Properties

Label 845.2.t.g.657.3
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.3
Root \(0.493902i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.g.418.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.427732 + 0.246951i) q^{2} +(-0.243392 - 0.908353i) q^{3} +(-0.878030 - 1.52079i) q^{4} +(0.284413 + 2.21791i) q^{5} +(0.120212 - 0.448637i) q^{6} +(-1.83775 - 3.18307i) q^{7} -1.85513i q^{8} +(1.83221 - 1.05783i) q^{9} +(-0.426062 + 1.01890i) q^{10} +(0.177987 + 0.664257i) q^{11} +(-1.16771 + 1.16771i) q^{12} -1.81533i q^{14} +(1.94542 - 0.798168i) q^{15} +(-1.29794 + 2.24809i) q^{16} +(2.29359 + 0.614565i) q^{17} +1.04493 q^{18} +(-5.29067 - 1.41763i) q^{19} +(3.12325 - 2.37992i) q^{20} +(-2.44406 + 2.44406i) q^{21} +(-0.0879082 + 0.328078i) q^{22} +(1.30811 - 0.350507i) q^{23} +(-1.68511 + 0.451523i) q^{24} +(-4.83822 + 1.26160i) q^{25} +(-3.40171 - 3.40171i) q^{27} +(-3.22719 + 5.58966i) q^{28} +(-8.24134 - 4.75814i) q^{29} +(1.02922 + 0.139021i) q^{30} +(-4.81595 - 4.81595i) q^{31} +(-4.32351 + 2.49618i) q^{32} +(0.560059 - 0.323350i) q^{33} +(0.829273 + 0.829273i) q^{34} +(6.53707 - 4.98125i) q^{35} +(-3.21748 - 1.85761i) q^{36} +(0.917615 - 1.58936i) q^{37} +(-1.91290 - 1.91290i) q^{38} +(4.11449 - 0.527621i) q^{40} +(0.534988 - 0.143350i) q^{41} +(-1.64896 + 0.441838i) q^{42} +(-0.560778 + 2.09285i) q^{43} +(0.853919 - 0.853919i) q^{44} +(2.86727 + 3.76281i) q^{45} +(0.646078 + 0.173116i) q^{46} +3.80918 q^{47} +(2.35797 + 0.631815i) q^{48} +(-3.25462 + 5.63717i) q^{49} +(-2.38101 - 0.655176i) q^{50} -2.23297i q^{51} +(-2.47293 + 2.47293i) q^{53} +(-0.614963 - 2.29507i) q^{54} +(-1.42264 + 0.583682i) q^{55} +(-5.90499 + 3.40925i) q^{56} +5.15084i q^{57} +(-2.35005 - 4.07041i) q^{58} +(2.69310 - 10.0508i) q^{59} +(-2.92199 - 2.25776i) q^{60} +(-3.09904 - 5.36770i) q^{61} +(-0.870630 - 3.24924i) q^{62} +(-6.73428 - 3.88804i) q^{63} +2.72601 q^{64} +0.319406 q^{66} +(10.6066 + 6.12371i) q^{67} +(-1.07921 - 4.02768i) q^{68} +(-0.636768 - 1.10291i) q^{69} +(4.02624 - 0.516303i) q^{70} +(1.73500 - 6.47512i) q^{71} +(-1.96240 - 3.39898i) q^{72} +3.37642i q^{73} +(0.784986 - 0.453212i) q^{74} +(2.32356 + 4.08774i) q^{75} +(2.48945 + 9.29074i) q^{76} +(1.78728 - 1.78728i) q^{77} +3.12149i q^{79} +(-5.35521 - 2.23932i) q^{80} +(0.911483 - 1.57873i) q^{81} +(0.264231 + 0.0708006i) q^{82} -2.13918 q^{83} +(5.86286 + 1.57095i) q^{84} +(-0.710723 + 5.26175i) q^{85} +(-0.756694 + 0.756694i) q^{86} +(-2.31619 + 8.64414i) q^{87} +(1.23228 - 0.330188i) q^{88} +(-3.26255 + 0.874198i) q^{89} +(0.297190 + 2.31755i) q^{90} +(-1.68161 - 1.68161i) q^{92} +(-3.20242 + 5.54675i) q^{93} +(1.62931 + 0.940681i) q^{94} +(1.63944 - 12.1374i) q^{95} +(3.31972 + 3.31972i) q^{96} +(-6.12606 + 3.53688i) q^{97} +(-2.78421 + 1.60746i) q^{98} +(1.02878 + 1.02878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.427732 + 0.246951i 0.302452 + 0.174621i 0.643544 0.765409i \(-0.277463\pi\)
−0.341092 + 0.940030i \(0.610797\pi\)
\(3\) −0.243392 0.908353i −0.140523 0.524438i −0.999914 0.0131191i \(-0.995824\pi\)
0.859391 0.511318i \(-0.170843\pi\)
\(4\) −0.878030 1.52079i −0.439015 0.760397i
\(5\) 0.284413 + 2.21791i 0.127193 + 0.991878i
\(6\) 0.120212 0.448637i 0.0490763 0.183155i
\(7\) −1.83775 3.18307i −0.694603 1.20309i −0.970314 0.241847i \(-0.922247\pi\)
0.275712 0.961240i \(-0.411086\pi\)
\(8\) 1.85513i 0.655886i
\(9\) 1.83221 1.05783i 0.610737 0.352609i
\(10\) −0.426062 + 1.01890i −0.134733 + 0.322206i
\(11\) 0.177987 + 0.664257i 0.0536651 + 0.200281i 0.987553 0.157284i \(-0.0502738\pi\)
−0.933888 + 0.357565i \(0.883607\pi\)
\(12\) −1.16771 + 1.16771i −0.337089 + 0.337089i
\(13\) 0 0
\(14\) 1.81533i 0.485168i
\(15\) 1.94542 0.798168i 0.502305 0.206086i
\(16\) −1.29794 + 2.24809i −0.324484 + 0.562023i
\(17\) 2.29359 + 0.614565i 0.556277 + 0.149054i 0.525995 0.850487i \(-0.323693\pi\)
0.0302815 + 0.999541i \(0.490360\pi\)
\(18\) 1.04493 0.246291
\(19\) −5.29067 1.41763i −1.21376 0.325227i −0.405526 0.914084i \(-0.632912\pi\)
−0.808238 + 0.588857i \(0.799578\pi\)
\(20\) 3.12325 2.37992i 0.698381 0.532167i
\(21\) −2.44406 + 2.44406i −0.533337 + 0.533337i
\(22\) −0.0879082 + 0.328078i −0.0187421 + 0.0699464i
\(23\) 1.30811 0.350507i 0.272760 0.0730858i −0.119846 0.992792i \(-0.538240\pi\)
0.392606 + 0.919707i \(0.371574\pi\)
\(24\) −1.68511 + 0.451523i −0.343971 + 0.0921668i
\(25\) −4.83822 + 1.26160i −0.967644 + 0.252320i
\(26\) 0 0
\(27\) −3.40171 3.40171i −0.654659 0.654659i
\(28\) −3.22719 + 5.58966i −0.609882 + 1.05635i
\(29\) −8.24134 4.75814i −1.53038 0.883564i −0.999344 0.0362142i \(-0.988470\pi\)
−0.531034 0.847350i \(-0.678197\pi\)
\(30\) 1.02922 + 0.139021i 0.187910 + 0.0253816i
\(31\) −4.81595 4.81595i −0.864970 0.864970i 0.126940 0.991910i \(-0.459484\pi\)
−0.991910 + 0.126940i \(0.959484\pi\)
\(32\) −4.32351 + 2.49618i −0.764295 + 0.441266i
\(33\) 0.560059 0.323350i 0.0974937 0.0562880i
\(34\) 0.829273 + 0.829273i 0.142219 + 0.142219i
\(35\) 6.53707 4.98125i 1.10497 0.841986i
\(36\) −3.21748 1.85761i −0.536246 0.309602i
\(37\) 0.917615 1.58936i 0.150855 0.261289i −0.780687 0.624922i \(-0.785131\pi\)
0.931542 + 0.363634i \(0.118464\pi\)
\(38\) −1.91290 1.91290i −0.310314 0.310314i
\(39\) 0 0
\(40\) 4.11449 0.527621i 0.650559 0.0834242i
\(41\) 0.534988 0.143350i 0.0835510 0.0223874i −0.216801 0.976216i \(-0.569562\pi\)
0.300352 + 0.953828i \(0.402896\pi\)
\(42\) −1.64896 + 0.441838i −0.254440 + 0.0681771i
\(43\) −0.560778 + 2.09285i −0.0855178 + 0.319157i −0.995412 0.0956841i \(-0.969496\pi\)
0.909894 + 0.414841i \(0.136163\pi\)
\(44\) 0.853919 0.853919i 0.128733 0.128733i
\(45\) 2.86727 + 3.76281i 0.427427 + 0.560927i
\(46\) 0.646078 + 0.173116i 0.0952590 + 0.0255246i
\(47\) 3.80918 0.555626 0.277813 0.960635i \(-0.410390\pi\)
0.277813 + 0.960635i \(0.410390\pi\)
\(48\) 2.35797 + 0.631815i 0.340343 + 0.0911947i
\(49\) −3.25462 + 5.63717i −0.464946 + 0.805310i
\(50\) −2.38101 0.655176i −0.336726 0.0926559i
\(51\) 2.23297i 0.312678i
\(52\) 0 0
\(53\) −2.47293 + 2.47293i −0.339683 + 0.339683i −0.856248 0.516565i \(-0.827211\pi\)
0.516565 + 0.856248i \(0.327211\pi\)
\(54\) −0.614963 2.29507i −0.0836858 0.312320i
\(55\) −1.42264 + 0.583682i −0.191828 + 0.0787036i
\(56\) −5.90499 + 3.40925i −0.789088 + 0.455580i
\(57\) 5.15084i 0.682245i
\(58\) −2.35005 4.07041i −0.308577 0.534471i
\(59\) 2.69310 10.0508i 0.350612 1.30850i −0.535305 0.844659i \(-0.679803\pi\)
0.885917 0.463844i \(-0.153530\pi\)
\(60\) −2.92199 2.25776i −0.377227 0.291476i
\(61\) −3.09904 5.36770i −0.396792 0.687263i 0.596536 0.802586i \(-0.296543\pi\)
−0.993328 + 0.115323i \(0.963210\pi\)
\(62\) −0.870630 3.24924i −0.110570 0.412653i
\(63\) −6.73428 3.88804i −0.848439 0.489847i
\(64\) 2.72601 0.340751
\(65\) 0 0
\(66\) 0.319406 0.0393162
\(67\) 10.6066 + 6.12371i 1.29580 + 0.748130i 0.979676 0.200588i \(-0.0642852\pi\)
0.316124 + 0.948718i \(0.397619\pi\)
\(68\) −1.07921 4.02768i −0.130874 0.488428i
\(69\) −0.636768 1.10291i −0.0766579 0.132775i
\(70\) 4.02624 0.516303i 0.481227 0.0617101i
\(71\) 1.73500 6.47512i 0.205907 0.768456i −0.783264 0.621689i \(-0.786447\pi\)
0.989171 0.146767i \(-0.0468866\pi\)
\(72\) −1.96240 3.39898i −0.231271 0.400574i
\(73\) 3.37642i 0.395180i 0.980285 + 0.197590i \(0.0633115\pi\)
−0.980285 + 0.197590i \(0.936688\pi\)
\(74\) 0.784986 0.453212i 0.0912528 0.0526848i
\(75\) 2.32356 + 4.08774i 0.268302 + 0.472012i
\(76\) 2.48945 + 9.29074i 0.285559 + 1.06572i
\(77\) 1.78728 1.78728i 0.203680 0.203680i
\(78\) 0 0
\(79\) 3.12149i 0.351195i 0.984462 + 0.175598i \(0.0561857\pi\)
−0.984462 + 0.175598i \(0.943814\pi\)
\(80\) −5.35521 2.23932i −0.598730 0.250363i
\(81\) 0.911483 1.57873i 0.101276 0.175415i
\(82\) 0.264231 + 0.0708006i 0.0291795 + 0.00781862i
\(83\) −2.13918 −0.234805 −0.117403 0.993084i \(-0.537457\pi\)
−0.117403 + 0.993084i \(0.537457\pi\)
\(84\) 5.86286 + 1.57095i 0.639691 + 0.171405i
\(85\) −0.710723 + 5.26175i −0.0770887 + 0.570717i
\(86\) −0.756694 + 0.756694i −0.0815964 + 0.0815964i
\(87\) −2.31619 + 8.64414i −0.248322 + 0.926749i
\(88\) 1.23228 0.330188i 0.131361 0.0351982i
\(89\) −3.26255 + 0.874198i −0.345830 + 0.0926648i −0.427553 0.903990i \(-0.640624\pi\)
0.0817233 + 0.996655i \(0.473958\pi\)
\(90\) 0.297190 + 2.31755i 0.0313266 + 0.244291i
\(91\) 0 0
\(92\) −1.68161 1.68161i −0.175320 0.175320i
\(93\) −3.20242 + 5.54675i −0.332075 + 0.575171i
\(94\) 1.62931 + 0.940681i 0.168050 + 0.0970238i
\(95\) 1.63944 12.1374i 0.168203 1.24527i
\(96\) 3.31972 + 3.31972i 0.338817 + 0.338817i
\(97\) −6.12606 + 3.53688i −0.622007 + 0.359116i −0.777650 0.628697i \(-0.783588\pi\)
0.155643 + 0.987813i \(0.450255\pi\)
\(98\) −2.78421 + 1.60746i −0.281248 + 0.162378i
\(99\) 1.02878 + 1.02878i 0.103396 + 0.103396i
\(100\) 6.16674 + 6.25021i 0.616674 + 0.625021i
\(101\) 12.9641 + 7.48483i 1.28998 + 0.744769i 0.978650 0.205534i \(-0.0658932\pi\)
0.311327 + 0.950303i \(0.399226\pi\)
\(102\) 0.551433 0.955111i 0.0546000 0.0945700i
\(103\) −3.17851 3.17851i −0.313188 0.313188i 0.532956 0.846143i \(-0.321081\pi\)
−0.846143 + 0.532956i \(0.821081\pi\)
\(104\) 0 0
\(105\) −6.11581 4.72557i −0.596842 0.461168i
\(106\) −1.66844 + 0.447058i −0.162054 + 0.0434221i
\(107\) 14.7329 3.94767i 1.42428 0.381635i 0.537282 0.843403i \(-0.319451\pi\)
0.887001 + 0.461767i \(0.152784\pi\)
\(108\) −2.18649 + 8.16010i −0.210395 + 0.785206i
\(109\) −2.25902 + 2.25902i −0.216375 + 0.216375i −0.806969 0.590594i \(-0.798893\pi\)
0.590594 + 0.806969i \(0.298893\pi\)
\(110\) −0.752648 0.101663i −0.0717622 0.00969315i
\(111\) −1.66704 0.446681i −0.158228 0.0423971i
\(112\) 9.54111 0.901550
\(113\) −16.0061 4.28882i −1.50573 0.403458i −0.590713 0.806881i \(-0.701154\pi\)
−0.915014 + 0.403423i \(0.867820\pi\)
\(114\) −1.27200 + 2.20318i −0.119134 + 0.206346i
\(115\) 1.14944 + 2.80158i 0.107185 + 0.261248i
\(116\) 16.7112i 1.55159i
\(117\) 0 0
\(118\) 3.63398 3.63398i 0.334535 0.334535i
\(119\) −2.25883 8.43007i −0.207067 0.772783i
\(120\) −1.48070 3.60899i −0.135169 0.329455i
\(121\) 9.11672 5.26354i 0.828793 0.478504i
\(122\) 3.06124i 0.277152i
\(123\) −0.260424 0.451067i −0.0234816 0.0406714i
\(124\) −3.09551 + 11.5526i −0.277985 + 1.03746i
\(125\) −4.17416 10.3719i −0.373349 0.927691i
\(126\) −1.92031 3.32607i −0.171075 0.296310i
\(127\) −2.14812 8.01688i −0.190614 0.711383i −0.993359 0.115059i \(-0.963294\pi\)
0.802744 0.596324i \(-0.203372\pi\)
\(128\) 9.81302 + 5.66555i 0.867356 + 0.500768i
\(129\) 2.03754 0.179395
\(130\) 0 0
\(131\) 1.37409 0.120054 0.0600272 0.998197i \(-0.480881\pi\)
0.0600272 + 0.998197i \(0.480881\pi\)
\(132\) −0.983497 0.567822i −0.0856025 0.0494226i
\(133\) 5.21049 + 19.4458i 0.451807 + 1.68617i
\(134\) 3.02451 + 5.23861i 0.261278 + 0.452547i
\(135\) 6.57718 8.51216i 0.566074 0.732610i
\(136\) 1.14010 4.25489i 0.0977624 0.364854i
\(137\) 6.16380 + 10.6760i 0.526609 + 0.912114i 0.999519 + 0.0310029i \(0.00987013\pi\)
−0.472910 + 0.881111i \(0.656797\pi\)
\(138\) 0.629002i 0.0535442i
\(139\) 5.54392 3.20078i 0.470229 0.271487i −0.246107 0.969243i \(-0.579151\pi\)
0.716336 + 0.697756i \(0.245818\pi\)
\(140\) −13.3152 5.56784i −1.12534 0.470569i
\(141\) −0.927126 3.46008i −0.0780781 0.291391i
\(142\) 2.34115 2.34115i 0.196465 0.196465i
\(143\) 0 0
\(144\) 5.49197i 0.457664i
\(145\) 8.20917 19.6318i 0.681734 1.63033i
\(146\) −0.833811 + 1.44420i −0.0690067 + 0.119523i
\(147\) 5.91269 + 1.58430i 0.487670 + 0.130671i
\(148\) −3.22278 −0.264911
\(149\) 16.2300 + 4.34882i 1.32961 + 0.356269i 0.852571 0.522611i \(-0.175042\pi\)
0.477043 + 0.878880i \(0.341709\pi\)
\(150\) −0.0156106 + 2.32226i −0.00127460 + 0.189612i
\(151\) 3.31542 3.31542i 0.269805 0.269805i −0.559217 0.829022i \(-0.688898\pi\)
0.829022 + 0.559217i \(0.188898\pi\)
\(152\) −2.62988 + 9.81486i −0.213312 + 0.796090i
\(153\) 4.85244 1.30021i 0.392297 0.105116i
\(154\) 1.20585 0.323106i 0.0971699 0.0260366i
\(155\) 9.31161 12.0510i 0.747926 0.967963i
\(156\) 0 0
\(157\) 9.87941 + 9.87941i 0.788463 + 0.788463i 0.981242 0.192779i \(-0.0617501\pi\)
−0.192779 + 0.981242i \(0.561750\pi\)
\(158\) −0.770855 + 1.33516i −0.0613259 + 0.106220i
\(159\) 2.84819 + 1.64440i 0.225876 + 0.130410i
\(160\) −6.76595 8.87919i −0.534895 0.701962i
\(161\) −3.51966 3.51966i −0.277388 0.277388i
\(162\) 0.779740 0.450183i 0.0612622 0.0353697i
\(163\) 0.114289 0.0659848i 0.00895180 0.00516833i −0.495517 0.868598i \(-0.665022\pi\)
0.504469 + 0.863430i \(0.331688\pi\)
\(164\) −0.687741 0.687741i −0.0537035 0.0537035i
\(165\) 0.876448 + 1.15019i 0.0682314 + 0.0895424i
\(166\) −0.914995 0.528272i −0.0710174 0.0410019i
\(167\) 10.8184 18.7380i 0.837152 1.44999i −0.0551149 0.998480i \(-0.517553\pi\)
0.892267 0.451509i \(-0.149114\pi\)
\(168\) 4.53403 + 4.53403i 0.349808 + 0.349808i
\(169\) 0 0
\(170\) −1.60339 + 2.07510i −0.122975 + 0.159153i
\(171\) −11.1932 + 2.99922i −0.855969 + 0.229356i
\(172\) 3.67518 0.984760i 0.280230 0.0750873i
\(173\) −2.00162 + 7.47013i −0.152180 + 0.567943i 0.847150 + 0.531353i \(0.178316\pi\)
−0.999330 + 0.0365902i \(0.988350\pi\)
\(174\) −3.12539 + 3.12539i −0.236935 + 0.236935i
\(175\) 12.9072 + 13.0819i 0.975691 + 0.988898i
\(176\) −1.72433 0.462032i −0.129976 0.0348270i
\(177\) −9.78515 −0.735497
\(178\) −1.61138 0.431768i −0.120778 0.0323624i
\(179\) 8.17681 14.1627i 0.611164 1.05857i −0.379881 0.925035i \(-0.624035\pi\)
0.991045 0.133531i \(-0.0426317\pi\)
\(180\) 3.20492 7.66439i 0.238880 0.571270i
\(181\) 18.0387i 1.34081i −0.741997 0.670403i \(-0.766121\pi\)
0.741997 0.670403i \(-0.233879\pi\)
\(182\) 0 0
\(183\) −4.12148 + 4.12148i −0.304668 + 0.304668i
\(184\) −0.650235 2.42671i −0.0479359 0.178899i
\(185\) 3.78603 + 1.58315i 0.278354 + 0.116396i
\(186\) −2.73955 + 1.58168i −0.200873 + 0.115974i
\(187\) 1.63292i 0.119411i
\(188\) −3.34458 5.79298i −0.243928 0.422496i
\(189\) −4.57640 + 17.0793i −0.332884 + 1.24234i
\(190\) 3.69858 4.78669i 0.268324 0.347263i
\(191\) −2.59552 4.49557i −0.187805 0.325288i 0.756713 0.653747i \(-0.226804\pi\)
−0.944518 + 0.328459i \(0.893471\pi\)
\(192\) −0.663490 2.47618i −0.0478833 0.178703i
\(193\) 8.74813 + 5.05073i 0.629704 + 0.363560i 0.780637 0.624984i \(-0.214895\pi\)
−0.150934 + 0.988544i \(0.548228\pi\)
\(194\) −3.49375 −0.250836
\(195\) 0 0
\(196\) 11.4306 0.816473
\(197\) 11.3137 + 6.53197i 0.806068 + 0.465384i 0.845589 0.533835i \(-0.179250\pi\)
−0.0395205 + 0.999219i \(0.512583\pi\)
\(198\) 0.185983 + 0.694099i 0.0132173 + 0.0493275i
\(199\) −3.92506 6.79840i −0.278240 0.481926i 0.692707 0.721219i \(-0.256418\pi\)
−0.970947 + 0.239293i \(0.923084\pi\)
\(200\) 2.34043 + 8.97550i 0.165493 + 0.634664i
\(201\) 2.98093 11.1250i 0.210258 0.784695i
\(202\) 3.69677 + 6.40300i 0.260104 + 0.450513i
\(203\) 34.9770i 2.45491i
\(204\) −3.39588 + 1.96061i −0.237759 + 0.137270i
\(205\) 0.470093 + 1.14578i 0.0328327 + 0.0800249i
\(206\) −0.574613 2.14448i −0.0400352 0.149413i
\(207\) 2.02596 2.02596i 0.140814 0.140814i
\(208\) 0 0
\(209\) 3.76669i 0.260547i
\(210\) −1.44894 3.53158i −0.0999864 0.243702i
\(211\) −6.21205 + 10.7596i −0.427655 + 0.740720i −0.996664 0.0816108i \(-0.973994\pi\)
0.569009 + 0.822331i \(0.307327\pi\)
\(212\) 5.93213 + 1.58951i 0.407420 + 0.109168i
\(213\) −6.30398 −0.431942
\(214\) 7.27661 + 1.94976i 0.497419 + 0.133283i
\(215\) −4.80124 0.648520i −0.327442 0.0442287i
\(216\) −6.31059 + 6.31059i −0.429382 + 0.429382i
\(217\) −6.47901 + 24.1800i −0.439824 + 1.64145i
\(218\) −1.52412 + 0.408387i −0.103226 + 0.0276594i
\(219\) 3.06698 0.821796i 0.207248 0.0555318i
\(220\) 2.13678 + 1.65105i 0.144062 + 0.111314i
\(221\) 0 0
\(222\) −0.602736 0.602736i −0.0404530 0.0404530i
\(223\) 4.97247 8.61258i 0.332981 0.576741i −0.650114 0.759837i \(-0.725279\pi\)
0.983095 + 0.183096i \(0.0586120\pi\)
\(224\) 15.8910 + 9.17468i 1.06176 + 0.613009i
\(225\) −7.53008 + 7.42952i −0.502006 + 0.495302i
\(226\) −5.78718 5.78718i −0.384958 0.384958i
\(227\) −12.6490 + 7.30290i −0.839543 + 0.484710i −0.857109 0.515135i \(-0.827742\pi\)
0.0175659 + 0.999846i \(0.494408\pi\)
\(228\) 7.83336 4.52259i 0.518777 0.299516i
\(229\) −15.6183 15.6183i −1.03209 1.03209i −0.999468 0.0326207i \(-0.989615\pi\)
−0.0326207 0.999468i \(-0.510385\pi\)
\(230\) −0.200203 + 1.48218i −0.0132010 + 0.0977319i
\(231\) −2.05849 1.18847i −0.135439 0.0781956i
\(232\) −8.82695 + 15.2887i −0.579517 + 1.00375i
\(233\) 16.5625 + 16.5625i 1.08505 + 1.08505i 0.996030 + 0.0890148i \(0.0283719\pi\)
0.0890148 + 0.996030i \(0.471628\pi\)
\(234\) 0 0
\(235\) 1.08338 + 8.44841i 0.0706719 + 0.551113i
\(236\) −17.6498 + 4.72926i −1.14891 + 0.307848i
\(237\) 2.83541 0.759747i 0.184180 0.0493509i
\(238\) 1.11564 4.16362i 0.0723162 0.269888i
\(239\) 14.6022 14.6022i 0.944535 0.944535i −0.0540053 0.998541i \(-0.517199\pi\)
0.998541 + 0.0540053i \(0.0171988\pi\)
\(240\) −0.730672 + 5.40945i −0.0471647 + 0.349178i
\(241\) −2.99335 0.802065i −0.192818 0.0516656i 0.161117 0.986935i \(-0.448490\pi\)
−0.353936 + 0.935270i \(0.615157\pi\)
\(242\) 5.19935 0.334227
\(243\) −15.5964 4.17903i −1.00051 0.268085i
\(244\) −5.44211 + 9.42600i −0.348395 + 0.603438i
\(245\) −13.4284 5.61516i −0.857907 0.358740i
\(246\) 0.257248i 0.0164015i
\(247\) 0 0
\(248\) −8.93419 + 8.93419i −0.567322 + 0.567322i
\(249\) 0.520660 + 1.94313i 0.0329955 + 0.123141i
\(250\) 0.775929 5.46720i 0.0490741 0.345776i
\(251\) −25.5728 + 14.7645i −1.61414 + 0.931925i −0.625745 + 0.780028i \(0.715205\pi\)
−0.988396 + 0.151897i \(0.951462\pi\)
\(252\) 13.6553i 0.860201i
\(253\) 0.465654 + 0.806536i 0.0292754 + 0.0507065i
\(254\) 1.06096 3.95955i 0.0665704 0.248444i
\(255\) 4.95251 0.635084i 0.310138 0.0397705i
\(256\) 0.0722145 + 0.125079i 0.00451341 + 0.00781745i
\(257\) −1.85447 6.92097i −0.115679 0.431718i 0.883658 0.468133i \(-0.155073\pi\)
−0.999337 + 0.0364143i \(0.988406\pi\)
\(258\) 0.871519 + 0.503172i 0.0542584 + 0.0313261i
\(259\) −6.74538 −0.419137
\(260\) 0 0
\(261\) −20.1332 −1.24621
\(262\) 0.587740 + 0.339332i 0.0363107 + 0.0209640i
\(263\) −3.48511 13.0066i −0.214901 0.802023i −0.986201 0.165551i \(-0.947060\pi\)
0.771300 0.636472i \(-0.219607\pi\)
\(264\) −0.599855 1.03898i −0.0369185 0.0639448i
\(265\) −6.18807 4.78140i −0.380130 0.293719i
\(266\) −2.57347 + 9.60433i −0.157790 + 0.588879i
\(267\) 1.58816 + 2.75077i 0.0971938 + 0.168345i
\(268\) 21.5072i 1.31376i
\(269\) −7.01806 + 4.05188i −0.427899 + 0.247047i −0.698451 0.715658i \(-0.746127\pi\)
0.270552 + 0.962705i \(0.412794\pi\)
\(270\) 4.91535 2.01668i 0.299139 0.122731i
\(271\) 2.38026 + 8.88325i 0.144590 + 0.539619i 0.999773 + 0.0212923i \(0.00677808\pi\)
−0.855183 + 0.518326i \(0.826555\pi\)
\(272\) −4.35853 + 4.35853i −0.264275 + 0.264275i
\(273\) 0 0
\(274\) 6.08862i 0.367827i
\(275\) −1.69917 2.98927i −0.102464 0.180260i
\(276\) −1.11820 + 1.93679i −0.0673080 + 0.116581i
\(277\) 24.9641 + 6.68911i 1.49995 + 0.401910i 0.913082 0.407775i \(-0.133695\pi\)
0.586865 + 0.809685i \(0.300362\pi\)
\(278\) 3.16174 0.189629
\(279\) −13.9183 3.72939i −0.833266 0.223273i
\(280\) −9.24085 12.1271i −0.552246 0.724732i
\(281\) −5.41928 + 5.41928i −0.323287 + 0.323287i −0.850027 0.526740i \(-0.823414\pi\)
0.526740 + 0.850027i \(0.323414\pi\)
\(282\) 0.457909 1.70894i 0.0272681 0.101766i
\(283\) 8.48623 2.27388i 0.504454 0.135168i 0.00238762 0.999997i \(-0.499240\pi\)
0.502066 + 0.864829i \(0.332573\pi\)
\(284\) −11.3707 + 3.04677i −0.674728 + 0.180793i
\(285\) −11.4241 + 1.46496i −0.676704 + 0.0867769i
\(286\) 0 0
\(287\) −1.43946 1.43946i −0.0849688 0.0849688i
\(288\) −5.28105 + 9.14705i −0.311189 + 0.538995i
\(289\) −9.83958 5.68088i −0.578799 0.334170i
\(290\) 8.35941 6.36988i 0.490882 0.374052i
\(291\) 4.70377 + 4.70377i 0.275740 + 0.275740i
\(292\) 5.13484 2.96460i 0.300494 0.173490i
\(293\) −11.4627 + 6.61798i −0.669657 + 0.386626i −0.795947 0.605367i \(-0.793026\pi\)
0.126290 + 0.991993i \(0.459693\pi\)
\(294\) 2.13780 + 2.13780i 0.124679 + 0.124679i
\(295\) 23.0577 + 3.11448i 1.34247 + 0.181332i
\(296\) −2.94846 1.70229i −0.171375 0.0989437i
\(297\) 1.65415 2.86507i 0.0959834 0.166248i
\(298\) 5.86814 + 5.86814i 0.339932 + 0.339932i
\(299\) 0 0
\(300\) 4.17646 7.12283i 0.241128 0.411237i
\(301\) 7.69226 2.06114i 0.443375 0.118802i
\(302\) 2.23685 0.599363i 0.128716 0.0344895i
\(303\) 3.64350 13.5977i 0.209314 0.781169i
\(304\) 10.0539 10.0539i 0.576632 0.576632i
\(305\) 11.0236 8.40003i 0.631212 0.480984i
\(306\) 2.39663 + 0.642175i 0.137006 + 0.0367107i
\(307\) 15.4782 0.883389 0.441695 0.897165i \(-0.354377\pi\)
0.441695 + 0.897165i \(0.354377\pi\)
\(308\) −4.28737 1.14880i −0.244296 0.0654588i
\(309\) −2.11358 + 3.66083i −0.120237 + 0.208257i
\(310\) 6.95889 2.85510i 0.395238 0.162159i
\(311\) 5.34922i 0.303326i −0.988432 0.151663i \(-0.951537\pi\)
0.988432 0.151663i \(-0.0484629\pi\)
\(312\) 0 0
\(313\) 24.3923 24.3923i 1.37873 1.37873i 0.531967 0.846765i \(-0.321453\pi\)
0.846765 0.531967i \(-0.178547\pi\)
\(314\) 1.78601 + 6.66547i 0.100790 + 0.376154i
\(315\) 6.70799 16.0418i 0.377952 0.903854i
\(316\) 4.74714 2.74076i 0.267048 0.154180i
\(317\) 18.9851i 1.06631i 0.846017 + 0.533156i \(0.178994\pi\)
−0.846017 + 0.533156i \(0.821006\pi\)
\(318\) 0.812173 + 1.40673i 0.0455444 + 0.0788852i
\(319\) 1.69378 6.32125i 0.0948332 0.353922i
\(320\) 0.775312 + 6.04604i 0.0433412 + 0.337984i
\(321\) −7.17175 12.4218i −0.400288 0.693319i
\(322\) −0.636287 2.37466i −0.0354589 0.132334i
\(323\) −11.2634 6.50293i −0.626712 0.361832i
\(324\) −3.20124 −0.177847
\(325\) 0 0
\(326\) 0.0651800 0.00360999
\(327\) 2.60181 + 1.50216i 0.143881 + 0.0830695i
\(328\) −0.265931 0.992469i −0.0146836 0.0548000i
\(329\) −7.00031 12.1249i −0.385940 0.668467i
\(330\) 0.0908432 + 0.708414i 0.00500075 + 0.0389969i
\(331\) 1.81607 6.77766i 0.0998202 0.372534i −0.897886 0.440228i \(-0.854898\pi\)
0.997706 + 0.0676941i \(0.0215642\pi\)
\(332\) 1.87826 + 3.25325i 0.103083 + 0.178545i
\(333\) 3.88272i 0.212772i
\(334\) 9.25473 5.34322i 0.506396 0.292368i
\(335\) −10.5652 + 25.2661i −0.577237 + 1.38043i
\(336\) −2.32223 8.66669i −0.126688 0.472807i
\(337\) −1.10195 + 1.10195i −0.0600271 + 0.0600271i −0.736483 0.676456i \(-0.763515\pi\)
0.676456 + 0.736483i \(0.263515\pi\)
\(338\) 0 0
\(339\) 15.5830i 0.846355i
\(340\) 8.62608 3.53912i 0.467815 0.191936i
\(341\) 2.34185 4.05620i 0.126818 0.219656i
\(342\) −5.52836 1.48132i −0.298940 0.0801006i
\(343\) −1.80378 −0.0973947
\(344\) 3.88250 + 1.04031i 0.209331 + 0.0560899i
\(345\) 2.26506 1.72598i 0.121947 0.0929234i
\(346\) −2.70091 + 2.70091i −0.145202 + 0.145202i
\(347\) 6.68561 24.9510i 0.358902 1.33944i −0.516600 0.856227i \(-0.672803\pi\)
0.875502 0.483214i \(-0.160531\pi\)
\(348\) 15.1796 4.06737i 0.813714 0.218034i
\(349\) 9.07958 2.43287i 0.486019 0.130228i −0.00748510 0.999972i \(-0.502383\pi\)
0.493504 + 0.869744i \(0.335716\pi\)
\(350\) 2.29023 + 8.78298i 0.122418 + 0.469470i
\(351\) 0 0
\(352\) −2.42763 2.42763i −0.129393 0.129393i
\(353\) −1.63274 + 2.82798i −0.0869017 + 0.150518i −0.906200 0.422849i \(-0.861030\pi\)
0.819298 + 0.573368i \(0.194363\pi\)
\(354\) −4.18542 2.41645i −0.222452 0.128433i
\(355\) 14.8547 + 2.00647i 0.788404 + 0.106492i
\(356\) 4.19410 + 4.19410i 0.222287 + 0.222287i
\(357\) −7.10769 + 4.10363i −0.376179 + 0.217187i
\(358\) 6.99496 4.03854i 0.369695 0.213444i
\(359\) −3.12090 3.12090i −0.164715 0.164715i 0.619937 0.784652i \(-0.287158\pi\)
−0.784652 + 0.619937i \(0.787158\pi\)
\(360\) 6.98049 5.31914i 0.367904 0.280343i
\(361\) 9.52706 + 5.50045i 0.501424 + 0.289497i
\(362\) 4.45468 7.71573i 0.234133 0.405530i
\(363\) −7.00009 7.00009i −0.367410 0.367410i
\(364\) 0 0
\(365\) −7.48859 + 0.960297i −0.391971 + 0.0502643i
\(366\) −2.78069 + 0.745084i −0.145349 + 0.0389461i
\(367\) −24.2349 + 6.49371i −1.26505 + 0.338969i −0.828132 0.560533i \(-0.810596\pi\)
−0.436917 + 0.899502i \(0.643930\pi\)
\(368\) −0.909872 + 3.39569i −0.0474303 + 0.177012i
\(369\) 0.828572 0.828572i 0.0431337 0.0431337i
\(370\) 1.22844 + 1.61213i 0.0638636 + 0.0838105i
\(371\) 12.4161 + 3.32690i 0.644614 + 0.172724i
\(372\) 11.2473 0.583144
\(373\) 11.0372 + 2.95740i 0.571483 + 0.153128i 0.532976 0.846130i \(-0.321073\pi\)
0.0385061 + 0.999258i \(0.487740\pi\)
\(374\) −0.403250 + 0.698450i −0.0208516 + 0.0361160i
\(375\) −8.40538 + 6.31605i −0.434052 + 0.326160i
\(376\) 7.06651i 0.364427i
\(377\) 0 0
\(378\) −6.17523 + 6.17523i −0.317620 + 0.317620i
\(379\) −0.520109 1.94107i −0.0267162 0.0997062i 0.951280 0.308327i \(-0.0997692\pi\)
−0.977997 + 0.208621i \(0.933102\pi\)
\(380\) −19.8980 + 8.16377i −1.02074 + 0.418792i
\(381\) −6.75932 + 3.90249i −0.346290 + 0.199931i
\(382\) 2.56386i 0.131179i
\(383\) −13.2258 22.9077i −0.675806 1.17053i −0.976233 0.216725i \(-0.930462\pi\)
0.300427 0.953805i \(-0.402871\pi\)
\(384\) 2.75790 10.2926i 0.140739 0.525244i
\(385\) 4.47235 + 3.45570i 0.227932 + 0.176119i
\(386\) 2.49457 + 4.32072i 0.126970 + 0.219919i
\(387\) 1.18641 + 4.42775i 0.0603088 + 0.225075i
\(388\) 10.7577 + 6.21098i 0.546141 + 0.315315i
\(389\) −0.650094 −0.0329611 −0.0164805 0.999864i \(-0.505246\pi\)
−0.0164805 + 0.999864i \(0.505246\pi\)
\(390\) 0 0
\(391\) 3.21568 0.162624
\(392\) 10.4577 + 6.03773i 0.528191 + 0.304951i
\(393\) −0.334442 1.24815i −0.0168704 0.0629610i
\(394\) 3.22615 + 5.58786i 0.162531 + 0.281512i
\(395\) −6.92317 + 0.887791i −0.348343 + 0.0446696i
\(396\) 0.661261 2.46786i 0.0332296 0.124015i
\(397\) −13.5041 23.3897i −0.677750 1.17390i −0.975657 0.219303i \(-0.929622\pi\)
0.297907 0.954595i \(-0.403712\pi\)
\(398\) 3.87719i 0.194346i
\(399\) 16.3955 9.46593i 0.820800 0.473889i
\(400\) 3.44350 12.5142i 0.172175 0.625712i
\(401\) 1.28339 + 4.78969i 0.0640896 + 0.239186i 0.990539 0.137235i \(-0.0438215\pi\)
−0.926449 + 0.376421i \(0.877155\pi\)
\(402\) 4.02236 4.02236i 0.200617 0.200617i
\(403\) 0 0
\(404\) 26.2876i 1.30786i
\(405\) 3.76072 + 1.57257i 0.186872 + 0.0781417i
\(406\) −8.63761 + 14.9608i −0.428677 + 0.742491i
\(407\) 1.21906 + 0.326647i 0.0604268 + 0.0161913i
\(408\) −4.14243 −0.205081
\(409\) −5.83965 1.56473i −0.288752 0.0773708i 0.111536 0.993760i \(-0.464423\pi\)
−0.400288 + 0.916390i \(0.631090\pi\)
\(410\) −0.0818784 + 0.606177i −0.00404368 + 0.0299370i
\(411\) 8.19736 8.19736i 0.404346 0.404346i
\(412\) −2.04303 + 7.62468i −0.100653 + 0.375641i
\(413\) −36.9416 + 9.89848i −1.81778 + 0.487073i
\(414\) 1.36688 0.366254i 0.0671784 0.0180004i
\(415\) −0.608410 4.74450i −0.0298657 0.232898i
\(416\) 0 0
\(417\) −4.25679 4.25679i −0.208456 0.208456i
\(418\) 0.930187 1.61113i 0.0454969 0.0788030i
\(419\) 4.65114 + 2.68534i 0.227223 + 0.131187i 0.609290 0.792947i \(-0.291454\pi\)
−0.382067 + 0.924135i \(0.624788\pi\)
\(420\) −1.81675 + 13.4501i −0.0886481 + 0.656296i
\(421\) −14.1377 14.1377i −0.689029 0.689029i 0.272988 0.962017i \(-0.411988\pi\)
−0.962017 + 0.272988i \(0.911988\pi\)
\(422\) −5.31418 + 3.06814i −0.258690 + 0.149355i
\(423\) 6.97923 4.02946i 0.339342 0.195919i
\(424\) 4.58760 + 4.58760i 0.222794 + 0.222794i
\(425\) −11.8722 0.0798070i −0.575887 0.00387121i
\(426\) −2.69641 1.55677i −0.130642 0.0754260i
\(427\) −11.3905 + 19.7289i −0.551225 + 0.954750i
\(428\) −18.9395 18.9395i −0.915476 0.915476i
\(429\) 0 0
\(430\) −1.89349 1.46306i −0.0913122 0.0705552i
\(431\) −16.1219 + 4.31985i −0.776564 + 0.208080i −0.625269 0.780409i \(-0.715011\pi\)
−0.151295 + 0.988489i \(0.548344\pi\)
\(432\) 12.0625 3.23215i 0.580360 0.155507i
\(433\) −1.96538 + 7.33490i −0.0944502 + 0.352493i −0.996936 0.0782277i \(-0.975074\pi\)
0.902485 + 0.430721i \(0.141741\pi\)
\(434\) −8.74255 + 8.74255i −0.419656 + 0.419656i
\(435\) −19.8306 2.67859i −0.950807 0.128429i
\(436\) 5.41899 + 1.45201i 0.259522 + 0.0695388i
\(437\) −7.41767 −0.354835
\(438\) 1.51479 + 0.405886i 0.0723794 + 0.0193940i
\(439\) 6.84536 11.8565i 0.326711 0.565880i −0.655146 0.755502i \(-0.727393\pi\)
0.981857 + 0.189622i \(0.0607262\pi\)
\(440\) 1.08280 + 2.63917i 0.0516206 + 0.125818i
\(441\) 13.7713i 0.655777i
\(442\) 0 0
\(443\) 6.46290 6.46290i 0.307062 0.307062i −0.536707 0.843769i \(-0.680332\pi\)
0.843769 + 0.536707i \(0.180332\pi\)
\(444\) 0.784399 + 2.92742i 0.0372259 + 0.138929i
\(445\) −2.86680 6.98740i −0.135899 0.331235i
\(446\) 4.25377 2.45591i 0.201422 0.116291i
\(447\) 15.8010i 0.747364i
\(448\) −5.00971 8.67708i −0.236687 0.409953i
\(449\) 6.65458 24.8352i 0.314049 1.17205i −0.610822 0.791768i \(-0.709161\pi\)
0.924872 0.380280i \(-0.124172\pi\)
\(450\) −5.05558 + 1.31828i −0.238322 + 0.0621443i
\(451\) 0.190442 + 0.329855i 0.00896755 + 0.0155323i
\(452\) 7.53143 + 28.1077i 0.354249 + 1.32207i
\(453\) −3.81852 2.20462i −0.179409 0.103582i
\(454\) −7.21383 −0.338562
\(455\) 0 0
\(456\) 9.55545 0.447475
\(457\) 0.716665 + 0.413767i 0.0335242 + 0.0193552i 0.516668 0.856186i \(-0.327172\pi\)
−0.483144 + 0.875541i \(0.660505\pi\)
\(458\) −2.82349 10.5374i −0.131933 0.492381i
\(459\) −5.71155 9.89269i −0.266592 0.461751i
\(460\) 3.25138 4.20792i 0.151596 0.196195i
\(461\) −6.23219 + 23.2589i −0.290262 + 1.08327i 0.654646 + 0.755936i \(0.272818\pi\)
−0.944908 + 0.327337i \(0.893849\pi\)
\(462\) −0.586988 1.01669i −0.0273091 0.0473008i
\(463\) 6.35566i 0.295373i 0.989034 + 0.147686i \(0.0471826\pi\)
−0.989034 + 0.147686i \(0.952817\pi\)
\(464\) 21.3935 12.3515i 0.993167 0.573405i
\(465\) −13.2130 5.52509i −0.612737 0.256220i
\(466\) 2.99418 + 11.1744i 0.138703 + 0.517645i
\(467\) −15.6194 + 15.6194i −0.722781 + 0.722781i −0.969171 0.246390i \(-0.920756\pi\)
0.246390 + 0.969171i \(0.420756\pi\)
\(468\) 0 0
\(469\) 45.0153i 2.07861i
\(470\) −1.62295 + 3.88119i −0.0748610 + 0.179026i
\(471\) 6.56942 11.3786i 0.302703 0.524297i
\(472\) −18.6455 4.99605i −0.858229 0.229962i
\(473\) −1.49000 −0.0685104
\(474\) 1.40042 + 0.375240i 0.0643232 + 0.0172354i
\(475\) 27.3859 + 0.184093i 1.25655 + 0.00844675i
\(476\) −10.8371 + 10.8371i −0.496716 + 0.496716i
\(477\) −1.91500 + 7.14687i −0.0876818 + 0.327233i
\(478\) 9.85182 2.63979i 0.450612 0.120741i
\(479\) −9.14111 + 2.44935i −0.417668 + 0.111914i −0.461532 0.887124i \(-0.652700\pi\)
0.0438638 + 0.999038i \(0.486033\pi\)
\(480\) −6.41866 + 8.30700i −0.292970 + 0.379161i
\(481\) 0 0
\(482\) −1.08228 1.08228i −0.0492964 0.0492964i
\(483\) −2.34044 + 4.05375i −0.106494 + 0.184452i
\(484\) −16.0095 9.24310i −0.727705 0.420141i
\(485\) −9.58681 12.5811i −0.435314 0.571278i
\(486\) −5.63904 5.63904i −0.255792 0.255792i
\(487\) −5.33382 + 3.07948i −0.241698 + 0.139545i −0.615957 0.787780i \(-0.711231\pi\)
0.374259 + 0.927324i \(0.377897\pi\)
\(488\) −9.95775 + 5.74911i −0.450766 + 0.260250i
\(489\) −0.0877545 0.0877545i −0.00396840 0.00396840i
\(490\) −4.35707 5.71793i −0.196832 0.258310i
\(491\) 12.8290 + 7.40681i 0.578964 + 0.334265i 0.760721 0.649078i \(-0.224845\pi\)
−0.181758 + 0.983343i \(0.558179\pi\)
\(492\) −0.457320 + 0.792102i −0.0206176 + 0.0357107i
\(493\) −15.9781 15.9781i −0.719615 0.719615i
\(494\) 0 0
\(495\) −1.98914 + 2.57433i −0.0894051 + 0.115708i
\(496\) 17.0775 4.57590i 0.766802 0.205464i
\(497\) −23.7993 + 6.37699i −1.06754 + 0.286047i
\(498\) −0.257155 + 0.959715i −0.0115234 + 0.0430059i
\(499\) −21.0529 + 21.0529i −0.942459 + 0.942459i −0.998432 0.0559733i \(-0.982174\pi\)
0.0559733 + 0.998432i \(0.482174\pi\)
\(500\) −12.1085 + 15.4549i −0.541508 + 0.691164i
\(501\) −19.6538 5.26622i −0.878068 0.235278i
\(502\) −14.5844 −0.650933
\(503\) 37.4393 + 10.0318i 1.66934 + 0.447297i 0.964932 0.262502i \(-0.0845476\pi\)
0.704404 + 0.709799i \(0.251214\pi\)
\(504\) −7.21280 + 12.4929i −0.321284 + 0.556479i
\(505\) −12.9135 + 30.8820i −0.574643 + 1.37423i
\(506\) 0.459974i 0.0204484i
\(507\) 0 0
\(508\) −10.3059 + 10.3059i −0.457250 + 0.457250i
\(509\) 1.43699 + 5.36291i 0.0636933 + 0.237707i 0.990432 0.137999i \(-0.0440670\pi\)
−0.926739 + 0.375706i \(0.877400\pi\)
\(510\) 2.27518 + 0.951382i 0.100747 + 0.0421279i
\(511\) 10.7474 6.20501i 0.475437 0.274493i
\(512\) 22.5909i 0.998384i
\(513\) 13.1750 + 22.8197i 0.581688 + 1.00751i
\(514\) 0.915926 3.41828i 0.0403997 0.150774i
\(515\) 6.14563 7.95364i 0.270809 0.350479i
\(516\) −1.78902 3.09867i −0.0787572 0.136411i
\(517\) 0.677985 + 2.53028i 0.0298178 + 0.111281i
\(518\) −2.88521 1.66578i −0.126769 0.0731900i
\(519\) 7.27269 0.319236
\(520\) 0 0
\(521\) −13.8692 −0.607619 −0.303809 0.952733i \(-0.598259\pi\)
−0.303809 + 0.952733i \(0.598259\pi\)
\(522\) −8.61159 4.97191i −0.376919 0.217614i
\(523\) 8.10818 + 30.2601i 0.354546 + 1.32318i 0.881055 + 0.473014i \(0.156834\pi\)
−0.526509 + 0.850170i \(0.676499\pi\)
\(524\) −1.20649 2.08970i −0.0527057 0.0912890i
\(525\) 8.74146 14.9083i 0.381508 0.650652i
\(526\) 1.72130 6.42400i 0.0750524 0.280100i
\(527\) −8.08609 14.0055i −0.352236 0.610090i
\(528\) 1.67875i 0.0730583i
\(529\) −18.3303 + 10.5830i −0.796969 + 0.460130i
\(530\) −1.46606 3.57331i −0.0636816 0.155214i
\(531\) −5.69768 21.2640i −0.247258 0.922781i
\(532\) 24.9981 24.9981i 1.08381 1.08381i
\(533\) 0 0
\(534\) 1.56879i 0.0678882i
\(535\) 12.9458 + 31.5534i 0.559695 + 1.36417i
\(536\) 11.3602 19.6765i 0.490688 0.849897i
\(537\) −14.8549 3.98035i −0.641035 0.171765i
\(538\) −4.00246 −0.172558
\(539\) −4.32381 1.15856i −0.186240 0.0499028i
\(540\) −18.7202 2.52860i −0.805589 0.108814i
\(541\) 10.7732 10.7732i 0.463175 0.463175i −0.436520 0.899695i \(-0.643789\pi\)
0.899695 + 0.436520i \(0.143789\pi\)
\(542\) −1.17561 + 4.38745i −0.0504969 + 0.188457i
\(543\) −16.3855 + 4.39048i −0.703170 + 0.188414i
\(544\) −11.4504 + 3.06813i −0.490932 + 0.131545i
\(545\) −5.65278 4.36780i −0.242139 0.187096i
\(546\) 0 0
\(547\) 14.2704 + 14.2704i 0.610159 + 0.610159i 0.942987 0.332828i \(-0.108003\pi\)
−0.332828 + 0.942987i \(0.608003\pi\)
\(548\) 10.8240 18.7477i 0.462379 0.800863i
\(549\) −11.3562 6.55650i −0.484671 0.279825i
\(550\) 0.0114157 1.69822i 0.000486767 0.0724122i
\(551\) 36.8569 + 36.8569i 1.57016 + 1.57016i
\(552\) −2.04605 + 1.18128i −0.0870855 + 0.0502788i
\(553\) 9.93592 5.73651i 0.422518 0.243941i
\(554\) 9.02605 + 9.02605i 0.383480 + 0.383480i
\(555\) 0.516571 3.82437i 0.0219272 0.162336i
\(556\) −9.73546 5.62077i −0.412875 0.238374i
\(557\) 8.35584 14.4727i 0.354048 0.613229i −0.632906 0.774228i \(-0.718138\pi\)
0.986955 + 0.160999i \(0.0514716\pi\)
\(558\) −5.03231 5.03231i −0.213035 0.213035i
\(559\) 0 0
\(560\) 2.71361 + 21.1613i 0.114671 + 0.894227i
\(561\) 1.48326 0.397439i 0.0626234 0.0167799i
\(562\) −3.65629 + 0.979701i −0.154231 + 0.0413262i
\(563\) −5.84179 + 21.8019i −0.246202 + 0.918839i 0.726573 + 0.687089i \(0.241112\pi\)
−0.972775 + 0.231750i \(0.925555\pi\)
\(564\) −4.44802 + 4.44802i −0.187296 + 0.187296i
\(565\) 4.95987 36.7198i 0.208663 1.54481i
\(566\) 4.19136 + 1.12307i 0.176176 + 0.0472063i
\(567\) −6.70030 −0.281386
\(568\) −12.0122 3.21865i −0.504019 0.135052i
\(569\) 2.86843 4.96826i 0.120251 0.208280i −0.799616 0.600512i \(-0.794963\pi\)
0.919866 + 0.392232i \(0.128297\pi\)
\(570\) −5.24821 2.19458i −0.219823 0.0919206i
\(571\) 46.5634i 1.94862i 0.225214 + 0.974309i \(0.427692\pi\)
−0.225214 + 0.974309i \(0.572308\pi\)
\(572\) 0 0
\(573\) −3.45183 + 3.45183i −0.144202 + 0.144202i
\(574\) −0.260227 0.971181i −0.0108617 0.0405363i
\(575\) −5.88672 + 3.34614i −0.245493 + 0.139544i
\(576\) 4.99463 2.88365i 0.208109 0.120152i
\(577\) 28.9429i 1.20491i 0.798153 + 0.602455i \(0.205811\pi\)
−0.798153 + 0.602455i \(0.794189\pi\)
\(578\) −2.80580 4.85978i −0.116706 0.202140i
\(579\) 2.45862 9.17569i 0.102177 0.381329i
\(580\) −37.0638 + 4.75287i −1.53899 + 0.197352i
\(581\) 3.93127 + 6.80916i 0.163097 + 0.282491i
\(582\) 0.850351 + 3.17355i 0.0352482 + 0.131548i
\(583\) −2.08281 1.20251i −0.0862613 0.0498030i
\(584\) 6.26369 0.259193
\(585\) 0 0
\(586\) −6.53726 −0.270052
\(587\) −17.0534 9.84577i −0.703868 0.406379i 0.104918 0.994481i \(-0.466542\pi\)
−0.808787 + 0.588102i \(0.799875\pi\)
\(588\) −2.78213 10.3830i −0.114733 0.428189i
\(589\) 18.6524 + 32.3069i 0.768558 + 1.33118i
\(590\) 9.09338 + 7.02628i 0.374368 + 0.289267i
\(591\) 3.17966 11.8667i 0.130794 0.488129i
\(592\) 2.38201 + 4.12577i 0.0979001 + 0.169568i
\(593\) 21.8216i 0.896106i −0.894007 0.448053i \(-0.852118\pi\)
0.894007 0.448053i \(-0.147882\pi\)
\(594\) 1.41506 0.816987i 0.0580607 0.0335214i
\(595\) 18.0547 7.40749i 0.740169 0.303677i
\(596\) −7.63679 28.5009i −0.312815 1.16744i
\(597\) −5.22002 + 5.22002i −0.213641 + 0.213641i
\(598\) 0 0
\(599\) 37.6041i 1.53646i 0.640172 + 0.768232i \(0.278863\pi\)
−0.640172 + 0.768232i \(0.721137\pi\)
\(600\) 7.58328 4.31050i 0.309586 0.175976i
\(601\) 10.1487 17.5781i 0.413976 0.717027i −0.581344 0.813658i \(-0.697473\pi\)
0.995320 + 0.0966302i \(0.0308064\pi\)
\(602\) 3.79922 + 1.01800i 0.154845 + 0.0414905i
\(603\) 25.9113 1.05519
\(604\) −7.95310 2.13103i −0.323607 0.0867103i
\(605\) 14.2670 + 18.7230i 0.580034 + 0.761199i
\(606\) 4.91641 4.91641i 0.199716 0.199716i
\(607\) 8.91757 33.2808i 0.361953 1.35083i −0.509552 0.860440i \(-0.670189\pi\)
0.871505 0.490387i \(-0.163144\pi\)
\(608\) 26.4129 7.07732i 1.07119 0.287023i
\(609\) 31.7715 8.51314i 1.28744 0.344970i
\(610\) 6.78955 0.870657i 0.274901 0.0352519i
\(611\) 0 0
\(612\) −6.23794 6.23794i −0.252154 0.252154i
\(613\) −12.4332 + 21.5350i −0.502173 + 0.869790i 0.497824 + 0.867278i \(0.334133\pi\)
−0.999997 + 0.00251133i \(0.999201\pi\)
\(614\) 6.62053 + 3.82236i 0.267183 + 0.154258i
\(615\) 0.926357 0.705885i 0.0373543 0.0284640i
\(616\) −3.31563 3.31563i −0.133591 0.133591i
\(617\) 24.0895 13.9081i 0.969805 0.559917i 0.0706286 0.997503i \(-0.477499\pi\)
0.899177 + 0.437585i \(0.144166\pi\)
\(618\) −1.80809 + 1.04390i −0.0727321 + 0.0419919i
\(619\) 19.5593 + 19.5593i 0.786156 + 0.786156i 0.980862 0.194705i \(-0.0623751\pi\)
−0.194705 + 0.980862i \(0.562375\pi\)
\(620\) −26.5030 3.57985i −1.06439 0.143770i
\(621\) −5.64213 3.25749i −0.226411 0.130718i
\(622\) 1.32099 2.28803i 0.0529671 0.0917416i
\(623\) 8.77838 + 8.77838i 0.351698 + 0.351698i
\(624\) 0 0
\(625\) 21.8167 12.2078i 0.872669 0.488312i
\(626\) 16.4570 4.40965i 0.657755 0.176245i
\(627\) −3.42148 + 0.916783i −0.136641 + 0.0366128i
\(628\) 6.35012 23.6990i 0.253397 0.945692i
\(629\) 3.08139 3.08139i 0.122863 0.122863i
\(630\) 6.83076 5.20504i 0.272144 0.207374i
\(631\) −12.6187 3.38116i −0.502341 0.134602i −0.00125496 0.999999i \(-0.500399\pi\)
−0.501086 + 0.865397i \(0.667066\pi\)
\(632\) 5.79076 0.230344
\(633\) 11.2855 + 3.02393i 0.448557 + 0.120190i
\(634\) −4.68840 + 8.12054i −0.186200 + 0.322508i
\(635\) 17.1697 7.04442i 0.681360 0.279549i
\(636\) 5.77534i 0.229007i
\(637\) 0 0
\(638\) 2.28552 2.28552i 0.0904846 0.0904846i
\(639\) −3.67067 13.6991i −0.145210 0.541929i
\(640\) −9.77471 + 23.3757i −0.386379 + 0.924006i
\(641\) 23.7092 13.6885i 0.936456 0.540663i 0.0476083 0.998866i \(-0.484840\pi\)
0.888848 + 0.458203i \(0.151507\pi\)
\(642\) 7.08428i 0.279594i
\(643\) 15.7510 + 27.2816i 0.621161 + 1.07588i 0.989270 + 0.146099i \(0.0466719\pi\)
−0.368109 + 0.929783i \(0.619995\pi\)
\(644\) −2.26231 + 8.44305i −0.0891475 + 0.332703i
\(645\) 0.579501 + 4.51907i 0.0228178 + 0.177938i
\(646\) −3.21181 5.56301i −0.126367 0.218874i
\(647\) −10.8106 40.3457i −0.425008 1.58615i −0.763905 0.645329i \(-0.776720\pi\)
0.338896 0.940824i \(-0.389946\pi\)
\(648\) −2.92875 1.69092i −0.115052 0.0664254i
\(649\) 7.15565 0.280884
\(650\) 0 0
\(651\) 23.5409 0.922641
\(652\) −0.200698 0.115873i −0.00785996 0.00453795i
\(653\) −3.93069 14.6695i −0.153820 0.574064i −0.999204 0.0399041i \(-0.987295\pi\)
0.845384 0.534160i \(-0.179372\pi\)
\(654\) 0.741918 + 1.28504i 0.0290113 + 0.0502490i
\(655\) 0.390807 + 3.04759i 0.0152701 + 0.119079i
\(656\) −0.372117 + 1.38876i −0.0145287 + 0.0542220i
\(657\) 3.57167 + 6.18632i 0.139344 + 0.241351i
\(658\) 6.91493i 0.269572i
\(659\) −24.6914 + 14.2556i −0.961840 + 0.555319i −0.896739 0.442560i \(-0.854070\pi\)
−0.0651015 + 0.997879i \(0.520737\pi\)
\(660\) 0.979658 2.34280i 0.0381331 0.0911934i
\(661\) 1.63091 + 6.08664i 0.0634351 + 0.236743i 0.990363 0.138497i \(-0.0442271\pi\)
−0.926928 + 0.375240i \(0.877560\pi\)
\(662\) 2.45054 2.45054i 0.0952430 0.0952430i
\(663\) 0 0
\(664\) 3.96845i 0.154006i
\(665\) −41.6471 + 17.0870i −1.61501 + 0.662606i
\(666\) 0.958840 1.66076i 0.0371543 0.0643531i
\(667\) −12.4483 3.33552i −0.482002 0.129152i
\(668\) −37.9955 −1.47009
\(669\) −9.03352 2.42052i −0.349256 0.0935829i
\(670\) −10.7585 + 8.19801i −0.415638 + 0.316717i
\(671\) 3.01394 3.01394i 0.116352 0.116352i
\(672\) 4.46610 16.6677i 0.172283 0.642970i
\(673\) −22.1285 + 5.92931i −0.852991 + 0.228558i −0.658719 0.752389i \(-0.728901\pi\)
−0.194272 + 0.980948i \(0.562235\pi\)
\(674\) −0.743468 + 0.199212i −0.0286373 + 0.00767334i
\(675\) 20.7498 + 12.1666i 0.798660 + 0.468293i
\(676\) 0 0
\(677\) −16.1247 16.1247i −0.619724 0.619724i 0.325736 0.945461i \(-0.394388\pi\)
−0.945461 + 0.325736i \(0.894388\pi\)
\(678\) −3.84825 + 6.66536i −0.147791 + 0.255982i
\(679\) 22.5163 + 12.9998i 0.864096 + 0.498886i
\(680\) 9.76121 + 1.31848i 0.374325 + 0.0505614i
\(681\) 9.71227 + 9.71227i 0.372175 + 0.372175i
\(682\) 2.00337 1.15664i 0.0767129 0.0442902i
\(683\) −27.7544 + 16.0240i −1.06199 + 0.613142i −0.925983 0.377565i \(-0.876761\pi\)
−0.136010 + 0.990707i \(0.543428\pi\)
\(684\) 14.3892 + 14.3892i 0.550185 + 0.550185i
\(685\) −21.9253 + 16.7071i −0.837724 + 0.638346i
\(686\) −0.771532 0.445444i −0.0294572 0.0170071i
\(687\) −10.3856 + 17.9883i −0.396234 + 0.686298i
\(688\) −3.97707 3.97707i −0.151624 0.151624i
\(689\) 0 0
\(690\) 1.39507 0.178896i 0.0531093 0.00681046i
\(691\) 0.532264 0.142620i 0.0202483 0.00542551i −0.248681 0.968586i \(-0.579997\pi\)
0.268929 + 0.963160i \(0.413330\pi\)
\(692\) 13.1180 3.51496i 0.498672 0.133619i
\(693\) 1.38404 5.16531i 0.0525754 0.196214i
\(694\) 9.02132 9.02132i 0.342445 0.342445i
\(695\) 8.67580 + 11.3855i 0.329092 + 0.431878i
\(696\) 16.0360 + 4.29682i 0.607842 + 0.162871i
\(697\) 1.31514 0.0498144
\(698\) 4.48442 + 1.20160i 0.169738 + 0.0454811i
\(699\) 11.0134 19.0758i 0.416565 0.721512i
\(700\) 8.56194 31.1155i 0.323611 1.17605i
\(701\) 9.52279i 0.359671i −0.983697 0.179835i \(-0.942443\pi\)
0.983697 0.179835i \(-0.0575565\pi\)
\(702\) 0 0
\(703\) −7.10792 + 7.10792i −0.268080 + 0.268080i
\(704\) 0.485195 + 1.81077i 0.0182865 + 0.0682460i
\(705\) 7.41045 3.04037i 0.279094 0.114507i
\(706\) −1.39674 + 0.806411i −0.0525672 + 0.0303497i
\(707\) 55.0209i 2.06927i
\(708\) 8.59166 + 14.8812i 0.322894 + 0.559270i
\(709\) −8.39944 + 31.3471i −0.315448 + 1.17727i 0.608124 + 0.793842i \(0.291922\pi\)
−0.923572 + 0.383425i \(0.874745\pi\)
\(710\) 5.85831 + 4.52661i 0.219859 + 0.169881i
\(711\) 3.30200 + 5.71923i 0.123835 + 0.214488i
\(712\) 1.62175 + 6.05244i 0.0607776 + 0.226825i
\(713\) −7.98782 4.61177i −0.299146 0.172712i
\(714\) −4.05358 −0.151701
\(715\) 0 0
\(716\) −28.7180 −1.07324
\(717\) −16.8180 9.70986i −0.628079 0.362621i
\(718\) −0.564197 2.10561i −0.0210557 0.0785808i
\(719\) 4.21240 + 7.29608i 0.157096 + 0.272098i 0.933820 0.357743i \(-0.116454\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(720\) −12.1807 + 1.56199i −0.453947 + 0.0582118i
\(721\) −4.27612 + 15.9587i −0.159251 + 0.594333i
\(722\) 2.71668 + 4.70543i 0.101104 + 0.175118i
\(723\) 2.91423i 0.108381i
\(724\) −27.4332 + 15.8385i −1.01955 + 0.588635i
\(725\) 45.8763 + 12.6236i 1.70380 + 0.468830i
\(726\) −1.26548 4.72284i −0.0469664 0.175281i
\(727\) −8.33682 + 8.33682i −0.309195 + 0.309195i −0.844597 0.535402i \(-0.820160\pi\)
0.535402 + 0.844597i \(0.320160\pi\)
\(728\) 0 0
\(729\) 9.71523i 0.359824i
\(730\) −3.44025 1.43857i −0.127329 0.0532437i
\(731\) −2.57239 + 4.45551i −0.0951432 + 0.164793i
\(732\) 9.88670 + 2.64913i 0.365423 + 0.0979148i
\(733\) 18.6238 0.687887 0.343944 0.938990i \(-0.388237\pi\)
0.343944 + 0.938990i \(0.388237\pi\)
\(734\) −11.9696 3.20725i −0.441807 0.118382i
\(735\) −1.83219 + 13.5644i −0.0675812 + 0.500330i
\(736\) −4.78070 + 4.78070i −0.176219 + 0.176219i
\(737\) −2.17988 + 8.13543i −0.0802970 + 0.299672i
\(738\) 0.559023 0.149790i 0.0205779 0.00551383i
\(739\) 31.8740 8.54061i 1.17250 0.314171i 0.380555 0.924758i \(-0.375733\pi\)
0.791949 + 0.610587i \(0.209066\pi\)
\(740\) −0.916598 7.14782i −0.0336948 0.262759i
\(741\) 0 0
\(742\) 4.48920 + 4.48920i 0.164804 + 0.164804i
\(743\) 18.7850 32.5366i 0.689155 1.19365i −0.282957 0.959133i \(-0.591315\pi\)
0.972112 0.234518i \(-0.0753512\pi\)
\(744\) 10.2899 + 5.94088i 0.377246 + 0.217803i
\(745\) −5.02925 + 37.2335i −0.184258 + 1.36413i
\(746\) 3.99061 + 3.99061i 0.146107 + 0.146107i
\(747\) −3.91943 + 2.26288i −0.143404 + 0.0827946i
\(748\) 2.48333 1.43375i 0.0907995 0.0524231i
\(749\) −39.6410 39.6410i −1.44845 1.44845i
\(750\) −5.15500 + 0.625858i −0.188234 + 0.0228531i
\(751\) −29.1051 16.8038i −1.06206 0.613181i −0.136059 0.990701i \(-0.543444\pi\)
−0.926001 + 0.377520i \(0.876777\pi\)
\(752\) −4.94407 + 8.56339i −0.180292 + 0.312275i
\(753\) 19.6356 + 19.6356i 0.715560 + 0.715560i
\(754\) 0 0
\(755\) 8.29623 + 6.41034i 0.301931 + 0.233296i
\(756\) 29.9924 8.03643i 1.09081 0.292282i
\(757\) 15.5871 4.17654i 0.566521 0.151799i 0.0358205 0.999358i \(-0.488596\pi\)
0.530701 + 0.847559i \(0.321929\pi\)
\(758\) 0.256883 0.958699i 0.00933040 0.0348215i
\(759\) 0.619282 0.619282i 0.0224785 0.0224785i
\(760\) −22.5164 3.04137i −0.816756 0.110322i
\(761\) 15.1340 + 4.05514i 0.548606 + 0.146999i 0.522467 0.852660i \(-0.325012\pi\)
0.0261397 + 0.999658i \(0.491679\pi\)
\(762\) −3.85490 −0.139648
\(763\) 11.3421 + 3.03911i 0.410612 + 0.110023i
\(764\) −4.55789 + 7.89449i −0.164899 + 0.285613i
\(765\) 4.26384 + 10.3925i 0.154159 + 0.375741i
\(766\) 13.0645i 0.472039i
\(767\) 0 0
\(768\) 0.0960396 0.0960396i 0.00346553 0.00346553i
\(769\) −8.43930 31.4959i −0.304329 1.13577i −0.933522 0.358521i \(-0.883281\pi\)
0.629193 0.777249i \(-0.283386\pi\)
\(770\) 1.05958 + 2.58256i 0.0381845 + 0.0930690i
\(771\) −5.83532 + 3.36902i −0.210154 + 0.121332i
\(772\) 17.7388i 0.638433i
\(773\) 11.9531 + 20.7033i 0.429921 + 0.744646i 0.996866 0.0791103i \(-0.0252079\pi\)
−0.566944 + 0.823756i \(0.691875\pi\)
\(774\) −0.585972 + 2.18688i −0.0210623 + 0.0786056i
\(775\) 29.3764 + 17.2248i 1.05523 + 0.618733i
\(776\) 6.56136 + 11.3646i 0.235539 + 0.407966i
\(777\) 1.64177 + 6.12718i 0.0588983 + 0.219811i
\(778\) −0.278066 0.160541i −0.00996914 0.00575569i
\(779\) −3.03366 −0.108692
\(780\) 0 0
\(781\) 4.60995 0.164957
\(782\) 1.37545 + 0.794114i 0.0491858 + 0.0283975i
\(783\) 11.8488 + 44.2204i 0.423443 + 1.58031i
\(784\) −8.44858 14.6334i −0.301735 0.522620i
\(785\) −19.1018 + 24.7214i −0.681772 + 0.882346i
\(786\) 0.165181 0.616466i 0.00589183 0.0219886i
\(787\) 7.85572 + 13.6065i 0.280026 + 0.485020i 0.971391 0.237486i \(-0.0763235\pi\)
−0.691365 + 0.722506i \(0.742990\pi\)
\(788\) 22.9411i 0.817242i
\(789\) −10.9664 + 6.33143i −0.390412 + 0.225405i
\(790\) −3.18050 1.32995i −0.113157 0.0473174i
\(791\) 15.7635 + 58.8303i 0.560487 + 2.09176i
\(792\) 1.90851 1.90851i 0.0678161 0.0678161i
\(793\) 0 0
\(794\) 13.3394i 0.473397i
\(795\) −2.83707 + 6.78470i −0.100621 + 0.240629i
\(796\) −6.89264 + 11.9384i −0.244303 + 0.423146i
\(797\) −30.1666 8.08312i −1.06856 0.286319i −0.318656 0.947870i \(-0.603232\pi\)
−0.749900 + 0.661552i \(0.769898\pi\)
\(798\) 9.35048 0.331003
\(799\) 8.73669 + 2.34099i 0.309082 + 0.0828183i
\(800\) 17.7689 17.5316i 0.628225 0.619836i
\(801\) −5.05293 + 5.05293i −0.178537 + 0.178537i
\(802\) −0.633871 + 2.36564i −0.0223827 + 0.0835336i
\(803\) −2.24281 + 0.600960i −0.0791471 + 0.0212074i
\(804\) −19.5361 + 5.23469i −0.688986 + 0.184613i
\(805\) 6.80525 8.80732i 0.239853 0.310417i
\(806\) 0 0
\(807\) 5.38868 + 5.38868i 0.189690 + 0.189690i
\(808\) 13.8853 24.0500i 0.488483 0.846078i
\(809\) 11.4546 + 6.61331i 0.402722 + 0.232512i 0.687658 0.726035i \(-0.258639\pi\)
−0.284936 + 0.958547i \(0.591972\pi\)
\(810\) 1.22023 + 1.60135i 0.0428746 + 0.0562658i
\(811\) −22.0736 22.0736i −0.775109 0.775109i 0.203886 0.978995i \(-0.434643\pi\)
−0.978995 + 0.203886i \(0.934643\pi\)
\(812\) 53.1928 30.7109i 1.86670 1.07774i
\(813\) 7.48978 4.32423i 0.262678 0.151657i
\(814\) 0.440767 + 0.440767i 0.0154489 + 0.0154489i
\(815\) 0.178853 + 0.234715i 0.00626496 + 0.00822172i
\(816\) 5.01991 + 2.89825i 0.175732 + 0.101459i
\(817\) 5.93379 10.2776i 0.207597 0.359568i
\(818\) −2.11139 2.11139i −0.0738230 0.0738230i
\(819\) 0 0
\(820\) 1.32974 1.72095i 0.0464366 0.0600981i
\(821\) 8.74860 2.34418i 0.305328 0.0818124i −0.102902 0.994692i \(-0.532813\pi\)
0.408230 + 0.912879i \(0.366146\pi\)
\(822\) 5.53062 1.48192i 0.192902 0.0516881i
\(823\) 10.8551 40.5117i 0.378384 1.41215i −0.469953 0.882691i \(-0.655729\pi\)
0.848337 0.529457i \(-0.177604\pi\)
\(824\) −5.89653 + 5.89653i −0.205415 + 0.205415i
\(825\) −2.30175 + 2.27101i −0.0801366 + 0.0790664i
\(826\) −18.2455 4.88888i −0.634844 0.170106i
\(827\) −38.2009 −1.32838 −0.664188 0.747566i \(-0.731222\pi\)
−0.664188 + 0.747566i \(0.731222\pi\)
\(828\) −4.85992 1.30221i −0.168894 0.0452550i
\(829\) −14.6750 + 25.4178i −0.509682 + 0.882796i 0.490255 + 0.871579i \(0.336904\pi\)
−0.999937 + 0.0112165i \(0.996430\pi\)
\(830\) 0.911423 2.17962i 0.0316359 0.0756557i
\(831\) 24.3043i 0.843106i
\(832\) 0 0
\(833\) −10.9292 + 10.9292i −0.378673 + 0.378673i
\(834\) −0.769545 2.87198i −0.0266471 0.0994485i
\(835\) 44.6360 + 18.6648i 1.54469 + 0.645923i
\(836\) −5.72835 + 3.30726i −0.198119 + 0.114384i
\(837\) 32.7649i 1.13252i
\(838\) 1.32629 + 2.29721i 0.0458161 + 0.0793557i
\(839\) −9.11914 + 34.0331i −0.314828 + 1.17495i 0.609322 + 0.792923i \(0.291442\pi\)
−0.924150 + 0.382030i \(0.875225\pi\)
\(840\) −8.76652 + 11.3456i −0.302474 + 0.391460i
\(841\) 30.7798 + 53.3122i 1.06137 + 1.83835i
\(842\) −2.55582 9.53846i −0.0880795 0.328717i
\(843\) 6.24163 + 3.60361i 0.214973 + 0.124115i
\(844\) 21.8175 0.750988
\(845\) 0 0
\(846\) 3.98031 0.136846
\(847\) −33.5084 19.3461i −1.15136 0.664740i
\(848\) −2.34967 8.76909i −0.0806880 0.301132i
\(849\) −4.13097 7.15504i −0.141774 0.245560i
\(850\) −5.05841 2.96599i −0.173502 0.101733i
\(851\) 0.643261 2.40068i 0.0220507 0.0822944i
\(852\) 5.53509 + 9.58705i 0.189629 + 0.328447i
\(853\) 17.6392i 0.603954i 0.953315 + 0.301977i \(0.0976465\pi\)
−0.953315 + 0.301977i \(0.902353\pi\)
\(854\) −9.74415 + 5.62579i −0.333438 + 0.192511i
\(855\) −9.83549 23.9725i −0.336367 0.819844i
\(856\) −7.32342 27.3314i −0.250309 0.934167i
\(857\) 6.30427 6.30427i 0.215350 0.215350i −0.591186 0.806535i \(-0.701340\pi\)
0.806535 + 0.591186i \(0.201340\pi\)
\(858\) 0 0
\(859\) 29.2307i 0.997338i 0.866793 + 0.498669i \(0.166178\pi\)
−0.866793 + 0.498669i \(0.833822\pi\)
\(860\) 3.22937 + 7.87112i 0.110121 + 0.268403i
\(861\) −0.957186 + 1.65789i −0.0326208 + 0.0565009i
\(862\) −7.96263 2.13358i −0.271208 0.0726701i
\(863\) 15.7688 0.536775 0.268387 0.963311i \(-0.413509\pi\)
0.268387 + 0.963311i \(0.413509\pi\)
\(864\) 23.1986 + 6.21604i 0.789232 + 0.211474i
\(865\) −17.1373 2.31480i −0.582687 0.0787054i
\(866\) −2.65202 + 2.65202i −0.0901192 + 0.0901192i
\(867\) −2.76537 + 10.3205i −0.0939168 + 0.350502i
\(868\) 42.4615 11.3775i 1.44124 0.386179i
\(869\) −2.07347 + 0.555585i −0.0703377 + 0.0188469i
\(870\) −7.82071 6.04291i −0.265147 0.204874i
\(871\) 0 0
\(872\) 4.19076 + 4.19076i 0.141917 + 0.141917i
\(873\) −7.48283 + 12.9606i −0.253255 + 0.438651i
\(874\) −3.17277 1.83180i −0.107321 0.0619616i
\(875\) −25.3434 + 32.3476i −0.856764 + 1.09355i
\(876\) −3.94269 3.94269i −0.133211 0.133211i
\(877\) 38.7309 22.3613i 1.30785 0.755088i 0.326114 0.945331i \(-0.394261\pi\)
0.981737 + 0.190242i \(0.0609274\pi\)
\(878\) 5.85595 3.38094i 0.197629 0.114101i
\(879\) 8.80139 + 8.80139i 0.296863 + 0.296863i
\(880\) 0.534323 3.95580i 0.0180120 0.133350i
\(881\) −18.0323 10.4110i −0.607525 0.350755i 0.164471 0.986382i \(-0.447408\pi\)
−0.771996 + 0.635627i \(0.780742\pi\)
\(882\) −3.40084 + 5.89043i −0.114512 + 0.198341i
\(883\) 5.33747 + 5.33747i 0.179620 + 0.179620i 0.791190 0.611570i \(-0.209462\pi\)
−0.611570 + 0.791190i \(0.709462\pi\)
\(884\) 0 0
\(885\) −2.78302 21.7026i −0.0935502 0.729523i
\(886\) 4.36041 1.16837i 0.146491 0.0392521i
\(887\) 25.8911 6.93749i 0.869337 0.232938i 0.203536 0.979067i \(-0.434757\pi\)
0.665801 + 0.746129i \(0.268090\pi\)
\(888\) −0.828649 + 3.09256i −0.0278077 + 0.103780i
\(889\) −21.5706 + 21.5706i −0.723454 + 0.723454i
\(890\) 0.499324 3.69669i 0.0167374 0.123913i
\(891\) 1.21092 + 0.324464i 0.0405673 + 0.0108700i
\(892\) −17.4639 −0.584736
\(893\) −20.1531 5.40002i −0.674399 0.180705i
\(894\) 3.90208 6.75861i 0.130505 0.226042i
\(895\) 33.7370 + 14.1074i 1.12770 + 0.471557i
\(896\) 41.6474i 1.39134i
\(897\) 0 0
\(898\) 8.97946 8.97946i 0.299648 0.299648i
\(899\) 16.7749 + 62.6048i 0.559475 + 2.08799i
\(900\) 17.9104 + 4.92835i 0.597014 + 0.164278i
\(901\) −7.19167 + 4.15211i −0.239589 + 0.138327i
\(902\) 0.188119i 0.00626368i
\(903\) −3.74447 6.48562i −0.124608 0.215828i
\(904\) −7.95630 + 29.6933i −0.264623 + 0.987585i
\(905\) 40.0082 5.13044i 1.32992 0.170542i
\(906\) −1.08887 1.88597i −0.0361752 0.0626572i
\(907\) 10.4931 + 39.1608i 0.348418 + 1.30031i 0.888568 + 0.458744i \(0.151701\pi\)
−0.540151 + 0.841568i \(0.681633\pi\)
\(908\) 22.2124 + 12.8243i 0.737144 + 0.425590i
\(909\) 31.6707 1.05045
\(910\) 0 0
\(911\) 8.00072 0.265076 0.132538 0.991178i \(-0.457687\pi\)
0.132538 + 0.991178i \(0.457687\pi\)
\(912\) −11.5796 6.68546i −0.383437 0.221378i
\(913\) −0.380746 1.42096i −0.0126009 0.0470271i
\(914\) 0.204360 + 0.353962i 0.00675963 + 0.0117080i
\(915\) −10.3133 7.96885i −0.340946 0.263442i
\(916\) −10.0389 + 37.4656i −0.331694 + 1.23790i
\(917\) −2.52522 4.37381i −0.0833901 0.144436i
\(918\) 5.64189i 0.186210i
\(919\) −1.84237 + 1.06369i −0.0607741 + 0.0350879i −0.530079 0.847948i \(-0.677838\pi\)
0.469305 + 0.883036i \(0.344504\pi\)
\(920\) 5.19728 2.13235i 0.171349 0.0703014i
\(921\) −3.76728 14.0597i −0.124136 0.463283i
\(922\) −8.40950 + 8.40950i −0.276952 + 0.276952i
\(923\) 0 0
\(924\) 4.17405i 0.137316i
\(925\) −2.43449 + 8.84732i −0.0800455 + 0.290898i
\(926\) −1.56954 + 2.71852i −0.0515782 + 0.0893360i
\(927\) −9.18601 2.46138i −0.301708 0.0808425i
\(928\) 47.5087 1.55955
\(929\) −19.2515 5.15841i −0.631620 0.169242i −0.0712153 0.997461i \(-0.522688\pi\)
−0.560405 + 0.828219i \(0.689354\pi\)
\(930\) −4.28718 5.62621i −0.140582 0.184491i
\(931\) 25.2106 25.2106i 0.826243 0.826243i
\(932\) 10.6458 39.7305i 0.348713 1.30142i
\(933\) −4.85898 + 1.30196i −0.159076 + 0.0426242i
\(934\) −10.5382 + 2.82369i −0.344819 + 0.0923940i
\(935\) −3.62166 + 0.464422i −0.118441 + 0.0151882i
\(936\) 0 0
\(937\) 17.2774 + 17.2774i 0.564427 + 0.564427i 0.930562 0.366135i \(-0.119319\pi\)
−0.366135 + 0.930562i \(0.619319\pi\)
\(938\) 11.1166 19.2545i 0.362969 0.628680i
\(939\) −28.0937 16.2199i −0.916802 0.529316i
\(940\) 11.8970 9.06556i 0.388039 0.295686i
\(941\) −24.2129 24.2129i −0.789319 0.789319i 0.192063 0.981383i \(-0.438482\pi\)
−0.981383 + 0.192063i \(0.938482\pi\)
\(942\) 5.61989 3.24465i 0.183106 0.105716i
\(943\) 0.649578 0.375034i 0.0211532 0.0122128i
\(944\) 19.0996 + 19.0996i 0.621640 + 0.621640i
\(945\) −39.1820 5.29244i −1.27459 0.172163i
\(946\) −0.637321 0.367957i −0.0207211 0.0119633i
\(947\) −4.15045 + 7.18880i −0.134872 + 0.233605i −0.925548 0.378629i \(-0.876396\pi\)
0.790677 + 0.612234i \(0.209729\pi\)
\(948\) −3.64500 3.64500i −0.118384 0.118384i
\(949\) 0 0
\(950\) 11.6684 + 6.84172i 0.378572 + 0.221975i
\(951\) 17.2452 4.62084i 0.559214 0.149841i
\(952\) −15.6388 + 4.19041i −0.506857 + 0.135812i
\(953\) 1.23858 4.62244i 0.0401215 0.149736i −0.942959 0.332908i \(-0.891970\pi\)
0.983081 + 0.183173i \(0.0586367\pi\)
\(954\) −2.58403 + 2.58403i −0.0836611 + 0.0836611i
\(955\) 9.23255 7.03521i 0.298758 0.227654i
\(956\) −35.0280 9.38573i −1.13289 0.303556i
\(957\) −6.15418 −0.198936
\(958\) −4.51481 1.20974i −0.145867 0.0390849i
\(959\) 22.6550 39.2396i 0.731568 1.26711i
\(960\) 5.30323 2.17582i 0.171161 0.0702241i
\(961\) 15.3867i 0.496346i
\(962\) 0 0
\(963\) 22.8178 22.8178i 0.735294 0.735294i
\(964\) 1.40848 + 5.25650i 0.0453639 + 0.169301i
\(965\) −8.71398 + 20.8390i −0.280513 + 0.670832i
\(966\) −2.00216 + 1.15595i −0.0644183 + 0.0371919i
\(967\) 8.78782i 0.282597i −0.989967 0.141299i \(-0.954872\pi\)
0.989967 0.141299i \(-0.0451278\pi\)
\(968\) −9.76453 16.9127i −0.313844 0.543594i
\(969\) −3.16552 + 11.8139i −0.101691 + 0.379517i
\(970\) −0.993666 7.74880i −0.0319047 0.248799i
\(971\) 2.71693 + 4.70586i 0.0871905 + 0.151018i 0.906323 0.422587i \(-0.138878\pi\)
−0.819132 + 0.573605i \(0.805544\pi\)
\(972\) 7.33863 + 27.3881i 0.235387 + 0.878475i
\(973\) −20.3766 11.7645i −0.653245 0.377151i
\(974\) −3.04192 −0.0974695
\(975\) 0 0
\(976\) 16.0894 0.515010
\(977\) −16.1709 9.33626i −0.517352 0.298693i 0.218499 0.975837i \(-0.429884\pi\)
−0.735851 + 0.677144i \(0.763217\pi\)
\(978\) −0.0158643 0.0592064i −0.000507285 0.00189321i
\(979\) −1.16138 2.01158i −0.0371180 0.0642903i
\(980\) 3.25101 + 25.3521i 0.103850 + 0.809842i
\(981\) −1.74935 + 6.52865i −0.0558524 + 0.208444i
\(982\) 3.65824 + 6.33626i 0.116739 + 0.202198i
\(983\) 6.62470i 0.211295i 0.994404 + 0.105648i \(0.0336915\pi\)
−0.994404 + 0.105648i \(0.966308\pi\)
\(984\) −0.836786 + 0.483119i −0.0266758 + 0.0154013i
\(985\) −11.2695 + 26.9505i −0.359077 + 0.858715i
\(986\) −2.88852 10.7801i −0.0919893 0.343309i
\(987\) −9.30986 + 9.30986i −0.296336 + 0.296336i
\(988\) 0 0
\(989\) 2.93424i 0.0933033i
\(990\) −1.48655 + 0.609904i −0.0472457 + 0.0193840i
\(991\) 21.6135 37.4357i 0.686576 1.18919i −0.286362 0.958121i \(-0.592446\pi\)
0.972939 0.231064i \(-0.0742206\pi\)
\(992\) 32.8433 + 8.80033i 1.04277 + 0.279411i
\(993\) −6.59853 −0.209398
\(994\) −11.7545 3.14961i −0.372830 0.0998995i
\(995\) 13.9619 10.6390i 0.442621 0.337278i
\(996\) 2.49794 2.49794i 0.0791504 0.0791504i
\(997\) 11.7001 43.6654i 0.370547 1.38290i −0.489197 0.872173i \(-0.662710\pi\)
0.859744 0.510725i \(-0.170623\pi\)
\(998\) −14.2040 + 3.80596i −0.449621 + 0.120476i
\(999\) −8.52799 + 2.28507i −0.269814 + 0.0722963i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.657.3 20
5.3 odd 4 845.2.o.g.488.3 20
13.2 odd 12 845.2.o.g.587.3 20
13.3 even 3 845.2.t.e.427.3 20
13.4 even 6 845.2.f.e.437.6 20
13.5 odd 4 845.2.o.f.357.3 20
13.6 odd 12 845.2.k.d.577.5 20
13.7 odd 12 845.2.k.e.577.6 20
13.8 odd 4 845.2.o.e.357.3 20
13.9 even 3 845.2.f.d.437.5 20
13.10 even 6 845.2.t.f.427.3 20
13.11 odd 12 65.2.o.a.2.3 20
13.12 even 2 65.2.t.a.7.3 yes 20
39.11 even 12 585.2.cf.a.262.3 20
39.38 odd 2 585.2.dp.a.397.3 20
65.3 odd 12 845.2.o.f.258.3 20
65.8 even 4 845.2.t.f.188.3 20
65.12 odd 4 325.2.s.b.293.3 20
65.18 even 4 845.2.t.e.188.3 20
65.23 odd 12 845.2.o.e.258.3 20
65.24 odd 12 325.2.s.b.132.3 20
65.28 even 12 inner 845.2.t.g.418.3 20
65.33 even 12 845.2.f.e.408.5 20
65.37 even 12 325.2.x.b.93.3 20
65.38 odd 4 65.2.o.a.33.3 yes 20
65.43 odd 12 845.2.k.e.268.6 20
65.48 odd 12 845.2.k.d.268.5 20
65.58 even 12 845.2.f.d.408.6 20
65.63 even 12 65.2.t.a.28.3 yes 20
65.64 even 2 325.2.x.b.7.3 20
195.38 even 4 585.2.cf.a.163.3 20
195.128 odd 12 585.2.dp.a.28.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.3 20 13.11 odd 12
65.2.o.a.33.3 yes 20 65.38 odd 4
65.2.t.a.7.3 yes 20 13.12 even 2
65.2.t.a.28.3 yes 20 65.63 even 12
325.2.s.b.132.3 20 65.24 odd 12
325.2.s.b.293.3 20 65.12 odd 4
325.2.x.b.7.3 20 65.64 even 2
325.2.x.b.93.3 20 65.37 even 12
585.2.cf.a.163.3 20 195.38 even 4
585.2.cf.a.262.3 20 39.11 even 12
585.2.dp.a.28.3 20 195.128 odd 12
585.2.dp.a.397.3 20 39.38 odd 2
845.2.f.d.408.6 20 65.58 even 12
845.2.f.d.437.5 20 13.9 even 3
845.2.f.e.408.5 20 65.33 even 12
845.2.f.e.437.6 20 13.4 even 6
845.2.k.d.268.5 20 65.48 odd 12
845.2.k.d.577.5 20 13.6 odd 12
845.2.k.e.268.6 20 65.43 odd 12
845.2.k.e.577.6 20 13.7 odd 12
845.2.o.e.258.3 20 65.23 odd 12
845.2.o.e.357.3 20 13.8 odd 4
845.2.o.f.258.3 20 65.3 odd 12
845.2.o.f.357.3 20 13.5 odd 4
845.2.o.g.488.3 20 5.3 odd 4
845.2.o.g.587.3 20 13.2 odd 12
845.2.t.e.188.3 20 65.18 even 4
845.2.t.e.427.3 20 13.3 even 3
845.2.t.f.188.3 20 65.8 even 4
845.2.t.f.427.3 20 13.10 even 6
845.2.t.g.418.3 20 65.28 even 12 inner
845.2.t.g.657.3 20 1.1 even 1 trivial