Properties

Label 5760.2.k.m.2881.3
Level $5760$
Weight $2$
Character 5760.2881
Analytic conductor $45.994$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(2881,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.2881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5760.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9938315643\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2881.3
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 5760.2881
Dual form 5760.2.k.m.2881.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} -2.00000 q^{7} +O(q^{10})\) \(q+1.00000i q^{5} -2.00000 q^{7} -0.828427i q^{11} -0.828427i q^{13} -2.82843 q^{17} +5.65685 q^{23} -1.00000 q^{25} +3.65685i q^{29} +1.17157 q^{31} -2.00000i q^{35} -6.48528i q^{37} -3.65685 q^{41} -1.65685i q^{43} +1.65685 q^{47} -3.00000 q^{49} +11.6569i q^{53} +0.828427 q^{55} +4.82843i q^{59} -9.65685i q^{61} +0.828427 q^{65} -9.65685i q^{67} +13.6569 q^{71} -9.31371 q^{73} +1.65685i q^{77} +12.4853 q^{79} -2.82843i q^{85} -4.34315 q^{89} +1.65685i q^{91} +7.65685 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} - 4 q^{25} + 16 q^{31} + 8 q^{41} - 16 q^{47} - 12 q^{49} - 8 q^{55} - 8 q^{65} + 32 q^{71} + 8 q^{73} + 16 q^{79} - 40 q^{89} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5760\mathbb{Z}\right)^\times\).

\(n\) \(641\) \(901\) \(2431\) \(3457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 0.828427i − 0.249780i −0.992171 0.124890i \(-0.960142\pi\)
0.992171 0.124890i \(-0.0398578\pi\)
\(12\) 0 0
\(13\) − 0.828427i − 0.229764i −0.993379 0.114882i \(-0.963351\pi\)
0.993379 0.114882i \(-0.0366490\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.82843 −0.685994 −0.342997 0.939336i \(-0.611442\pi\)
−0.342997 + 0.939336i \(0.611442\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.65685 1.17954 0.589768 0.807573i \(-0.299219\pi\)
0.589768 + 0.807573i \(0.299219\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.65685i 0.679061i 0.940595 + 0.339530i \(0.110268\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(30\) 0 0
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 2.00000i − 0.338062i
\(36\) 0 0
\(37\) − 6.48528i − 1.06617i −0.846061 0.533087i \(-0.821032\pi\)
0.846061 0.533087i \(-0.178968\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.65685 −0.571105 −0.285552 0.958363i \(-0.592177\pi\)
−0.285552 + 0.958363i \(0.592177\pi\)
\(42\) 0 0
\(43\) − 1.65685i − 0.252668i −0.991988 0.126334i \(-0.959679\pi\)
0.991988 0.126334i \(-0.0403211\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.65685 0.241677 0.120839 0.992672i \(-0.461442\pi\)
0.120839 + 0.992672i \(0.461442\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.6569i 1.60119i 0.599204 + 0.800596i \(0.295484\pi\)
−0.599204 + 0.800596i \(0.704516\pi\)
\(54\) 0 0
\(55\) 0.828427 0.111705
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.82843i 0.628608i 0.949322 + 0.314304i \(0.101771\pi\)
−0.949322 + 0.314304i \(0.898229\pi\)
\(60\) 0 0
\(61\) − 9.65685i − 1.23643i −0.786008 0.618217i \(-0.787855\pi\)
0.786008 0.618217i \(-0.212145\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.828427 0.102754
\(66\) 0 0
\(67\) − 9.65685i − 1.17977i −0.807486 0.589886i \(-0.799173\pi\)
0.807486 0.589886i \(-0.200827\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.6569 1.62077 0.810385 0.585897i \(-0.199258\pi\)
0.810385 + 0.585897i \(0.199258\pi\)
\(72\) 0 0
\(73\) −9.31371 −1.09009 −0.545044 0.838408i \(-0.683487\pi\)
−0.545044 + 0.838408i \(0.683487\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.65685i 0.188816i
\(78\) 0 0
\(79\) 12.4853 1.40470 0.702352 0.711830i \(-0.252133\pi\)
0.702352 + 0.711830i \(0.252133\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) − 2.82843i − 0.306786i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.34315 −0.460373 −0.230186 0.973147i \(-0.573934\pi\)
−0.230186 + 0.973147i \(0.573934\pi\)
\(90\) 0 0
\(91\) 1.65685i 0.173686i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.65685 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.31371i 0.528734i 0.964422 + 0.264367i \(0.0851630\pi\)
−0.964422 + 0.264367i \(0.914837\pi\)
\(102\) 0 0
\(103\) −4.34315 −0.427943 −0.213971 0.976840i \(-0.568640\pi\)
−0.213971 + 0.976840i \(0.568640\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 2.34315i − 0.226520i −0.993565 0.113260i \(-0.963871\pi\)
0.993565 0.113260i \(-0.0361294\pi\)
\(108\) 0 0
\(109\) − 4.00000i − 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.4853 1.92709 0.963547 0.267541i \(-0.0862110\pi\)
0.963547 + 0.267541i \(0.0862110\pi\)
\(114\) 0 0
\(115\) 5.65685i 0.527504i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.65685 0.518563
\(120\) 0 0
\(121\) 10.3137 0.937610
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 15.6569 1.38932 0.694661 0.719338i \(-0.255555\pi\)
0.694661 + 0.719338i \(0.255555\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 14.4853i − 1.26558i −0.774321 0.632792i \(-0.781909\pi\)
0.774321 0.632792i \(-0.218091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.17157 0.100094 0.0500471 0.998747i \(-0.484063\pi\)
0.0500471 + 0.998747i \(0.484063\pi\)
\(138\) 0 0
\(139\) 9.65685i 0.819084i 0.912291 + 0.409542i \(0.134311\pi\)
−0.912291 + 0.409542i \(0.865689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.686292 −0.0573906
\(144\) 0 0
\(145\) −3.65685 −0.303685
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.6569i 0.954967i 0.878641 + 0.477483i \(0.158451\pi\)
−0.878641 + 0.477483i \(0.841549\pi\)
\(150\) 0 0
\(151\) 8.48528 0.690522 0.345261 0.938507i \(-0.387790\pi\)
0.345261 + 0.938507i \(0.387790\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.17157i 0.0941030i
\(156\) 0 0
\(157\) − 22.4853i − 1.79452i −0.441502 0.897260i \(-0.645554\pi\)
0.441502 0.897260i \(-0.354446\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.3137 −0.891645
\(162\) 0 0
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.6569 1.67586 0.837929 0.545779i \(-0.183766\pi\)
0.837929 + 0.545779i \(0.183766\pi\)
\(168\) 0 0
\(169\) 12.3137 0.947208
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 4.34315i − 0.330203i −0.986277 0.165102i \(-0.947205\pi\)
0.986277 0.165102i \(-0.0527952\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.4853i 1.08268i 0.840804 + 0.541340i \(0.182083\pi\)
−0.840804 + 0.541340i \(0.817917\pi\)
\(180\) 0 0
\(181\) 12.0000i 0.891953i 0.895045 + 0.445976i \(0.147144\pi\)
−0.895045 + 0.445976i \(0.852856\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.48528 0.476807
\(186\) 0 0
\(187\) 2.34315i 0.171348i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.68629 −0.339088 −0.169544 0.985523i \(-0.554230\pi\)
−0.169544 + 0.985523i \(0.554230\pi\)
\(192\) 0 0
\(193\) −10.9706 −0.789678 −0.394839 0.918750i \(-0.629200\pi\)
−0.394839 + 0.918750i \(0.629200\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.31371i − 0.0935979i −0.998904 0.0467989i \(-0.985098\pi\)
0.998904 0.0467989i \(-0.0149020\pi\)
\(198\) 0 0
\(199\) −13.1716 −0.933708 −0.466854 0.884334i \(-0.654613\pi\)
−0.466854 + 0.884334i \(0.654613\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.31371i − 0.513322i
\(204\) 0 0
\(205\) − 3.65685i − 0.255406i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 14.3431i 0.987423i 0.869626 + 0.493711i \(0.164360\pi\)
−0.869626 + 0.493711i \(0.835640\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.65685 0.112997
\(216\) 0 0
\(217\) −2.34315 −0.159063
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.34315i 0.157617i
\(222\) 0 0
\(223\) 18.9706 1.27036 0.635181 0.772363i \(-0.280925\pi\)
0.635181 + 0.772363i \(0.280925\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.6569i 1.17193i 0.810338 + 0.585963i \(0.199284\pi\)
−0.810338 + 0.585963i \(0.800716\pi\)
\(228\) 0 0
\(229\) 21.6569i 1.43113i 0.698549 + 0.715563i \(0.253830\pi\)
−0.698549 + 0.715563i \(0.746170\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.7990 0.772978 0.386489 0.922294i \(-0.373688\pi\)
0.386489 + 0.922294i \(0.373688\pi\)
\(234\) 0 0
\(235\) 1.65685i 0.108081i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) 20.6274 1.32873 0.664364 0.747409i \(-0.268702\pi\)
0.664364 + 0.747409i \(0.268702\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 3.00000i − 0.191663i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.82843i 0.557245i 0.960401 + 0.278623i \(0.0898779\pi\)
−0.960401 + 0.278623i \(0.910122\pi\)
\(252\) 0 0
\(253\) − 4.68629i − 0.294625i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.8284 −0.924972 −0.462486 0.886627i \(-0.653042\pi\)
−0.462486 + 0.886627i \(0.653042\pi\)
\(258\) 0 0
\(259\) 12.9706i 0.805952i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 29.6569 1.82872 0.914360 0.404902i \(-0.132694\pi\)
0.914360 + 0.404902i \(0.132694\pi\)
\(264\) 0 0
\(265\) −11.6569 −0.716075
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 7.65685i − 0.466847i −0.972375 0.233423i \(-0.925007\pi\)
0.972375 0.233423i \(-0.0749928\pi\)
\(270\) 0 0
\(271\) 8.48528 0.515444 0.257722 0.966219i \(-0.417028\pi\)
0.257722 + 0.966219i \(0.417028\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.828427i 0.0499560i
\(276\) 0 0
\(277\) 23.1716i 1.39224i 0.717923 + 0.696122i \(0.245093\pi\)
−0.717923 + 0.696122i \(0.754907\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.9706 −0.654449 −0.327224 0.944947i \(-0.606113\pi\)
−0.327224 + 0.944947i \(0.606113\pi\)
\(282\) 0 0
\(283\) − 12.9706i − 0.771020i −0.922704 0.385510i \(-0.874026\pi\)
0.922704 0.385510i \(-0.125974\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.31371 0.431715
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 17.3137i − 1.01148i −0.862687 0.505739i \(-0.831220\pi\)
0.862687 0.505739i \(-0.168780\pi\)
\(294\) 0 0
\(295\) −4.82843 −0.281122
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 4.68629i − 0.271015i
\(300\) 0 0
\(301\) 3.31371i 0.190999i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.65685 0.552950
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.3137 0.641542 0.320771 0.947157i \(-0.396058\pi\)
0.320771 + 0.947157i \(0.396058\pi\)
\(312\) 0 0
\(313\) −22.9706 −1.29837 −0.649186 0.760629i \(-0.724891\pi\)
−0.649186 + 0.760629i \(0.724891\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 13.3137i − 0.747772i −0.927475 0.373886i \(-0.878025\pi\)
0.927475 0.373886i \(-0.121975\pi\)
\(318\) 0 0
\(319\) 3.02944 0.169616
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.828427i 0.0459529i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.31371 −0.182691
\(330\) 0 0
\(331\) − 32.0000i − 1.75888i −0.476011 0.879440i \(-0.657918\pi\)
0.476011 0.879440i \(-0.342082\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.65685 0.527610
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 0.970563i − 0.0525589i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 9.65685i − 0.518407i −0.965823 0.259204i \(-0.916540\pi\)
0.965823 0.259204i \(-0.0834600\pi\)
\(348\) 0 0
\(349\) − 3.02944i − 0.162162i −0.996708 0.0810810i \(-0.974163\pi\)
0.996708 0.0810810i \(-0.0258373\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.4558 1.35488 0.677439 0.735579i \(-0.263090\pi\)
0.677439 + 0.735579i \(0.263090\pi\)
\(354\) 0 0
\(355\) 13.6569i 0.724831i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.9706 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 9.31371i − 0.487502i
\(366\) 0 0
\(367\) −2.68629 −0.140223 −0.0701116 0.997539i \(-0.522336\pi\)
−0.0701116 + 0.997539i \(0.522336\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 23.3137i − 1.21039i
\(372\) 0 0
\(373\) 30.4853i 1.57847i 0.614093 + 0.789234i \(0.289522\pi\)
−0.614093 + 0.789234i \(0.710478\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.02944 0.156024
\(378\) 0 0
\(379\) 24.2843i 1.24740i 0.781664 + 0.623700i \(0.214371\pi\)
−0.781664 + 0.623700i \(0.785629\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.34315 −0.324120 −0.162060 0.986781i \(-0.551814\pi\)
−0.162060 + 0.986781i \(0.551814\pi\)
\(384\) 0 0
\(385\) −1.65685 −0.0844411
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 13.3137i − 0.675032i −0.941320 0.337516i \(-0.890413\pi\)
0.941320 0.337516i \(-0.109587\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.4853i 0.628203i
\(396\) 0 0
\(397\) 6.48528i 0.325487i 0.986668 + 0.162743i \(0.0520343\pi\)
−0.986668 + 0.162743i \(0.947966\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −36.6274 −1.82909 −0.914543 0.404489i \(-0.867449\pi\)
−0.914543 + 0.404489i \(0.867449\pi\)
\(402\) 0 0
\(403\) − 0.970563i − 0.0483472i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.37258 −0.266309
\(408\) 0 0
\(409\) 2.68629 0.132829 0.0664143 0.997792i \(-0.478844\pi\)
0.0664143 + 0.997792i \(0.478844\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 9.65685i − 0.475183i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.48528i 0.121414i 0.998156 + 0.0607070i \(0.0193355\pi\)
−0.998156 + 0.0607070i \(0.980664\pi\)
\(420\) 0 0
\(421\) 16.9706i 0.827095i 0.910483 + 0.413547i \(0.135710\pi\)
−0.910483 + 0.413547i \(0.864290\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.82843 0.137199
\(426\) 0 0
\(427\) 19.3137i 0.934656i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.6569 1.04317 0.521587 0.853198i \(-0.325340\pi\)
0.521587 + 0.853198i \(0.325340\pi\)
\(432\) 0 0
\(433\) −32.6274 −1.56797 −0.783987 0.620777i \(-0.786817\pi\)
−0.783987 + 0.620777i \(0.786817\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 22.1421 1.05679 0.528393 0.849000i \(-0.322795\pi\)
0.528393 + 0.849000i \(0.322795\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 17.6569i − 0.838902i −0.907778 0.419451i \(-0.862223\pi\)
0.907778 0.419451i \(-0.137777\pi\)
\(444\) 0 0
\(445\) − 4.34315i − 0.205885i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.31371 −0.0619977 −0.0309989 0.999519i \(-0.509869\pi\)
−0.0309989 + 0.999519i \(0.509869\pi\)
\(450\) 0 0
\(451\) 3.02944i 0.142651i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.65685 −0.0776745
\(456\) 0 0
\(457\) 14.9706 0.700293 0.350147 0.936695i \(-0.386132\pi\)
0.350147 + 0.936695i \(0.386132\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 19.6569i − 0.915511i −0.889078 0.457755i \(-0.848654\pi\)
0.889078 0.457755i \(-0.151346\pi\)
\(462\) 0 0
\(463\) −24.6274 −1.14453 −0.572267 0.820068i \(-0.693936\pi\)
−0.572267 + 0.820068i \(0.693936\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.6863i 0.587052i 0.955951 + 0.293526i \(0.0948287\pi\)
−0.955951 + 0.293526i \(0.905171\pi\)
\(468\) 0 0
\(469\) 19.3137i 0.891824i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.37258 −0.0631114
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.3431 0.472590 0.236295 0.971681i \(-0.424067\pi\)
0.236295 + 0.971681i \(0.424067\pi\)
\(480\) 0 0
\(481\) −5.37258 −0.244969
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.65685i 0.347680i
\(486\) 0 0
\(487\) 2.97056 0.134609 0.0673045 0.997732i \(-0.478560\pi\)
0.0673045 + 0.997732i \(0.478560\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 27.1716i 1.22624i 0.789991 + 0.613118i \(0.210085\pi\)
−0.789991 + 0.613118i \(0.789915\pi\)
\(492\) 0 0
\(493\) − 10.3431i − 0.465832i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.3137 −1.22519
\(498\) 0 0
\(499\) 6.62742i 0.296684i 0.988936 + 0.148342i \(0.0473936\pi\)
−0.988936 + 0.148342i \(0.952606\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.65685 −0.430578 −0.215289 0.976550i \(-0.569069\pi\)
−0.215289 + 0.976550i \(0.569069\pi\)
\(504\) 0 0
\(505\) −5.31371 −0.236457
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 18.0000i − 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 18.6274 0.824028
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 4.34315i − 0.191382i
\(516\) 0 0
\(517\) − 1.37258i − 0.0603661i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.31371 −0.232798 −0.116399 0.993203i \(-0.537135\pi\)
−0.116399 + 0.993203i \(0.537135\pi\)
\(522\) 0 0
\(523\) − 37.9411i − 1.65905i −0.558470 0.829525i \(-0.688611\pi\)
0.558470 0.829525i \(-0.311389\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.31371 −0.144347
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.02944i 0.131219i
\(534\) 0 0
\(535\) 2.34315 0.101303
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.48528i 0.107049i
\(540\) 0 0
\(541\) − 12.0000i − 0.515920i −0.966156 0.257960i \(-0.916950\pi\)
0.966156 0.257960i \(-0.0830503\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) − 25.6569i − 1.09701i −0.836148 0.548504i \(-0.815198\pi\)
0.836148 0.548504i \(-0.184802\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −24.9706 −1.06186
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 23.6569i − 1.00237i −0.865339 0.501187i \(-0.832897\pi\)
0.865339 0.501187i \(-0.167103\pi\)
\(558\) 0 0
\(559\) −1.37258 −0.0580541
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 28.9706i − 1.22096i −0.792030 0.610482i \(-0.790976\pi\)
0.792030 0.610482i \(-0.209024\pi\)
\(564\) 0 0
\(565\) 20.4853i 0.861822i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.31371 −0.222762 −0.111381 0.993778i \(-0.535527\pi\)
−0.111381 + 0.993778i \(0.535527\pi\)
\(570\) 0 0
\(571\) − 38.6274i − 1.61651i −0.588835 0.808254i \(-0.700413\pi\)
0.588835 0.808254i \(-0.299587\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.65685 −0.235907
\(576\) 0 0
\(577\) −5.02944 −0.209378 −0.104689 0.994505i \(-0.533385\pi\)
−0.104689 + 0.994505i \(0.533385\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.65685 0.399946
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 29.6569i − 1.22407i −0.790831 0.612035i \(-0.790351\pi\)
0.790831 0.612035i \(-0.209649\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 39.7990 1.63435 0.817174 0.576391i \(-0.195539\pi\)
0.817174 + 0.576391i \(0.195539\pi\)
\(594\) 0 0
\(595\) 5.65685i 0.231908i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −45.6569 −1.86549 −0.932744 0.360539i \(-0.882593\pi\)
−0.932744 + 0.360539i \(0.882593\pi\)
\(600\) 0 0
\(601\) 27.9411 1.13974 0.569871 0.821734i \(-0.306993\pi\)
0.569871 + 0.821734i \(0.306993\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.3137i 0.419312i
\(606\) 0 0
\(607\) −24.6274 −0.999596 −0.499798 0.866142i \(-0.666592\pi\)
−0.499798 + 0.866142i \(0.666592\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.37258i − 0.0555288i
\(612\) 0 0
\(613\) 9.51472i 0.384296i 0.981366 + 0.192148i \(0.0615453\pi\)
−0.981366 + 0.192148i \(0.938455\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.82843 −0.113868 −0.0569341 0.998378i \(-0.518132\pi\)
−0.0569341 + 0.998378i \(0.518132\pi\)
\(618\) 0 0
\(619\) 44.9706i 1.80752i 0.428040 + 0.903760i \(0.359204\pi\)
−0.428040 + 0.903760i \(0.640796\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.68629 0.348009
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.3431i 0.731389i
\(630\) 0 0
\(631\) 19.5147 0.776869 0.388434 0.921476i \(-0.373016\pi\)
0.388434 + 0.921476i \(0.373016\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.6569i 0.621323i
\(636\) 0 0
\(637\) 2.48528i 0.0984704i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.6569 −0.934390 −0.467195 0.884154i \(-0.654735\pi\)
−0.467195 + 0.884154i \(0.654735\pi\)
\(642\) 0 0
\(643\) − 42.6274i − 1.68106i −0.541764 0.840531i \(-0.682243\pi\)
0.541764 0.840531i \(-0.317757\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.34315 0.249375 0.124687 0.992196i \(-0.460207\pi\)
0.124687 + 0.992196i \(0.460207\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.68629i 0.261655i 0.991405 + 0.130827i \(0.0417634\pi\)
−0.991405 + 0.130827i \(0.958237\pi\)
\(654\) 0 0
\(655\) 14.4853 0.565987
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.8284i 1.74627i 0.487481 + 0.873134i \(0.337916\pi\)
−0.487481 + 0.873134i \(0.662084\pi\)
\(660\) 0 0
\(661\) 3.02944i 0.117831i 0.998263 + 0.0589157i \(0.0187643\pi\)
−0.998263 + 0.0589157i \(0.981236\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.6863i 0.800976i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 10.6863 0.411926 0.205963 0.978560i \(-0.433967\pi\)
0.205963 + 0.978560i \(0.433967\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.3137i 0.665420i 0.943029 + 0.332710i \(0.107963\pi\)
−0.943029 + 0.332710i \(0.892037\pi\)
\(678\) 0 0
\(679\) −15.3137 −0.587686
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 3.31371i − 0.126796i −0.997988 0.0633978i \(-0.979806\pi\)
0.997988 0.0633978i \(-0.0201937\pi\)
\(684\) 0 0
\(685\) 1.17157i 0.0447635i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.65685 0.367897
\(690\) 0 0
\(691\) − 6.62742i − 0.252119i −0.992023 0.126059i \(-0.959767\pi\)
0.992023 0.126059i \(-0.0402330\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.65685 −0.366305
\(696\) 0 0
\(697\) 10.3431 0.391775
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 42.0000i − 1.58632i −0.609015 0.793159i \(-0.708435\pi\)
0.609015 0.793159i \(-0.291565\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 10.6274i − 0.399685i
\(708\) 0 0
\(709\) − 36.2843i − 1.36268i −0.731965 0.681342i \(-0.761397\pi\)
0.731965 0.681342i \(-0.238603\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.62742 0.248199
\(714\) 0 0
\(715\) − 0.686292i − 0.0256658i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.2843 −0.458126 −0.229063 0.973412i \(-0.573566\pi\)
−0.229063 + 0.973412i \(0.573566\pi\)
\(720\) 0 0
\(721\) 8.68629 0.323494
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 3.65685i − 0.135812i
\(726\) 0 0
\(727\) 50.9706 1.89039 0.945197 0.326501i \(-0.105870\pi\)
0.945197 + 0.326501i \(0.105870\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.68629i 0.173329i
\(732\) 0 0
\(733\) − 21.7990i − 0.805164i −0.915384 0.402582i \(-0.868113\pi\)
0.915384 0.402582i \(-0.131887\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 41.9411i 1.54283i 0.636333 + 0.771415i \(0.280451\pi\)
−0.636333 + 0.771415i \(0.719549\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.97056 0.182352 0.0911761 0.995835i \(-0.470937\pi\)
0.0911761 + 0.995835i \(0.470937\pi\)
\(744\) 0 0
\(745\) −11.6569 −0.427074
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.68629i 0.171233i
\(750\) 0 0
\(751\) −45.4558 −1.65871 −0.829354 0.558724i \(-0.811291\pi\)
−0.829354 + 0.558724i \(0.811291\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.48528i 0.308811i
\(756\) 0 0
\(757\) 34.4853i 1.25339i 0.779265 + 0.626694i \(0.215593\pi\)
−0.779265 + 0.626694i \(0.784407\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.3137 1.20762 0.603810 0.797128i \(-0.293648\pi\)
0.603810 + 0.797128i \(0.293648\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.00000 0.144432
\(768\) 0 0
\(769\) 13.3137 0.480105 0.240052 0.970760i \(-0.422835\pi\)
0.240052 + 0.970760i \(0.422835\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 39.2548i 1.41190i 0.708263 + 0.705949i \(0.249479\pi\)
−0.708263 + 0.705949i \(0.750521\pi\)
\(774\) 0 0
\(775\) −1.17157 −0.0420841
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) − 11.3137i − 0.404836i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.4853 0.802534
\(786\) 0 0
\(787\) − 16.6863i − 0.594802i −0.954753 0.297401i \(-0.903880\pi\)
0.954753 0.297401i \(-0.0961198\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −40.9706 −1.45675
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.9706i 0.813659i 0.913504 + 0.406830i \(0.133366\pi\)
−0.913504 + 0.406830i \(0.866634\pi\)
\(798\) 0 0
\(799\) −4.68629 −0.165789
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.71573i 0.272282i
\(804\) 0 0
\(805\) − 11.3137i − 0.398756i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.6569 0.831731 0.415865 0.909426i \(-0.363479\pi\)
0.415865 + 0.909426i \(0.363479\pi\)
\(810\) 0 0
\(811\) − 35.5980i − 1.25001i −0.780619 0.625007i \(-0.785096\pi\)
0.780619 0.625007i \(-0.214904\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34.9706i 1.22048i 0.792216 + 0.610241i \(0.208927\pi\)
−0.792216 + 0.610241i \(0.791073\pi\)
\(822\) 0 0
\(823\) −18.2843 −0.637350 −0.318675 0.947864i \(-0.603238\pi\)
−0.318675 + 0.947864i \(0.603238\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 39.3137i − 1.36707i −0.729917 0.683536i \(-0.760441\pi\)
0.729917 0.683536i \(-0.239559\pi\)
\(828\) 0 0
\(829\) − 37.9411i − 1.31775i −0.752253 0.658875i \(-0.771033\pi\)
0.752253 0.658875i \(-0.228967\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.48528 0.293998
\(834\) 0 0
\(835\) 21.6569i 0.749466i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.2843 −0.424100 −0.212050 0.977259i \(-0.568014\pi\)
−0.212050 + 0.977259i \(0.568014\pi\)
\(840\) 0 0
\(841\) 15.6274 0.538876
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.3137i 0.423604i
\(846\) 0 0
\(847\) −20.6274 −0.708766
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 36.6863i − 1.25759i
\(852\) 0 0
\(853\) 1.51472i 0.0518630i 0.999664 + 0.0259315i \(0.00825517\pi\)
−0.999664 + 0.0259315i \(0.991745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.1421 0.756361 0.378180 0.925732i \(-0.376550\pi\)
0.378180 + 0.925732i \(0.376550\pi\)
\(858\) 0 0
\(859\) 46.9117i 1.60061i 0.599596 + 0.800303i \(0.295328\pi\)
−0.599596 + 0.800303i \(0.704672\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.6569 0.737208 0.368604 0.929587i \(-0.379836\pi\)
0.368604 + 0.929587i \(0.379836\pi\)
\(864\) 0 0
\(865\) 4.34315 0.147671
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 10.3431i − 0.350867i
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.00000i 0.0676123i
\(876\) 0 0
\(877\) − 14.4853i − 0.489133i −0.969632 0.244567i \(-0.921354\pi\)
0.969632 0.244567i \(-0.0786457\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −24.3431 −0.820141 −0.410071 0.912054i \(-0.634496\pi\)
−0.410071 + 0.912054i \(0.634496\pi\)
\(882\) 0 0
\(883\) − 29.9411i − 1.00760i −0.863821 0.503800i \(-0.831935\pi\)
0.863821 0.503800i \(-0.168065\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39.5980 −1.32957 −0.664785 0.747035i \(-0.731477\pi\)
−0.664785 + 0.747035i \(0.731477\pi\)
\(888\) 0 0
\(889\) −31.3137 −1.05023
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −14.4853 −0.484190
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.28427i 0.142888i
\(900\) 0 0
\(901\) − 32.9706i − 1.09841i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.0000 −0.398893
\(906\) 0 0
\(907\) 20.9706i 0.696316i 0.937436 + 0.348158i \(0.113193\pi\)
−0.937436 + 0.348158i \(0.886807\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.6863 0.420316 0.210158 0.977667i \(-0.432602\pi\)
0.210158 + 0.977667i \(0.432602\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.9706i 0.956692i
\(918\) 0 0
\(919\) 27.5147 0.907627 0.453813 0.891097i \(-0.350063\pi\)
0.453813 + 0.891097i \(0.350063\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 11.3137i − 0.372395i
\(924\) 0 0
\(925\) 6.48528i 0.213235i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.34315 −0.0766291
\(936\) 0 0
\(937\) 9.31371 0.304266 0.152133 0.988360i \(-0.451386\pi\)
0.152133 + 0.988360i \(0.451386\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 55.2548i 1.80126i 0.434591 + 0.900628i \(0.356893\pi\)
−0.434591 + 0.900628i \(0.643107\pi\)
\(942\) 0 0
\(943\) −20.6863 −0.673638
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.9411i 0.712991i 0.934297 + 0.356495i \(0.116028\pi\)
−0.934297 + 0.356495i \(0.883972\pi\)
\(948\) 0 0
\(949\) 7.71573i 0.250463i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.8284 −1.25778 −0.628888 0.777496i \(-0.716490\pi\)
−0.628888 + 0.777496i \(0.716490\pi\)
\(954\) 0 0
\(955\) − 4.68629i − 0.151645i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.34315 −0.0756641
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 10.9706i − 0.353155i
\(966\) 0 0
\(967\) −44.9117 −1.44426 −0.722131 0.691756i \(-0.756837\pi\)
−0.722131 + 0.691756i \(0.756837\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.1421i 1.41659i 0.705917 + 0.708294i \(0.250535\pi\)
−0.705917 + 0.708294i \(0.749465\pi\)
\(972\) 0 0
\(973\) − 19.3137i − 0.619169i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.1716 0.677339 0.338669 0.940905i \(-0.390023\pi\)
0.338669 + 0.940905i \(0.390023\pi\)
\(978\) 0 0
\(979\) 3.59798i 0.114992i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −52.9706 −1.68950 −0.844749 0.535162i \(-0.820250\pi\)
−0.844749 + 0.535162i \(0.820250\pi\)
\(984\) 0 0
\(985\) 1.31371 0.0418582
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 9.37258i − 0.298031i
\(990\) 0 0
\(991\) −32.4853 −1.03193 −0.515964 0.856610i \(-0.672566\pi\)
−0.515964 + 0.856610i \(0.672566\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 13.1716i − 0.417567i
\(996\) 0 0
\(997\) − 16.1421i − 0.511227i −0.966779 0.255613i \(-0.917723\pi\)
0.966779 0.255613i \(-0.0822774\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5760.2.k.m.2881.3 4
3.2 odd 2 1920.2.k.j.961.4 yes 4
4.3 odd 2 5760.2.k.x.2881.4 4
8.3 odd 2 5760.2.k.x.2881.1 4
8.5 even 2 inner 5760.2.k.m.2881.2 4
12.11 even 2 1920.2.k.k.961.1 yes 4
24.5 odd 2 1920.2.k.j.961.1 4
24.11 even 2 1920.2.k.k.961.4 yes 4
48.5 odd 4 3840.2.a.bm.1.1 2
48.11 even 4 3840.2.a.bg.1.2 2
48.29 odd 4 3840.2.a.bd.1.2 2
48.35 even 4 3840.2.a.bj.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.j.961.1 4 24.5 odd 2
1920.2.k.j.961.4 yes 4 3.2 odd 2
1920.2.k.k.961.1 yes 4 12.11 even 2
1920.2.k.k.961.4 yes 4 24.11 even 2
3840.2.a.bd.1.2 2 48.29 odd 4
3840.2.a.bg.1.2 2 48.11 even 4
3840.2.a.bj.1.1 2 48.35 even 4
3840.2.a.bm.1.1 2 48.5 odd 4
5760.2.k.m.2881.2 4 8.5 even 2 inner
5760.2.k.m.2881.3 4 1.1 even 1 trivial
5760.2.k.x.2881.1 4 8.3 odd 2
5760.2.k.x.2881.4 4 4.3 odd 2