0.325038i −0.944470 0.328598i \(-0.893424\pi\)
0.756809 + 0.653636i \(0.226757\pi\)
\(390\) 0 0
\(391\) −231.000 + 133.368i −0.590793 + 0.341094i
\(392\) 148.000 + 256.344i 0.377551 + 0.653938i
\(393\) 0 0
\(394\) 536.000 1.36041
\(395\) 110.851i 0.280636i
\(396\) 0 0
\(397\) 488.000 1.22922 0.614610 0.788831i \(-0.289314\pi\)
0.614610 + 0.788831i \(0.289314\pi\)
\(398\) 62.3538i 0.156668i
\(399\) 0 0
\(400\) 72.0000 124.708i 0.180000 0.311769i
\(401\) 222.500 + 385.381i 0.554863 + 0.961051i 0.997914 + 0.0645544i \(0.0205626\pi\)
−0.443051 + 0.896496i \(0.646104\pi\)
\(402\) 0 0
\(403\) 132.000 + 76.2102i 0.327543 + 0.189107i
\(404\) −40.0000 + 69.2820i −0.0990099 + 0.171490i
\(405\) 0 0
\(406\) 204.000 117.779i 0.502463 0.290097i
\(407\) −168.000 96.9948i −0.412776 0.238317i
\(408\) 0 0
\(409\) 33.5000 + 58.0237i 0.0819071 + 0.141867i 0.904069 0.427386i \(-0.140566\pi\)
−0.822162 + 0.569254i \(0.807232\pi\)
\(410\) 52.0000 90.0666i 0.126829 0.219675i
\(411\) 0 0
\(412\) −84.0000 + 48.4974i −0.203883 + 0.117712i
\(413\) −186.000 −0.450363
\(414\) 0 0
\(415\) 138.564i 0.333889i
\(416\) −352.000 609.682i −0.846154 1.46558i
\(417\) 0 0
\(418\) 189.000 327.358i 0.452153 0.783152i
\(419\) −534.000 + 308.305i −1.27446 + 0.735812i −0.975825 0.218555i \(-0.929866\pi\)
−0.298638 + 0.954366i \(0.596532\pi\)
\(420\) 0 0
\(421\) −136.000 + 235.559i −0.323040 + 0.559522i −0.981114 0.193431i \(-0.938038\pi\)
0.658073 + 0.752954i \(0.271372\pi\)
\(422\) −228.000 + 131.636i −0.540284 + 0.311933i
\(423\) 0 0
\(424\) 416.000 0.981132
\(425\) 49.5000 85.7365i 0.116471 0.201733i
\(426\) 0 0
\(427\) −48.0000 + 27.7128i −0.112412 + 0.0649012i
\(428\) 62.3538i 0.145687i
\(429\) 0 0
\(430\) 401.836i 0.934502i
\(431\) 405.300i 0.940371i −0.882568 0.470185i \(-0.844187\pi\)
0.882568 0.470185i \(-0.155813\pi\)
\(432\) 0 0
\(433\) −439.000 −1.01386 −0.506928 0.861988i \(-0.669219\pi\)
−0.506928 + 0.861988i \(0.669219\pi\)
\(434\) 48.0000 0.110599
\(435\) 0 0
\(436\) −352.000 −0.807339
\(437\) −189.000 327.358i −0.432494 0.749102i
\(438\) 0 0
\(439\) −732.000 422.620i −1.66743 0.962689i −0.969018 0.246989i \(-0.920559\pi\)
−0.698408 0.715700i \(-0.746108\pi\)
\(440\) 387.979i 0.881771i
\(441\) 0 0
\(442\) −242.000 419.156i −0.547511 0.948317i
\(443\) −286.500 165.411i −0.646727 0.373388i 0.140474 0.990084i \(-0.455137\pi\)
−0.787201 + 0.616696i \(0.788471\pi\)
\(444\) 0 0
\(445\) 4.00000 + 6.92820i 0.00898876 + 0.0155690i
\(446\) −102.000 58.8897i −0.228700 0.132040i
\(447\) 0 0
\(448\) −192.000 110.851i −0.428571 0.247436i
\(449\) 47.0000 0.104677 0.0523385 0.998629i \(-0.483333\pi\)
0.0523385 + 0.998629i \(0.483333\pi\)
\(450\) 0 0
\(451\) 157.617i 0.349483i
\(452\) −100.000 173.205i −0.221239 0.383197i
\(453\) 0 0
\(454\) −777.000 448.601i −1.71145 0.988108i
\(455\) 264.000 152.420i 0.580220 0.334990i
\(456\) 0 0
\(457\) 165.500 286.654i 0.362144 0.627253i −0.626169 0.779687i \(-0.715378\pi\)
0.988314 + 0.152435i \(0.0487114\pi\)
\(458\) 410.000 + 710.141i 0.895197 + 1.55053i
\(459\) 0 0
\(460\) −336.000 193.990i −0.730435 0.421717i
\(461\) 269.000 465.922i 0.583514 1.01068i −0.411545 0.911390i \(-0.635011\pi\)
0.995059 0.0992865i \(-0.0316560\pi\)
\(462\) 0 0
\(463\) 492.000 284.056i 1.06263 0.613513i 0.136475 0.990644i \(-0.456423\pi\)
0.926160 + 0.377131i \(0.123089\pi\)
\(464\) 272.000 471.118i 0.586207 1.01534i
\(465\) 0 0
\(466\) −130.000 −0.278970
\(467\) 639.127i 1.36858i 0.729210 + 0.684290i \(0.239888\pi\)
−0.729210 + 0.684290i \(0.760112\pi\)
\(468\) 0 0
\(469\) −402.000 −0.857143
\(470\) 27.7128i 0.0589634i
\(471\) 0 0
\(472\) −372.000 + 214.774i −0.788136 + 0.455030i
\(473\) −304.500 527.409i −0.643763 1.11503i
\(474\) 0 0
\(475\) 121.500 + 70.1481i 0.255789 + 0.147680i
\(476\) −132.000 76.2102i −0.277311 0.160106i
\(477\) 0 0
\(478\) −66.0000 + 38.1051i −0.138075 + 0.0797178i
\(479\) 105.000 + 60.6218i 0.219207 + 0.126559i 0.605583 0.795782i \(-0.292940\pi\)
−0.386376 + 0.922341i \(0.626273\pi\)
\(480\) 0 0
\(481\) −176.000 304.841i −0.365904 0.633765i
\(482\) −223.000 + 386.247i −0.462656 + 0.801343i
\(483\) 0 0
\(484\) 52.0000 + 90.0666i 0.107438 + 0.186088i
\(485\) 172.000 0.354639
\(486\) 0 0
\(487\) 405.300i 0.832238i 0.909310 + 0.416119i \(0.136610\pi\)
−0.909310 + 0.416119i \(0.863390\pi\)
\(488\) −64.0000 + 110.851i −0.131148 + 0.227154i
\(489\) 0 0
\(490\) −148.000 + 256.344i −0.302041 + 0.523150i
\(491\) −628.500 + 362.865i −1.28004 + 0.739032i −0.976856 0.213900i \(-0.931383\pi\)
−0.303185 + 0.952932i \(0.598050\pi\)
\(492\) 0 0
\(493\) 187.000 323.894i 0.379310 0.656985i
\(494\) 594.000 342.946i 1.20243 0.694223i
\(495\) 0 0
\(496\) 96.0000 55.4256i 0.193548 0.111745i
\(497\) 0 0
\(498\) 0 0
\(499\) 451.500 260.674i 0.904810 0.522392i 0.0260521 0.999661i \(-0.491706\pi\)
0.878758 + 0.477269i \(0.158373\pi\)
\(500\) 544.000 1.08800
\(501\) 0 0
\(502\) 218.238i 0.434738i
\(503\) 872.954i 1.73549i −0.497006 0.867747i \(-0.665567\pi\)
0.497006 0.867747i \(-0.334433\pi\)
\(504\) 0 0
\(505\) −80.0000 −0.158416
\(506\) 588.000 1.16206
\(507\) 0 0
\(508\) 872.954i 1.71841i
\(509\) 380.000 + 658.179i 0.746562 + 1.29308i 0.949461 + 0.313884i \(0.101630\pi\)
−0.202900 + 0.979200i \(0.565037\pi\)
\(510\) 0 0
\(511\) 75.0000 + 43.3013i 0.146771 + 0.0847383i
\(512\) −512.000 −1.00000
\(513\) 0 0
\(514\) 437.000 + 756.906i 0.850195 + 1.47258i
\(515\) −84.0000 48.4974i −0.163107 0.0941698i
\(516\) 0 0
\(517\) −21.0000 36.3731i −0.0406190 0.0703541i
\(518\) −96.0000 55.4256i −0.185328 0.106999i
\(519\) 0 0
\(520\) 352.000 609.682i 0.676923 1.17247i
\(521\) −745.000 −1.42994 −0.714971 0.699154i \(-0.753560\pi\)
−0.714971 + 0.699154i \(0.753560\pi\)
\(522\) 0 0
\(523\) 561.184i 1.07301i 0.843897 + 0.536505i \(0.180256\pi\)
−0.843897 + 0.536505i \(0.819744\pi\)
\(524\) 672.000 387.979i 1.28244 0.740419i
\(525\) 0 0
\(526\) 546.000 + 315.233i 1.03802 + 0.599303i
\(527\) 66.0000 38.1051i 0.125237 0.0723057i
\(528\) 0 0
\(529\) 29.5000 51.0955i 0.0557656 0.0965888i
\(530\) 208.000 + 360.267i 0.392453 + 0.679748i
\(531\) 0 0
\(532\) 108.000 187.061i 0.203008 0.351619i
\(533\) −143.000 + 247.683i −0.268293 + 0.464697i
\(534\) 0 0
\(535\) 54.0000 31.1769i 0.100935 0.0582746i
\(536\) −804.000 + 464.190i −1.50000 + 0.866025i
\(537\) 0 0
\(538\) 608.000 1.13011
\(539\) 448.601i 0.832284i
\(540\) 0 0
\(541\) −520.000 −0.961183 −0.480591 0.876945i \(-0.659578\pi\)
−0.480591 + 0.876945i \(0.659578\pi\)
\(542\) 623.538i 1.15044i
\(543\) 0 0
\(544\) −352.000 −0.647059
\(545\) −176.000 304.841i −0.322936 0.559341i
\(546\) 0 0
\(547\) 334.500 + 193.124i 0.611517 + 0.353060i 0.773559 0.633724i \(-0.218475\pi\)
−0.162042 + 0.986784i \(0.551808\pi\)
\(548\) 338.000 585.433i 0.616788 1.06831i
\(549\) 0 0
\(550\) −189.000 + 109.119i −0.343636 + 0.198399i
\(551\) 459.000 + 265.004i 0.833031 + 0.480951i
\(552\) 0 0
\(553\) −48.0000 83.1384i −0.0867993 0.150341i
\(554\) −34.0000 + 58.8897i −0.0613718 + 0.106299i
\(555\) 0 0
\(556\) −678.000 + 391.443i −1.21942 + 0.704035i
\(557\) −934.000 −1.67684 −0.838420 0.545025i \(-0.816520\pi\)
−0.838420 + 0.545025i \(0.816520\pi\)
\(558\) 0 0
\(559\) 1105.05i 1.97683i
\(560\) 221.703i 0.395897i
\(561\) 0 0
\(562\) 218.000 377.587i 0.387900 0.671863i
\(563\) 613.500 354.204i 1.08970 0.629137i 0.156202 0.987725i \(-0.450075\pi\)
0.933496 + 0.358588i \(0.116742\pi\)
\(564\) 0 0
\(565\) 100.000 173.205i 0.176991 0.306558i
\(566\) −12.0000 + 6.92820i −0.0212014 + 0.0122406i
\(567\) 0 0
\(568\) 0 0
\(569\) −347.500 + 601.888i −0.610721 + 1.05780i 0.380399 + 0.924823i \(0.375787\pi\)
−0.991119 + 0.132976i \(0.957547\pi\)
\(570\) 0 0
\(571\) −466.500 + 269.334i −0.816988 + 0.471688i −0.849377 0.527787i \(-0.823022\pi\)
0.0323889 + 0.999475i \(0.489689\pi\)
\(572\) 1066.94i 1.86529i
\(573\) 0 0
\(574\) 90.0666i 0.156911i
\(575\) 218.238i 0.379545i
\(576\) 0 0
\(577\) 227.000 0.393414 0.196707 0.980462i \(-0.436975\pi\)
0.196707 + 0.980462i \(0.436975\pi\)
\(578\) 336.000 0.581315
\(579\) 0 0
\(580\) 544.000 0.937931
\(581\) 60.0000 + 103.923i 0.103270 + 0.178869i
\(582\) 0 0
\(583\) −546.000 315.233i −0.936535 0.540709i
\(584\) 200.000 0.342466
\(585\) 0 0
\(586\) −202.000 349.874i −0.344710 0.597055i
\(587\) −124.500 71.8801i −0.212095 0.122453i 0.390189 0.920735i \(-0.372410\pi\)
−0.602285 + 0.798281i \(0.705743\pi\)
\(588\) 0 0
\(589\) 54.0000 + 93.5307i 0.0916808 + 0.158796i
\(590\) −372.000 214.774i −0.630508 0.364024i
\(591\) 0 0
\(592\) −256.000 −0.432432
\(593\) 506.000 0.853288 0.426644 0.904420i \(-0.359696\pi\)
0.426644 + 0.904420i \(0.359696\pi\)
\(594\) 0 0
\(595\) 152.420i 0.256169i
\(596\) 260.000 + 450.333i 0.436242 + 0.755593i
\(597\) 0 0
\(598\) 924.000 + 533.472i 1.54515 + 0.892093i
\(599\) −48.0000 + 27.7128i −0.0801336 + 0.0462651i −0.539531 0.841965i \(-0.681399\pi\)
0.459398 + 0.888231i \(0.348065\pi\)
\(600\) 0 0
\(601\) −167.500 + 290.119i −0.278702 + 0.482726i −0.971062 0.238826i \(-0.923238\pi\)
0.692360 + 0.721552i \(0.256571\pi\)
\(602\) −174.000 301.377i −0.289037 0.500626i
\(603\) 0 0
\(604\) 420.000 + 242.487i 0.695364 + 0.401469i
\(605\) −52.0000 + 90.0666i −0.0859504 + 0.148870i
\(606\) 0 0
\(607\) 546.000 315.233i 0.899506 0.519330i 0.0224660 0.999748i \(-0.492848\pi\)
0.877040 + 0.480418i \(0.159515\pi\)
\(608\) 498.831i 0.820445i
\(609\) 0 0
\(610\) −128.000 −0.209836
\(611\) 76.2102i 0.124730i
\(612\) 0 0
\(613\) −340.000 −0.554649 −0.277325 0.960776i \(-0.589448\pi\)
−0.277325 + 0.960776i \(0.589448\pi\)
\(614\) 218.238i 0.355437i
\(615\) 0 0
\(616\) 168.000 + 290.985i 0.272727 + 0.472377i
\(617\) 195.500 + 338.616i 0.316856 + 0.548810i 0.979830 0.199832i \(-0.0640396\pi\)
−0.662974 + 0.748642i \(0.730706\pi\)
\(618\) 0 0
\(619\) 10.5000 + 6.06218i 0.0169628 + 0.00979350i 0.508457 0.861087i \(-0.330216\pi\)
−0.491495 + 0.870881i \(0.663549\pi\)
\(620\) 96.0000 + 55.4256i 0.154839 + 0.0893962i
\(621\) 0 0
\(622\) 474.000 273.664i 0.762058 0.439974i
\(623\) −6.00000 3.46410i −0.00963082 0.00556036i
\(624\) 0 0
\(625\) 159.500 + 276.262i 0.255200 + 0.442019i
\(626\) −79.0000 + 136.832i −0.126198 + 0.218581i
\(627\) 0 0
\(628\) 8.00000 + 13.8564i 0.0127389 + 0.0220643i
\(629\) −176.000 −0.279809
\(630\) 0 0
\(631\) 436.477i 0.691722i −0.938286 0.345861i \(-0.887587\pi\)
0.938286 0.345861i \(-0.112413\pi\)
\(632\) −192.000 110.851i −0.303797 0.175398i
\(633\) 0 0
\(634\) −502.000 + 869.490i −0.791798 + 1.37143i
\(635\) −756.000 + 436.477i −1.19055 + 0.687365i
\(636\) 0 0
\(637\) 407.000 704.945i 0.638932 1.10666i
\(638\) −714.000 + 412.228i −1.11912 + 0.646126i
\(639\) 0 0
\(640\) −256.000 443.405i −0.400000 0.692820i
\(641\) 210.500 364.597i 0.328393 0.568794i −0.653800 0.756667i \(-0.726826\pi\)
0.982193 + 0.187874i \(0.0601596\pi\)
\(642\) 0 0
\(643\) −358.500 + 206.980i −0.557543 + 0.321897i −0.752159 0.658982i \(-0.770987\pi\)
0.194616 + 0.980880i \(0.437654\pi\)
\(644\) 336.000 0.521739
\(645\) 0 0
\(646\) 342.946i 0.530876i
\(647\) 405.300i 0.626430i −0.949682 0.313215i \(-0.898594\pi\)
0.949682 0.313215i \(-0.101406\pi\)
\(648\) 0 0
\(649\) 651.000 1.00308
\(650\) −396.000 −0.609231
\(651\) 0 0
\(652\) 1247.08i 1.91269i
\(653\) 443.000 + 767.299i 0.678407 + 1.17504i 0.975460 + 0.220175i \(0.0706628\pi\)
−0.297053 + 0.954861i \(0.596004\pi\)
\(654\) 0 0
\(655\) 672.000 + 387.979i 1.02595 + 0.592335i
\(656\) 104.000 + 180.133i 0.158537 + 0.274593i
\(657\) 0 0
\(658\) −12.0000 20.7846i −0.0182371 0.0315876i
\(659\) 726.000 + 419.156i 1.10167 + 0.636049i 0.936659 0.350243i \(-0.113901\pi\)
0.165010 + 0.986292i \(0.447234\pi\)
\(660\) 0 0
\(661\) −124.000 214.774i −0.187595 0.324923i 0.756853 0.653585i \(-0.226736\pi\)
−0.944448 + 0.328662i \(0.893402\pi\)
\(662\) 708.000 + 408.764i 1.06949 + 0.617468i
\(663\) 0 0
\(664\) 240.000 + 138.564i 0.361446 + 0.208681i
\(665\) 216.000 0.324812
\(666\) 0 0
\(667\) 824.456i 1.23607i
\(668\) −624.000 + 360.267i −0.934132 + 0.539321i
\(669\) 0 0
\(670\) −804.000 464.190i −1.20000 0.692820i
\(671\) 168.000 96.9948i 0.250373 0.144553i
\(672\) 0 0
\(673\) −577.000 + 999.393i −0.857355 + 1.48498i 0.0170877 + 0.999854i \(0.494561\pi\)
−0.874443 + 0.485129i \(0.838773\pi\)
\(674\) −337.000 583.701i −0.500000 0.866025i
\(675\) 0 0
\(676\) −630.000 + 1091.19i −0.931953 + 1.61419i
\(677\) 566.000 980.341i 0.836041 1.44807i −0.0571384 0.998366i \(-0.518198\pi\)
0.893180 0.449700i \(-0.148469\pi\)
\(678\) 0 0
\(679\) −129.000 + 74.4782i −0.189985 + 0.109688i
\(680\) −176.000 304.841i −0.258824 0.448296i
\(681\) 0 0
\(682\) −168.000 −0.246334
\(683\) 795.011i 1.16400i 0.813189 + 0.582000i \(0.197729\pi\)
−0.813189 + 0.582000i \(0.802271\pi\)
\(684\) 0 0
\(685\) 676.000 0.986861
\(686\) 595.825i 0.868550i
\(687\) 0 0
\(688\) −696.000 401.836i −1.01163 0.584064i
\(689\) −572.000 990.733i −0.830189 1.43793i
\(690\) 0 0
\(691\) 780.000 + 450.333i 1.12880 + 0.651712i 0.943633 0.330995i \(-0.107384\pi\)
0.185166 + 0.982707i \(0.440718\pi\)
\(692\) −4.00000 + 6.92820i −0.00578035 + 0.0100119i
\(693\) 0 0
\(694\) −471.000 + 271.932i −0.678674 + 0.391833i
\(695\) −678.000 391.443i −0.975540 0.563228i
\(696\) 0 0
\(697\) 71.5000 + 123.842i 0.102582 + 0.177678i
\(698\) 272.000 471.118i 0.389685 0.674954i
\(699\) 0 0
\(700\) −108.000 + 62.3538i −0.154286 + 0.0890769i
\(701\) −142.000 −0.202568 −0.101284 0.994858i \(-0.532295\pi\)
−0.101284 + 0.994858i \(0.532295\pi\)
\(702\) 0 0
\(703\) 249.415i 0.354787i
\(704\) 672.000 + 387.979i 0.954545 + 0.551107i
\(705\) 0 0
\(706\) 461.000 798.475i 0.652975 1.13099i
\(707\) 60.0000 34.6410i 0.0848656 0.0489972i
\(708\) 0 0
\(709\) −370.000 + 640.859i −0.521862 + 0.903891i 0.477815 + 0.878461i \(0.341429\pi\)
−0.999677 + 0.0254305i \(0.991904\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −16.0000 −0.0224719
\(713\) −84.0000 + 145.492i −0.117812 + 0.204056i
\(714\) 0 0
\(715\) −924.000 + 533.472i −1.29231 + 0.746114i
\(716\) 748.246i 1.04504i
\(717\) 0 0
\(718\) 1060.02i 1.47634i
\(719\) 124.708i 0.173446i −0.996232 0.0867230i \(-0.972360\pi\)
0.996232 0.0867230i \(-0.0276395\pi\)
\(720\) 0 0
\(721\) 84.0000 0.116505
\(722\) −236.000 −0.326870
\(723\) 0 0
\(724\) 1016.00 1.40331
\(725\) −153.000 265.004i −0.211034 0.365522i
\(726\) 0 0
\(727\) −705.000 407.032i −0.969739 0.559879i −0.0705821 0.997506i \(-0.522486\pi\)
−0.899157 + 0.437627i \(0.855819\pi\)
\(728\) 609.682i 0.837475i
\(729\) 0 0
\(730\) 100.000 + 173.205i 0.136986 + 0.237267i
\(731\) −478.500 276.262i −0.654583 0.377924i
\(732\) 0 0
\(733\) −457.000 791.547i −0.623465 1.07987i −0.988836 0.149011i \(-0.952391\pi\)
0.365370 0.930862i \(-0.380942\pi\)
\(734\) 168.000 + 96.9948i 0.228883 + 0.132146i
\(735\) 0 0
\(736\) 672.000 387.979i 0.913043 0.527146i
\(737\) 1407.00 1.90909
\(738\) 0 0
\(739\) 358.535i 0.485162i −0.970131 0.242581i \(-0.922006\pi\)
0.970131 0.242581i \(-0.0779940\pi\)
\(740\) −128.000 221.703i −0.172973 0.299598i
\(741\) 0 0
\(742\) −312.000 180.133i −0.420485 0.242767i
\(743\) −345.000 + 199.186i −0.464334 + 0.268083i −0.713865 0.700284i \(-0.753057\pi\)
0.249531 + 0.968367i \(0.419724\pi\)
\(744\) 0 0
\(745\) −260.000 + 450.333i −0.348993 + 0.604474i
\(746\) −346.000 599.290i −0.463807 0.803337i
\(747\) 0 0
\(748\) 462.000 + 266.736i 0.617647 + 0.356599i
\(749\) −27.0000 + 46.7654i −0.0360481 + 0.0624371i
\(750\) 0 0
\(751\) −966.000 + 557.720i −1.28628 + 0.742637i −0.977990 0.208654i \(-0.933092\pi\)
−0.308295 + 0.951291i \(0.599759\pi\)
\(752\) −48.0000 27.7128i −0.0638298 0.0368521i
\(753\) 0 0
\(754\) −1496.00 −1.98408
\(755\) 484.974i 0.642350i
\(756\) 0 0
\(757\) 758.000 1.00132 0.500661 0.865644i \(-0.333091\pi\)
0.500661 + 0.865644i \(0.333091\pi\)
\(758\) 654.715i 0.863740i
\(759\) 0 0
\(760\) 432.000 249.415i 0.568421 0.328178i
\(761\) −187.000 323.894i −0.245729 0.425616i 0.716607 0.697477i \(-0.245694\pi\)
−0.962336 + 0.271861i \(0.912361\pi\)
\(762\) 0 0
\(763\) 264.000 + 152.420i 0.346003 + 0.199765i
\(764\) −12.0000 6.92820i −0.0157068 0.00906833i
\(765\) 0 0
\(766\) −1092.00 + 630.466i −1.42559 + 0.823063i
\(767\) 1023.00 + 590.629i 1.33377 + 0.770051i
\(768\) 0 0
\(769\) 11.0000 + 19.0526i 0.0143043 + 0.0247758i 0.873089 0.487561i \(-0.162113\pi\)
−0.858785 + 0.512337i \(0.828780\pi\)
\(770\) −168.000 + 290.985i −0.218182 + 0.377902i
\(771\) 0 0
\(772\) 134.000 + 232.095i 0.173575 + 0.300641i
\(773\) 1334.00 1.72574 0.862872 0.505423i \(-0.168663\pi\)
0.862872 + 0.505423i \(0.168663\pi\)
\(774\) 0 0
\(775\) 62.3538i 0.0804566i
\(776\) −172.000 + 297.913i −0.221649 + 0.383908i
\(777\) 0 0
\(778\) 146.000 252.879i 0.187661 0.325038i
\(779\) −175.500 + 101.325i −0.225289 + 0.130071i
\(780\) 0 0
\(781\) 0 0
\(782\) 462.000 266.736i 0.590793 0.341094i
\(783\) 0 0
\(784\) −296.000 512.687i −0.377551 0.653938i
\(785\) −8.00000 + 13.8564i −0.0101911 + 0.0176515i
\(786\) 0 0
\(787\) 762.000 439.941i 0.968234 0.559010i 0.0695365 0.997579i \(-0.477848\pi\)
0.898697 + 0.438569i \(0.144515\pi\)
\(788\) −1072.00 −1.36041
\(789\) 0 0
\(790\) 221.703i 0.280636i
\(791\) 173.205i 0.218970i
\(792\) 0 0
\(793\) 352.000 0.443884
\(794\) −976.000 −1.22922
\(795\) 0 0
\(796\) 124.708i 0.156668i
\(797\) 416.000 + 720.533i 0.521957 + 0.904057i 0.999674 + 0.0255425i \(0.00813132\pi\)
−0.477716 + 0.878514i \(0.658535\pi\)
\(798\) 0 0
\(799\) −33.0000 19.0526i −0.0413016 0.0238455i
\(800\) −144.000 + 249.415i −0.180000 + 0.311769i
\(801\) 0 0
\(802\) −445.000 770.763i −0.554863 0.961051i
\(803\) −262.500 151.554i −0.326899 0.188735i
\(804\) 0 0
\(805\) 168.000 + 290.985i 0.208696 + 0.361471i
\(806\) −264.000 152.420i −0.327543 0.189107i
\(807\) 0 0
\(808\) 80.0000 138.564i 0.0990099 0.171490i
\(809\) −493.000 −0.609394 −0.304697 0.952449i \(-0.598555\pi\)
−0.304697 + 0.952449i \(0.598555\pi\)
\(810\) 0 0
\(811\) 327.358i 0.403647i −0.979422 0.201823i \(-0.935313\pi\)
0.979422 0.201823i \(-0.0646867\pi\)
\(812\) −408.000 + 235.559i −0.502463 + 0.290097i
\(813\) 0 0
\(814\) 336.000 + 193.990i 0.412776 + 0.238317i
\(815\) 1080.00 623.538i 1.32515 0.765078i
\(816\) 0 0
\(817\) 391.500 678.098i 0.479192 0.829985i
\(818\) −67.0000 116.047i −0.0819071 0.141867i
\(819\) 0 0
\(820\) −104.000 + 180.133i −0.126829 + 0.219675i
\(821\) −379.000 + 656.447i −0.461632 + 0.799570i −0.999042 0.0437505i \(-0.986069\pi\)
0.537410 + 0.843321i \(0.319403\pi\)
\(822\) 0 0
\(823\) −750.000 + 433.013i −0.911300 + 0.526139i −0.880849 0.473397i \(-0.843028\pi\)
−0.0304509 + 0.999536i \(0.509694\pi\)
\(824\) 168.000 96.9948i 0.203883 0.117712i
\(825\) 0 0
\(826\) 372.000 0.450363
\(827\) 436.477i 0.527783i −0.964552 0.263892i \(-0.914994\pi\)
0.964552 0.263892i \(-0.0850061\pi\)
\(828\) 0 0
\(829\) −718.000 −0.866104 −0.433052 0.901369i \(-0.642563\pi\)
−0.433052 + 0.901369i \(0.642563\pi\)
\(830\) 277.128i 0.333889i
\(831\) 0 0
\(832\) 704.000 + 1219.36i 0.846154 + 1.46558i
\(833\) −203.500 352.472i −0.244298 0.423136i
\(834\) 0 0
\(835\) −624.000 360.267i −0.747305 0.431457i
\(836\) −378.000 + 654.715i −0.452153 + 0.783152i
\(837\) 0 0
\(838\) 1068.00 616.610i 1.27446 0.735812i
\(839\) −786.000 453.797i −0.936830 0.540879i −0.0478645 0.998854i \(-0.515242\pi\)
−0.888965 + 0.457975i \(0.848575\pi\)
\(840\) 0 0
\(841\) −157.500 272.798i −0.187277 0.324373i
\(842\) 272.000 471.118i 0.323040 0.559522i
\(843\) 0 0
\(844\) 456.000 263.272i 0.540284 0.311933i
\(845\) −1260.00 −1.49112
\(846\) 0 0
\(847\) 90.0666i 0.106336i
\(848\) −832.000 −0.981132
\(849\) 0 0
\(850\) −99.0000 + 171.473i −0.116471 + 0.201733i
\(851\) 336.000 193.990i 0.394830 0.227955i
\(852\) 0 0
\(853\) −73.0000 + 126.440i −0.0855803 + 0.148229i −0.905638 0.424051i \(-0.860608\pi\)
0.820058 + 0.572280i \(0.193941\pi\)
\(854\) 96.0000 55.4256i 0.112412 0.0649012i
\(855\) 0 0
\(856\) 124.708i 0.145687i
\(857\) −73.0000 + 126.440i −0.0851809 + 0.147538i −0.905468 0.424414i \(-0.860480\pi\)
0.820287 + 0.571952i \(0.193813\pi\)
\(858\) 0 0
\(859\) 73.5000 42.4352i 0.0855646 0.0494008i −0.456607 0.889668i \(-0.650936\pi\)
0.542172 + 0.840268i \(0.317602\pi\)
\(860\) 803.672i 0.934502i
\(861\) 0 0
\(862\) 810.600i 0.940371i
\(863\) 1184.72i 1.37280i 0.727226 + 0.686398i \(0.240809\pi\)
−0.727226 + 0.686398i \(0.759191\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.00924855
\(866\) 878.000 1.01386
\(867\) 0 0
\(868\) −96.0000 −0.110599
\(869\) 168.000 + 290.985i 0.193326 + 0.334850i
\(870\) 0 0
\(871\) 2211.00 + 1276.52i 2.53846 + 1.46558i
\(872\) 704.000 0.807339
\(873\) 0 0
\(874\) 378.000 + 654.715i 0.432494 + 0.749102i
\(875\) −408.000 235.559i −0.466286 0.269210i
\(876\) 0 0
\(877\) 740.000 + 1281.72i 0.843786 + 1.46148i 0.886672 + 0.462400i \(0.153011\pi\)
−0.0428860 + 0.999080i \(0.513655\pi\)
\(878\) 1464.00 + 845.241i 1.66743 + 0.962689i
\(879\) 0 0
\(880\) 775.959i 0.881771i
\(881\) −142.000 −0.161180 −0.0805902 0.996747i \(-0.525681\pi\)
−0.0805902 + 0.996747i \(0.525681\pi\)
\(882\) 0 0
\(883\) 1200.31i 1.35936i −0.733511 0.679678i \(-0.762120\pi\)
0.733511 0.679678i \(-0.237880\pi\)
\(884\) 484.000 + 838.313i 0.547511 + 0.948317i
\(885\) 0 0
\(886\) 573.000 + 330.822i 0.646727 + 0.373388i
\(887\) 546.000 315.233i 0.615558 0.355393i −0.159580 0.987185i \(-0.551014\pi\)
0.775138 + 0.631792i \(0.217681\pi\)
\(888\) 0 0
\(889\) 378.000 654.715i 0.425197 0.736463i
\(890\) −8.00000 13.8564i −0.00898876 0.0155690i
\(891\) 0 0
\(892\) 204.000 + 117.779i 0.228700 + 0.132040i
\(893\) 27.0000 46.7654i 0.0302352 0.0523688i
\(894\) 0 0
\(895\) 648.000 374.123i 0.724022 0.418014i
\(896\) 384.000 + 221.703i 0.428571 + 0.247436i
\(897\) 0 0
\(898\) −94.0000 −0.104677
\(899\) 235.559i 0.262023i
\(900\) 0 0
\(901\) −572.000 −0.634850
\(902\) 315.233i 0.349483i
\(903\) 0 0
\(904\) 200.000 + 346.410i 0.221239 + 0.383197i
\(905\) 508.000 + 879.882i 0.561326 + 0.972245i
\(906\) 0 0
\(907\) −556.500 321.295i −0.613561 0.354240i 0.160797 0.986988i \(-0.448594\pi\)
−0.774358 + 0.632748i \(0.781927\pi\)
\(908\) 1554.00 + 897.202i 1.71145 + 0.988108i
\(909\) 0 0
\(910\) −528.000 + 304.841i −0.580220 + 0.334990i
\(911\) 348.000 + 200.918i 0.381998 + 0.220547i 0.678687 0.734428i \(-0.262549\pi\)
−0.296689 + 0.954974i \(0.595883\pi\)
\(912\) 0 0
\(913\) −210.000 363.731i −0.230011 0.398391i
\(914\) −331.000 + 573.309i −0.362144 + 0.627253i
\(915\) 0 0
\(916\) −820.000 1420.28i −0.895197 1.55053i
\(917\) −672.000 −0.732824
\(918\) 0 0
\(919\) 779.423i 0.848121i 0.905634 + 0.424060i \(0.139396\pi\)
−0.905634 + 0.424060i \(0.860604\pi\)
\(920\) 672.000 + 387.979i 0.730435 + 0.421717i
\(921\) 0 0
\(922\) −538.000 + 931.843i −0.583514 + 1.01068i
\(923\) 0 0
\(924\) 0 0
\(925\) −72.0000 + 124.708i −0.0778378 + 0.134819i
\(926\) −984.000 + 568.113i −1.06263 + 0.613513i
\(927\) 0 0
\(928\) −544.000 + 942.236i −0.586207 + 1.01534i
\(929\) −379.000 + 656.447i −0.407966 + 0.706617i −0.994662 0.103190i \(-0.967095\pi\)
0.586696 + 0.809807i \(0.300428\pi\)
\(930\) 0 0
\(931\) 499.500 288.386i 0.536520 0.309760i
\(932\) 260.000 0.278970
\(933\) 0 0
\(934\) 1278.25i 1.36858i
\(935\) 533.472i 0.570558i
\(936\) 0 0
\(937\) −754.000 −0.804696 −0.402348 0.915487i \(-0.631806\pi\)
−0.402348 + 0.915487i \(0.631806\pi\)
\(938\) 804.000 0.857143
\(939\) 0 0
\(940\) 55.4256i 0.0589634i
\(941\) −898.000 1555.38i −0.954304 1.65290i −0.735953 0.677033i \(-0.763266\pi\)
−0.218351 0.975870i \(-0.570068\pi\)
\(942\) 0 0
\(943\) −273.000 157.617i −0.289502 0.167144i
\(944\) 744.000 429.549i 0.788136 0.455030i
\(945\) 0 0
\(946\) 609.000 + 1054.82i 0.643763 + 1.11503i
\(947\) 91.5000 + 52.8275i 0.0966209 + 0.0557841i 0.547532 0.836785i \(-0.315567\pi\)
−0.450911 + 0.892569i \(0.648901\pi\)
\(948\) 0 0
\(949\) −275.000 476.314i −0.289779 0.501911i
\(950\) −243.000 140.296i −0.255789 0.147680i
\(951\) 0 0
\(952\) 264.000 + 152.420i 0.277311 + 0.160106i
\(953\) −1213.00 −1.27282 −0.636411 0.771350i \(-0.719582\pi\)
−0.636411 + 0.771350i \(0.719582\pi\)
\(954\) 0 0
\(955\) 13.8564i 0.0145093i
\(956\) 132.000 76.2102i 0.138075 0.0797178i
\(957\) 0 0
\(958\) −210.000 121.244i −0.219207 0.126559i
\(959\) −507.000 + 292.717i −0.528676 + 0.305231i
\(960\) 0 0
\(961\) −456.500 + 790.681i −0.475026 + 0.822769i
\(962\) 352.000 + 609.682i 0.365904 + 0.633765i
\(963\) 0 0
\(964\) 446.000 772.495i 0.462656 0.801343i
\(965\) −134.000 + 232.095i −0.138860 + 0.240513i
\(966\) 0 0
\(967\) 303.000 174.937i 0.313340 0.180907i −0.335080 0.942190i \(-0.608763\pi\)
0.648420 + 0.761283i \(0.275430\pi\)
\(968\) −104.000 180.133i −0.107438 0.186088i
\(969\) 0 0
\(970\) −344.000 −0.354639
\(971\) 1434.14i 1.47697i −0.674270 0.738485i \(-0.735542\pi\)
0.674270 0.738485i \(-0.264458\pi\)
\(972\) 0 0
\(973\) 678.000 0.696814
\(974\) 810.600i 0.832238i
\(975\) 0 0
\(976\) 128.000 221.703i 0.131148 0.227154i
\(977\) 78.5000 + 135.966i 0.0803480 + 0.139167i 0.903399 0.428800i \(-0.141064\pi\)
−0.823051 + 0.567967i \(0.807730\pi\)
\(978\) 0 0
\(979\) 21.0000 + 12.1244i 0.0214505 + 0.0123844i
\(980\) 296.000 512.687i 0.302041 0.523150i
\(981\) 0 0
\(982\) 1257.00 725.729i 1.28004 0.739032i
\(983\) −1218.00 703.213i −1.23906 0.715374i −0.270161 0.962815i \(-0.587077\pi\)
−0.968903 + 0.247441i \(0.920410\pi\)
\(984\) 0 0
\(985\) −536.000 928.379i −0.544162 0.942517i
\(986\) −374.000 + 647.787i −0.379310 + 0.656985i
\(987\) 0 0
\(988\) −1188.00 + 685.892i −1.20243 + 0.694223i
\(989\) 1218.00 1.23155
\(990\) 0 0
\(991\) 249.415i 0.251680i −0.992051 0.125840i \(-0.959837\pi\)
0.992051 0.125840i \(-0.0401627\pi\)
\(992\) −192.000 + 110.851i −0.193548 + 0.111745i
\(993\) 0 0
\(994\) 0 0
\(995\) 108.000 62.3538i 0.108543 0.0626672i
\(996\) 0 0
\(997\) 206.000 356.802i 0.206620 0.357876i −0.744028 0.668149i \(-0.767087\pi\)
0.950648 + 0.310273i \(0.100420\pi\)
\(998\) −903.000 + 521.347i −0.904810 + 0.522392i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 108.3.f.a.19.1 2
3.2 odd 2 36.3.f.b.7.1 yes 2
4.3 odd 2 108.3.f.b.19.1 2
8.3 odd 2 1728.3.o.b.127.1 2
8.5 even 2 1728.3.o.a.127.1 2
9.2 odd 6 324.3.d.b.163.1 2
9.4 even 3 108.3.f.b.91.1 2
9.5 odd 6 36.3.f.a.31.1 yes 2
9.7 even 3 324.3.d.c.163.2 2
12.11 even 2 36.3.f.a.7.1 2
24.5 odd 2 576.3.o.b.511.1 2
24.11 even 2 576.3.o.a.511.1 2
36.7 odd 6 324.3.d.c.163.1 2
36.11 even 6 324.3.d.b.163.2 2
36.23 even 6 36.3.f.b.31.1 yes 2
36.31 odd 6 inner 108.3.f.a.91.1 2
72.5 odd 6 576.3.o.a.319.1 2
72.13 even 6 1728.3.o.b.1279.1 2
72.59 even 6 576.3.o.b.319.1 2
72.67 odd 6 1728.3.o.a.1279.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.3.f.a.7.1 2 12.11 even 2
36.3.f.a.31.1 yes 2 9.5 odd 6
36.3.f.b.7.1 yes 2 3.2 odd 2
36.3.f.b.31.1 yes 2 36.23 even 6
108.3.f.a.19.1 2 1.1 even 1 trivial
108.3.f.a.91.1 2 36.31 odd 6 inner
108.3.f.b.19.1 2 4.3 odd 2
108.3.f.b.91.1 2 9.4 even 3
324.3.d.b.163.1 2 9.2 odd 6
324.3.d.b.163.2 2 36.11 even 6
324.3.d.c.163.1 2 36.7 odd 6
324.3.d.c.163.2 2 9.7 even 3
576.3.o.a.319.1 2 72.5 odd 6
576.3.o.a.511.1 2 24.11 even 2
576.3.o.b.319.1 2 72.59 even 6
576.3.o.b.511.1 2 24.5 odd 2
1728.3.o.a.127.1 2 8.5 even 2
1728.3.o.a.1279.1 2 72.67 odd 6
1728.3.o.b.127.1 2 8.3 odd 2
1728.3.o.b.1279.1 2 72.13 even 6