Properties

Label 585.6.a.p.1.9
Level $585$
Weight $6$
Character 585.1
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 205 x^{7} + 608 x^{6} + 13727 x^{5} - 27536 x^{4} - 346839 x^{3} + 433844 x^{2} + \cdots - 3899136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-9.62674\) of defining polynomial
Character \(\chi\) \(=\) 585.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.6267 q^{2} +80.9276 q^{4} -25.0000 q^{5} +85.3847 q^{7} +519.941 q^{8} -265.669 q^{10} +269.013 q^{11} +169.000 q^{13} +907.362 q^{14} +2935.60 q^{16} -815.926 q^{17} +560.423 q^{19} -2023.19 q^{20} +2858.73 q^{22} +996.008 q^{23} +625.000 q^{25} +1795.92 q^{26} +6909.99 q^{28} +3950.82 q^{29} +4690.82 q^{31} +14557.7 q^{32} -8670.63 q^{34} -2134.62 q^{35} -7644.37 q^{37} +5955.47 q^{38} -12998.5 q^{40} +7871.47 q^{41} -1044.34 q^{43} +21770.6 q^{44} +10584.3 q^{46} +19035.2 q^{47} -9516.44 q^{49} +6641.71 q^{50} +13676.8 q^{52} +12068.9 q^{53} -6725.32 q^{55} +44395.1 q^{56} +41984.4 q^{58} -16364.9 q^{59} -24988.3 q^{61} +49848.1 q^{62} +60762.0 q^{64} -4225.00 q^{65} +21731.8 q^{67} -66031.0 q^{68} -22684.0 q^{70} +24.9983 q^{71} +60591.4 q^{73} -81234.8 q^{74} +45353.7 q^{76} +22969.6 q^{77} -62329.0 q^{79} -73390.0 q^{80} +83648.1 q^{82} -39744.2 q^{83} +20398.1 q^{85} -11098.0 q^{86} +139871. q^{88} +115144. q^{89} +14430.0 q^{91} +80604.6 q^{92} +202282. q^{94} -14010.6 q^{95} +85281.2 q^{97} -101129. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 139 q^{4} - 225 q^{5} - 153 q^{7} + 255 q^{8} - 125 q^{10} + 503 q^{11} + 1521 q^{13} + 1110 q^{14} + 763 q^{16} + 1897 q^{17} - 2412 q^{19} - 3475 q^{20} - 3776 q^{22} + 3901 q^{23} + 5625 q^{25}+ \cdots + 119225 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.6267 1.87856 0.939280 0.343151i \(-0.111494\pi\)
0.939280 + 0.343151i \(0.111494\pi\)
\(3\) 0 0
\(4\) 80.9276 2.52899
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 85.3847 0.658620 0.329310 0.944222i \(-0.393184\pi\)
0.329310 + 0.944222i \(0.393184\pi\)
\(8\) 519.941 2.87230
\(9\) 0 0
\(10\) −265.669 −0.840118
\(11\) 269.013 0.670334 0.335167 0.942159i \(-0.391207\pi\)
0.335167 + 0.942159i \(0.391207\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 907.362 1.23726
\(15\) 0 0
\(16\) 2935.60 2.86680
\(17\) −815.926 −0.684744 −0.342372 0.939564i \(-0.611230\pi\)
−0.342372 + 0.939564i \(0.611230\pi\)
\(18\) 0 0
\(19\) 560.423 0.356149 0.178074 0.984017i \(-0.443013\pi\)
0.178074 + 0.984017i \(0.443013\pi\)
\(20\) −2023.19 −1.13100
\(21\) 0 0
\(22\) 2858.73 1.25926
\(23\) 996.008 0.392594 0.196297 0.980545i \(-0.437108\pi\)
0.196297 + 0.980545i \(0.437108\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 1795.92 0.521019
\(27\) 0 0
\(28\) 6909.99 1.66564
\(29\) 3950.82 0.872353 0.436177 0.899861i \(-0.356332\pi\)
0.436177 + 0.899861i \(0.356332\pi\)
\(30\) 0 0
\(31\) 4690.82 0.876687 0.438344 0.898807i \(-0.355565\pi\)
0.438344 + 0.898807i \(0.355565\pi\)
\(32\) 14557.7 2.51315
\(33\) 0 0
\(34\) −8670.63 −1.28633
\(35\) −2134.62 −0.294544
\(36\) 0 0
\(37\) −7644.37 −0.917989 −0.458995 0.888439i \(-0.651790\pi\)
−0.458995 + 0.888439i \(0.651790\pi\)
\(38\) 5955.47 0.669047
\(39\) 0 0
\(40\) −12998.5 −1.28453
\(41\) 7871.47 0.731301 0.365651 0.930752i \(-0.380847\pi\)
0.365651 + 0.930752i \(0.380847\pi\)
\(42\) 0 0
\(43\) −1044.34 −0.0861336 −0.0430668 0.999072i \(-0.513713\pi\)
−0.0430668 + 0.999072i \(0.513713\pi\)
\(44\) 21770.6 1.69527
\(45\) 0 0
\(46\) 10584.3 0.737511
\(47\) 19035.2 1.25694 0.628468 0.777835i \(-0.283682\pi\)
0.628468 + 0.777835i \(0.283682\pi\)
\(48\) 0 0
\(49\) −9516.44 −0.566219
\(50\) 6641.71 0.375712
\(51\) 0 0
\(52\) 13676.8 0.701415
\(53\) 12068.9 0.590173 0.295087 0.955471i \(-0.404652\pi\)
0.295087 + 0.955471i \(0.404652\pi\)
\(54\) 0 0
\(55\) −6725.32 −0.299782
\(56\) 44395.1 1.89175
\(57\) 0 0
\(58\) 41984.4 1.63877
\(59\) −16364.9 −0.612045 −0.306023 0.952024i \(-0.598998\pi\)
−0.306023 + 0.952024i \(0.598998\pi\)
\(60\) 0 0
\(61\) −24988.3 −0.859829 −0.429915 0.902870i \(-0.641456\pi\)
−0.429915 + 0.902870i \(0.641456\pi\)
\(62\) 49848.1 1.64691
\(63\) 0 0
\(64\) 60762.0 1.85431
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) 21731.8 0.591437 0.295719 0.955275i \(-0.404441\pi\)
0.295719 + 0.955275i \(0.404441\pi\)
\(68\) −66031.0 −1.73171
\(69\) 0 0
\(70\) −22684.0 −0.553319
\(71\) 24.9983 0.000588526 0 0.000294263 1.00000i \(-0.499906\pi\)
0.000294263 1.00000i \(0.499906\pi\)
\(72\) 0 0
\(73\) 60591.4 1.33077 0.665386 0.746499i \(-0.268267\pi\)
0.665386 + 0.746499i \(0.268267\pi\)
\(74\) −81234.8 −1.72450
\(75\) 0 0
\(76\) 45353.7 0.900697
\(77\) 22969.6 0.441496
\(78\) 0 0
\(79\) −62329.0 −1.12363 −0.561814 0.827264i \(-0.689896\pi\)
−0.561814 + 0.827264i \(0.689896\pi\)
\(80\) −73390.0 −1.28207
\(81\) 0 0
\(82\) 83648.1 1.37379
\(83\) −39744.2 −0.633255 −0.316627 0.948550i \(-0.602551\pi\)
−0.316627 + 0.948550i \(0.602551\pi\)
\(84\) 0 0
\(85\) 20398.1 0.306227
\(86\) −11098.0 −0.161807
\(87\) 0 0
\(88\) 139871. 1.92540
\(89\) 115144. 1.54087 0.770434 0.637520i \(-0.220040\pi\)
0.770434 + 0.637520i \(0.220040\pi\)
\(90\) 0 0
\(91\) 14430.0 0.182668
\(92\) 80604.6 0.992865
\(93\) 0 0
\(94\) 202282. 2.36123
\(95\) −14010.6 −0.159275
\(96\) 0 0
\(97\) 85281.2 0.920288 0.460144 0.887844i \(-0.347798\pi\)
0.460144 + 0.887844i \(0.347798\pi\)
\(98\) −101129. −1.06368
\(99\) 0 0
\(100\) 50579.8 0.505798
\(101\) 126866. 1.23749 0.618745 0.785592i \(-0.287641\pi\)
0.618745 + 0.785592i \(0.287641\pi\)
\(102\) 0 0
\(103\) 63703.2 0.591654 0.295827 0.955241i \(-0.404405\pi\)
0.295827 + 0.955241i \(0.404405\pi\)
\(104\) 87870.1 0.796632
\(105\) 0 0
\(106\) 128253. 1.10868
\(107\) −699.277 −0.00590459 −0.00295230 0.999996i \(-0.500940\pi\)
−0.00295230 + 0.999996i \(0.500940\pi\)
\(108\) 0 0
\(109\) −28609.3 −0.230643 −0.115322 0.993328i \(-0.536790\pi\)
−0.115322 + 0.993328i \(0.536790\pi\)
\(110\) −71468.2 −0.563159
\(111\) 0 0
\(112\) 250655. 1.88813
\(113\) −243998. −1.79759 −0.898794 0.438372i \(-0.855555\pi\)
−0.898794 + 0.438372i \(0.855555\pi\)
\(114\) 0 0
\(115\) −24900.2 −0.175573
\(116\) 319731. 2.20617
\(117\) 0 0
\(118\) −173906. −1.14976
\(119\) −69667.6 −0.450987
\(120\) 0 0
\(121\) −88683.2 −0.550653
\(122\) −265544. −1.61524
\(123\) 0 0
\(124\) 379617. 2.21713
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −29691.2 −0.163350 −0.0816748 0.996659i \(-0.526027\pi\)
−0.0816748 + 0.996659i \(0.526027\pi\)
\(128\) 179855. 0.970282
\(129\) 0 0
\(130\) −44898.0 −0.233007
\(131\) −88586.3 −0.451012 −0.225506 0.974242i \(-0.572404\pi\)
−0.225506 + 0.974242i \(0.572404\pi\)
\(132\) 0 0
\(133\) 47851.5 0.234567
\(134\) 230938. 1.11105
\(135\) 0 0
\(136\) −424234. −1.96679
\(137\) −236459. −1.07635 −0.538177 0.842832i \(-0.680887\pi\)
−0.538177 + 0.842832i \(0.680887\pi\)
\(138\) 0 0
\(139\) 280621. 1.23192 0.615962 0.787776i \(-0.288768\pi\)
0.615962 + 0.787776i \(0.288768\pi\)
\(140\) −172750. −0.744899
\(141\) 0 0
\(142\) 265.651 0.00110558
\(143\) 45463.2 0.185917
\(144\) 0 0
\(145\) −98770.5 −0.390128
\(146\) 643889. 2.49994
\(147\) 0 0
\(148\) −618641. −2.32158
\(149\) −83880.5 −0.309525 −0.154762 0.987952i \(-0.549461\pi\)
−0.154762 + 0.987952i \(0.549461\pi\)
\(150\) 0 0
\(151\) −529999. −1.89162 −0.945808 0.324727i \(-0.894728\pi\)
−0.945808 + 0.324727i \(0.894728\pi\)
\(152\) 291387. 1.02297
\(153\) 0 0
\(154\) 244092. 0.829376
\(155\) −117271. −0.392066
\(156\) 0 0
\(157\) −82619.6 −0.267506 −0.133753 0.991015i \(-0.542703\pi\)
−0.133753 + 0.991015i \(0.542703\pi\)
\(158\) −662354. −2.11080
\(159\) 0 0
\(160\) −363943. −1.12392
\(161\) 85043.9 0.258570
\(162\) 0 0
\(163\) −460688. −1.35812 −0.679059 0.734083i \(-0.737612\pi\)
−0.679059 + 0.734083i \(0.737612\pi\)
\(164\) 637020. 1.84945
\(165\) 0 0
\(166\) −422351. −1.18961
\(167\) 548177. 1.52100 0.760501 0.649337i \(-0.224954\pi\)
0.760501 + 0.649337i \(0.224954\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 216766. 0.575266
\(171\) 0 0
\(172\) −84516.4 −0.217831
\(173\) 36316.3 0.0922543 0.0461271 0.998936i \(-0.485312\pi\)
0.0461271 + 0.998936i \(0.485312\pi\)
\(174\) 0 0
\(175\) 53365.5 0.131724
\(176\) 789713. 1.92171
\(177\) 0 0
\(178\) 1.22360e6 2.89461
\(179\) −19749.0 −0.0460694 −0.0230347 0.999735i \(-0.507333\pi\)
−0.0230347 + 0.999735i \(0.507333\pi\)
\(180\) 0 0
\(181\) −452389. −1.02640 −0.513199 0.858270i \(-0.671540\pi\)
−0.513199 + 0.858270i \(0.671540\pi\)
\(182\) 153344. 0.343154
\(183\) 0 0
\(184\) 517866. 1.12765
\(185\) 191109. 0.410537
\(186\) 0 0
\(187\) −219494. −0.459007
\(188\) 1.54048e6 3.17878
\(189\) 0 0
\(190\) −148887. −0.299207
\(191\) −219095. −0.434559 −0.217279 0.976109i \(-0.569718\pi\)
−0.217279 + 0.976109i \(0.569718\pi\)
\(192\) 0 0
\(193\) 495944. 0.958384 0.479192 0.877710i \(-0.340930\pi\)
0.479192 + 0.877710i \(0.340930\pi\)
\(194\) 906261. 1.72882
\(195\) 0 0
\(196\) −770143. −1.43196
\(197\) −347570. −0.638083 −0.319041 0.947741i \(-0.603361\pi\)
−0.319041 + 0.947741i \(0.603361\pi\)
\(198\) 0 0
\(199\) −597289. −1.06918 −0.534591 0.845111i \(-0.679534\pi\)
−0.534591 + 0.845111i \(0.679534\pi\)
\(200\) 324963. 0.574460
\(201\) 0 0
\(202\) 1.34817e6 2.32470
\(203\) 337340. 0.574550
\(204\) 0 0
\(205\) −196787. −0.327048
\(206\) 676957. 1.11146
\(207\) 0 0
\(208\) 496116. 0.795106
\(209\) 150761. 0.238739
\(210\) 0 0
\(211\) −728985. −1.12723 −0.563615 0.826038i \(-0.690590\pi\)
−0.563615 + 0.826038i \(0.690590\pi\)
\(212\) 976711. 1.49254
\(213\) 0 0
\(214\) −7431.04 −0.0110921
\(215\) 26108.6 0.0385201
\(216\) 0 0
\(217\) 400525. 0.577404
\(218\) −304023. −0.433277
\(219\) 0 0
\(220\) −544264. −0.758146
\(221\) −137891. −0.189914
\(222\) 0 0
\(223\) −428566. −0.577106 −0.288553 0.957464i \(-0.593174\pi\)
−0.288553 + 0.957464i \(0.593174\pi\)
\(224\) 1.24301e6 1.65521
\(225\) 0 0
\(226\) −2.59290e6 −3.37688
\(227\) −1.18213e6 −1.52265 −0.761324 0.648371i \(-0.775450\pi\)
−0.761324 + 0.648371i \(0.775450\pi\)
\(228\) 0 0
\(229\) −114333. −0.144073 −0.0720364 0.997402i \(-0.522950\pi\)
−0.0720364 + 0.997402i \(0.522950\pi\)
\(230\) −264608. −0.329825
\(231\) 0 0
\(232\) 2.05420e6 2.50566
\(233\) 1.21655e6 1.46805 0.734026 0.679122i \(-0.237639\pi\)
0.734026 + 0.679122i \(0.237639\pi\)
\(234\) 0 0
\(235\) −475881. −0.562119
\(236\) −1.32437e6 −1.54786
\(237\) 0 0
\(238\) −740340. −0.847205
\(239\) 921510. 1.04353 0.521765 0.853089i \(-0.325274\pi\)
0.521765 + 0.853089i \(0.325274\pi\)
\(240\) 0 0
\(241\) 494467. 0.548396 0.274198 0.961673i \(-0.411588\pi\)
0.274198 + 0.961673i \(0.411588\pi\)
\(242\) −942413. −1.03443
\(243\) 0 0
\(244\) −2.02224e6 −2.17450
\(245\) 237911. 0.253221
\(246\) 0 0
\(247\) 94711.4 0.0987779
\(248\) 2.43895e6 2.51811
\(249\) 0 0
\(250\) −166043. −0.168024
\(251\) −738969. −0.740359 −0.370179 0.928960i \(-0.620704\pi\)
−0.370179 + 0.928960i \(0.620704\pi\)
\(252\) 0 0
\(253\) 267939. 0.263169
\(254\) −315520. −0.306862
\(255\) 0 0
\(256\) −33110.4 −0.0315765
\(257\) −886405. −0.837143 −0.418571 0.908184i \(-0.637469\pi\)
−0.418571 + 0.908184i \(0.637469\pi\)
\(258\) 0 0
\(259\) −652713. −0.604606
\(260\) −341919. −0.313682
\(261\) 0 0
\(262\) −941384. −0.847253
\(263\) −511416. −0.455917 −0.227958 0.973671i \(-0.573205\pi\)
−0.227958 + 0.973671i \(0.573205\pi\)
\(264\) 0 0
\(265\) −301723. −0.263933
\(266\) 508506. 0.440648
\(267\) 0 0
\(268\) 1.75870e6 1.49574
\(269\) 913248. 0.769499 0.384749 0.923021i \(-0.374288\pi\)
0.384749 + 0.923021i \(0.374288\pi\)
\(270\) 0 0
\(271\) −658235. −0.544450 −0.272225 0.962234i \(-0.587759\pi\)
−0.272225 + 0.962234i \(0.587759\pi\)
\(272\) −2.39523e6 −1.96302
\(273\) 0 0
\(274\) −2.51279e6 −2.02200
\(275\) 168133. 0.134067
\(276\) 0 0
\(277\) −2.19515e6 −1.71895 −0.859477 0.511175i \(-0.829210\pi\)
−0.859477 + 0.511175i \(0.829210\pi\)
\(278\) 2.98209e6 2.31424
\(279\) 0 0
\(280\) −1.10988e6 −0.846018
\(281\) −2.29020e6 −1.73024 −0.865122 0.501562i \(-0.832759\pi\)
−0.865122 + 0.501562i \(0.832759\pi\)
\(282\) 0 0
\(283\) −2.15723e6 −1.60114 −0.800572 0.599237i \(-0.795471\pi\)
−0.800572 + 0.599237i \(0.795471\pi\)
\(284\) 2023.06 0.00148837
\(285\) 0 0
\(286\) 483125. 0.349257
\(287\) 672104. 0.481650
\(288\) 0 0
\(289\) −754122. −0.531125
\(290\) −1.04961e6 −0.732879
\(291\) 0 0
\(292\) 4.90352e6 3.36551
\(293\) −1.01479e6 −0.690570 −0.345285 0.938498i \(-0.612218\pi\)
−0.345285 + 0.938498i \(0.612218\pi\)
\(294\) 0 0
\(295\) 409123. 0.273715
\(296\) −3.97463e6 −2.63674
\(297\) 0 0
\(298\) −891377. −0.581461
\(299\) 168325. 0.108886
\(300\) 0 0
\(301\) −89171.1 −0.0567294
\(302\) −5.63217e6 −3.55351
\(303\) 0 0
\(304\) 1.64518e6 1.02101
\(305\) 624707. 0.384527
\(306\) 0 0
\(307\) 2.01524e6 1.22034 0.610170 0.792271i \(-0.291101\pi\)
0.610170 + 0.792271i \(0.291101\pi\)
\(308\) 1.85887e6 1.11654
\(309\) 0 0
\(310\) −1.24620e6 −0.736520
\(311\) −1.60884e6 −0.943220 −0.471610 0.881807i \(-0.656327\pi\)
−0.471610 + 0.881807i \(0.656327\pi\)
\(312\) 0 0
\(313\) −101542. −0.0585848 −0.0292924 0.999571i \(-0.509325\pi\)
−0.0292924 + 0.999571i \(0.509325\pi\)
\(314\) −877977. −0.502526
\(315\) 0 0
\(316\) −5.04414e6 −2.84164
\(317\) −387514. −0.216591 −0.108295 0.994119i \(-0.534539\pi\)
−0.108295 + 0.994119i \(0.534539\pi\)
\(318\) 0 0
\(319\) 1.06282e6 0.584768
\(320\) −1.51905e6 −0.829273
\(321\) 0 0
\(322\) 903740. 0.485740
\(323\) −457263. −0.243871
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) −4.89561e6 −2.55131
\(327\) 0 0
\(328\) 4.09270e6 2.10051
\(329\) 1.62532e6 0.827844
\(330\) 0 0
\(331\) 1.06859e6 0.536092 0.268046 0.963406i \(-0.413622\pi\)
0.268046 + 0.963406i \(0.413622\pi\)
\(332\) −3.21640e6 −1.60149
\(333\) 0 0
\(334\) 5.82534e6 2.85729
\(335\) −543295. −0.264499
\(336\) 0 0
\(337\) 2.48704e6 1.19291 0.596456 0.802646i \(-0.296575\pi\)
0.596456 + 0.802646i \(0.296575\pi\)
\(338\) 303510. 0.144505
\(339\) 0 0
\(340\) 1.65077e6 0.774445
\(341\) 1.26189e6 0.587673
\(342\) 0 0
\(343\) −2.24762e6 −1.03154
\(344\) −542998. −0.247401
\(345\) 0 0
\(346\) 385924. 0.173305
\(347\) 3.73571e6 1.66552 0.832758 0.553636i \(-0.186760\pi\)
0.832758 + 0.553636i \(0.186760\pi\)
\(348\) 0 0
\(349\) 2.84684e6 1.25112 0.625560 0.780176i \(-0.284870\pi\)
0.625560 + 0.780176i \(0.284870\pi\)
\(350\) 567101. 0.247452
\(351\) 0 0
\(352\) 3.91621e6 1.68465
\(353\) 3.85986e6 1.64867 0.824337 0.566100i \(-0.191548\pi\)
0.824337 + 0.566100i \(0.191548\pi\)
\(354\) 0 0
\(355\) −624.959 −0.000263197 0
\(356\) 9.31831e6 3.89684
\(357\) 0 0
\(358\) −209867. −0.0865441
\(359\) 1.32848e6 0.544026 0.272013 0.962294i \(-0.412311\pi\)
0.272013 + 0.962294i \(0.412311\pi\)
\(360\) 0 0
\(361\) −2.16203e6 −0.873158
\(362\) −4.80742e6 −1.92815
\(363\) 0 0
\(364\) 1.16779e6 0.461966
\(365\) −1.51478e6 −0.595139
\(366\) 0 0
\(367\) −3.92916e6 −1.52277 −0.761385 0.648300i \(-0.775480\pi\)
−0.761385 + 0.648300i \(0.775480\pi\)
\(368\) 2.92388e6 1.12549
\(369\) 0 0
\(370\) 2.03087e6 0.771219
\(371\) 1.03050e6 0.388700
\(372\) 0 0
\(373\) −2.58980e6 −0.963816 −0.481908 0.876222i \(-0.660056\pi\)
−0.481908 + 0.876222i \(0.660056\pi\)
\(374\) −2.33251e6 −0.862273
\(375\) 0 0
\(376\) 9.89720e6 3.61030
\(377\) 667689. 0.241947
\(378\) 0 0
\(379\) 2.27245e6 0.812636 0.406318 0.913732i \(-0.366813\pi\)
0.406318 + 0.913732i \(0.366813\pi\)
\(380\) −1.13384e6 −0.402804
\(381\) 0 0
\(382\) −2.32826e6 −0.816345
\(383\) −709295. −0.247076 −0.123538 0.992340i \(-0.539424\pi\)
−0.123538 + 0.992340i \(0.539424\pi\)
\(384\) 0 0
\(385\) −574240. −0.197443
\(386\) 5.27027e6 1.80038
\(387\) 0 0
\(388\) 6.90160e6 2.32740
\(389\) 3.98220e6 1.33429 0.667143 0.744930i \(-0.267517\pi\)
0.667143 + 0.744930i \(0.267517\pi\)
\(390\) 0 0
\(391\) −812669. −0.268826
\(392\) −4.94799e6 −1.62635
\(393\) 0 0
\(394\) −3.69354e6 −1.19868
\(395\) 1.55822e6 0.502501
\(396\) 0 0
\(397\) −2.62063e6 −0.834507 −0.417253 0.908790i \(-0.637007\pi\)
−0.417253 + 0.908790i \(0.637007\pi\)
\(398\) −6.34723e6 −2.00852
\(399\) 0 0
\(400\) 1.83475e6 0.573359
\(401\) 3.16139e6 0.981786 0.490893 0.871220i \(-0.336671\pi\)
0.490893 + 0.871220i \(0.336671\pi\)
\(402\) 0 0
\(403\) 792749. 0.243149
\(404\) 1.02670e7 3.12960
\(405\) 0 0
\(406\) 3.58482e6 1.07933
\(407\) −2.05643e6 −0.615359
\(408\) 0 0
\(409\) −2.12708e6 −0.628746 −0.314373 0.949299i \(-0.601794\pi\)
−0.314373 + 0.949299i \(0.601794\pi\)
\(410\) −2.09120e6 −0.614379
\(411\) 0 0
\(412\) 5.15535e6 1.49629
\(413\) −1.39731e6 −0.403106
\(414\) 0 0
\(415\) 993605. 0.283200
\(416\) 2.46026e6 0.697023
\(417\) 0 0
\(418\) 1.60210e6 0.448485
\(419\) −6.07786e6 −1.69128 −0.845640 0.533754i \(-0.820781\pi\)
−0.845640 + 0.533754i \(0.820781\pi\)
\(420\) 0 0
\(421\) −1.34964e6 −0.371119 −0.185560 0.982633i \(-0.559410\pi\)
−0.185560 + 0.982633i \(0.559410\pi\)
\(422\) −7.74673e6 −2.11757
\(423\) 0 0
\(424\) 6.27514e6 1.69515
\(425\) −509954. −0.136949
\(426\) 0 0
\(427\) −2.13362e6 −0.566301
\(428\) −56590.9 −0.0149327
\(429\) 0 0
\(430\) 277450. 0.0723624
\(431\) 2.13931e6 0.554728 0.277364 0.960765i \(-0.410539\pi\)
0.277364 + 0.960765i \(0.410539\pi\)
\(432\) 0 0
\(433\) 2.31411e6 0.593150 0.296575 0.955010i \(-0.404156\pi\)
0.296575 + 0.955010i \(0.404156\pi\)
\(434\) 4.25627e6 1.08469
\(435\) 0 0
\(436\) −2.31528e6 −0.583294
\(437\) 558186. 0.139822
\(438\) 0 0
\(439\) −7.33549e6 −1.81663 −0.908317 0.418282i \(-0.862632\pi\)
−0.908317 + 0.418282i \(0.862632\pi\)
\(440\) −3.49677e6 −0.861064
\(441\) 0 0
\(442\) −1.46534e6 −0.356765
\(443\) 1.69171e6 0.409559 0.204779 0.978808i \(-0.434352\pi\)
0.204779 + 0.978808i \(0.434352\pi\)
\(444\) 0 0
\(445\) −2.87859e6 −0.689097
\(446\) −4.55426e6 −1.08413
\(447\) 0 0
\(448\) 5.18815e6 1.22129
\(449\) 4.04297e6 0.946423 0.473211 0.880949i \(-0.343095\pi\)
0.473211 + 0.880949i \(0.343095\pi\)
\(450\) 0 0
\(451\) 2.11753e6 0.490216
\(452\) −1.97462e7 −4.54608
\(453\) 0 0
\(454\) −1.25622e7 −2.86039
\(455\) −360751. −0.0816918
\(456\) 0 0
\(457\) −5.37081e6 −1.20296 −0.601478 0.798890i \(-0.705421\pi\)
−0.601478 + 0.798890i \(0.705421\pi\)
\(458\) −1.21498e6 −0.270649
\(459\) 0 0
\(460\) −2.01512e6 −0.444023
\(461\) 2.85273e6 0.625184 0.312592 0.949888i \(-0.398803\pi\)
0.312592 + 0.949888i \(0.398803\pi\)
\(462\) 0 0
\(463\) −6.00554e6 −1.30197 −0.650983 0.759092i \(-0.725643\pi\)
−0.650983 + 0.759092i \(0.725643\pi\)
\(464\) 1.15980e7 2.50086
\(465\) 0 0
\(466\) 1.29280e7 2.75782
\(467\) 7.18700e6 1.52495 0.762475 0.647018i \(-0.223984\pi\)
0.762475 + 0.647018i \(0.223984\pi\)
\(468\) 0 0
\(469\) 1.85556e6 0.389533
\(470\) −5.05706e6 −1.05597
\(471\) 0 0
\(472\) −8.50880e6 −1.75798
\(473\) −280942. −0.0577383
\(474\) 0 0
\(475\) 350264. 0.0712298
\(476\) −5.63804e6 −1.14054
\(477\) 0 0
\(478\) 9.79265e6 1.96034
\(479\) 4.06312e6 0.809135 0.404568 0.914508i \(-0.367422\pi\)
0.404568 + 0.914508i \(0.367422\pi\)
\(480\) 0 0
\(481\) −1.29190e6 −0.254604
\(482\) 5.25457e6 1.03020
\(483\) 0 0
\(484\) −7.17692e6 −1.39259
\(485\) −2.13203e6 −0.411565
\(486\) 0 0
\(487\) 6.45147e6 1.23264 0.616320 0.787496i \(-0.288623\pi\)
0.616320 + 0.787496i \(0.288623\pi\)
\(488\) −1.29925e7 −2.46969
\(489\) 0 0
\(490\) 2.52822e6 0.475691
\(491\) −5.03693e6 −0.942893 −0.471447 0.881895i \(-0.656268\pi\)
−0.471447 + 0.881895i \(0.656268\pi\)
\(492\) 0 0
\(493\) −3.22358e6 −0.597339
\(494\) 1.00647e6 0.185560
\(495\) 0 0
\(496\) 1.37704e7 2.51328
\(497\) 2134.48 0.000387615 0
\(498\) 0 0
\(499\) −4.99941e6 −0.898808 −0.449404 0.893329i \(-0.648364\pi\)
−0.449404 + 0.893329i \(0.648364\pi\)
\(500\) −1.26449e6 −0.226200
\(501\) 0 0
\(502\) −7.85284e6 −1.39081
\(503\) 89890.2 0.0158414 0.00792068 0.999969i \(-0.497479\pi\)
0.00792068 + 0.999969i \(0.497479\pi\)
\(504\) 0 0
\(505\) −3.17165e6 −0.553423
\(506\) 2.84732e6 0.494379
\(507\) 0 0
\(508\) −2.40284e6 −0.413109
\(509\) −2.32833e6 −0.398337 −0.199168 0.979965i \(-0.563824\pi\)
−0.199168 + 0.979965i \(0.563824\pi\)
\(510\) 0 0
\(511\) 5.17358e6 0.876474
\(512\) −6.10722e6 −1.02960
\(513\) 0 0
\(514\) −9.41960e6 −1.57262
\(515\) −1.59258e6 −0.264596
\(516\) 0 0
\(517\) 5.12072e6 0.842567
\(518\) −6.93621e6 −1.13579
\(519\) 0 0
\(520\) −2.19675e6 −0.356265
\(521\) 7.76731e6 1.25365 0.626825 0.779160i \(-0.284354\pi\)
0.626825 + 0.779160i \(0.284354\pi\)
\(522\) 0 0
\(523\) 1.66847e6 0.266725 0.133363 0.991067i \(-0.457423\pi\)
0.133363 + 0.991067i \(0.457423\pi\)
\(524\) −7.16908e6 −1.14060
\(525\) 0 0
\(526\) −5.43469e6 −0.856467
\(527\) −3.82736e6 −0.600307
\(528\) 0 0
\(529\) −5.44431e6 −0.845870
\(530\) −3.20634e6 −0.495815
\(531\) 0 0
\(532\) 3.87251e6 0.593217
\(533\) 1.33028e6 0.202826
\(534\) 0 0
\(535\) 17481.9 0.00264061
\(536\) 1.12993e7 1.69878
\(537\) 0 0
\(538\) 9.70485e6 1.44555
\(539\) −2.56004e6 −0.379556
\(540\) 0 0
\(541\) 8.65439e6 1.27129 0.635643 0.771983i \(-0.280735\pi\)
0.635643 + 0.771983i \(0.280735\pi\)
\(542\) −6.99489e6 −1.02278
\(543\) 0 0
\(544\) −1.18780e7 −1.72087
\(545\) 715231. 0.103147
\(546\) 0 0
\(547\) −8.07733e6 −1.15425 −0.577125 0.816656i \(-0.695825\pi\)
−0.577125 + 0.816656i \(0.695825\pi\)
\(548\) −1.91361e7 −2.72209
\(549\) 0 0
\(550\) 1.78671e6 0.251852
\(551\) 2.21413e6 0.310688
\(552\) 0 0
\(553\) −5.32194e6 −0.740044
\(554\) −2.33273e7 −3.22916
\(555\) 0 0
\(556\) 2.27100e7 3.11552
\(557\) −2.16561e6 −0.295762 −0.147881 0.989005i \(-0.547245\pi\)
−0.147881 + 0.989005i \(0.547245\pi\)
\(558\) 0 0
\(559\) −176494. −0.0238892
\(560\) −6.26638e6 −0.844398
\(561\) 0 0
\(562\) −2.43373e7 −3.25037
\(563\) 1.20703e7 1.60489 0.802446 0.596724i \(-0.203531\pi\)
0.802446 + 0.596724i \(0.203531\pi\)
\(564\) 0 0
\(565\) 6.09995e6 0.803906
\(566\) −2.29243e7 −3.00785
\(567\) 0 0
\(568\) 12997.7 0.00169042
\(569\) −5.94776e6 −0.770146 −0.385073 0.922886i \(-0.625824\pi\)
−0.385073 + 0.922886i \(0.625824\pi\)
\(570\) 0 0
\(571\) −1.59497e6 −0.204721 −0.102361 0.994747i \(-0.532640\pi\)
−0.102361 + 0.994747i \(0.532640\pi\)
\(572\) 3.67923e6 0.470182
\(573\) 0 0
\(574\) 7.14227e6 0.904808
\(575\) 622505. 0.0785187
\(576\) 0 0
\(577\) 9.98490e6 1.24855 0.624273 0.781206i \(-0.285395\pi\)
0.624273 + 0.781206i \(0.285395\pi\)
\(578\) −8.01386e6 −0.997751
\(579\) 0 0
\(580\) −7.99327e6 −0.986630
\(581\) −3.39355e6 −0.417075
\(582\) 0 0
\(583\) 3.24670e6 0.395613
\(584\) 3.15040e7 3.82237
\(585\) 0 0
\(586\) −1.07839e7 −1.29728
\(587\) −9.33702e6 −1.11844 −0.559221 0.829019i \(-0.688899\pi\)
−0.559221 + 0.829019i \(0.688899\pi\)
\(588\) 0 0
\(589\) 2.62884e6 0.312231
\(590\) 4.34764e6 0.514190
\(591\) 0 0
\(592\) −2.24408e7 −2.63169
\(593\) −4.30100e6 −0.502265 −0.251133 0.967953i \(-0.580803\pi\)
−0.251133 + 0.967953i \(0.580803\pi\)
\(594\) 0 0
\(595\) 1.74169e6 0.201687
\(596\) −6.78825e6 −0.782785
\(597\) 0 0
\(598\) 1.78875e6 0.204549
\(599\) 1.25411e7 1.42814 0.714069 0.700076i \(-0.246850\pi\)
0.714069 + 0.700076i \(0.246850\pi\)
\(600\) 0 0
\(601\) 8.28854e6 0.936034 0.468017 0.883719i \(-0.344969\pi\)
0.468017 + 0.883719i \(0.344969\pi\)
\(602\) −947599. −0.106570
\(603\) 0 0
\(604\) −4.28916e7 −4.78388
\(605\) 2.21708e6 0.246259
\(606\) 0 0
\(607\) −1.35304e7 −1.49053 −0.745263 0.666771i \(-0.767676\pi\)
−0.745263 + 0.666771i \(0.767676\pi\)
\(608\) 8.15848e6 0.895056
\(609\) 0 0
\(610\) 6.63861e6 0.722358
\(611\) 3.21695e6 0.348611
\(612\) 0 0
\(613\) −5.37532e6 −0.577767 −0.288884 0.957364i \(-0.593284\pi\)
−0.288884 + 0.957364i \(0.593284\pi\)
\(614\) 2.14154e7 2.29248
\(615\) 0 0
\(616\) 1.19428e7 1.26811
\(617\) 1.68362e6 0.178045 0.0890227 0.996030i \(-0.471626\pi\)
0.0890227 + 0.996030i \(0.471626\pi\)
\(618\) 0 0
\(619\) 9.62531e6 1.00969 0.504845 0.863210i \(-0.331550\pi\)
0.504845 + 0.863210i \(0.331550\pi\)
\(620\) −9.49043e6 −0.991532
\(621\) 0 0
\(622\) −1.70968e7 −1.77190
\(623\) 9.83152e6 1.01485
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −1.07906e6 −0.110055
\(627\) 0 0
\(628\) −6.68621e6 −0.676520
\(629\) 6.23724e6 0.628588
\(630\) 0 0
\(631\) −1.69384e7 −1.69355 −0.846777 0.531947i \(-0.821460\pi\)
−0.846777 + 0.531947i \(0.821460\pi\)
\(632\) −3.24074e7 −3.22739
\(633\) 0 0
\(634\) −4.11802e6 −0.406879
\(635\) 742279. 0.0730521
\(636\) 0 0
\(637\) −1.60828e6 −0.157041
\(638\) 1.12943e7 1.09852
\(639\) 0 0
\(640\) −4.49638e6 −0.433923
\(641\) 3.73423e6 0.358968 0.179484 0.983761i \(-0.442557\pi\)
0.179484 + 0.983761i \(0.442557\pi\)
\(642\) 0 0
\(643\) −1.30798e7 −1.24760 −0.623798 0.781586i \(-0.714411\pi\)
−0.623798 + 0.781586i \(0.714411\pi\)
\(644\) 6.88240e6 0.653921
\(645\) 0 0
\(646\) −4.85922e6 −0.458126
\(647\) 1.31074e6 0.123099 0.0615497 0.998104i \(-0.480396\pi\)
0.0615497 + 0.998104i \(0.480396\pi\)
\(648\) 0 0
\(649\) −4.40237e6 −0.410275
\(650\) 1.12245e6 0.104204
\(651\) 0 0
\(652\) −3.72824e7 −3.43467
\(653\) 1.53204e7 1.40600 0.703002 0.711188i \(-0.251843\pi\)
0.703002 + 0.711188i \(0.251843\pi\)
\(654\) 0 0
\(655\) 2.21466e6 0.201699
\(656\) 2.31075e7 2.09649
\(657\) 0 0
\(658\) 1.72718e7 1.55515
\(659\) −4.82048e6 −0.432391 −0.216195 0.976350i \(-0.569365\pi\)
−0.216195 + 0.976350i \(0.569365\pi\)
\(660\) 0 0
\(661\) −8.03371e6 −0.715175 −0.357588 0.933880i \(-0.616401\pi\)
−0.357588 + 0.933880i \(0.616401\pi\)
\(662\) 1.13556e7 1.00708
\(663\) 0 0
\(664\) −2.06647e7 −1.81890
\(665\) −1.19629e6 −0.104902
\(666\) 0 0
\(667\) 3.93505e6 0.342480
\(668\) 4.43627e7 3.84660
\(669\) 0 0
\(670\) −5.77346e6 −0.496877
\(671\) −6.72217e6 −0.576372
\(672\) 0 0
\(673\) 440906. 0.0375239 0.0187620 0.999824i \(-0.494028\pi\)
0.0187620 + 0.999824i \(0.494028\pi\)
\(674\) 2.64291e7 2.24096
\(675\) 0 0
\(676\) 2.31137e6 0.194538
\(677\) −7.24025e6 −0.607131 −0.303565 0.952811i \(-0.598177\pi\)
−0.303565 + 0.952811i \(0.598177\pi\)
\(678\) 0 0
\(679\) 7.28171e6 0.606120
\(680\) 1.06058e7 0.879575
\(681\) 0 0
\(682\) 1.34098e7 1.10398
\(683\) −1.43168e6 −0.117434 −0.0587170 0.998275i \(-0.518701\pi\)
−0.0587170 + 0.998275i \(0.518701\pi\)
\(684\) 0 0
\(685\) 5.91148e6 0.481360
\(686\) −2.38849e7 −1.93782
\(687\) 0 0
\(688\) −3.06578e6 −0.246928
\(689\) 2.03965e6 0.163685
\(690\) 0 0
\(691\) 5.77535e6 0.460133 0.230066 0.973175i \(-0.426106\pi\)
0.230066 + 0.973175i \(0.426106\pi\)
\(692\) 2.93899e6 0.233310
\(693\) 0 0
\(694\) 3.96984e7 3.12877
\(695\) −7.01553e6 −0.550933
\(696\) 0 0
\(697\) −6.42254e6 −0.500754
\(698\) 3.02526e7 2.35031
\(699\) 0 0
\(700\) 4.31874e6 0.333129
\(701\) 2.16428e7 1.66348 0.831742 0.555162i \(-0.187344\pi\)
0.831742 + 0.555162i \(0.187344\pi\)
\(702\) 0 0
\(703\) −4.28408e6 −0.326941
\(704\) 1.63458e7 1.24301
\(705\) 0 0
\(706\) 4.10177e7 3.09713
\(707\) 1.08324e7 0.815037
\(708\) 0 0
\(709\) 4.82444e6 0.360439 0.180219 0.983626i \(-0.442319\pi\)
0.180219 + 0.983626i \(0.442319\pi\)
\(710\) −6641.27 −0.000494431 0
\(711\) 0 0
\(712\) 5.98680e7 4.42583
\(713\) 4.67210e6 0.344182
\(714\) 0 0
\(715\) −1.13658e6 −0.0831447
\(716\) −1.59824e6 −0.116509
\(717\) 0 0
\(718\) 1.41174e7 1.02199
\(719\) −6.08046e6 −0.438646 −0.219323 0.975652i \(-0.570385\pi\)
−0.219323 + 0.975652i \(0.570385\pi\)
\(720\) 0 0
\(721\) 5.43928e6 0.389676
\(722\) −2.29753e7 −1.64028
\(723\) 0 0
\(724\) −3.66108e7 −2.59575
\(725\) 2.46926e6 0.174471
\(726\) 0 0
\(727\) 1.99326e7 1.39871 0.699357 0.714773i \(-0.253470\pi\)
0.699357 + 0.714773i \(0.253470\pi\)
\(728\) 7.50277e6 0.524678
\(729\) 0 0
\(730\) −1.60972e7 −1.11801
\(731\) 852108. 0.0589795
\(732\) 0 0
\(733\) 2.08314e7 1.43205 0.716026 0.698074i \(-0.245959\pi\)
0.716026 + 0.698074i \(0.245959\pi\)
\(734\) −4.17542e7 −2.86062
\(735\) 0 0
\(736\) 1.44996e7 0.986647
\(737\) 5.84613e6 0.396460
\(738\) 0 0
\(739\) 2.29192e7 1.54379 0.771895 0.635750i \(-0.219309\pi\)
0.771895 + 0.635750i \(0.219309\pi\)
\(740\) 1.54660e7 1.03824
\(741\) 0 0
\(742\) 1.09509e7 0.730196
\(743\) −230085. −0.0152903 −0.00764517 0.999971i \(-0.502434\pi\)
−0.00764517 + 0.999971i \(0.502434\pi\)
\(744\) 0 0
\(745\) 2.09701e6 0.138424
\(746\) −2.75211e7 −1.81059
\(747\) 0 0
\(748\) −1.77632e7 −1.16082
\(749\) −59707.6 −0.00388889
\(750\) 0 0
\(751\) 7.24500e6 0.468747 0.234374 0.972147i \(-0.424696\pi\)
0.234374 + 0.972147i \(0.424696\pi\)
\(752\) 5.58798e7 3.60338
\(753\) 0 0
\(754\) 7.09536e6 0.454513
\(755\) 1.32500e7 0.845956
\(756\) 0 0
\(757\) −2.05511e7 −1.30345 −0.651725 0.758455i \(-0.725954\pi\)
−0.651725 + 0.758455i \(0.725954\pi\)
\(758\) 2.41487e7 1.52659
\(759\) 0 0
\(760\) −7.28467e6 −0.457484
\(761\) −1.07383e7 −0.672164 −0.336082 0.941833i \(-0.609102\pi\)
−0.336082 + 0.941833i \(0.609102\pi\)
\(762\) 0 0
\(763\) −2.44279e6 −0.151906
\(764\) −1.77308e7 −1.09899
\(765\) 0 0
\(766\) −7.53750e6 −0.464147
\(767\) −2.76567e6 −0.169751
\(768\) 0 0
\(769\) 1.49754e7 0.913194 0.456597 0.889674i \(-0.349068\pi\)
0.456597 + 0.889674i \(0.349068\pi\)
\(770\) −6.10230e6 −0.370908
\(771\) 0 0
\(772\) 4.01356e7 2.42374
\(773\) 1.43362e7 0.862950 0.431475 0.902125i \(-0.357993\pi\)
0.431475 + 0.902125i \(0.357993\pi\)
\(774\) 0 0
\(775\) 2.93176e6 0.175337
\(776\) 4.43412e7 2.64334
\(777\) 0 0
\(778\) 4.23178e7 2.50654
\(779\) 4.41135e6 0.260452
\(780\) 0 0
\(781\) 6724.87 0.000394509 0
\(782\) −8.63602e6 −0.505006
\(783\) 0 0
\(784\) −2.79365e7 −1.62323
\(785\) 2.06549e6 0.119632
\(786\) 0 0
\(787\) 9.78174e6 0.562962 0.281481 0.959567i \(-0.409174\pi\)
0.281481 + 0.959567i \(0.409174\pi\)
\(788\) −2.81280e7 −1.61370
\(789\) 0 0
\(790\) 1.65588e7 0.943979
\(791\) −2.08337e7 −1.18393
\(792\) 0 0
\(793\) −4.22302e6 −0.238474
\(794\) −2.78488e7 −1.56767
\(795\) 0 0
\(796\) −4.83372e7 −2.70395
\(797\) −484070. −0.0269937 −0.0134968 0.999909i \(-0.504296\pi\)
−0.0134968 + 0.999909i \(0.504296\pi\)
\(798\) 0 0
\(799\) −1.55313e7 −0.860680
\(800\) 9.09858e6 0.502630
\(801\) 0 0
\(802\) 3.35952e7 1.84434
\(803\) 1.62999e7 0.892061
\(804\) 0 0
\(805\) −2.12610e6 −0.115636
\(806\) 8.42434e6 0.456771
\(807\) 0 0
\(808\) 6.59629e7 3.55444
\(809\) −3.19445e7 −1.71603 −0.858015 0.513625i \(-0.828302\pi\)
−0.858015 + 0.513625i \(0.828302\pi\)
\(810\) 0 0
\(811\) 1.85446e7 0.990068 0.495034 0.868874i \(-0.335156\pi\)
0.495034 + 0.868874i \(0.335156\pi\)
\(812\) 2.73001e7 1.45303
\(813\) 0 0
\(814\) −2.18532e7 −1.15599
\(815\) 1.15172e7 0.607369
\(816\) 0 0
\(817\) −585275. −0.0306764
\(818\) −2.26039e7 −1.18114
\(819\) 0 0
\(820\) −1.59255e7 −0.827100
\(821\) −2.77661e6 −0.143766 −0.0718830 0.997413i \(-0.522901\pi\)
−0.0718830 + 0.997413i \(0.522901\pi\)
\(822\) 0 0
\(823\) 2.23596e7 1.15070 0.575352 0.817906i \(-0.304865\pi\)
0.575352 + 0.817906i \(0.304865\pi\)
\(824\) 3.31219e7 1.69941
\(825\) 0 0
\(826\) −1.48489e7 −0.757258
\(827\) −7.33978e6 −0.373181 −0.186590 0.982438i \(-0.559744\pi\)
−0.186590 + 0.982438i \(0.559744\pi\)
\(828\) 0 0
\(829\) 1.14199e7 0.577131 0.288565 0.957460i \(-0.406822\pi\)
0.288565 + 0.957460i \(0.406822\pi\)
\(830\) 1.05588e7 0.532009
\(831\) 0 0
\(832\) 1.02688e7 0.514293
\(833\) 7.76471e6 0.387715
\(834\) 0 0
\(835\) −1.37044e7 −0.680213
\(836\) 1.22007e7 0.603767
\(837\) 0 0
\(838\) −6.45878e7 −3.17717
\(839\) 2.79323e7 1.36994 0.684971 0.728570i \(-0.259815\pi\)
0.684971 + 0.728570i \(0.259815\pi\)
\(840\) 0 0
\(841\) −4.90216e6 −0.239000
\(842\) −1.43423e7 −0.697170
\(843\) 0 0
\(844\) −5.89950e7 −2.85075
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) −7.57219e6 −0.362671
\(848\) 3.54296e7 1.69191
\(849\) 0 0
\(850\) −5.41915e6 −0.257267
\(851\) −7.61386e6 −0.360397
\(852\) 0 0
\(853\) 2.77296e7 1.30488 0.652440 0.757840i \(-0.273745\pi\)
0.652440 + 0.757840i \(0.273745\pi\)
\(854\) −2.26734e7 −1.06383
\(855\) 0 0
\(856\) −363583. −0.0169598
\(857\) −1.74543e7 −0.811802 −0.405901 0.913917i \(-0.633042\pi\)
−0.405901 + 0.913917i \(0.633042\pi\)
\(858\) 0 0
\(859\) −7.39131e6 −0.341773 −0.170887 0.985291i \(-0.554663\pi\)
−0.170887 + 0.985291i \(0.554663\pi\)
\(860\) 2.11291e6 0.0974170
\(861\) 0 0
\(862\) 2.27339e7 1.04209
\(863\) −1.15963e7 −0.530020 −0.265010 0.964246i \(-0.585375\pi\)
−0.265010 + 0.964246i \(0.585375\pi\)
\(864\) 0 0
\(865\) −907908. −0.0412574
\(866\) 2.45915e7 1.11427
\(867\) 0 0
\(868\) 3.24135e7 1.46025
\(869\) −1.67673e7 −0.753205
\(870\) 0 0
\(871\) 3.67267e6 0.164035
\(872\) −1.48751e7 −0.662475
\(873\) 0 0
\(874\) 5.93169e6 0.262664
\(875\) −1.33414e6 −0.0589088
\(876\) 0 0
\(877\) 3.44009e7 1.51033 0.755163 0.655538i \(-0.227558\pi\)
0.755163 + 0.655538i \(0.227558\pi\)
\(878\) −7.79523e7 −3.41266
\(879\) 0 0
\(880\) −1.97428e7 −0.859415
\(881\) −2.78755e7 −1.20999 −0.604996 0.796228i \(-0.706825\pi\)
−0.604996 + 0.796228i \(0.706825\pi\)
\(882\) 0 0
\(883\) −4.29067e6 −0.185193 −0.0925963 0.995704i \(-0.529517\pi\)
−0.0925963 + 0.995704i \(0.529517\pi\)
\(884\) −1.11592e7 −0.480290
\(885\) 0 0
\(886\) 1.79774e7 0.769381
\(887\) 9.37833e6 0.400236 0.200118 0.979772i \(-0.435867\pi\)
0.200118 + 0.979772i \(0.435867\pi\)
\(888\) 0 0
\(889\) −2.53517e6 −0.107585
\(890\) −3.05901e7 −1.29451
\(891\) 0 0
\(892\) −3.46829e7 −1.45950
\(893\) 1.06678e7 0.447657
\(894\) 0 0
\(895\) 493725. 0.0206028
\(896\) 1.53569e7 0.639048
\(897\) 0 0
\(898\) 4.29637e7 1.77791
\(899\) 1.85326e7 0.764781
\(900\) 0 0
\(901\) −9.84736e6 −0.404118
\(902\) 2.25024e7 0.920900
\(903\) 0 0
\(904\) −1.26865e8 −5.16321
\(905\) 1.13097e7 0.459019
\(906\) 0 0
\(907\) 3.99368e7 1.61196 0.805982 0.591940i \(-0.201638\pi\)
0.805982 + 0.591940i \(0.201638\pi\)
\(908\) −9.56668e7 −3.85076
\(909\) 0 0
\(910\) −3.83360e6 −0.153463
\(911\) 1.00670e7 0.401889 0.200945 0.979603i \(-0.435599\pi\)
0.200945 + 0.979603i \(0.435599\pi\)
\(912\) 0 0
\(913\) −1.06917e7 −0.424492
\(914\) −5.70742e7 −2.25982
\(915\) 0 0
\(916\) −9.25268e6 −0.364358
\(917\) −7.56392e6 −0.297046
\(918\) 0 0
\(919\) −2.21913e7 −0.866752 −0.433376 0.901213i \(-0.642678\pi\)
−0.433376 + 0.901213i \(0.642678\pi\)
\(920\) −1.29466e7 −0.504299
\(921\) 0 0
\(922\) 3.03152e7 1.17445
\(923\) 4224.72 0.000163228 0
\(924\) 0 0
\(925\) −4.77773e6 −0.183598
\(926\) −6.38193e7 −2.44582
\(927\) 0 0
\(928\) 5.75150e7 2.19236
\(929\) 2.89414e7 1.10022 0.550110 0.835092i \(-0.314586\pi\)
0.550110 + 0.835092i \(0.314586\pi\)
\(930\) 0 0
\(931\) −5.33323e6 −0.201658
\(932\) 9.84528e7 3.71269
\(933\) 0 0
\(934\) 7.63744e7 2.86471
\(935\) 5.48736e6 0.205274
\(936\) 0 0
\(937\) 1.92306e7 0.715558 0.357779 0.933806i \(-0.383534\pi\)
0.357779 + 0.933806i \(0.383534\pi\)
\(938\) 1.97186e7 0.731761
\(939\) 0 0
\(940\) −3.85119e7 −1.42159
\(941\) −3.89954e7 −1.43562 −0.717810 0.696239i \(-0.754855\pi\)
−0.717810 + 0.696239i \(0.754855\pi\)
\(942\) 0 0
\(943\) 7.84005e6 0.287104
\(944\) −4.80408e7 −1.75461
\(945\) 0 0
\(946\) −2.98550e6 −0.108465
\(947\) 1.85599e7 0.672511 0.336256 0.941771i \(-0.390839\pi\)
0.336256 + 0.941771i \(0.390839\pi\)
\(948\) 0 0
\(949\) 1.02399e7 0.369090
\(950\) 3.72217e6 0.133809
\(951\) 0 0
\(952\) −3.62231e7 −1.29537
\(953\) 5.22106e7 1.86220 0.931099 0.364765i \(-0.118851\pi\)
0.931099 + 0.364765i \(0.118851\pi\)
\(954\) 0 0
\(955\) 5.47737e6 0.194341
\(956\) 7.45756e7 2.63908
\(957\) 0 0
\(958\) 4.31778e7 1.52001
\(959\) −2.01900e7 −0.708909
\(960\) 0 0
\(961\) −6.62535e6 −0.231420
\(962\) −1.37287e7 −0.478290
\(963\) 0 0
\(964\) 4.00160e7 1.38689
\(965\) −1.23986e7 −0.428603
\(966\) 0 0
\(967\) 1.09907e7 0.377971 0.188986 0.981980i \(-0.439480\pi\)
0.188986 + 0.981980i \(0.439480\pi\)
\(968\) −4.61100e7 −1.58164
\(969\) 0 0
\(970\) −2.26565e7 −0.773150
\(971\) 3.40548e7 1.15912 0.579562 0.814928i \(-0.303224\pi\)
0.579562 + 0.814928i \(0.303224\pi\)
\(972\) 0 0
\(973\) 2.39608e7 0.811370
\(974\) 6.85581e7 2.31559
\(975\) 0 0
\(976\) −7.33556e7 −2.46495
\(977\) 1.94494e7 0.651883 0.325942 0.945390i \(-0.394319\pi\)
0.325942 + 0.945390i \(0.394319\pi\)
\(978\) 0 0
\(979\) 3.09751e7 1.03290
\(980\) 1.92536e7 0.640393
\(981\) 0 0
\(982\) −5.35262e7 −1.77128
\(983\) 1.75374e7 0.578872 0.289436 0.957197i \(-0.406532\pi\)
0.289436 + 0.957197i \(0.406532\pi\)
\(984\) 0 0
\(985\) 8.68926e6 0.285359
\(986\) −3.42561e7 −1.12214
\(987\) 0 0
\(988\) 7.66477e6 0.249808
\(989\) −1.04018e6 −0.0338155
\(990\) 0 0
\(991\) −9.10071e6 −0.294368 −0.147184 0.989109i \(-0.547021\pi\)
−0.147184 + 0.989109i \(0.547021\pi\)
\(992\) 6.82877e7 2.20325
\(993\) 0 0
\(994\) 22682.5 0.000728158 0
\(995\) 1.49322e7 0.478153
\(996\) 0 0
\(997\) 5.18062e7 1.65061 0.825303 0.564690i \(-0.191004\pi\)
0.825303 + 0.564690i \(0.191004\pi\)
\(998\) −5.31274e7 −1.68847
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.6.a.p.1.9 yes 9
3.2 odd 2 585.6.a.o.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
585.6.a.o.1.1 9 3.2 odd 2
585.6.a.p.1.9 yes 9 1.1 even 1 trivial