Properties

Label 585.2.dp.a.28.3
Level $585$
Weight $2$
Character 585.28
Analytic conductor $4.671$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(28,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.dp (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.3
Root \(-0.493902i\) of defining polynomial
Character \(\chi\) \(=\) 585.28
Dual form 585.2.dp.a.397.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.427732 - 0.246951i) q^{2} +(-0.878030 + 1.52079i) q^{4} +(0.284413 - 2.21791i) q^{5} +(1.83775 - 3.18307i) q^{7} +1.85513i q^{8} +(-0.426062 - 1.01890i) q^{10} +(0.177987 - 0.664257i) q^{11} +(-2.92331 - 2.11051i) q^{13} -1.81533i q^{14} +(-1.29794 - 2.24809i) q^{16} +(-2.29359 + 0.614565i) q^{17} +(5.29067 - 1.41763i) q^{19} +(3.12325 + 2.37992i) q^{20} +(-0.0879082 - 0.328078i) q^{22} +(-1.30811 - 0.350507i) q^{23} +(-4.83822 - 1.26160i) q^{25} +(-1.77158 - 0.180816i) q^{26} +(3.22719 + 5.58966i) q^{28} +(8.24134 - 4.75814i) q^{29} +(4.81595 - 4.81595i) q^{31} +(-4.32351 - 2.49618i) q^{32} +(-0.829273 + 0.829273i) q^{34} +(-6.53707 - 4.98125i) q^{35} +(-0.917615 - 1.58936i) q^{37} +(1.91290 - 1.91290i) q^{38} +(4.11449 + 0.527621i) q^{40} +(0.534988 + 0.143350i) q^{41} +(-0.560778 - 2.09285i) q^{43} +(0.853919 + 0.853919i) q^{44} +(-0.646078 + 0.173116i) q^{46} +3.80918 q^{47} +(-3.25462 - 5.63717i) q^{49} +(-2.38101 + 0.655176i) q^{50} +(5.77640 - 2.59266i) q^{52} +(2.47293 + 2.47293i) q^{53} +(-1.42264 - 0.583682i) q^{55} +(5.90499 + 3.40925i) q^{56} +(2.35005 - 4.07041i) q^{58} +(2.69310 + 10.0508i) q^{59} +(-3.09904 + 5.36770i) q^{61} +(0.870630 - 3.24924i) q^{62} +2.72601 q^{64} +(-5.51234 + 5.88338i) q^{65} +(-10.6066 + 6.12371i) q^{67} +(1.07921 - 4.02768i) q^{68} +(-4.02624 - 0.516303i) q^{70} +(1.73500 + 6.47512i) q^{71} +3.37642i q^{73} +(-0.784986 - 0.453212i) q^{74} +(-2.48945 + 9.29074i) q^{76} +(-1.78728 - 1.78728i) q^{77} -3.12149i q^{79} +(-5.35521 + 2.23932i) q^{80} +(0.264231 - 0.0708006i) q^{82} -2.13918 q^{83} +(0.710723 + 5.26175i) q^{85} +(-0.756694 - 0.756694i) q^{86} +(1.23228 + 0.330188i) q^{88} +(-3.26255 - 0.874198i) q^{89} +(-12.0902 + 5.42653i) q^{91} +(1.68161 - 1.68161i) q^{92} +(1.62931 - 0.940681i) q^{94} +(-1.63944 - 12.1374i) q^{95} +(6.12606 + 3.53688i) q^{97} +(-2.78421 - 1.60746i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} + 6 q^{4} - 2 q^{7} - 2 q^{10} + 16 q^{11} - 4 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{19} + 16 q^{22} + 10 q^{23} + 18 q^{25} + 24 q^{26} + 18 q^{28} - 48 q^{32} + 2 q^{34} - 40 q^{35} - 4 q^{37}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.427732 0.246951i 0.302452 0.174621i −0.341092 0.940030i \(-0.610797\pi\)
0.643544 + 0.765409i \(0.277463\pi\)
\(3\) 0 0
\(4\) −0.878030 + 1.52079i −0.439015 + 0.760397i
\(5\) 0.284413 2.21791i 0.127193 0.991878i
\(6\) 0 0
\(7\) 1.83775 3.18307i 0.694603 1.20309i −0.275712 0.961240i \(-0.588914\pi\)
0.970314 0.241847i \(-0.0777532\pi\)
\(8\) 1.85513i 0.655886i
\(9\) 0 0
\(10\) −0.426062 1.01890i −0.134733 0.322206i
\(11\) 0.177987 0.664257i 0.0536651 0.200281i −0.933888 0.357565i \(-0.883607\pi\)
0.987553 + 0.157284i \(0.0502738\pi\)
\(12\) 0 0
\(13\) −2.92331 2.11051i −0.810781 0.585350i
\(14\) 1.81533i 0.485168i
\(15\) 0 0
\(16\) −1.29794 2.24809i −0.324484 0.562023i
\(17\) −2.29359 + 0.614565i −0.556277 + 0.149054i −0.525995 0.850487i \(-0.676307\pi\)
−0.0302815 + 0.999541i \(0.509640\pi\)
\(18\) 0 0
\(19\) 5.29067 1.41763i 1.21376 0.325227i 0.405526 0.914084i \(-0.367088\pi\)
0.808238 + 0.588857i \(0.200422\pi\)
\(20\) 3.12325 + 2.37992i 0.698381 + 0.532167i
\(21\) 0 0
\(22\) −0.0879082 0.328078i −0.0187421 0.0699464i
\(23\) −1.30811 0.350507i −0.272760 0.0730858i 0.119846 0.992792i \(-0.461760\pi\)
−0.392606 + 0.919707i \(0.628426\pi\)
\(24\) 0 0
\(25\) −4.83822 1.26160i −0.967644 0.252320i
\(26\) −1.77158 0.180816i −0.347436 0.0354610i
\(27\) 0 0
\(28\) 3.22719 + 5.58966i 0.609882 + 1.05635i
\(29\) 8.24134 4.75814i 1.53038 0.883564i 0.531034 0.847350i \(-0.321803\pi\)
0.999344 0.0362142i \(-0.0115299\pi\)
\(30\) 0 0
\(31\) 4.81595 4.81595i 0.864970 0.864970i −0.126940 0.991910i \(-0.540516\pi\)
0.991910 + 0.126940i \(0.0405157\pi\)
\(32\) −4.32351 2.49618i −0.764295 0.441266i
\(33\) 0 0
\(34\) −0.829273 + 0.829273i −0.142219 + 0.142219i
\(35\) −6.53707 4.98125i −1.10497 0.841986i
\(36\) 0 0
\(37\) −0.917615 1.58936i −0.150855 0.261289i 0.780687 0.624922i \(-0.214869\pi\)
−0.931542 + 0.363634i \(0.881536\pi\)
\(38\) 1.91290 1.91290i 0.310314 0.310314i
\(39\) 0 0
\(40\) 4.11449 + 0.527621i 0.650559 + 0.0834242i
\(41\) 0.534988 + 0.143350i 0.0835510 + 0.0223874i 0.300352 0.953828i \(-0.402896\pi\)
−0.216801 + 0.976216i \(0.569562\pi\)
\(42\) 0 0
\(43\) −0.560778 2.09285i −0.0855178 0.319157i 0.909894 0.414841i \(-0.136163\pi\)
−0.995412 + 0.0956841i \(0.969496\pi\)
\(44\) 0.853919 + 0.853919i 0.128733 + 0.128733i
\(45\) 0 0
\(46\) −0.646078 + 0.173116i −0.0952590 + 0.0255246i
\(47\) 3.80918 0.555626 0.277813 0.960635i \(-0.410390\pi\)
0.277813 + 0.960635i \(0.410390\pi\)
\(48\) 0 0
\(49\) −3.25462 5.63717i −0.464946 0.805310i
\(50\) −2.38101 + 0.655176i −0.336726 + 0.0926559i
\(51\) 0 0
\(52\) 5.77640 2.59266i 0.801043 0.359538i
\(53\) 2.47293 + 2.47293i 0.339683 + 0.339683i 0.856248 0.516565i \(-0.172789\pi\)
−0.516565 + 0.856248i \(0.672789\pi\)
\(54\) 0 0
\(55\) −1.42264 0.583682i −0.191828 0.0787036i
\(56\) 5.90499 + 3.40925i 0.789088 + 0.455580i
\(57\) 0 0
\(58\) 2.35005 4.07041i 0.308577 0.534471i
\(59\) 2.69310 + 10.0508i 0.350612 + 1.30850i 0.885917 + 0.463844i \(0.153530\pi\)
−0.535305 + 0.844659i \(0.679803\pi\)
\(60\) 0 0
\(61\) −3.09904 + 5.36770i −0.396792 + 0.687263i −0.993328 0.115323i \(-0.963210\pi\)
0.596536 + 0.802586i \(0.296543\pi\)
\(62\) 0.870630 3.24924i 0.110570 0.412653i
\(63\) 0 0
\(64\) 2.72601 0.340751
\(65\) −5.51234 + 5.88338i −0.683721 + 0.729743i
\(66\) 0 0
\(67\) −10.6066 + 6.12371i −1.29580 + 0.748130i −0.979676 0.200588i \(-0.935715\pi\)
−0.316124 + 0.948718i \(0.602381\pi\)
\(68\) 1.07921 4.02768i 0.130874 0.488428i
\(69\) 0 0
\(70\) −4.02624 0.516303i −0.481227 0.0617101i
\(71\) 1.73500 + 6.47512i 0.205907 + 0.768456i 0.989171 + 0.146767i \(0.0468866\pi\)
−0.783264 + 0.621689i \(0.786447\pi\)
\(72\) 0 0
\(73\) 3.37642i 0.395180i 0.980285 + 0.197590i \(0.0633115\pi\)
−0.980285 + 0.197590i \(0.936688\pi\)
\(74\) −0.784986 0.453212i −0.0912528 0.0526848i
\(75\) 0 0
\(76\) −2.48945 + 9.29074i −0.285559 + 1.06572i
\(77\) −1.78728 1.78728i −0.203680 0.203680i
\(78\) 0 0
\(79\) 3.12149i 0.351195i −0.984462 0.175598i \(-0.943814\pi\)
0.984462 0.175598i \(-0.0561857\pi\)
\(80\) −5.35521 + 2.23932i −0.598730 + 0.250363i
\(81\) 0 0
\(82\) 0.264231 0.0708006i 0.0291795 0.00781862i
\(83\) −2.13918 −0.234805 −0.117403 0.993084i \(-0.537457\pi\)
−0.117403 + 0.993084i \(0.537457\pi\)
\(84\) 0 0
\(85\) 0.710723 + 5.26175i 0.0770887 + 0.570717i
\(86\) −0.756694 0.756694i −0.0815964 0.0815964i
\(87\) 0 0
\(88\) 1.23228 + 0.330188i 0.131361 + 0.0351982i
\(89\) −3.26255 0.874198i −0.345830 0.0926648i 0.0817233 0.996655i \(-0.473958\pi\)
−0.427553 + 0.903990i \(0.640624\pi\)
\(90\) 0 0
\(91\) −12.0902 + 5.42653i −1.26740 + 0.568855i
\(92\) 1.68161 1.68161i 0.175320 0.175320i
\(93\) 0 0
\(94\) 1.62931 0.940681i 0.168050 0.0970238i
\(95\) −1.63944 12.1374i −0.168203 1.24527i
\(96\) 0 0
\(97\) 6.12606 + 3.53688i 0.622007 + 0.359116i 0.777650 0.628697i \(-0.216412\pi\)
−0.155643 + 0.987813i \(0.549745\pi\)
\(98\) −2.78421 1.60746i −0.281248 0.162378i
\(99\) 0 0
\(100\) 6.16674 6.25021i 0.616674 0.625021i
\(101\) −12.9641 + 7.48483i −1.28998 + 0.744769i −0.978650 0.205534i \(-0.934107\pi\)
−0.311327 + 0.950303i \(0.600774\pi\)
\(102\) 0 0
\(103\) −3.17851 + 3.17851i −0.313188 + 0.313188i −0.846143 0.532956i \(-0.821081\pi\)
0.532956 + 0.846143i \(0.321081\pi\)
\(104\) 3.91526 5.42311i 0.383923 0.531780i
\(105\) 0 0
\(106\) 1.66844 + 0.447058i 0.162054 + 0.0434221i
\(107\) −14.7329 3.94767i −1.42428 0.381635i −0.537282 0.843403i \(-0.680549\pi\)
−0.887001 + 0.461767i \(0.847216\pi\)
\(108\) 0 0
\(109\) 2.25902 + 2.25902i 0.216375 + 0.216375i 0.806969 0.590594i \(-0.201107\pi\)
−0.590594 + 0.806969i \(0.701107\pi\)
\(110\) −0.752648 + 0.101663i −0.0717622 + 0.00969315i
\(111\) 0 0
\(112\) −9.54111 −0.901550
\(113\) 16.0061 4.28882i 1.50573 0.403458i 0.590713 0.806881i \(-0.298846\pi\)
0.915014 + 0.403423i \(0.132180\pi\)
\(114\) 0 0
\(115\) −1.14944 + 2.80158i −0.107185 + 0.261248i
\(116\) 16.7112i 1.55159i
\(117\) 0 0
\(118\) 3.63398 + 3.63398i 0.334535 + 0.334535i
\(119\) −2.25883 + 8.43007i −0.207067 + 0.772783i
\(120\) 0 0
\(121\) 9.11672 + 5.26354i 0.828793 + 0.478504i
\(122\) 3.06124i 0.277152i
\(123\) 0 0
\(124\) 3.09551 + 11.5526i 0.277985 + 1.03746i
\(125\) −4.17416 + 10.3719i −0.373349 + 0.927691i
\(126\) 0 0
\(127\) −2.14812 + 8.01688i −0.190614 + 0.711383i 0.802744 + 0.596324i \(0.203372\pi\)
−0.993359 + 0.115059i \(0.963294\pi\)
\(128\) 9.81302 5.66555i 0.867356 0.500768i
\(129\) 0 0
\(130\) −0.904895 + 3.87778i −0.0793645 + 0.340104i
\(131\) −1.37409 −0.120054 −0.0600272 0.998197i \(-0.519119\pi\)
−0.0600272 + 0.998197i \(0.519119\pi\)
\(132\) 0 0
\(133\) 5.21049 19.4458i 0.451807 1.68617i
\(134\) −3.02451 + 5.23861i −0.261278 + 0.452547i
\(135\) 0 0
\(136\) −1.14010 4.25489i −0.0977624 0.364854i
\(137\) 6.16380 10.6760i 0.526609 0.912114i −0.472910 0.881111i \(-0.656797\pi\)
0.999519 0.0310029i \(-0.00987013\pi\)
\(138\) 0 0
\(139\) 5.54392 + 3.20078i 0.470229 + 0.271487i 0.716336 0.697756i \(-0.245818\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(140\) 13.3152 5.56784i 1.12534 0.470569i
\(141\) 0 0
\(142\) 2.34115 + 2.34115i 0.196465 + 0.196465i
\(143\) −1.92223 + 1.56619i −0.160745 + 0.130971i
\(144\) 0 0
\(145\) −8.20917 19.6318i −0.681734 1.63033i
\(146\) 0.833811 + 1.44420i 0.0690067 + 0.119523i
\(147\) 0 0
\(148\) 3.22278 0.264911
\(149\) 16.2300 4.34882i 1.32961 0.356269i 0.477043 0.878880i \(-0.341709\pi\)
0.852571 + 0.522611i \(0.175042\pi\)
\(150\) 0 0
\(151\) −3.31542 3.31542i −0.269805 0.269805i 0.559217 0.829022i \(-0.311102\pi\)
−0.829022 + 0.559217i \(0.811102\pi\)
\(152\) 2.62988 + 9.81486i 0.213312 + 0.796090i
\(153\) 0 0
\(154\) −1.20585 0.323106i −0.0971699 0.0260366i
\(155\) −9.31161 12.0510i −0.747926 0.967963i
\(156\) 0 0
\(157\) 9.87941 9.87941i 0.788463 0.788463i −0.192779 0.981242i \(-0.561750\pi\)
0.981242 + 0.192779i \(0.0617501\pi\)
\(158\) −0.770855 1.33516i −0.0613259 0.106220i
\(159\) 0 0
\(160\) −6.76595 + 8.87919i −0.534895 + 0.701962i
\(161\) −3.51966 + 3.51966i −0.277388 + 0.277388i
\(162\) 0 0
\(163\) −0.114289 0.0659848i −0.00895180 0.00516833i 0.495517 0.868598i \(-0.334978\pi\)
−0.504469 + 0.863430i \(0.668312\pi\)
\(164\) −0.687741 + 0.687741i −0.0537035 + 0.0537035i
\(165\) 0 0
\(166\) −0.914995 + 0.528272i −0.0710174 + 0.0410019i
\(167\) 10.8184 + 18.7380i 0.837152 + 1.44999i 0.892267 + 0.451509i \(0.149114\pi\)
−0.0551149 + 0.998480i \(0.517553\pi\)
\(168\) 0 0
\(169\) 4.09151 + 12.3393i 0.314731 + 0.949181i
\(170\) 1.60339 + 2.07510i 0.122975 + 0.159153i
\(171\) 0 0
\(172\) 3.67518 + 0.984760i 0.280230 + 0.0750873i
\(173\) 2.00162 + 7.47013i 0.152180 + 0.567943i 0.999330 + 0.0365902i \(0.0116496\pi\)
−0.847150 + 0.531353i \(0.821684\pi\)
\(174\) 0 0
\(175\) −12.9072 + 13.0819i −0.975691 + 0.988898i
\(176\) −1.72433 + 0.462032i −0.129976 + 0.0348270i
\(177\) 0 0
\(178\) −1.61138 + 0.431768i −0.120778 + 0.0323624i
\(179\) −8.17681 14.1627i −0.611164 1.05857i −0.991045 0.133531i \(-0.957368\pi\)
0.379881 0.925035i \(-0.375965\pi\)
\(180\) 0 0
\(181\) 18.0387i 1.34081i 0.741997 + 0.670403i \(0.233879\pi\)
−0.741997 + 0.670403i \(0.766121\pi\)
\(182\) −3.83127 + 5.30678i −0.283993 + 0.393365i
\(183\) 0 0
\(184\) 0.650235 2.42671i 0.0479359 0.178899i
\(185\) −3.78603 + 1.58315i −0.278354 + 0.116396i
\(186\) 0 0
\(187\) 1.63292i 0.119411i
\(188\) −3.34458 + 5.79298i −0.243928 + 0.422496i
\(189\) 0 0
\(190\) −3.69858 4.78669i −0.268324 0.347263i
\(191\) 2.59552 4.49557i 0.187805 0.325288i −0.756713 0.653747i \(-0.773196\pi\)
0.944518 + 0.328459i \(0.106529\pi\)
\(192\) 0 0
\(193\) −8.74813 + 5.05073i −0.629704 + 0.363560i −0.780637 0.624984i \(-0.785105\pi\)
0.150934 + 0.988544i \(0.451772\pi\)
\(194\) 3.49375 0.250836
\(195\) 0 0
\(196\) 11.4306 0.816473
\(197\) 11.3137 6.53197i 0.806068 0.465384i −0.0395205 0.999219i \(-0.512583\pi\)
0.845589 + 0.533835i \(0.179250\pi\)
\(198\) 0 0
\(199\) −3.92506 + 6.79840i −0.278240 + 0.481926i −0.970947 0.239293i \(-0.923084\pi\)
0.692707 + 0.721219i \(0.256418\pi\)
\(200\) 2.34043 8.97550i 0.165493 0.634664i
\(201\) 0 0
\(202\) −3.69677 + 6.40300i −0.260104 + 0.450513i
\(203\) 34.9770i 2.45491i
\(204\) 0 0
\(205\) 0.470093 1.14578i 0.0328327 0.0800249i
\(206\) −0.574613 + 2.14448i −0.0400352 + 0.149413i
\(207\) 0 0
\(208\) −0.950343 + 9.31118i −0.0658944 + 0.645614i
\(209\) 3.76669i 0.260547i
\(210\) 0 0
\(211\) −6.21205 10.7596i −0.427655 0.740720i 0.569009 0.822331i \(-0.307327\pi\)
−0.996664 + 0.0816108i \(0.973994\pi\)
\(212\) −5.93213 + 1.58951i −0.407420 + 0.109168i
\(213\) 0 0
\(214\) −7.27661 + 1.94976i −0.497419 + 0.133283i
\(215\) −4.80124 + 0.648520i −0.327442 + 0.0442287i
\(216\) 0 0
\(217\) −6.47901 24.1800i −0.439824 1.64145i
\(218\) 1.52412 + 0.408387i 0.103226 + 0.0276594i
\(219\) 0 0
\(220\) 2.13678 1.65105i 0.144062 0.111314i
\(221\) 8.00192 + 3.04407i 0.538267 + 0.204766i
\(222\) 0 0
\(223\) −4.97247 8.61258i −0.332981 0.576741i 0.650114 0.759837i \(-0.274721\pi\)
−0.983095 + 0.183096i \(0.941388\pi\)
\(224\) −15.8910 + 9.17468i −1.06176 + 0.613009i
\(225\) 0 0
\(226\) 5.78718 5.78718i 0.384958 0.384958i
\(227\) −12.6490 7.30290i −0.839543 0.484710i 0.0175659 0.999846i \(-0.494408\pi\)
−0.857109 + 0.515135i \(0.827742\pi\)
\(228\) 0 0
\(229\) 15.6183 15.6183i 1.03209 1.03209i 0.0326207 0.999468i \(-0.489615\pi\)
0.999468 0.0326207i \(-0.0103853\pi\)
\(230\) 0.200203 + 1.48218i 0.0132010 + 0.0977319i
\(231\) 0 0
\(232\) 8.82695 + 15.2887i 0.579517 + 1.00375i
\(233\) −16.5625 + 16.5625i −1.08505 + 1.08505i −0.0890148 + 0.996030i \(0.528372\pi\)
−0.996030 + 0.0890148i \(0.971628\pi\)
\(234\) 0 0
\(235\) 1.08338 8.44841i 0.0706719 0.551113i
\(236\) −17.6498 4.72926i −1.14891 0.307848i
\(237\) 0 0
\(238\) 1.11564 + 4.16362i 0.0723162 + 0.269888i
\(239\) 14.6022 + 14.6022i 0.944535 + 0.944535i 0.998541 0.0540053i \(-0.0171988\pi\)
−0.0540053 + 0.998541i \(0.517199\pi\)
\(240\) 0 0
\(241\) 2.99335 0.802065i 0.192818 0.0516656i −0.161117 0.986935i \(-0.551510\pi\)
0.353936 + 0.935270i \(0.384843\pi\)
\(242\) 5.19935 0.334227
\(243\) 0 0
\(244\) −5.44211 9.42600i −0.348395 0.603438i
\(245\) −13.4284 + 5.61516i −0.857907 + 0.358740i
\(246\) 0 0
\(247\) −18.4582 7.02183i −1.17447 0.446788i
\(248\) 8.93419 + 8.93419i 0.567322 + 0.567322i
\(249\) 0 0
\(250\) 0.775929 + 5.46720i 0.0490741 + 0.345776i
\(251\) 25.5728 + 14.7645i 1.61414 + 0.931925i 0.988396 + 0.151897i \(0.0485382\pi\)
0.625745 + 0.780028i \(0.284795\pi\)
\(252\) 0 0
\(253\) −0.465654 + 0.806536i −0.0292754 + 0.0507065i
\(254\) 1.06096 + 3.95955i 0.0665704 + 0.248444i
\(255\) 0 0
\(256\) 0.0722145 0.125079i 0.00451341 0.00781745i
\(257\) 1.85447 6.92097i 0.115679 0.431718i −0.883658 0.468133i \(-0.844927\pi\)
0.999337 + 0.0364143i \(0.0115936\pi\)
\(258\) 0 0
\(259\) −6.74538 −0.419137
\(260\) −4.10740 13.5489i −0.254730 0.840268i
\(261\) 0 0
\(262\) −0.587740 + 0.339332i −0.0363107 + 0.0209640i
\(263\) 3.48511 13.0066i 0.214901 0.802023i −0.771300 0.636472i \(-0.780393\pi\)
0.986201 0.165551i \(-0.0529402\pi\)
\(264\) 0 0
\(265\) 6.18807 4.78140i 0.380130 0.293719i
\(266\) −2.57347 9.60433i −0.157790 0.588879i
\(267\) 0 0
\(268\) 21.5072i 1.31376i
\(269\) 7.01806 + 4.05188i 0.427899 + 0.247047i 0.698451 0.715658i \(-0.253873\pi\)
−0.270552 + 0.962705i \(0.587206\pi\)
\(270\) 0 0
\(271\) −2.38026 + 8.88325i −0.144590 + 0.539619i 0.855183 + 0.518326i \(0.173445\pi\)
−0.999773 + 0.0212923i \(0.993222\pi\)
\(272\) 4.35853 + 4.35853i 0.264275 + 0.264275i
\(273\) 0 0
\(274\) 6.08862i 0.367827i
\(275\) −1.69917 + 2.98927i −0.102464 + 0.180260i
\(276\) 0 0
\(277\) 24.9641 6.68911i 1.49995 0.401910i 0.586865 0.809685i \(-0.300362\pi\)
0.913082 + 0.407775i \(0.133695\pi\)
\(278\) 3.16174 0.189629
\(279\) 0 0
\(280\) 9.24085 12.1271i 0.552246 0.724732i
\(281\) −5.41928 5.41928i −0.323287 0.323287i 0.526740 0.850027i \(-0.323414\pi\)
−0.850027 + 0.526740i \(0.823414\pi\)
\(282\) 0 0
\(283\) 8.48623 + 2.27388i 0.504454 + 0.135168i 0.502066 0.864829i \(-0.332573\pi\)
0.00238762 + 0.999997i \(0.499240\pi\)
\(284\) −11.3707 3.04677i −0.674728 0.180793i
\(285\) 0 0
\(286\) −0.435428 + 1.14460i −0.0257474 + 0.0676819i
\(287\) 1.43946 1.43946i 0.0849688 0.0849688i
\(288\) 0 0
\(289\) −9.83958 + 5.68088i −0.578799 + 0.334170i
\(290\) −8.35941 6.36988i −0.490882 0.374052i
\(291\) 0 0
\(292\) −5.13484 2.96460i −0.300494 0.173490i
\(293\) −11.4627 6.61798i −0.669657 0.386626i 0.126290 0.991993i \(-0.459693\pi\)
−0.795947 + 0.605367i \(0.793026\pi\)
\(294\) 0 0
\(295\) 23.0577 3.11448i 1.34247 0.181332i
\(296\) 2.94846 1.70229i 0.171375 0.0989437i
\(297\) 0 0
\(298\) 5.86814 5.86814i 0.339932 0.339932i
\(299\) 3.08427 + 3.78542i 0.178368 + 0.218916i
\(300\) 0 0
\(301\) −7.69226 2.06114i −0.443375 0.118802i
\(302\) −2.23685 0.599363i −0.128716 0.0344895i
\(303\) 0 0
\(304\) −10.0539 10.0539i −0.576632 0.576632i
\(305\) 11.0236 + 8.40003i 0.631212 + 0.480984i
\(306\) 0 0
\(307\) −15.4782 −0.883389 −0.441695 0.897165i \(-0.645623\pi\)
−0.441695 + 0.897165i \(0.645623\pi\)
\(308\) 4.28737 1.14880i 0.244296 0.0654588i
\(309\) 0 0
\(310\) −6.95889 2.85510i −0.395238 0.162159i
\(311\) 5.34922i 0.303326i −0.988432 0.151663i \(-0.951537\pi\)
0.988432 0.151663i \(-0.0484629\pi\)
\(312\) 0 0
\(313\) 24.3923 + 24.3923i 1.37873 + 1.37873i 0.846765 + 0.531967i \(0.178547\pi\)
0.531967 + 0.846765i \(0.321453\pi\)
\(314\) 1.78601 6.66547i 0.100790 0.376154i
\(315\) 0 0
\(316\) 4.74714 + 2.74076i 0.267048 + 0.154180i
\(317\) 18.9851i 1.06631i −0.846017 0.533156i \(-0.821006\pi\)
0.846017 0.533156i \(-0.178994\pi\)
\(318\) 0 0
\(319\) −1.69378 6.32125i −0.0948332 0.353922i
\(320\) 0.775312 6.04604i 0.0433412 0.337984i
\(321\) 0 0
\(322\) −0.636287 + 2.37466i −0.0354589 + 0.132334i
\(323\) −11.2634 + 6.50293i −0.626712 + 0.361832i
\(324\) 0 0
\(325\) 11.4810 + 13.8992i 0.636852 + 0.770986i
\(326\) −0.0651800 −0.00360999
\(327\) 0 0
\(328\) −0.265931 + 0.992469i −0.0146836 + 0.0548000i
\(329\) 7.00031 12.1249i 0.385940 0.668467i
\(330\) 0 0
\(331\) −1.81607 6.77766i −0.0998202 0.372534i 0.897886 0.440228i \(-0.145102\pi\)
−0.997706 + 0.0676941i \(0.978436\pi\)
\(332\) 1.87826 3.25325i 0.103083 0.178545i
\(333\) 0 0
\(334\) 9.25473 + 5.34322i 0.506396 + 0.292368i
\(335\) 10.5652 + 25.2661i 0.577237 + 1.38043i
\(336\) 0 0
\(337\) −1.10195 1.10195i −0.0600271 0.0600271i 0.676456 0.736483i \(-0.263515\pi\)
−0.736483 + 0.676456i \(0.763515\pi\)
\(338\) 4.79728 + 4.26753i 0.260938 + 0.232123i
\(339\) 0 0
\(340\) −8.62608 3.53912i −0.467815 0.191936i
\(341\) −2.34185 4.05620i −0.126818 0.219656i
\(342\) 0 0
\(343\) 1.80378 0.0973947
\(344\) 3.88250 1.04031i 0.209331 0.0560899i
\(345\) 0 0
\(346\) 2.70091 + 2.70091i 0.145202 + 0.145202i
\(347\) −6.68561 24.9510i −0.358902 1.33944i −0.875502 0.483214i \(-0.839469\pi\)
0.516600 0.856227i \(-0.327197\pi\)
\(348\) 0 0
\(349\) −9.07958 2.43287i −0.486019 0.130228i 0.00748510 0.999972i \(-0.497617\pi\)
−0.493504 + 0.869744i \(0.664284\pi\)
\(350\) −2.29023 + 8.78298i −0.122418 + 0.469470i
\(351\) 0 0
\(352\) −2.42763 + 2.42763i −0.129393 + 0.129393i
\(353\) −1.63274 2.82798i −0.0869017 0.150518i 0.819298 0.573368i \(-0.194363\pi\)
−0.906200 + 0.422849i \(0.861030\pi\)
\(354\) 0 0
\(355\) 14.8547 2.00647i 0.788404 0.106492i
\(356\) 4.19410 4.19410i 0.222287 0.222287i
\(357\) 0 0
\(358\) −6.99496 4.03854i −0.369695 0.213444i
\(359\) −3.12090 + 3.12090i −0.164715 + 0.164715i −0.784652 0.619937i \(-0.787158\pi\)
0.619937 + 0.784652i \(0.287158\pi\)
\(360\) 0 0
\(361\) 9.52706 5.50045i 0.501424 0.289497i
\(362\) 4.45468 + 7.71573i 0.234133 + 0.405530i
\(363\) 0 0
\(364\) 2.36294 23.1514i 0.123852 1.21346i
\(365\) 7.48859 + 0.960297i 0.391971 + 0.0502643i
\(366\) 0 0
\(367\) −24.2349 6.49371i −1.26505 0.338969i −0.436917 0.899502i \(-0.643930\pi\)
−0.828132 + 0.560533i \(0.810596\pi\)
\(368\) 0.909872 + 3.39569i 0.0474303 + 0.177012i
\(369\) 0 0
\(370\) −1.22844 + 1.61213i −0.0638636 + 0.0838105i
\(371\) 12.4161 3.32690i 0.644614 0.172724i
\(372\) 0 0
\(373\) 11.0372 2.95740i 0.571483 0.153128i 0.0385061 0.999258i \(-0.487740\pi\)
0.532976 + 0.846130i \(0.321073\pi\)
\(374\) 0.403250 + 0.698450i 0.0208516 + 0.0361160i
\(375\) 0 0
\(376\) 7.06651i 0.364427i
\(377\) −34.1341 3.48389i −1.75800 0.179429i
\(378\) 0 0
\(379\) 0.520109 1.94107i 0.0267162 0.0997062i −0.951280 0.308327i \(-0.900231\pi\)
0.977997 + 0.208621i \(0.0668975\pi\)
\(380\) 19.8980 + 8.16377i 1.02074 + 0.418792i
\(381\) 0 0
\(382\) 2.56386i 0.131179i
\(383\) −13.2258 + 22.9077i −0.675806 + 1.17053i 0.300427 + 0.953805i \(0.402871\pi\)
−0.976233 + 0.216725i \(0.930462\pi\)
\(384\) 0 0
\(385\) −4.47235 + 3.45570i −0.227932 + 0.176119i
\(386\) −2.49457 + 4.32072i −0.126970 + 0.219919i
\(387\) 0 0
\(388\) −10.7577 + 6.21098i −0.546141 + 0.315315i
\(389\) 0.650094 0.0329611 0.0164805 0.999864i \(-0.494754\pi\)
0.0164805 + 0.999864i \(0.494754\pi\)
\(390\) 0 0
\(391\) 3.21568 0.162624
\(392\) 10.4577 6.03773i 0.528191 0.304951i
\(393\) 0 0
\(394\) 3.22615 5.58786i 0.162531 0.281512i
\(395\) −6.92317 0.887791i −0.348343 0.0446696i
\(396\) 0 0
\(397\) 13.5041 23.3897i 0.677750 1.17390i −0.297907 0.954595i \(-0.596288\pi\)
0.975657 0.219303i \(-0.0703782\pi\)
\(398\) 3.87719i 0.194346i
\(399\) 0 0
\(400\) 3.44350 + 12.5142i 0.172175 + 0.625712i
\(401\) 1.28339 4.78969i 0.0640896 0.239186i −0.926449 0.376421i \(-0.877155\pi\)
0.990539 + 0.137235i \(0.0438215\pi\)
\(402\) 0 0
\(403\) −24.2426 + 3.91442i −1.20761 + 0.194991i
\(404\) 26.2876i 1.30786i
\(405\) 0 0
\(406\) −8.63761 14.9608i −0.428677 0.742491i
\(407\) −1.21906 + 0.326647i −0.0604268 + 0.0161913i
\(408\) 0 0
\(409\) 5.83965 1.56473i 0.288752 0.0773708i −0.111536 0.993760i \(-0.535577\pi\)
0.400288 + 0.916390i \(0.368910\pi\)
\(410\) −0.0818784 0.606177i −0.00404368 0.0299370i
\(411\) 0 0
\(412\) −2.04303 7.62468i −0.100653 0.375641i
\(413\) 36.9416 + 9.89848i 1.81778 + 0.487073i
\(414\) 0 0
\(415\) −0.608410 + 4.74450i −0.0298657 + 0.232898i
\(416\) 7.37076 + 16.4219i 0.361381 + 0.805150i
\(417\) 0 0
\(418\) −0.930187 1.61113i −0.0454969 0.0788030i
\(419\) −4.65114 + 2.68534i −0.227223 + 0.131187i −0.609290 0.792947i \(-0.708546\pi\)
0.382067 + 0.924135i \(0.375212\pi\)
\(420\) 0 0
\(421\) 14.1377 14.1377i 0.689029 0.689029i −0.272988 0.962017i \(-0.588012\pi\)
0.962017 + 0.272988i \(0.0880119\pi\)
\(422\) −5.31418 3.06814i −0.258690 0.149355i
\(423\) 0 0
\(424\) −4.58760 + 4.58760i −0.222794 + 0.222794i
\(425\) 11.8722 0.0798070i 0.575887 0.00387121i
\(426\) 0 0
\(427\) 11.3905 + 19.7289i 0.551225 + 0.954750i
\(428\) 18.9395 18.9395i 0.915476 0.915476i
\(429\) 0 0
\(430\) −1.89349 + 1.46306i −0.0913122 + 0.0705552i
\(431\) −16.1219 4.31985i −0.776564 0.208080i −0.151295 0.988489i \(-0.548344\pi\)
−0.625269 + 0.780409i \(0.715011\pi\)
\(432\) 0 0
\(433\) −1.96538 7.33490i −0.0944502 0.352493i 0.902485 0.430721i \(-0.141741\pi\)
−0.996936 + 0.0782277i \(0.975074\pi\)
\(434\) −8.74255 8.74255i −0.419656 0.419656i
\(435\) 0 0
\(436\) −5.41899 + 1.45201i −0.259522 + 0.0695388i
\(437\) −7.41767 −0.354835
\(438\) 0 0
\(439\) 6.84536 + 11.8565i 0.326711 + 0.565880i 0.981857 0.189622i \(-0.0607262\pi\)
−0.655146 + 0.755502i \(0.727393\pi\)
\(440\) 1.08280 2.63917i 0.0516206 0.125818i
\(441\) 0 0
\(442\) 4.17441 0.674036i 0.198556 0.0320606i
\(443\) −6.46290 6.46290i −0.307062 0.307062i 0.536707 0.843769i \(-0.319668\pi\)
−0.843769 + 0.536707i \(0.819668\pi\)
\(444\) 0 0
\(445\) −2.86680 + 6.98740i −0.135899 + 0.331235i
\(446\) −4.25377 2.45591i −0.201422 0.116291i
\(447\) 0 0
\(448\) 5.00971 8.67708i 0.236687 0.409953i
\(449\) 6.65458 + 24.8352i 0.314049 + 1.17205i 0.924872 + 0.380280i \(0.124172\pi\)
−0.610822 + 0.791768i \(0.709161\pi\)
\(450\) 0 0
\(451\) 0.190442 0.329855i 0.00896755 0.0155323i
\(452\) −7.53143 + 28.1077i −0.354249 + 1.32207i
\(453\) 0 0
\(454\) −7.21383 −0.338562
\(455\) 8.59693 + 28.3583i 0.403030 + 1.32946i
\(456\) 0 0
\(457\) −0.716665 + 0.413767i −0.0335242 + 0.0193552i −0.516668 0.856186i \(-0.672828\pi\)
0.483144 + 0.875541i \(0.339495\pi\)
\(458\) 2.82349 10.5374i 0.131933 0.492381i
\(459\) 0 0
\(460\) −3.25138 4.20792i −0.151596 0.196195i
\(461\) −6.23219 23.2589i −0.290262 1.08327i −0.944908 0.327337i \(-0.893849\pi\)
0.654646 0.755936i \(-0.272818\pi\)
\(462\) 0 0
\(463\) 6.35566i 0.295373i 0.989034 + 0.147686i \(0.0471826\pi\)
−0.989034 + 0.147686i \(0.952817\pi\)
\(464\) −21.3935 12.3515i −0.993167 0.573405i
\(465\) 0 0
\(466\) −2.99418 + 11.1744i −0.138703 + 0.517645i
\(467\) 15.6194 + 15.6194i 0.722781 + 0.722781i 0.969171 0.246390i \(-0.0792443\pi\)
−0.246390 + 0.969171i \(0.579244\pi\)
\(468\) 0 0
\(469\) 45.0153i 2.07861i
\(470\) −1.62295 3.88119i −0.0748610 0.179026i
\(471\) 0 0
\(472\) −18.6455 + 4.99605i −0.858229 + 0.229962i
\(473\) −1.49000 −0.0685104
\(474\) 0 0
\(475\) −27.3859 + 0.184093i −1.25655 + 0.00844675i
\(476\) −10.8371 10.8371i −0.496716 0.496716i
\(477\) 0 0
\(478\) 9.85182 + 2.63979i 0.450612 + 0.120741i
\(479\) −9.14111 2.44935i −0.417668 0.111914i 0.0438638 0.999038i \(-0.486033\pi\)
−0.461532 + 0.887124i \(0.652700\pi\)
\(480\) 0 0
\(481\) −0.671874 + 6.58282i −0.0306348 + 0.300151i
\(482\) 1.08228 1.08228i 0.0492964 0.0492964i
\(483\) 0 0
\(484\) −16.0095 + 9.24310i −0.727705 + 0.420141i
\(485\) 9.58681 12.5811i 0.435314 0.571278i
\(486\) 0 0
\(487\) 5.33382 + 3.07948i 0.241698 + 0.139545i 0.615957 0.787780i \(-0.288769\pi\)
−0.374259 + 0.927324i \(0.622103\pi\)
\(488\) −9.95775 5.74911i −0.450766 0.260250i
\(489\) 0 0
\(490\) −4.35707 + 5.71793i −0.196832 + 0.258310i
\(491\) −12.8290 + 7.40681i −0.578964 + 0.334265i −0.760721 0.649078i \(-0.775155\pi\)
0.181758 + 0.983343i \(0.441821\pi\)
\(492\) 0 0
\(493\) −15.9781 + 15.9781i −0.719615 + 0.719615i
\(494\) −9.62921 + 1.55481i −0.433238 + 0.0699544i
\(495\) 0 0
\(496\) −17.0775 4.57590i −0.766802 0.205464i
\(497\) 23.7993 + 6.37699i 1.06754 + 0.286047i
\(498\) 0 0
\(499\) 21.0529 + 21.0529i 0.942459 + 0.942459i 0.998432 0.0559733i \(-0.0178262\pi\)
−0.0559733 + 0.998432i \(0.517826\pi\)
\(500\) −12.1085 15.4549i −0.541508 0.691164i
\(501\) 0 0
\(502\) 14.5844 0.650933
\(503\) −37.4393 + 10.0318i −1.66934 + 0.447297i −0.964932 0.262502i \(-0.915452\pi\)
−0.704404 + 0.709799i \(0.748786\pi\)
\(504\) 0 0
\(505\) 12.9135 + 30.8820i 0.574643 + 1.37423i
\(506\) 0.459974i 0.0204484i
\(507\) 0 0
\(508\) −10.3059 10.3059i −0.457250 0.457250i
\(509\) 1.43699 5.36291i 0.0636933 0.237707i −0.926739 0.375706i \(-0.877400\pi\)
0.990432 + 0.137999i \(0.0440670\pi\)
\(510\) 0 0
\(511\) 10.7474 + 6.20501i 0.475437 + 0.274493i
\(512\) 22.5909i 0.998384i
\(513\) 0 0
\(514\) −0.915926 3.41828i −0.0403997 0.150774i
\(515\) 6.14563 + 7.95364i 0.270809 + 0.350479i
\(516\) 0 0
\(517\) 0.677985 2.53028i 0.0298178 0.111281i
\(518\) −2.88521 + 1.66578i −0.126769 + 0.0731900i
\(519\) 0 0
\(520\) −10.9144 10.2261i −0.478628 0.448443i
\(521\) 13.8692 0.607619 0.303809 0.952733i \(-0.401741\pi\)
0.303809 + 0.952733i \(0.401741\pi\)
\(522\) 0 0
\(523\) 8.10818 30.2601i 0.354546 1.32318i −0.526509 0.850170i \(-0.676499\pi\)
0.881055 0.473014i \(-0.156834\pi\)
\(524\) 1.20649 2.08970i 0.0527057 0.0912890i
\(525\) 0 0
\(526\) −1.72130 6.42400i −0.0750524 0.280100i
\(527\) −8.08609 + 14.0055i −0.352236 + 0.610090i
\(528\) 0 0
\(529\) −18.3303 10.5830i −0.796969 0.460130i
\(530\) 1.46606 3.57331i 0.0636816 0.155214i
\(531\) 0 0
\(532\) 24.9981 + 24.9981i 1.08381 + 1.08381i
\(533\) −1.26140 1.54815i −0.0546371 0.0670579i
\(534\) 0 0
\(535\) −12.9458 + 31.5534i −0.559695 + 1.36417i
\(536\) −11.3602 19.6765i −0.490688 0.849897i
\(537\) 0 0
\(538\) 4.00246 0.172558
\(539\) −4.32381 + 1.15856i −0.186240 + 0.0499028i
\(540\) 0 0
\(541\) −10.7732 10.7732i −0.463175 0.463175i 0.436520 0.899695i \(-0.356211\pi\)
−0.899695 + 0.436520i \(0.856211\pi\)
\(542\) 1.17561 + 4.38745i 0.0504969 + 0.188457i
\(543\) 0 0
\(544\) 11.4504 + 3.06813i 0.490932 + 0.131545i
\(545\) 5.65278 4.36780i 0.242139 0.187096i
\(546\) 0 0
\(547\) 14.2704 14.2704i 0.610159 0.610159i −0.332828 0.942987i \(-0.608003\pi\)
0.942987 + 0.332828i \(0.108003\pi\)
\(548\) 10.8240 + 18.7477i 0.462379 + 0.800863i
\(549\) 0 0
\(550\) 0.0114157 + 1.69822i 0.000486767 + 0.0724122i
\(551\) 36.8569 36.8569i 1.57016 1.57016i
\(552\) 0 0
\(553\) −9.93592 5.73651i −0.422518 0.243941i
\(554\) 9.02605 9.02605i 0.383480 0.383480i
\(555\) 0 0
\(556\) −9.73546 + 5.62077i −0.412875 + 0.238374i
\(557\) 8.35584 + 14.4727i 0.354048 + 0.613229i 0.986955 0.160999i \(-0.0514716\pi\)
−0.632906 + 0.774228i \(0.718138\pi\)
\(558\) 0 0
\(559\) −2.77765 + 7.30159i −0.117482 + 0.308824i
\(560\) −2.71361 + 21.1613i −0.114671 + 0.894227i
\(561\) 0 0
\(562\) −3.65629 0.979701i −0.154231 0.0413262i
\(563\) 5.84179 + 21.8019i 0.246202 + 0.918839i 0.972775 + 0.231750i \(0.0744452\pi\)
−0.726573 + 0.687089i \(0.758888\pi\)
\(564\) 0 0
\(565\) −4.95987 36.7198i −0.208663 1.54481i
\(566\) 4.19136 1.12307i 0.176176 0.0472063i
\(567\) 0 0
\(568\) −12.0122 + 3.21865i −0.504019 + 0.135052i
\(569\) −2.86843 4.96826i −0.120251 0.208280i 0.799616 0.600512i \(-0.205037\pi\)
−0.919866 + 0.392232i \(0.871703\pi\)
\(570\) 0 0
\(571\) 46.5634i 1.94862i −0.225214 0.974309i \(-0.572308\pi\)
0.225214 0.974309i \(-0.427692\pi\)
\(572\) −0.694069 4.29848i −0.0290205 0.179728i
\(573\) 0 0
\(574\) 0.260227 0.971181i 0.0108617 0.0405363i
\(575\) 5.88672 + 3.34614i 0.245493 + 0.139544i
\(576\) 0 0
\(577\) 28.9429i 1.20491i 0.798153 + 0.602455i \(0.205811\pi\)
−0.798153 + 0.602455i \(0.794189\pi\)
\(578\) −2.80580 + 4.85978i −0.116706 + 0.202140i
\(579\) 0 0
\(580\) 37.0638 + 4.75287i 1.53899 + 0.197352i
\(581\) −3.93127 + 6.80916i −0.163097 + 0.282491i
\(582\) 0 0
\(583\) 2.08281 1.20251i 0.0862613 0.0498030i
\(584\) −6.26369 −0.259193
\(585\) 0 0
\(586\) −6.53726 −0.270052
\(587\) −17.0534 + 9.84577i −0.703868 + 0.406379i −0.808787 0.588102i \(-0.799875\pi\)
0.104918 + 0.994481i \(0.466542\pi\)
\(588\) 0 0
\(589\) 18.6524 32.3069i 0.768558 1.33118i
\(590\) 9.09338 7.02628i 0.374368 0.289267i
\(591\) 0 0
\(592\) −2.38201 + 4.12577i −0.0979001 + 0.169568i
\(593\) 21.8216i 0.896106i 0.894007 + 0.448053i \(0.147882\pi\)
−0.894007 + 0.448053i \(0.852118\pi\)
\(594\) 0 0
\(595\) 18.0547 + 7.40749i 0.740169 + 0.303677i
\(596\) −7.63679 + 28.5009i −0.312815 + 1.16744i
\(597\) 0 0
\(598\) 2.25405 + 0.857481i 0.0921750 + 0.0350650i
\(599\) 37.6041i 1.53646i 0.640172 + 0.768232i \(0.278863\pi\)
−0.640172 + 0.768232i \(0.721137\pi\)
\(600\) 0 0
\(601\) 10.1487 + 17.5781i 0.413976 + 0.717027i 0.995320 0.0966302i \(-0.0308064\pi\)
−0.581344 + 0.813658i \(0.697473\pi\)
\(602\) −3.79922 + 1.01800i −0.154845 + 0.0414905i
\(603\) 0 0
\(604\) 7.95310 2.13103i 0.323607 0.0867103i
\(605\) 14.2670 18.7230i 0.580034 0.761199i
\(606\) 0 0
\(607\) 8.91757 + 33.2808i 0.361953 + 1.35083i 0.871505 + 0.490387i \(0.163144\pi\)
−0.509552 + 0.860440i \(0.670189\pi\)
\(608\) −26.4129 7.07732i −1.07119 0.287023i
\(609\) 0 0
\(610\) 6.78955 + 0.870657i 0.274901 + 0.0352519i
\(611\) −11.1354 8.03931i −0.450491 0.325236i
\(612\) 0 0
\(613\) 12.4332 + 21.5350i 0.502173 + 0.869790i 0.999997 + 0.00251133i \(0.000799381\pi\)
−0.497824 + 0.867278i \(0.665867\pi\)
\(614\) −6.62053 + 3.82236i −0.267183 + 0.154258i
\(615\) 0 0
\(616\) 3.31563 3.31563i 0.133591 0.133591i
\(617\) 24.0895 + 13.9081i 0.969805 + 0.559917i 0.899177 0.437585i \(-0.144166\pi\)
0.0706286 + 0.997503i \(0.477499\pi\)
\(618\) 0 0
\(619\) −19.5593 + 19.5593i −0.786156 + 0.786156i −0.980862 0.194705i \(-0.937625\pi\)
0.194705 + 0.980862i \(0.437625\pi\)
\(620\) 26.5030 3.57985i 1.06439 0.143770i
\(621\) 0 0
\(622\) −1.32099 2.28803i −0.0529671 0.0917416i
\(623\) −8.77838 + 8.77838i −0.351698 + 0.351698i
\(624\) 0 0
\(625\) 21.8167 + 12.2078i 0.872669 + 0.488312i
\(626\) 16.4570 + 4.40965i 0.657755 + 0.176245i
\(627\) 0 0
\(628\) 6.35012 + 23.6990i 0.253397 + 0.945692i
\(629\) 3.08139 + 3.08139i 0.122863 + 0.122863i
\(630\) 0 0
\(631\) 12.6187 3.38116i 0.502341 0.134602i 0.00125496 0.999999i \(-0.499601\pi\)
0.501086 + 0.865397i \(0.332934\pi\)
\(632\) 5.79076 0.230344
\(633\) 0 0
\(634\) −4.68840 8.12054i −0.186200 0.322508i
\(635\) 17.1697 + 7.04442i 0.681360 + 0.279549i
\(636\) 0 0
\(637\) −2.38302 + 23.3481i −0.0944186 + 0.925086i
\(638\) −2.28552 2.28552i −0.0904846 0.0904846i
\(639\) 0 0
\(640\) −9.77471 23.3757i −0.386379 0.924006i
\(641\) −23.7092 13.6885i −0.936456 0.540663i −0.0476083 0.998866i \(-0.515160\pi\)
−0.888848 + 0.458203i \(0.848493\pi\)
\(642\) 0 0
\(643\) −15.7510 + 27.2816i −0.621161 + 1.07588i 0.368109 + 0.929783i \(0.380005\pi\)
−0.989270 + 0.146099i \(0.953328\pi\)
\(644\) −2.26231 8.44305i −0.0891475 0.332703i
\(645\) 0 0
\(646\) −3.21181 + 5.56301i −0.126367 + 0.218874i
\(647\) 10.8106 40.3457i 0.425008 1.58615i −0.338896 0.940824i \(-0.610054\pi\)
0.763905 0.645329i \(-0.223280\pi\)
\(648\) 0 0
\(649\) 7.15565 0.280884
\(650\) 8.34320 + 3.10986i 0.327247 + 0.121979i
\(651\) 0 0
\(652\) 0.200698 0.115873i 0.00785996 0.00453795i
\(653\) 3.93069 14.6695i 0.153820 0.574064i −0.845384 0.534160i \(-0.820628\pi\)
0.999204 0.0399041i \(-0.0127052\pi\)
\(654\) 0 0
\(655\) −0.390807 + 3.04759i −0.0152701 + 0.119079i
\(656\) −0.372117 1.38876i −0.0145287 0.0542220i
\(657\) 0 0
\(658\) 6.91493i 0.269572i
\(659\) 24.6914 + 14.2556i 0.961840 + 0.555319i 0.896739 0.442560i \(-0.145930\pi\)
0.0651015 + 0.997879i \(0.479263\pi\)
\(660\) 0 0
\(661\) −1.63091 + 6.08664i −0.0634351 + 0.236743i −0.990363 0.138497i \(-0.955773\pi\)
0.926928 + 0.375240i \(0.122440\pi\)
\(662\) −2.45054 2.45054i −0.0952430 0.0952430i
\(663\) 0 0
\(664\) 3.96845i 0.154006i
\(665\) −41.6471 17.0870i −1.61501 0.662606i
\(666\) 0 0
\(667\) −12.4483 + 3.33552i −0.482002 + 0.129152i
\(668\) −37.9955 −1.47009
\(669\) 0 0
\(670\) 10.7585 + 8.19801i 0.415638 + 0.316717i
\(671\) 3.01394 + 3.01394i 0.116352 + 0.116352i
\(672\) 0 0
\(673\) −22.1285 5.92931i −0.852991 0.228558i −0.194272 0.980948i \(-0.562235\pi\)
−0.658719 + 0.752389i \(0.728901\pi\)
\(674\) −0.743468 0.199212i −0.0286373 0.00767334i
\(675\) 0 0
\(676\) −22.3581 4.61199i −0.859926 0.177384i
\(677\) 16.1247 16.1247i 0.619724 0.619724i −0.325736 0.945461i \(-0.605612\pi\)
0.945461 + 0.325736i \(0.105612\pi\)
\(678\) 0 0
\(679\) 22.5163 12.9998i 0.864096 0.498886i
\(680\) −9.76121 + 1.31848i −0.374325 + 0.0505614i
\(681\) 0 0
\(682\) −2.00337 1.15664i −0.0767129 0.0442902i
\(683\) −27.7544 16.0240i −1.06199 0.613142i −0.136010 0.990707i \(-0.543428\pi\)
−0.925983 + 0.377565i \(0.876761\pi\)
\(684\) 0 0
\(685\) −21.9253 16.7071i −0.837724 0.638346i
\(686\) 0.771532 0.445444i 0.0294572 0.0170071i
\(687\) 0 0
\(688\) −3.97707 + 3.97707i −0.151624 + 0.151624i
\(689\) −2.01001 12.4483i −0.0765753 0.474243i
\(690\) 0 0
\(691\) −0.532264 0.142620i −0.0202483 0.00542551i 0.248681 0.968586i \(-0.420003\pi\)
−0.268929 + 0.963160i \(0.586670\pi\)
\(692\) −13.1180 3.51496i −0.498672 0.133619i
\(693\) 0 0
\(694\) −9.02132 9.02132i −0.342445 0.342445i
\(695\) 8.67580 11.3855i 0.329092 0.431878i
\(696\) 0 0
\(697\) −1.31514 −0.0498144
\(698\) −4.48442 + 1.20160i −0.169738 + 0.0454811i
\(699\) 0 0
\(700\) −8.56194 31.1155i −0.323611 1.17605i
\(701\) 9.52279i 0.359671i −0.983697 0.179835i \(-0.942443\pi\)
0.983697 0.179835i \(-0.0575565\pi\)
\(702\) 0 0
\(703\) −7.10792 7.10792i −0.268080 0.268080i
\(704\) 0.485195 1.81077i 0.0182865 0.0682460i
\(705\) 0 0
\(706\) −1.39674 0.806411i −0.0525672 0.0303497i
\(707\) 55.0209i 2.06927i
\(708\) 0 0
\(709\) 8.39944 + 31.3471i 0.315448 + 1.17727i 0.923572 + 0.383425i \(0.125255\pi\)
−0.608124 + 0.793842i \(0.708078\pi\)
\(710\) 5.85831 4.52661i 0.219859 0.169881i
\(711\) 0 0
\(712\) 1.62175 6.05244i 0.0607776 0.226825i
\(713\) −7.98782 + 4.61177i −0.299146 + 0.172712i
\(714\) 0 0
\(715\) 2.92695 + 4.70877i 0.109462 + 0.176098i
\(716\) 28.7180 1.07324
\(717\) 0 0
\(718\) −0.564197 + 2.10561i −0.0210557 + 0.0785808i
\(719\) −4.21240 + 7.29608i −0.157096 + 0.272098i −0.933820 0.357743i \(-0.883546\pi\)
0.776724 + 0.629841i \(0.216880\pi\)
\(720\) 0 0
\(721\) 4.27612 + 15.9587i 0.159251 + 0.594333i
\(722\) 2.71668 4.70543i 0.101104 0.175118i
\(723\) 0 0
\(724\) −27.4332 15.8385i −1.01955 0.588635i
\(725\) −45.8763 + 12.6236i −1.70380 + 0.468830i
\(726\) 0 0
\(727\) −8.33682 8.33682i −0.309195 0.309195i 0.535402 0.844597i \(-0.320160\pi\)
−0.844597 + 0.535402i \(0.820160\pi\)
\(728\) −10.0669 22.4288i −0.373104 0.831268i
\(729\) 0 0
\(730\) 3.44025 1.43857i 0.127329 0.0532437i
\(731\) 2.57239 + 4.45551i 0.0951432 + 0.164793i
\(732\) 0 0
\(733\) −18.6238 −0.687887 −0.343944 0.938990i \(-0.611763\pi\)
−0.343944 + 0.938990i \(0.611763\pi\)
\(734\) −11.9696 + 3.20725i −0.441807 + 0.118382i
\(735\) 0 0
\(736\) 4.78070 + 4.78070i 0.176219 + 0.176219i
\(737\) 2.17988 + 8.13543i 0.0802970 + 0.299672i
\(738\) 0 0
\(739\) −31.8740 8.54061i −1.17250 0.314171i −0.380555 0.924758i \(-0.624267\pi\)
−0.791949 + 0.610587i \(0.790934\pi\)
\(740\) 0.916598 7.14782i 0.0336948 0.262759i
\(741\) 0 0
\(742\) 4.48920 4.48920i 0.164804 0.164804i
\(743\) 18.7850 + 32.5366i 0.689155 + 1.19365i 0.972112 + 0.234518i \(0.0753512\pi\)
−0.282957 + 0.959133i \(0.591315\pi\)
\(744\) 0 0
\(745\) −5.02925 37.2335i −0.184258 1.36413i
\(746\) 3.99061 3.99061i 0.146107 0.146107i
\(747\) 0 0
\(748\) −2.48333 1.43375i −0.0907995 0.0524231i
\(749\) −39.6410 + 39.6410i −1.44845 + 1.44845i
\(750\) 0 0
\(751\) −29.1051 + 16.8038i −1.06206 + 0.613181i −0.926001 0.377520i \(-0.876777\pi\)
−0.136059 + 0.990701i \(0.543444\pi\)
\(752\) −4.94407 8.56339i −0.180292 0.312275i
\(753\) 0 0
\(754\) −15.4606 + 6.93928i −0.563041 + 0.252714i
\(755\) −8.29623 + 6.41034i −0.301931 + 0.233296i
\(756\) 0 0
\(757\) 15.5871 + 4.17654i 0.566521 + 0.151799i 0.530701 0.847559i \(-0.321929\pi\)
0.0358205 + 0.999358i \(0.488596\pi\)
\(758\) −0.256883 0.958699i −0.00933040 0.0348215i
\(759\) 0 0
\(760\) 22.5164 3.04137i 0.816756 0.110322i
\(761\) 15.1340 4.05514i 0.548606 0.146999i 0.0261397 0.999658i \(-0.491679\pi\)
0.522467 + 0.852660i \(0.325012\pi\)
\(762\) 0 0
\(763\) 11.3421 3.03911i 0.410612 0.110023i
\(764\) 4.55789 + 7.89449i 0.164899 + 0.285613i
\(765\) 0 0
\(766\) 13.0645i 0.472039i
\(767\) 13.3395 35.0655i 0.481662 1.26614i
\(768\) 0 0
\(769\) 8.43930 31.4959i 0.304329 1.13577i −0.629193 0.777249i \(-0.716614\pi\)
0.933522 0.358521i \(-0.116719\pi\)
\(770\) −1.05958 + 2.58256i −0.0381845 + 0.0930690i
\(771\) 0 0
\(772\) 17.7388i 0.638433i
\(773\) 11.9531 20.7033i 0.429921 0.744646i −0.566944 0.823756i \(-0.691875\pi\)
0.996866 + 0.0791103i \(0.0252079\pi\)
\(774\) 0 0
\(775\) −29.3764 + 17.2248i −1.05523 + 0.618733i
\(776\) −6.56136 + 11.3646i −0.235539 + 0.407966i
\(777\) 0 0
\(778\) 0.278066 0.160541i 0.00996914 0.00575569i
\(779\) 3.03366 0.108692
\(780\) 0 0
\(781\) 4.60995 0.164957
\(782\) 1.37545 0.794114i 0.0491858 0.0283975i
\(783\) 0 0
\(784\) −8.44858 + 14.6334i −0.301735 + 0.522620i
\(785\) −19.1018 24.7214i −0.681772 0.882346i
\(786\) 0 0
\(787\) −7.85572 + 13.6065i −0.280026 + 0.485020i −0.971391 0.237486i \(-0.923676\pi\)
0.691365 + 0.722506i \(0.257010\pi\)
\(788\) 22.9411i 0.817242i
\(789\) 0 0
\(790\) −3.18050 + 1.32995i −0.113157 + 0.0473174i
\(791\) 15.7635 58.8303i 0.560487 2.09176i
\(792\) 0 0
\(793\) 20.3880 9.15090i 0.724000 0.324958i
\(794\) 13.3394i 0.473397i
\(795\) 0 0
\(796\) −6.89264 11.9384i −0.244303 0.423146i
\(797\) 30.1666 8.08312i 1.06856 0.286319i 0.318656 0.947870i \(-0.396768\pi\)
0.749900 + 0.661552i \(0.230102\pi\)
\(798\) 0 0
\(799\) −8.73669 + 2.34099i −0.309082 + 0.0828183i
\(800\) 17.7689 + 17.5316i 0.628225 + 0.619836i
\(801\) 0 0
\(802\) −0.633871 2.36564i −0.0223827 0.0835336i
\(803\) 2.24281 + 0.600960i 0.0791471 + 0.0212074i
\(804\) 0 0
\(805\) 6.80525 + 8.80732i 0.239853 + 0.310417i
\(806\) −9.40267 + 7.66106i −0.331195 + 0.269849i
\(807\) 0 0
\(808\) −13.8853 24.0500i −0.488483 0.846078i
\(809\) −11.4546 + 6.61331i −0.402722 + 0.232512i −0.687658 0.726035i \(-0.741361\pi\)
0.284936 + 0.958547i \(0.408028\pi\)
\(810\) 0 0
\(811\) 22.0736 22.0736i 0.775109 0.775109i −0.203886 0.978995i \(-0.565357\pi\)
0.978995 + 0.203886i \(0.0653572\pi\)
\(812\) 53.1928 + 30.7109i 1.86670 + 1.07774i
\(813\) 0 0
\(814\) −0.440767 + 0.440767i −0.0154489 + 0.0154489i
\(815\) −0.178853 + 0.234715i −0.00626496 + 0.00822172i
\(816\) 0 0
\(817\) −5.93379 10.2776i −0.207597 0.359568i
\(818\) 2.11139 2.11139i 0.0738230 0.0738230i
\(819\) 0 0
\(820\) 1.32974 + 1.72095i 0.0464366 + 0.0600981i
\(821\) 8.74860 + 2.34418i 0.305328 + 0.0818124i 0.408230 0.912879i \(-0.366146\pi\)
−0.102902 + 0.994692i \(0.532813\pi\)
\(822\) 0 0
\(823\) 10.8551 + 40.5117i 0.378384 + 1.41215i 0.848337 + 0.529457i \(0.177604\pi\)
−0.469953 + 0.882691i \(0.655729\pi\)
\(824\) −5.89653 5.89653i −0.205415 0.205415i
\(825\) 0 0
\(826\) 18.2455 4.88888i 0.634844 0.170106i
\(827\) −38.2009 −1.32838 −0.664188 0.747566i \(-0.731222\pi\)
−0.664188 + 0.747566i \(0.731222\pi\)
\(828\) 0 0
\(829\) −14.6750 25.4178i −0.509682 0.882796i −0.999937 0.0112165i \(-0.996430\pi\)
0.490255 0.871579i \(-0.336904\pi\)
\(830\) 0.911423 + 2.17962i 0.0316359 + 0.0756557i
\(831\) 0 0
\(832\) −7.96898 5.75327i −0.276275 0.199459i
\(833\) 10.9292 + 10.9292i 0.378673 + 0.378673i
\(834\) 0 0
\(835\) 44.6360 18.6648i 1.54469 0.645923i
\(836\) 5.72835 + 3.30726i 0.198119 + 0.114384i
\(837\) 0 0
\(838\) −1.32629 + 2.29721i −0.0458161 + 0.0793557i
\(839\) −9.11914 34.0331i −0.314828 1.17495i −0.924150 0.382030i \(-0.875225\pi\)
0.609322 0.792923i \(-0.291442\pi\)
\(840\) 0 0
\(841\) 30.7798 53.3122i 1.06137 1.83835i
\(842\) 2.55582 9.53846i 0.0880795 0.328717i
\(843\) 0 0
\(844\) 21.8175 0.750988
\(845\) 28.5312 5.56512i 0.981503 0.191446i
\(846\) 0 0
\(847\) 33.5084 19.3461i 1.15136 0.664740i
\(848\) 2.34967 8.76909i 0.0806880 0.301132i
\(849\) 0 0
\(850\) 5.05841 2.96599i 0.173502 0.101733i
\(851\) 0.643261 + 2.40068i 0.0220507 + 0.0822944i
\(852\) 0 0
\(853\) 17.6392i 0.603954i 0.953315 + 0.301977i \(0.0976465\pi\)
−0.953315 + 0.301977i \(0.902353\pi\)
\(854\) 9.74415 + 5.62579i 0.333438 + 0.192511i
\(855\) 0 0
\(856\) 7.32342 27.3314i 0.250309 0.934167i
\(857\) −6.30427 6.30427i −0.215350 0.215350i 0.591186 0.806535i \(-0.298660\pi\)
−0.806535 + 0.591186i \(0.798660\pi\)
\(858\) 0 0
\(859\) 29.2307i 0.997338i −0.866793 0.498669i \(-0.833822\pi\)
0.866793 0.498669i \(-0.166178\pi\)
\(860\) 3.22937 7.87112i 0.110121 0.268403i
\(861\) 0 0
\(862\) −7.96263 + 2.13358i −0.271208 + 0.0726701i
\(863\) 15.7688 0.536775 0.268387 0.963311i \(-0.413509\pi\)
0.268387 + 0.963311i \(0.413509\pi\)
\(864\) 0 0
\(865\) 17.1373 2.31480i 0.582687 0.0787054i
\(866\) −2.65202 2.65202i −0.0901192 0.0901192i
\(867\) 0 0
\(868\) 42.4615 + 11.3775i 1.44124 + 0.386179i
\(869\) −2.07347 0.555585i −0.0703377 0.0188469i
\(870\) 0 0
\(871\) 43.9305 + 4.48375i 1.48853 + 0.151926i
\(872\) −4.19076 + 4.19076i −0.141917 + 0.141917i
\(873\) 0 0
\(874\) −3.17277 + 1.83180i −0.107321 + 0.0619616i
\(875\) 25.3434 + 32.3476i 0.856764 + 1.09355i
\(876\) 0 0
\(877\) −38.7309 22.3613i −1.30785 0.755088i −0.326114 0.945331i \(-0.605739\pi\)
−0.981737 + 0.190242i \(0.939073\pi\)
\(878\) 5.85595 + 3.38094i 0.197629 + 0.114101i
\(879\) 0 0
\(880\) 0.534323 + 3.95580i 0.0180120 + 0.133350i
\(881\) 18.0323 10.4110i 0.607525 0.350755i −0.164471 0.986382i \(-0.552592\pi\)
0.771996 + 0.635627i \(0.219258\pi\)
\(882\) 0 0
\(883\) 5.33747 5.33747i 0.179620 0.179620i −0.611570 0.791190i \(-0.709462\pi\)
0.791190 + 0.611570i \(0.209462\pi\)
\(884\) −11.6553 + 9.49648i −0.392011 + 0.319401i
\(885\) 0 0
\(886\) −4.36041 1.16837i −0.146491 0.0392521i
\(887\) −25.8911 6.93749i −0.869337 0.232938i −0.203536 0.979067i \(-0.565243\pi\)
−0.665801 + 0.746129i \(0.731910\pi\)
\(888\) 0 0
\(889\) 21.5706 + 21.5706i 0.723454 + 0.723454i
\(890\) 0.499324 + 3.69669i 0.0167374 + 0.123913i
\(891\) 0 0
\(892\) 17.4639 0.584736
\(893\) 20.1531 5.40002i 0.674399 0.180705i
\(894\) 0 0
\(895\) −33.7370 + 14.1074i −1.12770 + 0.471557i
\(896\) 41.6474i 1.39134i
\(897\) 0 0
\(898\) 8.97946 + 8.97946i 0.299648 + 0.299648i
\(899\) 16.7749 62.6048i 0.559475 2.08799i
\(900\) 0 0
\(901\) −7.19167 4.15211i −0.239589 0.138327i
\(902\) 0.188119i 0.00626368i
\(903\) 0 0
\(904\) 7.95630 + 29.6933i 0.264623 + 0.987585i
\(905\) 40.0082 + 5.13044i 1.32992 + 0.170542i
\(906\) 0 0
\(907\) 10.4931 39.1608i 0.348418 1.30031i −0.540151 0.841568i \(-0.681633\pi\)
0.888568 0.458744i \(-0.151701\pi\)
\(908\) 22.2124 12.8243i 0.737144 0.425590i
\(909\) 0 0
\(910\) 10.6803 + 10.0067i 0.354048 + 0.331720i
\(911\) −8.00072 −0.265076 −0.132538 0.991178i \(-0.542313\pi\)
−0.132538 + 0.991178i \(0.542313\pi\)
\(912\) 0 0
\(913\) −0.380746 + 1.42096i −0.0126009 + 0.0470271i
\(914\) −0.204360 + 0.353962i −0.00675963 + 0.0117080i
\(915\) 0 0
\(916\) 10.0389 + 37.4656i 0.331694 + 1.23790i
\(917\) −2.52522 + 4.37381i −0.0833901 + 0.144436i
\(918\) 0 0
\(919\) −1.84237 1.06369i −0.0607741 0.0350879i 0.469305 0.883036i \(-0.344504\pi\)
−0.530079 + 0.847948i \(0.677838\pi\)
\(920\) −5.19728 2.13235i −0.171349 0.0703014i
\(921\) 0 0
\(922\) −8.40950 8.40950i −0.276952 0.276952i
\(923\) 8.59384 22.5905i 0.282870 0.743577i
\(924\) 0 0
\(925\) 2.43449 + 8.84732i 0.0800455 + 0.290898i
\(926\) 1.56954 + 2.71852i 0.0515782 + 0.0893360i
\(927\) 0 0
\(928\) −47.5087 −1.55955
\(929\) −19.2515 + 5.15841i −0.631620 + 0.169242i −0.560405 0.828219i \(-0.689354\pi\)
−0.0712153 + 0.997461i \(0.522688\pi\)
\(930\) 0 0
\(931\) −25.2106 25.2106i −0.826243 0.826243i
\(932\) −10.6458 39.7305i −0.348713 1.30142i
\(933\) 0 0
\(934\) 10.5382 + 2.82369i 0.344819 + 0.0923940i
\(935\) 3.62166 + 0.464422i 0.118441 + 0.0151882i
\(936\) 0 0
\(937\) 17.2774 17.2774i 0.564427 0.564427i −0.366135 0.930562i \(-0.619319\pi\)
0.930562 + 0.366135i \(0.119319\pi\)
\(938\) 11.1166 + 19.2545i 0.362969 + 0.628680i
\(939\) 0 0
\(940\) 11.8970 + 9.06556i 0.388039 + 0.295686i
\(941\) −24.2129 + 24.2129i −0.789319 + 0.789319i −0.981383 0.192063i \(-0.938482\pi\)
0.192063 + 0.981383i \(0.438482\pi\)
\(942\) 0 0
\(943\) −0.649578 0.375034i −0.0211532 0.0122128i
\(944\) 19.0996 19.0996i 0.621640 0.621640i
\(945\) 0 0
\(946\) −0.637321 + 0.367957i −0.0207211 + 0.0119633i
\(947\) −4.15045 7.18880i −0.134872 0.233605i 0.790677 0.612234i \(-0.209729\pi\)
−0.925548 + 0.378629i \(0.876396\pi\)
\(948\) 0 0
\(949\) 7.12597 9.87034i 0.231319 0.320405i
\(950\) −11.6684 + 6.84172i −0.378572 + 0.221975i
\(951\) 0 0
\(952\) −15.6388 4.19041i −0.506857 0.135812i
\(953\) −1.23858 4.62244i −0.0401215 0.149736i 0.942959 0.332908i \(-0.108030\pi\)
−0.983081 + 0.183173i \(0.941363\pi\)
\(954\) 0 0
\(955\) −9.23255 7.03521i −0.298758 0.227654i
\(956\) −35.0280 + 9.38573i −1.13289 + 0.303556i
\(957\) 0 0
\(958\) −4.51481 + 1.20974i −0.145867 + 0.0390849i
\(959\) −22.6550 39.2396i −0.731568 1.26711i
\(960\) 0 0
\(961\) 15.3867i 0.496346i
\(962\) 1.33825 + 2.98160i 0.0431470 + 0.0961306i
\(963\) 0 0
\(964\) −1.40848 + 5.25650i −0.0453639 + 0.169301i
\(965\) 8.71398 + 20.8390i 0.280513 + 0.670832i
\(966\) 0 0
\(967\) 8.78782i 0.282597i −0.989967 0.141299i \(-0.954872\pi\)
0.989967 0.141299i \(-0.0451278\pi\)
\(968\) −9.76453 + 16.9127i −0.313844 + 0.543594i
\(969\) 0 0
\(970\) 0.993666 7.74880i 0.0319047 0.248799i
\(971\) −2.71693 + 4.70586i −0.0871905 + 0.151018i −0.906323 0.422587i \(-0.861122\pi\)
0.819132 + 0.573605i \(0.194456\pi\)
\(972\) 0 0
\(973\) 20.3766 11.7645i 0.653245 0.377151i
\(974\) 3.04192 0.0974695
\(975\) 0 0
\(976\) 16.0894 0.515010
\(977\) −16.1709 + 9.33626i −0.517352 + 0.298693i −0.735851 0.677144i \(-0.763217\pi\)
0.218499 + 0.975837i \(0.429884\pi\)
\(978\) 0 0
\(979\) −1.16138 + 2.01158i −0.0371180 + 0.0642903i
\(980\) 3.25101 25.3521i 0.103850 0.809842i
\(981\) 0 0
\(982\) −3.65824 + 6.33626i −0.116739 + 0.202198i
\(983\) 6.62470i 0.211295i −0.994404 0.105648i \(-0.966308\pi\)
0.994404 0.105648i \(-0.0336915\pi\)
\(984\) 0 0
\(985\) −11.2695 26.9505i −0.359077 0.858715i
\(986\) −2.88852 + 10.7801i −0.0919893 + 0.343309i
\(987\) 0 0
\(988\) 26.8856 21.9057i 0.855346 0.696915i
\(989\) 2.93424i 0.0933033i
\(990\) 0 0
\(991\) 21.6135 + 37.4357i 0.686576 + 1.18919i 0.972939 + 0.231064i \(0.0742206\pi\)
−0.286362 + 0.958121i \(0.592446\pi\)
\(992\) −32.8433 + 8.80033i −1.04277 + 0.279411i
\(993\) 0 0
\(994\) 11.7545 3.14961i 0.372830 0.0998995i
\(995\) 13.9619 + 10.6390i 0.442621 + 0.337278i
\(996\) 0 0
\(997\) 11.7001 + 43.6654i 0.370547 + 1.38290i 0.859744 + 0.510725i \(0.170623\pi\)
−0.489197 + 0.872173i \(0.662710\pi\)
\(998\) 14.2040 + 3.80596i 0.449621 + 0.120476i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.dp.a.28.3 20
3.2 odd 2 65.2.t.a.28.3 yes 20
5.2 odd 4 585.2.cf.a.262.3 20
13.7 odd 12 585.2.cf.a.163.3 20
15.2 even 4 65.2.o.a.2.3 20
15.8 even 4 325.2.s.b.132.3 20
15.14 odd 2 325.2.x.b.93.3 20
39.2 even 12 845.2.k.d.268.5 20
39.5 even 4 845.2.o.f.258.3 20
39.8 even 4 845.2.o.e.258.3 20
39.11 even 12 845.2.k.e.268.6 20
39.17 odd 6 845.2.t.e.188.3 20
39.20 even 12 65.2.o.a.33.3 yes 20
39.23 odd 6 845.2.f.d.408.6 20
39.29 odd 6 845.2.f.e.408.5 20
39.32 even 12 845.2.o.g.488.3 20
39.35 odd 6 845.2.t.f.188.3 20
39.38 odd 2 845.2.t.g.418.3 20
65.7 even 12 inner 585.2.dp.a.397.3 20
195.2 odd 12 845.2.f.d.437.5 20
195.17 even 12 845.2.o.f.357.3 20
195.32 odd 12 845.2.t.g.657.3 20
195.47 odd 4 845.2.t.f.427.3 20
195.59 even 12 325.2.s.b.293.3 20
195.62 even 12 845.2.k.d.577.5 20
195.77 even 4 845.2.o.g.587.3 20
195.98 odd 12 325.2.x.b.7.3 20
195.107 even 12 845.2.k.e.577.6 20
195.122 odd 4 845.2.t.e.427.3 20
195.137 odd 12 65.2.t.a.7.3 yes 20
195.152 even 12 845.2.o.e.357.3 20
195.167 odd 12 845.2.f.e.437.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.3 20 15.2 even 4
65.2.o.a.33.3 yes 20 39.20 even 12
65.2.t.a.7.3 yes 20 195.137 odd 12
65.2.t.a.28.3 yes 20 3.2 odd 2
325.2.s.b.132.3 20 15.8 even 4
325.2.s.b.293.3 20 195.59 even 12
325.2.x.b.7.3 20 195.98 odd 12
325.2.x.b.93.3 20 15.14 odd 2
585.2.cf.a.163.3 20 13.7 odd 12
585.2.cf.a.262.3 20 5.2 odd 4
585.2.dp.a.28.3 20 1.1 even 1 trivial
585.2.dp.a.397.3 20 65.7 even 12 inner
845.2.f.d.408.6 20 39.23 odd 6
845.2.f.d.437.5 20 195.2 odd 12
845.2.f.e.408.5 20 39.29 odd 6
845.2.f.e.437.6 20 195.167 odd 12
845.2.k.d.268.5 20 39.2 even 12
845.2.k.d.577.5 20 195.62 even 12
845.2.k.e.268.6 20 39.11 even 12
845.2.k.e.577.6 20 195.107 even 12
845.2.o.e.258.3 20 39.8 even 4
845.2.o.e.357.3 20 195.152 even 12
845.2.o.f.258.3 20 39.5 even 4
845.2.o.f.357.3 20 195.17 even 12
845.2.o.g.488.3 20 39.32 even 12
845.2.o.g.587.3 20 195.77 even 4
845.2.t.e.188.3 20 39.17 odd 6
845.2.t.e.427.3 20 195.122 odd 4
845.2.t.f.188.3 20 39.35 odd 6
845.2.t.f.427.3 20 195.47 odd 4
845.2.t.g.418.3 20 39.38 odd 2
845.2.t.g.657.3 20 195.32 odd 12