Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5760,2,Mod(2881,5760)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5760.2881");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5760.k (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(45.9938315643\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{8})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | no (minimal twist has level 1920) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 2881.3 | ||
Root | \(-0.707107 + 0.707107i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 5760.2881 |
Dual form | 5760.2.k.m.2881.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5760\mathbb{Z}\right)^\times\).
\(n\) | \(641\) | \(901\) | \(2431\) | \(3457\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000i | 0.447214i | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.00000 | −0.755929 | −0.377964 | − | 0.925820i | \(-0.623376\pi\) | ||||
−0.377964 | + | 0.925820i | \(0.623376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 0.828427i | − 0.249780i | −0.992171 | − | 0.124890i | \(-0.960142\pi\) | ||||
0.992171 | − | 0.124890i | \(-0.0398578\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 0.828427i | − 0.229764i | −0.993379 | − | 0.114882i | \(-0.963351\pi\) | ||||
0.993379 | − | 0.114882i | \(-0.0366490\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.82843 | −0.685994 | −0.342997 | − | 0.939336i | \(-0.611442\pi\) | ||||
−0.342997 | + | 0.939336i | \(0.611442\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 5.65685 | 1.17954 | 0.589768 | − | 0.807573i | \(-0.299219\pi\) | ||||
0.589768 | + | 0.807573i | \(0.299219\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 3.65685i | 0.679061i | 0.940595 | + | 0.339530i | \(0.110268\pi\) | ||||
−0.940595 | + | 0.339530i | \(0.889732\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 1.17157 | 0.210421 | 0.105210 | − | 0.994450i | \(-0.466448\pi\) | ||||
0.105210 | + | 0.994450i | \(0.466448\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | − 2.00000i | − 0.338062i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.48528i | − 1.06617i | −0.846061 | − | 0.533087i | \(-0.821032\pi\) | ||||
0.846061 | − | 0.533087i | \(-0.178968\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −3.65685 | −0.571105 | −0.285552 | − | 0.958363i | \(-0.592177\pi\) | ||||
−0.285552 | + | 0.958363i | \(0.592177\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 1.65685i | − 0.252668i | −0.991988 | − | 0.126334i | \(-0.959679\pi\) | ||||
0.991988 | − | 0.126334i | \(-0.0403211\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 1.65685 | 0.241677 | 0.120839 | − | 0.992672i | \(-0.461442\pi\) | ||||
0.120839 | + | 0.992672i | \(0.461442\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 11.6569i | 1.60119i | 0.599204 | + | 0.800596i | \(0.295484\pi\) | ||||
−0.599204 | + | 0.800596i | \(0.704516\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0.828427 | 0.111705 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 4.82843i | 0.628608i | 0.949322 | + | 0.314304i | \(0.101771\pi\) | ||||
−0.949322 | + | 0.314304i | \(0.898229\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | − 9.65685i | − 1.23643i | −0.786008 | − | 0.618217i | \(-0.787855\pi\) | ||||
0.786008 | − | 0.618217i | \(-0.212145\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0.828427 | 0.102754 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 9.65685i | − 1.17977i | −0.807486 | − | 0.589886i | \(-0.799173\pi\) | ||||
0.807486 | − | 0.589886i | \(-0.200827\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 13.6569 | 1.62077 | 0.810385 | − | 0.585897i | \(-0.199258\pi\) | ||||
0.810385 | + | 0.585897i | \(0.199258\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −9.31371 | −1.09009 | −0.545044 | − | 0.838408i | \(-0.683487\pi\) | ||||
−0.545044 | + | 0.838408i | \(0.683487\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 1.65685i | 0.188816i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 12.4853 | 1.40470 | 0.702352 | − | 0.711830i | \(-0.252133\pi\) | ||||
0.702352 | + | 0.711830i | \(0.252133\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | − 2.82843i | − 0.306786i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −4.34315 | −0.460373 | −0.230186 | − | 0.973147i | \(-0.573934\pi\) | ||||
−0.230186 | + | 0.973147i | \(0.573934\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 1.65685i | 0.173686i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 7.65685 | 0.777436 | 0.388718 | − | 0.921357i | \(-0.372918\pi\) | ||||
0.388718 | + | 0.921357i | \(0.372918\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 5.31371i | 0.528734i | 0.964422 | + | 0.264367i | \(0.0851630\pi\) | ||||
−0.964422 | + | 0.264367i | \(0.914837\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.34315 | −0.427943 | −0.213971 | − | 0.976840i | \(-0.568640\pi\) | ||||
−0.213971 | + | 0.976840i | \(0.568640\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 2.34315i | − 0.226520i | −0.993565 | − | 0.113260i | \(-0.963871\pi\) | ||||
0.993565 | − | 0.113260i | \(-0.0361294\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − 4.00000i | − 0.383131i | −0.981480 | − | 0.191565i | \(-0.938644\pi\) | ||||
0.981480 | − | 0.191565i | \(-0.0613564\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 20.4853 | 1.92709 | 0.963547 | − | 0.267541i | \(-0.0862110\pi\) | ||||
0.963547 | + | 0.267541i | \(0.0862110\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 5.65685i | 0.527504i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 5.65685 | 0.518563 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 10.3137 | 0.937610 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − 1.00000i | − 0.0894427i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 15.6569 | 1.38932 | 0.694661 | − | 0.719338i | \(-0.255555\pi\) | ||||
0.694661 | + | 0.719338i | \(0.255555\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | − 14.4853i | − 1.26558i | −0.774321 | − | 0.632792i | \(-0.781909\pi\) | ||||
0.774321 | − | 0.632792i | \(-0.218091\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 1.17157 | 0.100094 | 0.0500471 | − | 0.998747i | \(-0.484063\pi\) | ||||
0.0500471 | + | 0.998747i | \(0.484063\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 9.65685i | 0.819084i | 0.912291 | + | 0.409542i | \(0.134311\pi\) | ||||
−0.912291 | + | 0.409542i | \(0.865689\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −0.686292 | −0.0573906 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −3.65685 | −0.303685 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 11.6569i | 0.954967i | 0.878641 | + | 0.477483i | \(0.158451\pi\) | ||||
−0.878641 | + | 0.477483i | \(0.841549\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.48528 | 0.690522 | 0.345261 | − | 0.938507i | \(-0.387790\pi\) | ||||
0.345261 | + | 0.938507i | \(0.387790\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 1.17157i | 0.0941030i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 22.4853i | − 1.79452i | −0.441502 | − | 0.897260i | \(-0.645554\pi\) | ||||
0.441502 | − | 0.897260i | \(-0.354446\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −11.3137 | −0.891645 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 12.0000i | − 0.939913i | −0.882690 | − | 0.469956i | \(-0.844270\pi\) | ||||
0.882690 | − | 0.469956i | \(-0.155730\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 21.6569 | 1.67586 | 0.837929 | − | 0.545779i | \(-0.183766\pi\) | ||||
0.837929 | + | 0.545779i | \(0.183766\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 12.3137 | 0.947208 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 4.34315i | − 0.330203i | −0.986277 | − | 0.165102i | \(-0.947205\pi\) | ||||
0.986277 | − | 0.165102i | \(-0.0527952\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 2.00000 | 0.151186 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 14.4853i | 1.08268i | 0.840804 | + | 0.541340i | \(0.182083\pi\) | ||||
−0.840804 | + | 0.541340i | \(0.817917\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 12.0000i | 0.891953i | 0.895045 | + | 0.445976i | \(0.147144\pi\) | ||||
−0.895045 | + | 0.445976i | \(0.852856\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 6.48528 | 0.476807 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 2.34315i | 0.171348i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −4.68629 | −0.339088 | −0.169544 | − | 0.985523i | \(-0.554230\pi\) | ||||
−0.169544 | + | 0.985523i | \(0.554230\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −10.9706 | −0.789678 | −0.394839 | − | 0.918750i | \(-0.629200\pi\) | ||||
−0.394839 | + | 0.918750i | \(0.629200\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 1.31371i | − 0.0935979i | −0.998904 | − | 0.0467989i | \(-0.985098\pi\) | ||||
0.998904 | − | 0.0467989i | \(-0.0149020\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −13.1716 | −0.933708 | −0.466854 | − | 0.884334i | \(-0.654613\pi\) | ||||
−0.466854 | + | 0.884334i | \(0.654613\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 7.31371i | − 0.513322i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | − 3.65685i | − 0.255406i | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 14.3431i | 0.987423i | 0.869626 | + | 0.493711i | \(0.164360\pi\) | ||||
−0.869626 | + | 0.493711i | \(0.835640\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 1.65685 | 0.112997 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −2.34315 | −0.159063 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 2.34315i | 0.157617i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 18.9706 | 1.27036 | 0.635181 | − | 0.772363i | \(-0.280925\pi\) | ||||
0.635181 | + | 0.772363i | \(0.280925\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 17.6569i | 1.17193i | 0.810338 | + | 0.585963i | \(0.199284\pi\) | ||||
−0.810338 | + | 0.585963i | \(0.800716\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 21.6569i | 1.43113i | 0.698549 | + | 0.715563i | \(0.253830\pi\) | ||||
−0.698549 | + | 0.715563i | \(0.746170\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 11.7990 | 0.772978 | 0.386489 | − | 0.922294i | \(-0.373688\pi\) | ||||
0.386489 | + | 0.922294i | \(0.373688\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 1.65685i | 0.108081i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 22.6274 | 1.46365 | 0.731823 | − | 0.681495i | \(-0.238670\pi\) | ||||
0.731823 | + | 0.681495i | \(0.238670\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 20.6274 | 1.32873 | 0.664364 | − | 0.747409i | \(-0.268702\pi\) | ||||
0.664364 | + | 0.747409i | \(0.268702\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | − 3.00000i | − 0.191663i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 8.82843i | 0.557245i | 0.960401 | + | 0.278623i | \(0.0898779\pi\) | ||||
−0.960401 | + | 0.278623i | \(0.910122\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 4.68629i | − 0.294625i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −14.8284 | −0.924972 | −0.462486 | − | 0.886627i | \(-0.653042\pi\) | ||||
−0.462486 | + | 0.886627i | \(0.653042\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 12.9706i | 0.805952i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 29.6569 | 1.82872 | 0.914360 | − | 0.404902i | \(-0.132694\pi\) | ||||
0.914360 | + | 0.404902i | \(0.132694\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −11.6569 | −0.716075 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 7.65685i | − 0.466847i | −0.972375 | − | 0.233423i | \(-0.925007\pi\) | ||||
0.972375 | − | 0.233423i | \(-0.0749928\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.48528 | 0.515444 | 0.257722 | − | 0.966219i | \(-0.417028\pi\) | ||||
0.257722 | + | 0.966219i | \(0.417028\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0.828427i | 0.0499560i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 23.1716i | 1.39224i | 0.717923 | + | 0.696122i | \(0.245093\pi\) | ||||
−0.717923 | + | 0.696122i | \(0.754907\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −10.9706 | −0.654449 | −0.327224 | − | 0.944947i | \(-0.606113\pi\) | ||||
−0.327224 | + | 0.944947i | \(0.606113\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 12.9706i | − 0.771020i | −0.922704 | − | 0.385510i | \(-0.874026\pi\) | ||||
0.922704 | − | 0.385510i | \(-0.125974\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 7.31371 | 0.431715 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −9.00000 | −0.529412 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 17.3137i | − 1.01148i | −0.862687 | − | 0.505739i | \(-0.831220\pi\) | ||||
0.862687 | − | 0.505739i | \(-0.168780\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −4.82843 | −0.281122 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | − 4.68629i | − 0.271015i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 3.31371i | 0.190999i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 9.65685 | 0.552950 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 4.00000i | − 0.228292i | −0.993464 | − | 0.114146i | \(-0.963587\pi\) | ||||
0.993464 | − | 0.114146i | \(-0.0364132\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 11.3137 | 0.641542 | 0.320771 | − | 0.947157i | \(-0.396058\pi\) | ||||
0.320771 | + | 0.947157i | \(0.396058\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −22.9706 | −1.29837 | −0.649186 | − | 0.760629i | \(-0.724891\pi\) | ||||
−0.649186 | + | 0.760629i | \(0.724891\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 13.3137i | − 0.747772i | −0.927475 | − | 0.373886i | \(-0.878025\pi\) | ||||
0.927475 | − | 0.373886i | \(-0.121975\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 3.02944 | 0.169616 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0.828427i | 0.0459529i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −3.31371 | −0.182691 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 32.0000i | − 1.75888i | −0.476011 | − | 0.879440i | \(-0.657918\pi\) | ||||
0.476011 | − | 0.879440i | \(-0.342082\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 9.65685 | 0.527610 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | − 0.970563i | − 0.0525589i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000 | 1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 9.65685i | − 0.518407i | −0.965823 | − | 0.259204i | \(-0.916540\pi\) | ||||
0.965823 | − | 0.259204i | \(-0.0834600\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − 3.02944i | − 0.162162i | −0.996708 | − | 0.0810810i | \(-0.974163\pi\) | ||||
0.996708 | − | 0.0810810i | \(-0.0258373\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 25.4558 | 1.35488 | 0.677439 | − | 0.735579i | \(-0.263090\pi\) | ||||
0.677439 | + | 0.735579i | \(0.263090\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 13.6569i | 0.724831i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 16.9706 | 0.895672 | 0.447836 | − | 0.894116i | \(-0.352195\pi\) | ||||
0.447836 | + | 0.894116i | \(0.352195\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 19.0000 | 1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | − 9.31371i | − 0.487502i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −2.68629 | −0.140223 | −0.0701116 | − | 0.997539i | \(-0.522336\pi\) | ||||
−0.0701116 | + | 0.997539i | \(0.522336\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 23.3137i | − 1.21039i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 30.4853i | 1.57847i | 0.614093 | + | 0.789234i | \(0.289522\pi\) | ||||
−0.614093 | + | 0.789234i | \(0.710478\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 3.02944 | 0.156024 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 24.2843i | 1.24740i | 0.781664 | + | 0.623700i | \(0.214371\pi\) | ||||
−0.781664 | + | 0.623700i | \(0.785629\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −6.34315 | −0.324120 | −0.162060 | − | 0.986781i | \(-0.551814\pi\) | ||||
−0.162060 | + | 0.986781i | \(0.551814\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −1.65685 | −0.0844411 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 13.3137i | − 0.675032i | −0.941320 | − | 0.337516i | \(-0.890413\pi\) | ||||
0.941320 | − | 0.337516i | \(-0.109587\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −16.0000 | −0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 12.4853i | 0.628203i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 6.48528i | 0.325487i | 0.986668 | + | 0.162743i | \(0.0520343\pi\) | ||||
−0.986668 | + | 0.162743i | \(0.947966\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −36.6274 | −1.82909 | −0.914543 | − | 0.404489i | \(-0.867449\pi\) | ||||
−0.914543 | + | 0.404489i | \(0.867449\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 0.970563i | − 0.0483472i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −5.37258 | −0.266309 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 2.68629 | 0.132829 | 0.0664143 | − | 0.997792i | \(-0.478844\pi\) | ||||
0.0664143 | + | 0.997792i | \(0.478844\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 9.65685i | − 0.475183i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 2.48528i | 0.121414i | 0.998156 | + | 0.0607070i | \(0.0193355\pi\) | ||||
−0.998156 | + | 0.0607070i | \(0.980664\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 16.9706i | 0.827095i | 0.910483 | + | 0.413547i | \(0.135710\pi\) | ||||
−0.910483 | + | 0.413547i | \(0.864290\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 2.82843 | 0.137199 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 19.3137i | 0.934656i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 21.6569 | 1.04317 | 0.521587 | − | 0.853198i | \(-0.325340\pi\) | ||||
0.521587 | + | 0.853198i | \(0.325340\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −32.6274 | −1.56797 | −0.783987 | − | 0.620777i | \(-0.786817\pi\) | ||||
−0.783987 | + | 0.620777i | \(0.786817\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 22.1421 | 1.05679 | 0.528393 | − | 0.849000i | \(-0.322795\pi\) | ||||
0.528393 | + | 0.849000i | \(0.322795\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 17.6569i | − 0.838902i | −0.907778 | − | 0.419451i | \(-0.862223\pi\) | ||||
0.907778 | − | 0.419451i | \(-0.137777\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | − 4.34315i | − 0.205885i | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −1.31371 | −0.0619977 | −0.0309989 | − | 0.999519i | \(-0.509869\pi\) | ||||
−0.0309989 | + | 0.999519i | \(0.509869\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 3.02944i | 0.142651i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −1.65685 | −0.0776745 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 14.9706 | 0.700293 | 0.350147 | − | 0.936695i | \(-0.386132\pi\) | ||||
0.350147 | + | 0.936695i | \(0.386132\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 19.6569i | − 0.915511i | −0.889078 | − | 0.457755i | \(-0.848654\pi\) | ||||
0.889078 | − | 0.457755i | \(-0.151346\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −24.6274 | −1.14453 | −0.572267 | − | 0.820068i | \(-0.693936\pi\) | ||||
−0.572267 | + | 0.820068i | \(0.693936\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 12.6863i | 0.587052i | 0.955951 | + | 0.293526i | \(0.0948287\pi\) | ||||
−0.955951 | + | 0.293526i | \(0.905171\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 19.3137i | 0.891824i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −1.37258 | −0.0631114 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 10.3431 | 0.472590 | 0.236295 | − | 0.971681i | \(-0.424067\pi\) | ||||
0.236295 | + | 0.971681i | \(0.424067\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −5.37258 | −0.244969 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 7.65685i | 0.347680i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 2.97056 | 0.134609 | 0.0673045 | − | 0.997732i | \(-0.478560\pi\) | ||||
0.0673045 | + | 0.997732i | \(0.478560\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 27.1716i | 1.22624i | 0.789991 | + | 0.613118i | \(0.210085\pi\) | ||||
−0.789991 | + | 0.613118i | \(0.789915\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 10.3431i | − 0.465832i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −27.3137 | −1.22519 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 6.62742i | 0.296684i | 0.988936 | + | 0.148342i | \(0.0473936\pi\) | ||||
−0.988936 | + | 0.148342i | \(0.952606\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −9.65685 | −0.430578 | −0.215289 | − | 0.976550i | \(-0.569069\pi\) | ||||
−0.215289 | + | 0.976550i | \(0.569069\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −5.31371 | −0.236457 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 18.0000i | − 0.797836i | −0.916987 | − | 0.398918i | \(-0.869386\pi\) | ||||
0.916987 | − | 0.398918i | \(-0.130614\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 18.6274 | 0.824028 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 4.34315i | − 0.191382i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 1.37258i | − 0.0603661i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −5.31371 | −0.232798 | −0.116399 | − | 0.993203i | \(-0.537135\pi\) | ||||
−0.116399 | + | 0.993203i | \(0.537135\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 37.9411i | − 1.65905i | −0.558470 | − | 0.829525i | \(-0.688611\pi\) | ||||
0.558470 | − | 0.829525i | \(-0.311389\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −3.31371 | −0.144347 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 9.00000 | 0.391304 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 3.02944i | 0.131219i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 2.34315 | 0.101303 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 2.48528i | 0.107049i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − 12.0000i | − 0.515920i | −0.966156 | − | 0.257960i | \(-0.916950\pi\) | ||||
0.966156 | − | 0.257960i | \(-0.0830503\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 4.00000 | 0.171341 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 25.6569i | − 1.09701i | −0.836148 | − | 0.548504i | \(-0.815198\pi\) | ||||
0.836148 | − | 0.548504i | \(-0.184802\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −24.9706 | −1.06186 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 23.6569i | − 1.00237i | −0.865339 | − | 0.501187i | \(-0.832897\pi\) | ||||
0.865339 | − | 0.501187i | \(-0.167103\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −1.37258 | −0.0580541 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 28.9706i | − 1.22096i | −0.792030 | − | 0.610482i | \(-0.790976\pi\) | ||||
0.792030 | − | 0.610482i | \(-0.209024\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 20.4853i | 0.861822i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −5.31371 | −0.222762 | −0.111381 | − | 0.993778i | \(-0.535527\pi\) | ||||
−0.111381 | + | 0.993778i | \(0.535527\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 38.6274i | − 1.61651i | −0.588835 | − | 0.808254i | \(-0.700413\pi\) | ||||
0.588835 | − | 0.808254i | \(-0.299587\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −5.65685 | −0.235907 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −5.02944 | −0.209378 | −0.104689 | − | 0.994505i | \(-0.533385\pi\) | ||||
−0.104689 | + | 0.994505i | \(0.533385\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 9.65685 | 0.399946 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 29.6569i | − 1.22407i | −0.790831 | − | 0.612035i | \(-0.790351\pi\) | ||||
0.790831 | − | 0.612035i | \(-0.209649\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 39.7990 | 1.63435 | 0.817174 | − | 0.576391i | \(-0.195539\pi\) | ||||
0.817174 | + | 0.576391i | \(0.195539\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 5.65685i | 0.231908i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −45.6569 | −1.86549 | −0.932744 | − | 0.360539i | \(-0.882593\pi\) | ||||
−0.932744 | + | 0.360539i | \(0.882593\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 27.9411 | 1.13974 | 0.569871 | − | 0.821734i | \(-0.306993\pi\) | ||||
0.569871 | + | 0.821734i | \(0.306993\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 10.3137i | 0.419312i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −24.6274 | −0.999596 | −0.499798 | − | 0.866142i | \(-0.666592\pi\) | ||||
−0.499798 | + | 0.866142i | \(0.666592\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − 1.37258i | − 0.0555288i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 9.51472i | 0.384296i | 0.981366 | + | 0.192148i | \(0.0615453\pi\) | ||||
−0.981366 | + | 0.192148i | \(0.938455\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −2.82843 | −0.113868 | −0.0569341 | − | 0.998378i | \(-0.518132\pi\) | ||||
−0.0569341 | + | 0.998378i | \(0.518132\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 44.9706i | 1.80752i | 0.428040 | + | 0.903760i | \(0.359204\pi\) | ||||
−0.428040 | + | 0.903760i | \(0.640796\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 8.68629 | 0.348009 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 18.3431i | 0.731389i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 19.5147 | 0.776869 | 0.388434 | − | 0.921476i | \(-0.373016\pi\) | ||||
0.388434 | + | 0.921476i | \(0.373016\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 15.6569i | 0.621323i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 2.48528i | 0.0984704i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −23.6569 | −0.934390 | −0.467195 | − | 0.884154i | \(-0.654735\pi\) | ||||
−0.467195 | + | 0.884154i | \(0.654735\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 42.6274i | − 1.68106i | −0.541764 | − | 0.840531i | \(-0.682243\pi\) | ||||
0.541764 | − | 0.840531i | \(-0.317757\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 6.34315 | 0.249375 | 0.124687 | − | 0.992196i | \(-0.460207\pi\) | ||||
0.124687 | + | 0.992196i | \(0.460207\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 4.00000 | 0.157014 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.68629i | 0.261655i | 0.991405 | + | 0.130827i | \(0.0417634\pi\) | ||||
−0.991405 | + | 0.130827i | \(0.958237\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 14.4853 | 0.565987 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 44.8284i | 1.74627i | 0.487481 | + | 0.873134i | \(0.337916\pi\) | ||||
−0.487481 | + | 0.873134i | \(0.662084\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 3.02944i | 0.117831i | 0.998263 | + | 0.0589157i | \(0.0187643\pi\) | ||||
−0.998263 | + | 0.0589157i | \(0.981236\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 20.6863i | 0.800976i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −8.00000 | −0.308837 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 10.6863 | 0.411926 | 0.205963 | − | 0.978560i | \(-0.433967\pi\) | ||||
0.205963 | + | 0.978560i | \(0.433967\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 17.3137i | 0.665420i | 0.943029 | + | 0.332710i | \(0.107963\pi\) | ||||
−0.943029 | + | 0.332710i | \(0.892037\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −15.3137 | −0.587686 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 3.31371i | − 0.126796i | −0.997988 | − | 0.0633978i | \(-0.979806\pi\) | ||||
0.997988 | − | 0.0633978i | \(-0.0201937\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 1.17157i | 0.0447635i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 9.65685 | 0.367897 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 6.62742i | − 0.252119i | −0.992023 | − | 0.126059i | \(-0.959767\pi\) | ||||
0.992023 | − | 0.126059i | \(-0.0402330\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −9.65685 | −0.366305 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 10.3431 | 0.391775 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 42.0000i | − 1.58632i | −0.609015 | − | 0.793159i | \(-0.708435\pi\) | ||||
0.609015 | − | 0.793159i | \(-0.291565\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 10.6274i | − 0.399685i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 36.2843i | − 1.36268i | −0.731965 | − | 0.681342i | \(-0.761397\pi\) | ||||
0.731965 | − | 0.681342i | \(-0.238603\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 6.62742 | 0.248199 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | − 0.686292i | − 0.0256658i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −12.2843 | −0.458126 | −0.229063 | − | 0.973412i | \(-0.573566\pi\) | ||||
−0.229063 | + | 0.973412i | \(0.573566\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 8.68629 | 0.323494 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − 3.65685i | − 0.135812i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 50.9706 | 1.89039 | 0.945197 | − | 0.326501i | \(-0.105870\pi\) | ||||
0.945197 | + | 0.326501i | \(0.105870\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 4.68629i | 0.173329i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 21.7990i | − 0.805164i | −0.915384 | − | 0.402582i | \(-0.868113\pi\) | ||||
0.915384 | − | 0.402582i | \(-0.131887\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −8.00000 | −0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 41.9411i | 1.54283i | 0.636333 | + | 0.771415i | \(0.280451\pi\) | ||||
−0.636333 | + | 0.771415i | \(0.719549\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 4.97056 | 0.182352 | 0.0911761 | − | 0.995835i | \(-0.470937\pi\) | ||||
0.0911761 | + | 0.995835i | \(0.470937\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −11.6569 | −0.427074 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 4.68629i | 0.171233i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −45.4558 | −1.65871 | −0.829354 | − | 0.558724i | \(-0.811291\pi\) | ||||
−0.829354 | + | 0.558724i | \(0.811291\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 8.48528i | 0.308811i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 34.4853i | 1.25339i | 0.779265 | + | 0.626694i | \(0.215593\pi\) | ||||
−0.779265 | + | 0.626694i | \(0.784407\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 33.3137 | 1.20762 | 0.603810 | − | 0.797128i | \(-0.293648\pi\) | ||||
0.603810 | + | 0.797128i | \(0.293648\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 8.00000i | 0.289619i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 4.00000 | 0.144432 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 13.3137 | 0.480105 | 0.240052 | − | 0.970760i | \(-0.422835\pi\) | ||||
0.240052 | + | 0.970760i | \(0.422835\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 39.2548i | 1.41190i | 0.708263 | + | 0.705949i | \(0.249479\pi\) | ||||
−0.708263 | + | 0.705949i | \(0.750521\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −1.17157 | −0.0420841 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | − 11.3137i | − 0.404836i | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 22.4853 | 0.802534 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 16.6863i | − 0.594802i | −0.954753 | − | 0.297401i | \(-0.903880\pi\) | ||||
0.954753 | − | 0.297401i | \(-0.0961198\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −40.9706 | −1.45675 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −8.00000 | −0.284088 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 22.9706i | 0.813659i | 0.913504 | + | 0.406830i | \(0.133366\pi\) | ||||
−0.913504 | + | 0.406830i | \(0.866634\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −4.68629 | −0.165789 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 7.71573i | 0.272282i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | − 11.3137i | − 0.398756i | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 23.6569 | 0.831731 | 0.415865 | − | 0.909426i | \(-0.363479\pi\) | ||||
0.415865 | + | 0.909426i | \(0.363479\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 35.5980i | − 1.25001i | −0.780619 | − | 0.625007i | \(-0.785096\pi\) | ||||
0.780619 | − | 0.625007i | \(-0.214904\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 12.0000 | 0.420342 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 34.9706i | 1.22048i | 0.792216 | + | 0.610241i | \(0.208927\pi\) | ||||
−0.792216 | + | 0.610241i | \(0.791073\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −18.2843 | −0.637350 | −0.318675 | − | 0.947864i | \(-0.603238\pi\) | ||||
−0.318675 | + | 0.947864i | \(0.603238\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 39.3137i | − 1.36707i | −0.729917 | − | 0.683536i | \(-0.760441\pi\) | ||||
0.729917 | − | 0.683536i | \(-0.239559\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − 37.9411i | − 1.31775i | −0.752253 | − | 0.658875i | \(-0.771033\pi\) | ||||
0.752253 | − | 0.658875i | \(-0.228967\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 8.48528 | 0.293998 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 21.6569i | 0.749466i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −12.2843 | −0.424100 | −0.212050 | − | 0.977259i | \(-0.568014\pi\) | ||||
−0.212050 | + | 0.977259i | \(0.568014\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 15.6274 | 0.538876 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 12.3137i | 0.423604i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −20.6274 | −0.708766 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 36.6863i | − 1.25759i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 1.51472i | 0.0518630i | 0.999664 | + | 0.0259315i | \(0.00825517\pi\) | ||||
−0.999664 | + | 0.0259315i | \(0.991745\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 22.1421 | 0.756361 | 0.378180 | − | 0.925732i | \(-0.376550\pi\) | ||||
0.378180 | + | 0.925732i | \(0.376550\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 46.9117i | 1.60061i | 0.599596 | + | 0.800303i | \(0.295328\pi\) | ||||
−0.599596 | + | 0.800303i | \(0.704672\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 21.6569 | 0.737208 | 0.368604 | − | 0.929587i | \(-0.379836\pi\) | ||||
0.368604 | + | 0.929587i | \(0.379836\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 4.34315 | 0.147671 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 10.3431i | − 0.350867i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 2.00000i | 0.0676123i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 14.4853i | − 0.489133i | −0.969632 | − | 0.244567i | \(-0.921354\pi\) | ||||
0.969632 | − | 0.244567i | \(-0.0786457\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −24.3431 | −0.820141 | −0.410071 | − | 0.912054i | \(-0.634496\pi\) | ||||
−0.410071 | + | 0.912054i | \(0.634496\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 29.9411i | − 1.00760i | −0.863821 | − | 0.503800i | \(-0.831935\pi\) | ||||
0.863821 | − | 0.503800i | \(-0.168065\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −39.5980 | −1.32957 | −0.664785 | − | 0.747035i | \(-0.731477\pi\) | ||||
−0.664785 | + | 0.747035i | \(0.731477\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −31.3137 | −1.05023 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −14.4853 | −0.484190 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 4.28427i | 0.142888i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | − 32.9706i | − 1.09841i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −12.0000 | −0.398893 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 20.9706i | 0.696316i | 0.937436 | + | 0.348158i | \(0.113193\pi\) | ||||
−0.937436 | + | 0.348158i | \(0.886807\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 12.6863 | 0.420316 | 0.210158 | − | 0.977667i | \(-0.432602\pi\) | ||||
0.210158 | + | 0.977667i | \(0.432602\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 28.9706i | 0.956692i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 27.5147 | 0.907627 | 0.453813 | − | 0.891097i | \(-0.350063\pi\) | ||||
0.453813 | + | 0.891097i | \(0.350063\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 11.3137i | − 0.372395i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 6.48528i | 0.213235i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −6.00000 | −0.196854 | −0.0984268 | − | 0.995144i | \(-0.531381\pi\) | ||||
−0.0984268 | + | 0.995144i | \(0.531381\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −2.34315 | −0.0766291 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 9.31371 | 0.304266 | 0.152133 | − | 0.988360i | \(-0.451386\pi\) | ||||
0.152133 | + | 0.988360i | \(0.451386\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 55.2548i | 1.80126i | 0.434591 | + | 0.900628i | \(0.356893\pi\) | ||||
−0.434591 | + | 0.900628i | \(0.643107\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −20.6863 | −0.673638 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 21.9411i | 0.712991i | 0.934297 | + | 0.356495i | \(0.116028\pi\) | ||||
−0.934297 | + | 0.356495i | \(0.883972\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 7.71573i | 0.250463i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −38.8284 | −1.25778 | −0.628888 | − | 0.777496i | \(-0.716490\pi\) | ||||
−0.628888 | + | 0.777496i | \(0.716490\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − 4.68629i | − 0.151645i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −2.34315 | −0.0756641 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −29.6274 | −0.955723 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 10.9706i | − 0.353155i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −44.9117 | −1.44426 | −0.722131 | − | 0.691756i | \(-0.756837\pi\) | ||||
−0.722131 | + | 0.691756i | \(0.756837\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 44.1421i | 1.41659i | 0.705917 | + | 0.708294i | \(0.250535\pi\) | ||||
−0.705917 | + | 0.708294i | \(0.749465\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 19.3137i | − 0.619169i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 21.1716 | 0.677339 | 0.338669 | − | 0.940905i | \(-0.390023\pi\) | ||||
0.338669 | + | 0.940905i | \(0.390023\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 3.59798i | 0.114992i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −52.9706 | −1.68950 | −0.844749 | − | 0.535162i | \(-0.820250\pi\) | ||||
−0.844749 | + | 0.535162i | \(0.820250\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 1.31371 | 0.0418582 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 9.37258i | − 0.298031i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −32.4853 | −1.03193 | −0.515964 | − | 0.856610i | \(-0.672566\pi\) | ||||
−0.515964 | + | 0.856610i | \(0.672566\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 13.1716i | − 0.417567i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 16.1421i | − 0.511227i | −0.966779 | − | 0.255613i | \(-0.917723\pi\) | ||||
0.966779 | − | 0.255613i | \(-0.0822774\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 5760.2.k.m.2881.3 | 4 | ||
3.2 | odd | 2 | 1920.2.k.j.961.4 | yes | 4 | ||
4.3 | odd | 2 | 5760.2.k.x.2881.4 | 4 | |||
8.3 | odd | 2 | 5760.2.k.x.2881.1 | 4 | |||
8.5 | even | 2 | inner | 5760.2.k.m.2881.2 | 4 | ||
12.11 | even | 2 | 1920.2.k.k.961.1 | yes | 4 | ||
24.5 | odd | 2 | 1920.2.k.j.961.1 | ✓ | 4 | ||
24.11 | even | 2 | 1920.2.k.k.961.4 | yes | 4 | ||
48.5 | odd | 4 | 3840.2.a.bm.1.1 | 2 | |||
48.11 | even | 4 | 3840.2.a.bg.1.2 | 2 | |||
48.29 | odd | 4 | 3840.2.a.bd.1.2 | 2 | |||
48.35 | even | 4 | 3840.2.a.bj.1.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1920.2.k.j.961.1 | ✓ | 4 | 24.5 | odd | 2 | ||
1920.2.k.j.961.4 | yes | 4 | 3.2 | odd | 2 | ||
1920.2.k.k.961.1 | yes | 4 | 12.11 | even | 2 | ||
1920.2.k.k.961.4 | yes | 4 | 24.11 | even | 2 | ||
3840.2.a.bd.1.2 | 2 | 48.29 | odd | 4 | |||
3840.2.a.bg.1.2 | 2 | 48.11 | even | 4 | |||
3840.2.a.bj.1.1 | 2 | 48.35 | even | 4 | |||
3840.2.a.bm.1.1 | 2 | 48.5 | odd | 4 | |||
5760.2.k.m.2881.2 | 4 | 8.5 | even | 2 | inner | ||
5760.2.k.m.2881.3 | 4 | 1.1 | even | 1 | trivial | ||
5760.2.k.x.2881.1 | 4 | 8.3 | odd | 2 | |||
5760.2.k.x.2881.4 | 4 | 4.3 | odd | 2 |