Properties

Label 3234.2.a.t
Level $3234$
Weight $2$
Character orbit 3234.a
Self dual yes
Analytic conductor $25.824$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3234,2,Mod(1,3234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3234.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{8} + q^{9} - 2 q^{10} - q^{11} + q^{12} + 6 q^{13} - 2 q^{15} + q^{16} - 2 q^{17} + q^{18} - 4 q^{19} - 2 q^{20} - q^{22} + 4 q^{23} + q^{24}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 −2.00000 1.00000 0 1.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3234.2.a.t 1
3.b odd 2 1 9702.2.a.x 1
7.b odd 2 1 66.2.a.b 1
21.c even 2 1 198.2.a.a 1
28.d even 2 1 528.2.a.j 1
35.c odd 2 1 1650.2.a.k 1
35.f even 4 2 1650.2.c.e 2
56.e even 2 1 2112.2.a.e 1
56.h odd 2 1 2112.2.a.r 1
63.l odd 6 2 1782.2.e.e 2
63.o even 6 2 1782.2.e.v 2
77.b even 2 1 726.2.a.c 1
77.j odd 10 4 726.2.e.g 4
77.l even 10 4 726.2.e.o 4
84.h odd 2 1 1584.2.a.f 1
105.g even 2 1 4950.2.a.bu 1
105.k odd 4 2 4950.2.c.p 2
168.e odd 2 1 6336.2.a.cj 1
168.i even 2 1 6336.2.a.bw 1
231.h odd 2 1 2178.2.a.g 1
308.g odd 2 1 5808.2.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.b 1 7.b odd 2 1
198.2.a.a 1 21.c even 2 1
528.2.a.j 1 28.d even 2 1
726.2.a.c 1 77.b even 2 1
726.2.e.g 4 77.j odd 10 4
726.2.e.o 4 77.l even 10 4
1584.2.a.f 1 84.h odd 2 1
1650.2.a.k 1 35.c odd 2 1
1650.2.c.e 2 35.f even 4 2
1782.2.e.e 2 63.l odd 6 2
1782.2.e.v 2 63.o even 6 2
2112.2.a.e 1 56.e even 2 1
2112.2.a.r 1 56.h odd 2 1
2178.2.a.g 1 231.h odd 2 1
3234.2.a.t 1 1.a even 1 1 trivial
4950.2.a.bu 1 105.g even 2 1
4950.2.c.p 2 105.k odd 4 2
5808.2.a.bc 1 308.g odd 2 1
6336.2.a.bw 1 168.i even 2 1
6336.2.a.cj 1 168.e odd 2 1
9702.2.a.x 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3234))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{13} - 6 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 10 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less