Properties

Label 585.2.a.l
Level $585$
Weight $2$
Character orbit 585.a
Self dual yes
Analytic conductor $4.671$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta + 2) q^{4} + q^{5} + (\beta - 3) q^{7} + (\beta + 4) q^{8} + \beta q^{10} + ( - \beta + 1) q^{11} - q^{13} + ( - 2 \beta + 4) q^{14} + 3 \beta q^{16} + (\beta - 1) q^{17} - 2 \beta q^{19} + \cdots + (\beta - 20) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 5 q^{4} + 2 q^{5} - 5 q^{7} + 9 q^{8} + q^{10} + q^{11} - 2 q^{13} + 6 q^{14} + 3 q^{16} - q^{17} - 2 q^{19} + 5 q^{20} - 8 q^{22} + 9 q^{23} + 2 q^{25} - q^{26} - 4 q^{28} - 6 q^{29}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−1.56155 0 0.438447 1.00000 0 −4.56155 2.43845 0 −1.56155
1.2 2.56155 0 4.56155 1.00000 0 −0.438447 6.56155 0 2.56155
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.2.a.l yes 2
3.b odd 2 1 585.2.a.j 2
4.b odd 2 1 9360.2.a.cw 2
5.b even 2 1 2925.2.a.x 2
5.c odd 4 2 2925.2.c.p 4
12.b even 2 1 9360.2.a.cl 2
13.b even 2 1 7605.2.a.bd 2
15.d odd 2 1 2925.2.a.bc 2
15.e even 4 2 2925.2.c.o 4
39.d odd 2 1 7605.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.a.j 2 3.b odd 2 1
585.2.a.l yes 2 1.a even 1 1 trivial
2925.2.a.x 2 5.b even 2 1
2925.2.a.bc 2 15.d odd 2 1
2925.2.c.o 4 15.e even 4 2
2925.2.c.p 4 5.c odd 4 2
7605.2.a.bd 2 13.b even 2 1
7605.2.a.bi 2 39.d odd 2 1
9360.2.a.cl 2 12.b even 2 1
9360.2.a.cw 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(585))\):

\( T_{2}^{2} - T_{2} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 5T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$11$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$23$ \( T^{2} - 9T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 9T - 18 \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$47$ \( T^{2} - 14T + 32 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 36 \) Copy content Toggle raw display
$59$ \( (T - 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$67$ \( T^{2} - 2T - 152 \) Copy content Toggle raw display
$71$ \( T^{2} - 25T + 152 \) Copy content Toggle raw display
$73$ \( (T + 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$83$ \( T^{2} - 272 \) Copy content Toggle raw display
$89$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
$97$ \( T^{2} - 5T - 202 \) Copy content Toggle raw display
show more
show less