Properties

Label 5808.2.a.bc
Level $5808$
Weight $2$
Character orbit 5808.a
Self dual yes
Analytic conductor $46.377$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5808,2,Mod(1,5808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3771134940\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} + 6 q^{13} + 2 q^{15} - 2 q^{17} + 4 q^{19} - 4 q^{21} - 4 q^{23} - q^{25} + q^{27} - 6 q^{29} - 8 q^{35} + 6 q^{37} + 6 q^{39} + 6 q^{41} + 4 q^{43} + 2 q^{45}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 2.00000 0 −4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5808.2.a.bc 1
4.b odd 2 1 726.2.a.c 1
11.b odd 2 1 528.2.a.j 1
12.b even 2 1 2178.2.a.g 1
33.d even 2 1 1584.2.a.f 1
44.c even 2 1 66.2.a.b 1
44.g even 10 4 726.2.e.g 4
44.h odd 10 4 726.2.e.o 4
88.b odd 2 1 2112.2.a.e 1
88.g even 2 1 2112.2.a.r 1
132.d odd 2 1 198.2.a.a 1
220.g even 2 1 1650.2.a.k 1
220.i odd 4 2 1650.2.c.e 2
264.m even 2 1 6336.2.a.cj 1
264.p odd 2 1 6336.2.a.bw 1
308.g odd 2 1 3234.2.a.t 1
396.k even 6 2 1782.2.e.e 2
396.o odd 6 2 1782.2.e.v 2
660.g odd 2 1 4950.2.a.bu 1
660.q even 4 2 4950.2.c.p 2
924.n even 2 1 9702.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.b 1 44.c even 2 1
198.2.a.a 1 132.d odd 2 1
528.2.a.j 1 11.b odd 2 1
726.2.a.c 1 4.b odd 2 1
726.2.e.g 4 44.g even 10 4
726.2.e.o 4 44.h odd 10 4
1584.2.a.f 1 33.d even 2 1
1650.2.a.k 1 220.g even 2 1
1650.2.c.e 2 220.i odd 4 2
1782.2.e.e 2 396.k even 6 2
1782.2.e.v 2 396.o odd 6 2
2112.2.a.e 1 88.b odd 2 1
2112.2.a.r 1 88.g even 2 1
2178.2.a.g 1 12.b even 2 1
3234.2.a.t 1 308.g odd 2 1
4950.2.a.bu 1 660.g odd 2 1
4950.2.c.p 2 660.q even 4 2
5808.2.a.bc 1 1.a even 1 1 trivial
6336.2.a.bw 1 264.p odd 2 1
6336.2.a.cj 1 264.m even 2 1
9702.2.a.x 1 924.n even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5808))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{13} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less