Properties

Label 576.8.a.bd
Level $576$
Weight $8$
Character orbit 576.a
Self dual yes
Analytic conductor $179.934$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,8,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(179.933774679\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 72)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 48\sqrt{46}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 112) q^{5} + ( - 4 \beta + 420) q^{7} + ( - 12 \beta + 320) q^{11} + ( - 16 \beta + 1430) q^{13} + ( - 50 \beta + 17888) q^{17} + ( - 40 \beta + 7336) q^{19} + (40 \beta + 59008) q^{23} + ( - 224 \beta + 40403) q^{25}+ \cdots + (18112 \beta + 2609870) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 224 q^{5} + 840 q^{7} + 640 q^{11} + 2860 q^{13} + 35776 q^{17} + 14672 q^{19} + 118016 q^{23} + 80806 q^{25} - 306720 q^{29} - 95480 q^{31} - 941952 q^{35} - 53820 q^{37} + 1143360 q^{41} + 679120 q^{43}+ \cdots + 5219740 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.78233
6.78233
0 0 0 −437.552 0 1722.21 0 0 0
1.2 0 0 0 213.552 0 −882.207 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.8.a.bd 2
3.b odd 2 1 576.8.a.bq 2
4.b odd 2 1 576.8.a.bc 2
8.b even 2 1 72.8.a.g yes 2
8.d odd 2 1 144.8.a.n 2
12.b even 2 1 576.8.a.bp 2
24.f even 2 1 144.8.a.l 2
24.h odd 2 1 72.8.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.8.a.f 2 24.h odd 2 1
72.8.a.g yes 2 8.b even 2 1
144.8.a.l 2 24.f even 2 1
144.8.a.n 2 8.d odd 2 1
576.8.a.bc 2 4.b odd 2 1
576.8.a.bd 2 1.a even 1 1 trivial
576.8.a.bp 2 12.b even 2 1
576.8.a.bq 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(576))\):

\( T_{5}^{2} + 224T_{5} - 93440 \) Copy content Toggle raw display
\( T_{7}^{2} - 840T_{7} - 1519344 \) Copy content Toggle raw display
\( T_{11}^{2} - 640T_{11} - 15159296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 224T - 93440 \) Copy content Toggle raw display
$7$ \( T^{2} - 840 T - 1519344 \) Copy content Toggle raw display
$11$ \( T^{2} - 640 T - 15159296 \) Copy content Toggle raw display
$13$ \( T^{2} - 2860 T - 25087004 \) Copy content Toggle raw display
$17$ \( T^{2} - 35776 T + 55020544 \) Copy content Toggle raw display
$19$ \( T^{2} - 14672 T - 115757504 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 3312369664 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 13136143104 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 1219267600 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 168606064764 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 325881547776 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 106991848000 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 924877799424 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 320395537664 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1578697048064 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1818654661924 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 7437612423424 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 9794386395136 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1814882508764 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 1899030246896 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 13937265004544 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 3774345523200 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 27956051534396 \) Copy content Toggle raw display
show more
show less