Properties

Label 5800.2.a.s.1.3
Level $5800$
Weight $2$
Character 5800.1
Self dual yes
Analytic conductor $46.313$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5800,2,Mod(1,5800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5800 = 2^{3} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3132331723\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 5800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.90321 q^{3} -0.903212 q^{7} +5.42864 q^{9} -5.52543 q^{11} +0.622216 q^{13} -3.52543 q^{17} -1.09679 q^{19} -2.62222 q^{21} -5.33185 q^{23} +7.05086 q^{27} -1.00000 q^{29} -1.65878 q^{31} -16.0415 q^{33} +2.28100 q^{37} +1.80642 q^{39} -7.67307 q^{41} +1.09679 q^{43} +1.65878 q^{47} -6.18421 q^{49} -10.2351 q^{51} +2.42864 q^{53} -3.18421 q^{57} +9.28592 q^{59} -10.9906 q^{61} -4.90321 q^{63} +11.1383 q^{67} -15.4795 q^{69} -7.18421 q^{71} -11.9541 q^{73} +4.99063 q^{77} -15.3319 q^{79} +4.18421 q^{81} +7.95407 q^{83} -2.90321 q^{87} -16.6637 q^{89} -0.561993 q^{91} -4.81579 q^{93} +11.9541 q^{97} -29.9956 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 4 q^{7} + 3 q^{9} - 10 q^{11} + 2 q^{13} - 4 q^{17} - 10 q^{19} - 8 q^{21} + 4 q^{23} + 8 q^{27} - 3 q^{29} + 2 q^{31} - 8 q^{33} - 8 q^{39} - 10 q^{41} + 10 q^{43} - 2 q^{47} - 5 q^{49}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.90321 1.67617 0.838085 0.545540i \(-0.183675\pi\)
0.838085 + 0.545540i \(0.183675\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.903212 −0.341382 −0.170691 0.985325i \(-0.554600\pi\)
−0.170691 + 0.985325i \(0.554600\pi\)
\(8\) 0 0
\(9\) 5.42864 1.80955
\(10\) 0 0
\(11\) −5.52543 −1.66598 −0.832990 0.553289i \(-0.813373\pi\)
−0.832990 + 0.553289i \(0.813373\pi\)
\(12\) 0 0
\(13\) 0.622216 0.172572 0.0862858 0.996270i \(-0.472500\pi\)
0.0862858 + 0.996270i \(0.472500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.52543 −0.855042 −0.427521 0.904005i \(-0.640613\pi\)
−0.427521 + 0.904005i \(0.640613\pi\)
\(18\) 0 0
\(19\) −1.09679 −0.251620 −0.125810 0.992054i \(-0.540153\pi\)
−0.125810 + 0.992054i \(0.540153\pi\)
\(20\) 0 0
\(21\) −2.62222 −0.572214
\(22\) 0 0
\(23\) −5.33185 −1.11177 −0.555884 0.831260i \(-0.687620\pi\)
−0.555884 + 0.831260i \(0.687620\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 7.05086 1.35694
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −1.65878 −0.297926 −0.148963 0.988843i \(-0.547593\pi\)
−0.148963 + 0.988843i \(0.547593\pi\)
\(32\) 0 0
\(33\) −16.0415 −2.79246
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.28100 0.374993 0.187497 0.982265i \(-0.439963\pi\)
0.187497 + 0.982265i \(0.439963\pi\)
\(38\) 0 0
\(39\) 1.80642 0.289259
\(40\) 0 0
\(41\) −7.67307 −1.19833 −0.599166 0.800625i \(-0.704501\pi\)
−0.599166 + 0.800625i \(0.704501\pi\)
\(42\) 0 0
\(43\) 1.09679 0.167259 0.0836293 0.996497i \(-0.473349\pi\)
0.0836293 + 0.996497i \(0.473349\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.65878 0.241958 0.120979 0.992655i \(-0.461397\pi\)
0.120979 + 0.992655i \(0.461397\pi\)
\(48\) 0 0
\(49\) −6.18421 −0.883458
\(50\) 0 0
\(51\) −10.2351 −1.43320
\(52\) 0 0
\(53\) 2.42864 0.333599 0.166800 0.985991i \(-0.446657\pi\)
0.166800 + 0.985991i \(0.446657\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.18421 −0.421759
\(58\) 0 0
\(59\) 9.28592 1.20892 0.604462 0.796634i \(-0.293388\pi\)
0.604462 + 0.796634i \(0.293388\pi\)
\(60\) 0 0
\(61\) −10.9906 −1.40721 −0.703603 0.710593i \(-0.748427\pi\)
−0.703603 + 0.710593i \(0.748427\pi\)
\(62\) 0 0
\(63\) −4.90321 −0.617747
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 11.1383 1.36076 0.680378 0.732861i \(-0.261815\pi\)
0.680378 + 0.732861i \(0.261815\pi\)
\(68\) 0 0
\(69\) −15.4795 −1.86351
\(70\) 0 0
\(71\) −7.18421 −0.852609 −0.426304 0.904580i \(-0.640185\pi\)
−0.426304 + 0.904580i \(0.640185\pi\)
\(72\) 0 0
\(73\) −11.9541 −1.39912 −0.699559 0.714575i \(-0.746620\pi\)
−0.699559 + 0.714575i \(0.746620\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.99063 0.568735
\(78\) 0 0
\(79\) −15.3319 −1.72497 −0.862484 0.506084i \(-0.831092\pi\)
−0.862484 + 0.506084i \(0.831092\pi\)
\(80\) 0 0
\(81\) 4.18421 0.464912
\(82\) 0 0
\(83\) 7.95407 0.873072 0.436536 0.899687i \(-0.356205\pi\)
0.436536 + 0.899687i \(0.356205\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.90321 −0.311257
\(88\) 0 0
\(89\) −16.6637 −1.76635 −0.883174 0.469045i \(-0.844598\pi\)
−0.883174 + 0.469045i \(0.844598\pi\)
\(90\) 0 0
\(91\) −0.561993 −0.0589128
\(92\) 0 0
\(93\) −4.81579 −0.499374
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.9541 1.21375 0.606876 0.794797i \(-0.292423\pi\)
0.606876 + 0.794797i \(0.292423\pi\)
\(98\) 0 0
\(99\) −29.9956 −3.01467
\(100\) 0 0
\(101\) 8.66370 0.862071 0.431035 0.902335i \(-0.358148\pi\)
0.431035 + 0.902335i \(0.358148\pi\)
\(102\) 0 0
\(103\) 17.6271 1.73685 0.868427 0.495817i \(-0.165132\pi\)
0.868427 + 0.495817i \(0.165132\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.95407 −0.382254 −0.191127 0.981565i \(-0.561214\pi\)
−0.191127 + 0.981565i \(0.561214\pi\)
\(108\) 0 0
\(109\) −2.81579 −0.269704 −0.134852 0.990866i \(-0.543056\pi\)
−0.134852 + 0.990866i \(0.543056\pi\)
\(110\) 0 0
\(111\) 6.62222 0.628553
\(112\) 0 0
\(113\) −14.7096 −1.38377 −0.691883 0.722010i \(-0.743219\pi\)
−0.691883 + 0.722010i \(0.743219\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.37778 0.312276
\(118\) 0 0
\(119\) 3.18421 0.291896
\(120\) 0 0
\(121\) 19.5303 1.77549
\(122\) 0 0
\(123\) −22.2766 −2.00861
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.34122 0.207750 0.103875 0.994590i \(-0.466876\pi\)
0.103875 + 0.994590i \(0.466876\pi\)
\(128\) 0 0
\(129\) 3.18421 0.280354
\(130\) 0 0
\(131\) −5.65878 −0.494410 −0.247205 0.968963i \(-0.579512\pi\)
−0.247205 + 0.968963i \(0.579512\pi\)
\(132\) 0 0
\(133\) 0.990632 0.0858987
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.62714 −0.822502 −0.411251 0.911522i \(-0.634908\pi\)
−0.411251 + 0.911522i \(0.634908\pi\)
\(138\) 0 0
\(139\) 6.66370 0.565208 0.282604 0.959237i \(-0.408802\pi\)
0.282604 + 0.959237i \(0.408802\pi\)
\(140\) 0 0
\(141\) 4.81579 0.405563
\(142\) 0 0
\(143\) −3.43801 −0.287501
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −17.9541 −1.48083
\(148\) 0 0
\(149\) −17.2257 −1.41118 −0.705592 0.708618i \(-0.749319\pi\)
−0.705592 + 0.708618i \(0.749319\pi\)
\(150\) 0 0
\(151\) 5.93978 0.483372 0.241686 0.970354i \(-0.422300\pi\)
0.241686 + 0.970354i \(0.422300\pi\)
\(152\) 0 0
\(153\) −19.1383 −1.54724
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 15.5669 1.24238 0.621188 0.783662i \(-0.286651\pi\)
0.621188 + 0.783662i \(0.286651\pi\)
\(158\) 0 0
\(159\) 7.05086 0.559169
\(160\) 0 0
\(161\) 4.81579 0.379538
\(162\) 0 0
\(163\) −10.5161 −0.823681 −0.411841 0.911256i \(-0.635114\pi\)
−0.411841 + 0.911256i \(0.635114\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.6494 −0.978841 −0.489420 0.872048i \(-0.662792\pi\)
−0.489420 + 0.872048i \(0.662792\pi\)
\(168\) 0 0
\(169\) −12.6128 −0.970219
\(170\) 0 0
\(171\) −5.95407 −0.455319
\(172\) 0 0
\(173\) −6.13335 −0.466310 −0.233155 0.972440i \(-0.574905\pi\)
−0.233155 + 0.972440i \(0.574905\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 26.9590 2.02636
\(178\) 0 0
\(179\) 15.2257 1.13802 0.569011 0.822330i \(-0.307326\pi\)
0.569011 + 0.822330i \(0.307326\pi\)
\(180\) 0 0
\(181\) 3.93978 0.292841 0.146421 0.989222i \(-0.453225\pi\)
0.146421 + 0.989222i \(0.453225\pi\)
\(182\) 0 0
\(183\) −31.9081 −2.35872
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 19.4795 1.42448
\(188\) 0 0
\(189\) −6.36842 −0.463234
\(190\) 0 0
\(191\) −7.06515 −0.511216 −0.255608 0.966781i \(-0.582276\pi\)
−0.255608 + 0.966781i \(0.582276\pi\)
\(192\) 0 0
\(193\) −1.98571 −0.142935 −0.0714673 0.997443i \(-0.522768\pi\)
−0.0714673 + 0.997443i \(0.522768\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.2766 1.15966 0.579828 0.814739i \(-0.303120\pi\)
0.579828 + 0.814739i \(0.303120\pi\)
\(198\) 0 0
\(199\) 22.5303 1.59713 0.798567 0.601906i \(-0.205592\pi\)
0.798567 + 0.601906i \(0.205592\pi\)
\(200\) 0 0
\(201\) 32.3368 2.28086
\(202\) 0 0
\(203\) 0.903212 0.0633930
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −28.9447 −2.01180
\(208\) 0 0
\(209\) 6.06022 0.419194
\(210\) 0 0
\(211\) −3.33185 −0.229374 −0.114687 0.993402i \(-0.536587\pi\)
−0.114687 + 0.993402i \(0.536587\pi\)
\(212\) 0 0
\(213\) −20.8573 −1.42912
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.49823 0.101707
\(218\) 0 0
\(219\) −34.7052 −2.34516
\(220\) 0 0
\(221\) −2.19358 −0.147556
\(222\) 0 0
\(223\) 13.8938 0.930401 0.465200 0.885205i \(-0.345982\pi\)
0.465200 + 0.885205i \(0.345982\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.4558 −0.959468 −0.479734 0.877414i \(-0.659267\pi\)
−0.479734 + 0.877414i \(0.659267\pi\)
\(228\) 0 0
\(229\) 15.3274 1.01286 0.506432 0.862280i \(-0.330964\pi\)
0.506432 + 0.862280i \(0.330964\pi\)
\(230\) 0 0
\(231\) 14.4889 0.953297
\(232\) 0 0
\(233\) 11.7146 0.767446 0.383723 0.923448i \(-0.374642\pi\)
0.383723 + 0.923448i \(0.374642\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −44.5116 −2.89134
\(238\) 0 0
\(239\) −2.53035 −0.163675 −0.0818374 0.996646i \(-0.526079\pi\)
−0.0818374 + 0.996646i \(0.526079\pi\)
\(240\) 0 0
\(241\) 4.75557 0.306333 0.153167 0.988200i \(-0.451053\pi\)
0.153167 + 0.988200i \(0.451053\pi\)
\(242\) 0 0
\(243\) −9.00492 −0.577666
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.682439 −0.0434225
\(248\) 0 0
\(249\) 23.0923 1.46342
\(250\) 0 0
\(251\) −6.76986 −0.427310 −0.213655 0.976909i \(-0.568537\pi\)
−0.213655 + 0.976909i \(0.568537\pi\)
\(252\) 0 0
\(253\) 29.4608 1.85218
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.0923 0.816678 0.408339 0.912830i \(-0.366108\pi\)
0.408339 + 0.912830i \(0.366108\pi\)
\(258\) 0 0
\(259\) −2.06022 −0.128016
\(260\) 0 0
\(261\) −5.42864 −0.336024
\(262\) 0 0
\(263\) 10.1289 0.624575 0.312288 0.949988i \(-0.398905\pi\)
0.312288 + 0.949988i \(0.398905\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −48.3783 −2.96070
\(268\) 0 0
\(269\) −4.91750 −0.299825 −0.149913 0.988699i \(-0.547899\pi\)
−0.149913 + 0.988699i \(0.547899\pi\)
\(270\) 0 0
\(271\) 24.5763 1.49290 0.746451 0.665440i \(-0.231756\pi\)
0.746451 + 0.665440i \(0.231756\pi\)
\(272\) 0 0
\(273\) −1.63158 −0.0987479
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 24.7971 1.48991 0.744955 0.667114i \(-0.232471\pi\)
0.744955 + 0.667114i \(0.232471\pi\)
\(278\) 0 0
\(279\) −9.00492 −0.539111
\(280\) 0 0
\(281\) −16.5303 −0.986118 −0.493059 0.869996i \(-0.664121\pi\)
−0.493059 + 0.869996i \(0.664121\pi\)
\(282\) 0 0
\(283\) −25.2400 −1.50036 −0.750181 0.661233i \(-0.770034\pi\)
−0.750181 + 0.661233i \(0.770034\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.93041 0.409089
\(288\) 0 0
\(289\) −4.57136 −0.268904
\(290\) 0 0
\(291\) 34.7052 2.03445
\(292\) 0 0
\(293\) −8.63651 −0.504550 −0.252275 0.967656i \(-0.581179\pi\)
−0.252275 + 0.967656i \(0.581179\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −38.9590 −2.26063
\(298\) 0 0
\(299\) −3.31756 −0.191860
\(300\) 0 0
\(301\) −0.990632 −0.0570991
\(302\) 0 0
\(303\) 25.1526 1.44498
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −14.6365 −0.835350 −0.417675 0.908597i \(-0.637155\pi\)
−0.417675 + 0.908597i \(0.637155\pi\)
\(308\) 0 0
\(309\) 51.1753 2.91126
\(310\) 0 0
\(311\) −1.65878 −0.0940608 −0.0470304 0.998893i \(-0.514976\pi\)
−0.0470304 + 0.998893i \(0.514976\pi\)
\(312\) 0 0
\(313\) −18.3368 −1.03646 −0.518228 0.855243i \(-0.673408\pi\)
−0.518228 + 0.855243i \(0.673408\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.5763 −1.26801 −0.634005 0.773329i \(-0.718590\pi\)
−0.634005 + 0.773329i \(0.718590\pi\)
\(318\) 0 0
\(319\) 5.52543 0.309365
\(320\) 0 0
\(321\) −11.4795 −0.640723
\(322\) 0 0
\(323\) 3.86665 0.215146
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.17484 −0.452070
\(328\) 0 0
\(329\) −1.49823 −0.0826001
\(330\) 0 0
\(331\) −35.1066 −1.92964 −0.964818 0.262920i \(-0.915314\pi\)
−0.964818 + 0.262920i \(0.915314\pi\)
\(332\) 0 0
\(333\) 12.3827 0.678568
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.60793 0.468904 0.234452 0.972128i \(-0.424671\pi\)
0.234452 + 0.972128i \(0.424671\pi\)
\(338\) 0 0
\(339\) −42.7052 −2.31943
\(340\) 0 0
\(341\) 9.16547 0.496338
\(342\) 0 0
\(343\) 11.9081 0.642979
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.6178 0.999454 0.499727 0.866183i \(-0.333434\pi\)
0.499727 + 0.866183i \(0.333434\pi\)
\(348\) 0 0
\(349\) −28.1017 −1.50425 −0.752125 0.659020i \(-0.770971\pi\)
−0.752125 + 0.659020i \(0.770971\pi\)
\(350\) 0 0
\(351\) 4.38715 0.234169
\(352\) 0 0
\(353\) −15.9398 −0.848389 −0.424194 0.905571i \(-0.639443\pi\)
−0.424194 + 0.905571i \(0.639443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 9.24443 0.489267
\(358\) 0 0
\(359\) 21.5669 1.13826 0.569129 0.822248i \(-0.307280\pi\)
0.569129 + 0.822248i \(0.307280\pi\)
\(360\) 0 0
\(361\) −17.7971 −0.936687
\(362\) 0 0
\(363\) 56.7007 2.97602
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 15.3733 0.802482 0.401241 0.915973i \(-0.368579\pi\)
0.401241 + 0.915973i \(0.368579\pi\)
\(368\) 0 0
\(369\) −41.6543 −2.16844
\(370\) 0 0
\(371\) −2.19358 −0.113885
\(372\) 0 0
\(373\) 29.9081 1.54858 0.774292 0.632828i \(-0.218106\pi\)
0.774292 + 0.632828i \(0.218106\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.622216 −0.0320457
\(378\) 0 0
\(379\) −31.1195 −1.59850 −0.799252 0.600996i \(-0.794771\pi\)
−0.799252 + 0.600996i \(0.794771\pi\)
\(380\) 0 0
\(381\) 6.79706 0.348224
\(382\) 0 0
\(383\) −7.09679 −0.362629 −0.181314 0.983425i \(-0.558035\pi\)
−0.181314 + 0.983425i \(0.558035\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.95407 0.302662
\(388\) 0 0
\(389\) 33.0005 1.67319 0.836595 0.547821i \(-0.184543\pi\)
0.836595 + 0.547821i \(0.184543\pi\)
\(390\) 0 0
\(391\) 18.7971 0.950608
\(392\) 0 0
\(393\) −16.4286 −0.828715
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12.2766 −0.616142 −0.308071 0.951363i \(-0.599684\pi\)
−0.308071 + 0.951363i \(0.599684\pi\)
\(398\) 0 0
\(399\) 2.87601 0.143981
\(400\) 0 0
\(401\) 30.6321 1.52969 0.764846 0.644213i \(-0.222815\pi\)
0.764846 + 0.644213i \(0.222815\pi\)
\(402\) 0 0
\(403\) −1.03212 −0.0514135
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.6035 −0.624731
\(408\) 0 0
\(409\) −29.7462 −1.47085 −0.735427 0.677603i \(-0.763019\pi\)
−0.735427 + 0.677603i \(0.763019\pi\)
\(410\) 0 0
\(411\) −27.9496 −1.37865
\(412\) 0 0
\(413\) −8.38715 −0.412705
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 19.3461 0.947385
\(418\) 0 0
\(419\) 12.3368 0.602691 0.301345 0.953515i \(-0.402564\pi\)
0.301345 + 0.953515i \(0.402564\pi\)
\(420\) 0 0
\(421\) −13.0094 −0.634038 −0.317019 0.948419i \(-0.602682\pi\)
−0.317019 + 0.948419i \(0.602682\pi\)
\(422\) 0 0
\(423\) 9.00492 0.437834
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9.92687 0.480395
\(428\) 0 0
\(429\) −9.98126 −0.481900
\(430\) 0 0
\(431\) 13.6316 0.656610 0.328305 0.944572i \(-0.393523\pi\)
0.328305 + 0.944572i \(0.393523\pi\)
\(432\) 0 0
\(433\) −21.8938 −1.05215 −0.526075 0.850438i \(-0.676337\pi\)
−0.526075 + 0.850438i \(0.676337\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.84791 0.279744
\(438\) 0 0
\(439\) 13.2573 0.632738 0.316369 0.948636i \(-0.397536\pi\)
0.316369 + 0.948636i \(0.397536\pi\)
\(440\) 0 0
\(441\) −33.5718 −1.59866
\(442\) 0 0
\(443\) 25.2716 1.20069 0.600346 0.799741i \(-0.295030\pi\)
0.600346 + 0.799741i \(0.295030\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −50.0098 −2.36538
\(448\) 0 0
\(449\) 21.9496 1.03587 0.517933 0.855421i \(-0.326702\pi\)
0.517933 + 0.855421i \(0.326702\pi\)
\(450\) 0 0
\(451\) 42.3970 1.99640
\(452\) 0 0
\(453\) 17.2444 0.810214
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.45091 0.442095 0.221048 0.975263i \(-0.429052\pi\)
0.221048 + 0.975263i \(0.429052\pi\)
\(458\) 0 0
\(459\) −24.8573 −1.16024
\(460\) 0 0
\(461\) 24.3970 1.13628 0.568141 0.822931i \(-0.307663\pi\)
0.568141 + 0.822931i \(0.307663\pi\)
\(462\) 0 0
\(463\) 8.17929 0.380124 0.190062 0.981772i \(-0.439131\pi\)
0.190062 + 0.981772i \(0.439131\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.0370 1.38995 0.694974 0.719035i \(-0.255416\pi\)
0.694974 + 0.719035i \(0.255416\pi\)
\(468\) 0 0
\(469\) −10.0602 −0.464538
\(470\) 0 0
\(471\) 45.1941 2.08243
\(472\) 0 0
\(473\) −6.06022 −0.278649
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 13.1842 0.603663
\(478\) 0 0
\(479\) 21.3131 0.973821 0.486911 0.873452i \(-0.338124\pi\)
0.486911 + 0.873452i \(0.338124\pi\)
\(480\) 0 0
\(481\) 1.41927 0.0647132
\(482\) 0 0
\(483\) 13.9813 0.636170
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.14764 −0.0973190 −0.0486595 0.998815i \(-0.515495\pi\)
−0.0486595 + 0.998815i \(0.515495\pi\)
\(488\) 0 0
\(489\) −30.5303 −1.38063
\(490\) 0 0
\(491\) −10.1289 −0.457111 −0.228556 0.973531i \(-0.573400\pi\)
−0.228556 + 0.973531i \(0.573400\pi\)
\(492\) 0 0
\(493\) 3.52543 0.158777
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.48886 0.291065
\(498\) 0 0
\(499\) 24.4701 1.09543 0.547717 0.836664i \(-0.315497\pi\)
0.547717 + 0.836664i \(0.315497\pi\)
\(500\) 0 0
\(501\) −36.7239 −1.64070
\(502\) 0 0
\(503\) −37.5669 −1.67503 −0.837513 0.546417i \(-0.815991\pi\)
−0.837513 + 0.546417i \(0.815991\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −36.6178 −1.62625
\(508\) 0 0
\(509\) 19.9398 0.883815 0.441908 0.897061i \(-0.354302\pi\)
0.441908 + 0.897061i \(0.354302\pi\)
\(510\) 0 0
\(511\) 10.7971 0.477634
\(512\) 0 0
\(513\) −7.73329 −0.341433
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.16547 −0.403097
\(518\) 0 0
\(519\) −17.8064 −0.781615
\(520\) 0 0
\(521\) 19.5526 0.856616 0.428308 0.903633i \(-0.359110\pi\)
0.428308 + 0.903633i \(0.359110\pi\)
\(522\) 0 0
\(523\) −9.23999 −0.404036 −0.202018 0.979382i \(-0.564750\pi\)
−0.202018 + 0.979382i \(0.564750\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.84791 0.254739
\(528\) 0 0
\(529\) 5.42864 0.236028
\(530\) 0 0
\(531\) 50.4099 2.18760
\(532\) 0 0
\(533\) −4.77430 −0.206798
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 44.2034 1.90752
\(538\) 0 0
\(539\) 34.1704 1.47182
\(540\) 0 0
\(541\) 6.56199 0.282122 0.141061 0.990001i \(-0.454949\pi\)
0.141061 + 0.990001i \(0.454949\pi\)
\(542\) 0 0
\(543\) 11.4380 0.490852
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.3921 0.487090 0.243545 0.969890i \(-0.421690\pi\)
0.243545 + 0.969890i \(0.421690\pi\)
\(548\) 0 0
\(549\) −59.6642 −2.54641
\(550\) 0 0
\(551\) 1.09679 0.0467247
\(552\) 0 0
\(553\) 13.8479 0.588873
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −43.9813 −1.86355 −0.931773 0.363041i \(-0.881738\pi\)
−0.931773 + 0.363041i \(0.881738\pi\)
\(558\) 0 0
\(559\) 0.682439 0.0288641
\(560\) 0 0
\(561\) 56.5531 2.38767
\(562\) 0 0
\(563\) −30.3323 −1.27836 −0.639178 0.769059i \(-0.720725\pi\)
−0.639178 + 0.769059i \(0.720725\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.77923 −0.158713
\(568\) 0 0
\(569\) −19.3778 −0.812359 −0.406179 0.913793i \(-0.633139\pi\)
−0.406179 + 0.913793i \(0.633139\pi\)
\(570\) 0 0
\(571\) 3.34614 0.140032 0.0700158 0.997546i \(-0.477695\pi\)
0.0700158 + 0.997546i \(0.477695\pi\)
\(572\) 0 0
\(573\) −20.5116 −0.856885
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 31.9956 1.33199 0.665996 0.745955i \(-0.268007\pi\)
0.665996 + 0.745955i \(0.268007\pi\)
\(578\) 0 0
\(579\) −5.76494 −0.239583
\(580\) 0 0
\(581\) −7.18421 −0.298051
\(582\) 0 0
\(583\) −13.4193 −0.555769
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.5575 −1.01360 −0.506799 0.862064i \(-0.669171\pi\)
−0.506799 + 0.862064i \(0.669171\pi\)
\(588\) 0 0
\(589\) 1.81933 0.0749642
\(590\) 0 0
\(591\) 47.2543 1.94378
\(592\) 0 0
\(593\) 16.7971 0.689772 0.344886 0.938645i \(-0.387918\pi\)
0.344886 + 0.938645i \(0.387918\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 65.4104 2.67707
\(598\) 0 0
\(599\) 25.9126 1.05876 0.529380 0.848385i \(-0.322425\pi\)
0.529380 + 0.848385i \(0.322425\pi\)
\(600\) 0 0
\(601\) −30.8158 −1.25700 −0.628501 0.777809i \(-0.716331\pi\)
−0.628501 + 0.777809i \(0.716331\pi\)
\(602\) 0 0
\(603\) 60.4657 2.46235
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 28.1476 1.14248 0.571239 0.820784i \(-0.306463\pi\)
0.571239 + 0.820784i \(0.306463\pi\)
\(608\) 0 0
\(609\) 2.62222 0.106258
\(610\) 0 0
\(611\) 1.03212 0.0417551
\(612\) 0 0
\(613\) −37.5496 −1.51661 −0.758306 0.651898i \(-0.773973\pi\)
−0.758306 + 0.651898i \(0.773973\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −42.8212 −1.72392 −0.861958 0.506980i \(-0.830762\pi\)
−0.861958 + 0.506980i \(0.830762\pi\)
\(618\) 0 0
\(619\) −17.5540 −0.705555 −0.352778 0.935707i \(-0.614763\pi\)
−0.352778 + 0.935707i \(0.614763\pi\)
\(620\) 0 0
\(621\) −37.5941 −1.50860
\(622\) 0 0
\(623\) 15.0509 0.603000
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 17.5941 0.702641
\(628\) 0 0
\(629\) −8.04149 −0.320635
\(630\) 0 0
\(631\) 30.9304 1.23132 0.615660 0.788012i \(-0.288889\pi\)
0.615660 + 0.788012i \(0.288889\pi\)
\(632\) 0 0
\(633\) −9.67307 −0.384470
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.84791 −0.152460
\(638\) 0 0
\(639\) −39.0005 −1.54284
\(640\) 0 0
\(641\) −37.1842 −1.46869 −0.734344 0.678778i \(-0.762510\pi\)
−0.734344 + 0.678778i \(0.762510\pi\)
\(642\) 0 0
\(643\) 42.0054 1.65653 0.828266 0.560336i \(-0.189328\pi\)
0.828266 + 0.560336i \(0.189328\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.6464 1.20483 0.602416 0.798182i \(-0.294205\pi\)
0.602416 + 0.798182i \(0.294205\pi\)
\(648\) 0 0
\(649\) −51.3087 −2.01404
\(650\) 0 0
\(651\) 4.34968 0.170477
\(652\) 0 0
\(653\) −1.85236 −0.0724883 −0.0362442 0.999343i \(-0.511539\pi\)
−0.0362442 + 0.999343i \(0.511539\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −64.8943 −2.53177
\(658\) 0 0
\(659\) −39.1985 −1.52696 −0.763478 0.645833i \(-0.776510\pi\)
−0.763478 + 0.645833i \(0.776510\pi\)
\(660\) 0 0
\(661\) −43.6356 −1.69723 −0.848614 0.529012i \(-0.822562\pi\)
−0.848614 + 0.529012i \(0.822562\pi\)
\(662\) 0 0
\(663\) −6.36842 −0.247329
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.33185 0.206450
\(668\) 0 0
\(669\) 40.3368 1.55951
\(670\) 0 0
\(671\) 60.7279 2.34438
\(672\) 0 0
\(673\) 36.8671 1.42112 0.710562 0.703635i \(-0.248441\pi\)
0.710562 + 0.703635i \(0.248441\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.137799 0.00529604 0.00264802 0.999996i \(-0.499157\pi\)
0.00264802 + 0.999996i \(0.499157\pi\)
\(678\) 0 0
\(679\) −10.7971 −0.414353
\(680\) 0 0
\(681\) −41.9684 −1.60823
\(682\) 0 0
\(683\) 7.61729 0.291468 0.145734 0.989324i \(-0.453446\pi\)
0.145734 + 0.989324i \(0.453446\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 44.4987 1.69773
\(688\) 0 0
\(689\) 1.51114 0.0575698
\(690\) 0 0
\(691\) 19.4795 0.741035 0.370517 0.928826i \(-0.379180\pi\)
0.370517 + 0.928826i \(0.379180\pi\)
\(692\) 0 0
\(693\) 27.0923 1.02915
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 27.0509 1.02462
\(698\) 0 0
\(699\) 34.0098 1.28637
\(700\) 0 0
\(701\) −37.0005 −1.39749 −0.698744 0.715371i \(-0.746257\pi\)
−0.698744 + 0.715371i \(0.746257\pi\)
\(702\) 0 0
\(703\) −2.50177 −0.0943560
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.82516 −0.294295
\(708\) 0 0
\(709\) 44.6133 1.67549 0.837744 0.546063i \(-0.183874\pi\)
0.837744 + 0.546063i \(0.183874\pi\)
\(710\) 0 0
\(711\) −83.2311 −3.12141
\(712\) 0 0
\(713\) 8.84437 0.331224
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.34614 −0.274347
\(718\) 0 0
\(719\) −31.6543 −1.18051 −0.590254 0.807218i \(-0.700972\pi\)
−0.590254 + 0.807218i \(0.700972\pi\)
\(720\) 0 0
\(721\) −15.9210 −0.592931
\(722\) 0 0
\(723\) 13.8064 0.513466
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.65878 0.0615208 0.0307604 0.999527i \(-0.490207\pi\)
0.0307604 + 0.999527i \(0.490207\pi\)
\(728\) 0 0
\(729\) −38.6958 −1.43318
\(730\) 0 0
\(731\) −3.86665 −0.143013
\(732\) 0 0
\(733\) −44.9358 −1.65974 −0.829871 0.557955i \(-0.811586\pi\)
−0.829871 + 0.557955i \(0.811586\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −61.5437 −2.26699
\(738\) 0 0
\(739\) 43.9639 1.61724 0.808619 0.588332i \(-0.200215\pi\)
0.808619 + 0.588332i \(0.200215\pi\)
\(740\) 0 0
\(741\) −1.98126 −0.0727836
\(742\) 0 0
\(743\) −7.58565 −0.278291 −0.139145 0.990272i \(-0.544435\pi\)
−0.139145 + 0.990272i \(0.544435\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 43.1798 1.57986
\(748\) 0 0
\(749\) 3.57136 0.130495
\(750\) 0 0
\(751\) −48.5259 −1.77074 −0.885368 0.464891i \(-0.846093\pi\)
−0.885368 + 0.464891i \(0.846093\pi\)
\(752\) 0 0
\(753\) −19.6543 −0.716244
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.9032 0.759740 0.379870 0.925040i \(-0.375969\pi\)
0.379870 + 0.925040i \(0.375969\pi\)
\(758\) 0 0
\(759\) 85.5308 3.10457
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 2.54326 0.0920721
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.77784 0.208626
\(768\) 0 0
\(769\) 15.5397 0.560377 0.280188 0.959945i \(-0.409603\pi\)
0.280188 + 0.959945i \(0.409603\pi\)
\(770\) 0 0
\(771\) 38.0098 1.36889
\(772\) 0 0
\(773\) −38.1891 −1.37357 −0.686784 0.726862i \(-0.740978\pi\)
−0.686784 + 0.726862i \(0.740978\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5.98126 −0.214577
\(778\) 0 0
\(779\) 8.41573 0.301525
\(780\) 0 0
\(781\) 39.6958 1.42043
\(782\) 0 0
\(783\) −7.05086 −0.251977
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −27.9541 −0.996455 −0.498227 0.867046i \(-0.666016\pi\)
−0.498227 + 0.867046i \(0.666016\pi\)
\(788\) 0 0
\(789\) 29.4064 1.04689
\(790\) 0 0
\(791\) 13.2859 0.472393
\(792\) 0 0
\(793\) −6.83854 −0.242844
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.50622 −0.0887747 −0.0443874 0.999014i \(-0.514134\pi\)
−0.0443874 + 0.999014i \(0.514134\pi\)
\(798\) 0 0
\(799\) −5.84791 −0.206884
\(800\) 0 0
\(801\) −90.4612 −3.19629
\(802\) 0 0
\(803\) 66.0513 2.33090
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −14.2766 −0.502558
\(808\) 0 0
\(809\) −44.0928 −1.55022 −0.775110 0.631826i \(-0.782306\pi\)
−0.775110 + 0.631826i \(0.782306\pi\)
\(810\) 0 0
\(811\) −29.8894 −1.04956 −0.524779 0.851238i \(-0.675852\pi\)
−0.524779 + 0.851238i \(0.675852\pi\)
\(812\) 0 0
\(813\) 71.3502 2.50236
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.20294 −0.0420857
\(818\) 0 0
\(819\) −3.05086 −0.106606
\(820\) 0 0
\(821\) −6.65386 −0.232221 −0.116111 0.993236i \(-0.537043\pi\)
−0.116111 + 0.993236i \(0.537043\pi\)
\(822\) 0 0
\(823\) −36.7926 −1.28251 −0.641255 0.767328i \(-0.721586\pi\)
−0.641255 + 0.767328i \(0.721586\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.8657 1.49059 0.745294 0.666736i \(-0.232309\pi\)
0.745294 + 0.666736i \(0.232309\pi\)
\(828\) 0 0
\(829\) 41.5339 1.44253 0.721266 0.692658i \(-0.243561\pi\)
0.721266 + 0.692658i \(0.243561\pi\)
\(830\) 0 0
\(831\) 71.9911 2.49734
\(832\) 0 0
\(833\) 21.8020 0.755394
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −11.6958 −0.404267
\(838\) 0 0
\(839\) 20.5763 0.710372 0.355186 0.934796i \(-0.384418\pi\)
0.355186 + 0.934796i \(0.384418\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −47.9911 −1.65290
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −17.6400 −0.606119
\(848\) 0 0
\(849\) −73.2770 −2.51486
\(850\) 0 0
\(851\) −12.1619 −0.416906
\(852\) 0 0
\(853\) 57.1481 1.95671 0.978357 0.206923i \(-0.0663450\pi\)
0.978357 + 0.206923i \(0.0663450\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.6035 0.362208 0.181104 0.983464i \(-0.442033\pi\)
0.181104 + 0.983464i \(0.442033\pi\)
\(858\) 0 0
\(859\) 0.934855 0.0318968 0.0159484 0.999873i \(-0.494923\pi\)
0.0159484 + 0.999873i \(0.494923\pi\)
\(860\) 0 0
\(861\) 20.1204 0.685703
\(862\) 0 0
\(863\) −18.7096 −0.636883 −0.318442 0.947942i \(-0.603160\pi\)
−0.318442 + 0.947942i \(0.603160\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.2716 −0.450728
\(868\) 0 0
\(869\) 84.7150 2.87376
\(870\) 0 0
\(871\) 6.93041 0.234828
\(872\) 0 0
\(873\) 64.8943 2.19634
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21.5714 −0.728413 −0.364207 0.931318i \(-0.618660\pi\)
−0.364207 + 0.931318i \(0.618660\pi\)
\(878\) 0 0
\(879\) −25.0736 −0.845712
\(880\) 0 0
\(881\) 24.2636 0.817463 0.408731 0.912655i \(-0.365971\pi\)
0.408731 + 0.912655i \(0.365971\pi\)
\(882\) 0 0
\(883\) 35.1798 1.18389 0.591947 0.805977i \(-0.298360\pi\)
0.591947 + 0.805977i \(0.298360\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 46.4242 1.55877 0.779386 0.626544i \(-0.215531\pi\)
0.779386 + 0.626544i \(0.215531\pi\)
\(888\) 0 0
\(889\) −2.11462 −0.0709220
\(890\) 0 0
\(891\) −23.1195 −0.774534
\(892\) 0 0
\(893\) −1.81933 −0.0608816
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −9.63158 −0.321589
\(898\) 0 0
\(899\) 1.65878 0.0553234
\(900\) 0 0
\(901\) −8.56199 −0.285241
\(902\) 0 0
\(903\) −2.87601 −0.0957078
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.34122 −0.210557 −0.105278 0.994443i \(-0.533573\pi\)
−0.105278 + 0.994443i \(0.533573\pi\)
\(908\) 0 0
\(909\) 47.0321 1.55996
\(910\) 0 0
\(911\) −39.9353 −1.32312 −0.661558 0.749894i \(-0.730105\pi\)
−0.661558 + 0.749894i \(0.730105\pi\)
\(912\) 0 0
\(913\) −43.9496 −1.45452
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.11108 0.168783
\(918\) 0 0
\(919\) 0.815792 0.0269105 0.0134552 0.999909i \(-0.495717\pi\)
0.0134552 + 0.999909i \(0.495717\pi\)
\(920\) 0 0
\(921\) −42.4929 −1.40019
\(922\) 0 0
\(923\) −4.47013 −0.147136
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 95.6914 3.14292
\(928\) 0 0
\(929\) 11.4479 0.375592 0.187796 0.982208i \(-0.439866\pi\)
0.187796 + 0.982208i \(0.439866\pi\)
\(930\) 0 0
\(931\) 6.78277 0.222296
\(932\) 0 0
\(933\) −4.81579 −0.157662
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −14.4286 −0.471363 −0.235682 0.971830i \(-0.575732\pi\)
−0.235682 + 0.971830i \(0.575732\pi\)
\(938\) 0 0
\(939\) −53.2355 −1.73728
\(940\) 0 0
\(941\) −33.8163 −1.10238 −0.551189 0.834380i \(-0.685826\pi\)
−0.551189 + 0.834380i \(0.685826\pi\)
\(942\) 0 0
\(943\) 40.9117 1.33227
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −49.0879 −1.59514 −0.797571 0.603225i \(-0.793882\pi\)
−0.797571 + 0.603225i \(0.793882\pi\)
\(948\) 0 0
\(949\) −7.43801 −0.241448
\(950\) 0 0
\(951\) −65.5437 −2.12540
\(952\) 0 0
\(953\) −32.1847 −1.04256 −0.521282 0.853384i \(-0.674546\pi\)
−0.521282 + 0.853384i \(0.674546\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 16.0415 0.518548
\(958\) 0 0
\(959\) 8.69535 0.280787
\(960\) 0 0
\(961\) −28.2484 −0.911240
\(962\) 0 0
\(963\) −21.4652 −0.691707
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 30.1003 0.967961 0.483981 0.875079i \(-0.339191\pi\)
0.483981 + 0.875079i \(0.339191\pi\)
\(968\) 0 0
\(969\) 11.2257 0.360621
\(970\) 0 0
\(971\) −61.0593 −1.95949 −0.979743 0.200257i \(-0.935822\pi\)
−0.979743 + 0.200257i \(0.935822\pi\)
\(972\) 0 0
\(973\) −6.01874 −0.192952
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.6829 1.20558 0.602792 0.797899i \(-0.294055\pi\)
0.602792 + 0.797899i \(0.294055\pi\)
\(978\) 0 0
\(979\) 92.0741 2.94270
\(980\) 0 0
\(981\) −15.2859 −0.488042
\(982\) 0 0
\(983\) −59.0977 −1.88493 −0.942463 0.334312i \(-0.891496\pi\)
−0.942463 + 0.334312i \(0.891496\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −4.34968 −0.138452
\(988\) 0 0
\(989\) −5.84791 −0.185953
\(990\) 0 0
\(991\) −36.3654 −1.15518 −0.577592 0.816326i \(-0.696007\pi\)
−0.577592 + 0.816326i \(0.696007\pi\)
\(992\) 0 0
\(993\) −101.922 −3.23440
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −28.3412 −0.897575 −0.448788 0.893638i \(-0.648144\pi\)
−0.448788 + 0.893638i \(0.648144\pi\)
\(998\) 0 0
\(999\) 16.0830 0.508843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5800.2.a.s.1.3 3
5.4 even 2 1160.2.a.f.1.1 3
20.19 odd 2 2320.2.a.t.1.3 3
40.19 odd 2 9280.2.a.bi.1.1 3
40.29 even 2 9280.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.f.1.1 3 5.4 even 2
2320.2.a.t.1.3 3 20.19 odd 2
5800.2.a.s.1.3 3 1.1 even 1 trivial
9280.2.a.bi.1.1 3 40.19 odd 2
9280.2.a.bs.1.3 3 40.29 even 2