Properties

Label 588.2.e.c.491.10
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(491,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.10
Root \(-1.19877 + 0.750295i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.c.491.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.750295 + 1.19877i) q^{2} +(-0.448478 - 1.67298i) q^{3} +(-0.874114 + 1.79887i) q^{4} +3.56257i q^{5} +(1.66903 - 1.79285i) q^{6} +(-2.81228 + 0.301817i) q^{8} +(-2.59774 + 1.50059i) q^{9} +(-4.27072 + 2.67298i) q^{10} -0.335564 q^{11} +(3.40149 + 0.655624i) q^{12} -3.34596 q^{13} +(5.96012 - 1.59774i) q^{15} +(-2.47185 - 3.14483i) q^{16} +0.335564i q^{17} +(-3.74794 - 1.98821i) q^{18} -1.84951i q^{19} +(-6.40860 - 3.11410i) q^{20} +(-0.251772 - 0.402265i) q^{22} -4.45953 q^{23} +(1.76618 + 4.56953i) q^{24} -7.69193 q^{25} +(-2.51046 - 4.01105i) q^{26} +(3.67549 + 3.67298i) q^{27} +5.91788i q^{29} +(6.38717 + 5.94606i) q^{30} +5.19547i q^{31} +(1.91532 - 5.32274i) q^{32} +(0.150493 + 0.561392i) q^{33} +(-0.402265 + 0.251772i) q^{34} +(-0.428647 - 5.98467i) q^{36} +3.19547 q^{37} +(2.21714 - 1.38768i) q^{38} +(1.50059 + 5.59774i) q^{39} +(-1.07525 - 10.0189i) q^{40} +1.45835i q^{41} +7.49646i q^{43} +(0.293321 - 0.603635i) q^{44} +(-5.34596 - 9.25462i) q^{45} +(-3.34596 - 5.34596i) q^{46} +8.91906 q^{47} +(-4.15267 + 5.54575i) q^{48} +(-5.77122 - 9.22087i) q^{50} +(0.561392 - 0.150493i) q^{51} +(2.92475 - 6.01894i) q^{52} +4.79509i q^{53} +(-1.64537 + 7.16190i) q^{54} -1.19547i q^{55} +(-3.09419 + 0.829463i) q^{57} +(-7.09419 + 4.44015i) q^{58} -14.0245 q^{59} +(-2.33571 + 12.1181i) q^{60} +0.353051 q^{61} +(-6.22819 + 3.89814i) q^{62} +(7.81781 - 1.69759i) q^{64} -11.9202i q^{65} +(-0.560068 + 0.601617i) q^{66} -3.19547i q^{67} +(-0.603635 - 0.293321i) q^{68} +(2.00000 + 7.46071i) q^{69} +10.3774 q^{71} +(6.85265 - 5.00412i) q^{72} +4.69193 q^{73} +(2.39755 + 3.83064i) q^{74} +(3.44966 + 12.8685i) q^{75} +(3.32702 + 1.61668i) q^{76} +(-5.58453 + 5.99882i) q^{78} -4.00000i q^{79} +(11.2037 - 8.80614i) q^{80} +(4.49646 - 7.79627i) q^{81} +(-1.74823 + 1.09419i) q^{82} +6.89932 q^{83} -1.19547 q^{85} +(-8.98655 + 5.62456i) q^{86} +(9.90050 - 2.65404i) q^{87} +(0.943698 - 0.101279i) q^{88} -3.87289i q^{89} +(7.08314 - 13.3523i) q^{90} +(3.89814 - 8.02210i) q^{92} +(8.69193 - 2.33005i) q^{93} +(6.69193 + 10.6919i) q^{94} +6.58900 q^{95} +(-9.76382 - 0.817168i) q^{96} +2.00000 q^{97} +(0.871706 - 0.503544i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 6 q^{6} - 4 q^{9} - 4 q^{10} + 6 q^{12} + 4 q^{16} - 8 q^{18} - 16 q^{22} - 2 q^{24} - 12 q^{25} + 20 q^{30} + 16 q^{33} - 32 q^{34} - 20 q^{36} - 16 q^{37} - 20 q^{40} - 24 q^{45} - 46 q^{48}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.750295 + 1.19877i 0.530539 + 0.847661i
\(3\) −0.448478 1.67298i −0.258929 0.965896i
\(4\) −0.874114 + 1.79887i −0.437057 + 0.899434i
\(5\) 3.56257i 1.59323i 0.604486 + 0.796616i \(0.293378\pi\)
−0.604486 + 0.796616i \(0.706622\pi\)
\(6\) 1.66903 1.79285i 0.681381 0.731929i
\(7\) 0 0
\(8\) −2.81228 + 0.301817i −0.994290 + 0.106709i
\(9\) −2.59774 + 1.50059i −0.865912 + 0.500197i
\(10\) −4.27072 + 2.67298i −1.35052 + 0.845271i
\(11\) −0.335564 −0.101176 −0.0505881 0.998720i \(-0.516110\pi\)
−0.0505881 + 0.998720i \(0.516110\pi\)
\(12\) 3.40149 + 0.655624i 0.981927 + 0.189262i
\(13\) −3.34596 −0.928003 −0.464002 0.885834i \(-0.653587\pi\)
−0.464002 + 0.885834i \(0.653587\pi\)
\(14\) 0 0
\(15\) 5.96012 1.59774i 1.53890 0.412533i
\(16\) −2.47185 3.14483i −0.617962 0.786208i
\(17\) 0.335564i 0.0813862i 0.999172 + 0.0406931i \(0.0129566\pi\)
−0.999172 + 0.0406931i \(0.987043\pi\)
\(18\) −3.74794 1.98821i −0.883397 0.468625i
\(19\) 1.84951i 0.424306i −0.977236 0.212153i \(-0.931952\pi\)
0.977236 0.212153i \(-0.0680475\pi\)
\(20\) −6.40860 3.11410i −1.43301 0.696333i
\(21\) 0 0
\(22\) −0.251772 0.402265i −0.0536779 0.0857631i
\(23\) −4.45953 −0.929876 −0.464938 0.885343i \(-0.653923\pi\)
−0.464938 + 0.885343i \(0.653923\pi\)
\(24\) 1.76618 + 4.56953i 0.360520 + 0.932752i
\(25\) −7.69193 −1.53839
\(26\) −2.51046 4.01105i −0.492342 0.786632i
\(27\) 3.67549 + 3.67298i 0.707348 + 0.706866i
\(28\) 0 0
\(29\) 5.91788i 1.09892i 0.835519 + 0.549461i \(0.185167\pi\)
−0.835519 + 0.549461i \(0.814833\pi\)
\(30\) 6.38717 + 5.94606i 1.16613 + 1.08560i
\(31\) 5.19547i 0.933134i 0.884486 + 0.466567i \(0.154509\pi\)
−0.884486 + 0.466567i \(0.845491\pi\)
\(32\) 1.91532 5.32274i 0.338584 0.940936i
\(33\) 0.150493 + 0.561392i 0.0261975 + 0.0977258i
\(34\) −0.402265 + 0.251772i −0.0689878 + 0.0431785i
\(35\) 0 0
\(36\) −0.428647 5.98467i −0.0714411 0.997445i
\(37\) 3.19547 0.525332 0.262666 0.964887i \(-0.415398\pi\)
0.262666 + 0.964887i \(0.415398\pi\)
\(38\) 2.21714 1.38768i 0.359668 0.225111i
\(39\) 1.50059 + 5.59774i 0.240287 + 0.896355i
\(40\) −1.07525 10.0189i −0.170011 1.58413i
\(41\) 1.45835i 0.227756i 0.993495 + 0.113878i \(0.0363272\pi\)
−0.993495 + 0.113878i \(0.963673\pi\)
\(42\) 0 0
\(43\) 7.49646i 1.14320i 0.820533 + 0.571599i \(0.193677\pi\)
−0.820533 + 0.571599i \(0.806323\pi\)
\(44\) 0.293321 0.603635i 0.0442198 0.0910014i
\(45\) −5.34596 9.25462i −0.796929 1.37960i
\(46\) −3.34596 5.34596i −0.493335 0.788219i
\(47\) 8.91906 1.30098 0.650489 0.759516i \(-0.274564\pi\)
0.650489 + 0.759516i \(0.274564\pi\)
\(48\) −4.15267 + 5.54575i −0.599387 + 0.800459i
\(49\) 0 0
\(50\) −5.77122 9.22087i −0.816173 1.30403i
\(51\) 0.561392 0.150493i 0.0786106 0.0210732i
\(52\) 2.92475 6.01894i 0.405590 0.834677i
\(53\) 4.79509i 0.658657i 0.944215 + 0.329328i \(0.106822\pi\)
−0.944215 + 0.329328i \(0.893178\pi\)
\(54\) −1.64537 + 7.16190i −0.223907 + 0.974611i
\(55\) 1.19547i 0.161197i
\(56\) 0 0
\(57\) −3.09419 + 0.829463i −0.409836 + 0.109865i
\(58\) −7.09419 + 4.44015i −0.931513 + 0.583021i
\(59\) −14.0245 −1.82583 −0.912915 0.408150i \(-0.866174\pi\)
−0.912915 + 0.408150i \(0.866174\pi\)
\(60\) −2.33571 + 12.1181i −0.301539 + 1.56444i
\(61\) 0.353051 0.0452035 0.0226018 0.999745i \(-0.492805\pi\)
0.0226018 + 0.999745i \(0.492805\pi\)
\(62\) −6.22819 + 3.89814i −0.790981 + 0.495064i
\(63\) 0 0
\(64\) 7.81781 1.69759i 0.977227 0.212199i
\(65\) 11.9202i 1.47852i
\(66\) −0.560068 + 0.601617i −0.0689395 + 0.0740539i
\(67\) 3.19547i 0.390389i −0.980765 0.195194i \(-0.937466\pi\)
0.980765 0.195194i \(-0.0625338\pi\)
\(68\) −0.603635 0.293321i −0.0732015 0.0355704i
\(69\) 2.00000 + 7.46071i 0.240772 + 0.898164i
\(70\) 0 0
\(71\) 10.3774 1.23157 0.615786 0.787914i \(-0.288839\pi\)
0.615786 + 0.787914i \(0.288839\pi\)
\(72\) 6.85265 5.00412i 0.807592 0.589741i
\(73\) 4.69193 0.549148 0.274574 0.961566i \(-0.411463\pi\)
0.274574 + 0.961566i \(0.411463\pi\)
\(74\) 2.39755 + 3.83064i 0.278709 + 0.445303i
\(75\) 3.44966 + 12.8685i 0.398332 + 1.48592i
\(76\) 3.32702 + 1.61668i 0.381635 + 0.185446i
\(77\) 0 0
\(78\) −5.58453 + 5.99882i −0.632323 + 0.679233i
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 11.2037 8.80614i 1.25261 0.984557i
\(81\) 4.49646 7.79627i 0.499606 0.866253i
\(82\) −1.74823 + 1.09419i −0.193059 + 0.120833i
\(83\) 6.89932 0.757299 0.378649 0.925540i \(-0.376389\pi\)
0.378649 + 0.925540i \(0.376389\pi\)
\(84\) 0 0
\(85\) −1.19547 −0.129667
\(86\) −8.98655 + 5.62456i −0.969045 + 0.606511i
\(87\) 9.90050 2.65404i 1.06144 0.284543i
\(88\) 0.943698 0.101279i 0.100599 0.0107964i
\(89\) 3.87289i 0.410525i −0.978707 0.205263i \(-0.934195\pi\)
0.978707 0.205263i \(-0.0658048\pi\)
\(90\) 7.08314 13.3523i 0.746629 1.40746i
\(91\) 0 0
\(92\) 3.89814 8.02210i 0.406409 0.836362i
\(93\) 8.69193 2.33005i 0.901311 0.241615i
\(94\) 6.69193 + 10.6919i 0.690220 + 1.10279i
\(95\) 6.58900 0.676018
\(96\) −9.76382 0.817168i −0.996516 0.0834019i
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0.871706 0.503544i 0.0876097 0.0506081i
\(100\) 6.72362 13.8368i 0.672362 1.38368i
\(101\) 13.1528i 1.30875i 0.756171 + 0.654374i \(0.227068\pi\)
−0.756171 + 0.654374i \(0.772932\pi\)
\(102\) 0.601617 + 0.560068i 0.0595689 + 0.0554549i
\(103\) 7.88740i 0.777168i −0.921413 0.388584i \(-0.872964\pi\)
0.921413 0.388584i \(-0.127036\pi\)
\(104\) 9.40978 1.00987i 0.922705 0.0990259i
\(105\) 0 0
\(106\) −5.74823 + 3.59774i −0.558317 + 0.349443i
\(107\) 8.13184 0.786134 0.393067 0.919510i \(-0.371414\pi\)
0.393067 + 0.919510i \(0.371414\pi\)
\(108\) −9.82000 + 3.40111i −0.944930 + 0.327272i
\(109\) 19.0829 1.82781 0.913904 0.405931i \(-0.133053\pi\)
0.913904 + 0.405931i \(0.133053\pi\)
\(110\) 1.43310 0.896956i 0.136641 0.0855214i
\(111\) −1.43310 5.34596i −0.136024 0.507416i
\(112\) 0 0
\(113\) 12.5914i 1.18450i 0.805756 + 0.592248i \(0.201759\pi\)
−0.805756 + 0.592248i \(0.798241\pi\)
\(114\) −3.31590 3.08689i −0.310562 0.289114i
\(115\) 15.8874i 1.48151i
\(116\) −10.6455 5.17290i −0.988408 0.480292i
\(117\) 8.69193 5.02092i 0.803569 0.464184i
\(118\) −10.5225 16.8122i −0.968674 1.54768i
\(119\) 0 0
\(120\) −16.2793 + 6.29214i −1.48609 + 0.574391i
\(121\) −10.8874 −0.989763
\(122\) 0.264892 + 0.423228i 0.0239822 + 0.0383173i
\(123\) 2.43979 0.654037i 0.219988 0.0589725i
\(124\) −9.34596 4.54143i −0.839292 0.407833i
\(125\) 9.59019i 0.857772i
\(126\) 0 0
\(127\) 10.1884i 0.904073i −0.891999 0.452036i \(-0.850698\pi\)
0.891999 0.452036i \(-0.149302\pi\)
\(128\) 7.90069 + 8.09809i 0.698329 + 0.715777i
\(129\) 12.5414 3.36199i 1.10421 0.296007i
\(130\) 14.2897 8.94370i 1.25329 0.784414i
\(131\) −10.4871 −0.916266 −0.458133 0.888884i \(-0.651482\pi\)
−0.458133 + 0.888884i \(0.651482\pi\)
\(132\) −1.14142 0.220004i −0.0993477 0.0191489i
\(133\) 0 0
\(134\) 3.83064 2.39755i 0.330917 0.207116i
\(135\) −13.0853 + 13.0942i −1.12620 + 1.12697i
\(136\) −0.101279 0.943698i −0.00868460 0.0809215i
\(137\) 8.91906i 0.762007i 0.924574 + 0.381003i \(0.124421\pi\)
−0.924574 + 0.381003i \(0.875579\pi\)
\(138\) −7.44311 + 7.99528i −0.633599 + 0.680604i
\(139\) 2.03789i 0.172852i 0.996258 + 0.0864258i \(0.0275445\pi\)
−0.996258 + 0.0864258i \(0.972455\pi\)
\(140\) 0 0
\(141\) −4.00000 14.9214i −0.336861 1.25661i
\(142\) 7.78612 + 12.4402i 0.653397 + 1.04395i
\(143\) 1.12278 0.0938919
\(144\) 11.1403 + 4.46020i 0.928359 + 0.371684i
\(145\) −21.0829 −1.75084
\(146\) 3.52033 + 5.62456i 0.291345 + 0.465492i
\(147\) 0 0
\(148\) −2.79321 + 5.74823i −0.229600 + 0.472501i
\(149\) 15.4576i 1.26633i 0.774016 + 0.633166i \(0.218245\pi\)
−0.774016 + 0.633166i \(0.781755\pi\)
\(150\) −12.8381 + 13.7905i −1.04823 + 1.12599i
\(151\) 15.1955i 1.23659i −0.785946 0.618295i \(-0.787824\pi\)
0.785946 0.618295i \(-0.212176\pi\)
\(152\) 0.558213 + 5.20133i 0.0452771 + 0.421883i
\(153\) −0.503544 0.871706i −0.0407091 0.0704732i
\(154\) 0 0
\(155\) −18.5092 −1.48670
\(156\) −11.3813 2.19370i −0.911231 0.175636i
\(157\) 0.955023 0.0762191 0.0381095 0.999274i \(-0.487866\pi\)
0.0381095 + 0.999274i \(0.487866\pi\)
\(158\) 4.79509 3.00118i 0.381477 0.238761i
\(159\) 8.02210 2.15049i 0.636194 0.170545i
\(160\) 18.9626 + 6.82347i 1.49913 + 0.539443i
\(161\) 0 0
\(162\) 12.7196 0.459276i 0.999349 0.0360841i
\(163\) 9.88740i 0.774441i −0.921987 0.387220i \(-0.873435\pi\)
0.921987 0.387220i \(-0.126565\pi\)
\(164\) −2.62337 1.27476i −0.204851 0.0995422i
\(165\) −2.00000 + 0.536142i −0.155700 + 0.0417386i
\(166\) 5.17653 + 8.27072i 0.401776 + 0.641932i
\(167\) 1.12278 0.0868836 0.0434418 0.999056i \(-0.486168\pi\)
0.0434418 + 0.999056i \(0.486168\pi\)
\(168\) 0 0
\(169\) −1.80453 −0.138810
\(170\) −0.896956 1.43310i −0.0687934 0.109914i
\(171\) 2.77535 + 4.80453i 0.212237 + 0.367412i
\(172\) −13.4851 6.55276i −1.02823 0.499643i
\(173\) 15.5673i 1.18356i 0.806100 + 0.591780i \(0.201575\pi\)
−0.806100 + 0.591780i \(0.798425\pi\)
\(174\) 10.6099 + 9.87714i 0.804333 + 0.748784i
\(175\) 0 0
\(176\) 0.829463 + 1.05529i 0.0625231 + 0.0795456i
\(177\) 6.28966 + 23.4627i 0.472760 + 1.76356i
\(178\) 4.64271 2.90581i 0.347986 0.217800i
\(179\) −21.7110 −1.62276 −0.811378 0.584521i \(-0.801282\pi\)
−0.811378 + 0.584521i \(0.801282\pi\)
\(180\) 21.3208 1.52709i 1.58916 0.113822i
\(181\) 16.4288 1.22115 0.610573 0.791960i \(-0.290939\pi\)
0.610573 + 0.791960i \(0.290939\pi\)
\(182\) 0 0
\(183\) −0.158336 0.590648i −0.0117045 0.0436619i
\(184\) 12.5414 1.34596i 0.924567 0.0992257i
\(185\) 11.3841i 0.836975i
\(186\) 9.31472 + 8.67142i 0.682988 + 0.635819i
\(187\) 0.112603i 0.00823435i
\(188\) −7.79627 + 16.0442i −0.568602 + 1.17014i
\(189\) 0 0
\(190\) 4.94370 + 7.89872i 0.358654 + 0.573033i
\(191\) 12.1208 0.877032 0.438516 0.898723i \(-0.355504\pi\)
0.438516 + 0.898723i \(0.355504\pi\)
\(192\) −6.34615 12.3177i −0.457994 0.888955i
\(193\) −7.69901 −0.554187 −0.277094 0.960843i \(-0.589371\pi\)
−0.277094 + 0.960843i \(0.589371\pi\)
\(194\) 1.50059 + 2.39755i 0.107736 + 0.172134i
\(195\) −19.9423 + 5.34596i −1.42810 + 0.382832i
\(196\) 0 0
\(197\) 7.04066i 0.501626i −0.968036 0.250813i \(-0.919302\pi\)
0.968036 0.250813i \(-0.0806980\pi\)
\(198\) 1.25767 + 0.667171i 0.0893788 + 0.0474138i
\(199\) 21.3839i 1.51586i 0.652335 + 0.757931i \(0.273789\pi\)
−0.652335 + 0.757931i \(0.726211\pi\)
\(200\) 21.6318 2.32156i 1.52960 0.164159i
\(201\) −5.34596 + 1.43310i −0.377075 + 0.101083i
\(202\) −15.7672 + 9.86845i −1.10937 + 0.694342i
\(203\) 0 0
\(204\) −0.220004 + 1.14142i −0.0154033 + 0.0799152i
\(205\) −5.19547 −0.362867
\(206\) 9.45520 5.91788i 0.658775 0.412318i
\(207\) 11.5847 6.69193i 0.805191 0.465121i
\(208\) 8.27072 + 10.5225i 0.573471 + 0.729603i
\(209\) 0.620628i 0.0429297i
\(210\) 0 0
\(211\) 22.9703i 1.58134i 0.612244 + 0.790669i \(0.290267\pi\)
−0.612244 + 0.790669i \(0.709733\pi\)
\(212\) −8.62574 4.19146i −0.592418 0.287871i
\(213\) −4.65404 17.3612i −0.318889 1.18957i
\(214\) 6.10128 + 9.74823i 0.417075 + 0.666375i
\(215\) −26.7067 −1.82138
\(216\) −11.4451 9.22012i −0.778738 0.627350i
\(217\) 0 0
\(218\) 14.3178 + 22.8760i 0.969723 + 1.54936i
\(219\) −2.10423 7.84951i −0.142190 0.530421i
\(220\) 2.15049 + 1.04498i 0.144986 + 0.0704524i
\(221\) 1.12278i 0.0755266i
\(222\) 5.33335 5.72901i 0.357951 0.384506i
\(223\) 9.68484i 0.648545i −0.945964 0.324272i \(-0.894881\pi\)
0.945964 0.324272i \(-0.105119\pi\)
\(224\) 0 0
\(225\) 19.9816 11.5424i 1.33211 0.769495i
\(226\) −15.0942 + 9.44724i −1.00405 + 0.628421i
\(227\) 13.4038 0.889644 0.444822 0.895619i \(-0.353267\pi\)
0.444822 + 0.895619i \(0.353267\pi\)
\(228\) 1.21258 6.29109i 0.0803052 0.416637i
\(229\) 16.7298 1.10554 0.552769 0.833335i \(-0.313571\pi\)
0.552769 + 0.833335i \(0.313571\pi\)
\(230\) 19.0454 11.9202i 1.25582 0.785997i
\(231\) 0 0
\(232\) −1.78612 16.6427i −0.117264 1.09265i
\(233\) 20.9238i 1.37076i −0.728184 0.685381i \(-0.759636\pi\)
0.728184 0.685381i \(-0.240364\pi\)
\(234\) 12.5405 + 6.65248i 0.819795 + 0.434886i
\(235\) 31.7748i 2.07276i
\(236\) 12.2590 25.2282i 0.797992 1.64221i
\(237\) −6.69193 + 1.79391i −0.434687 + 0.116527i
\(238\) 0 0
\(239\) −21.1244 −1.36642 −0.683211 0.730221i \(-0.739417\pi\)
−0.683211 + 0.730221i \(0.739417\pi\)
\(240\) −19.7571 14.7942i −1.27532 0.954962i
\(241\) −26.3768 −1.69908 −0.849538 0.527527i \(-0.823119\pi\)
−0.849538 + 0.527527i \(0.823119\pi\)
\(242\) −8.16876 13.0515i −0.525108 0.838983i
\(243\) −15.0596 4.02603i −0.966073 0.258270i
\(244\) −0.308607 + 0.635092i −0.0197565 + 0.0406576i
\(245\) 0 0
\(246\) 2.61460 + 2.43403i 0.166701 + 0.155188i
\(247\) 6.18838i 0.393757i
\(248\) −1.56808 14.6111i −0.0995734 0.927806i
\(249\) −3.09419 11.5424i −0.196086 0.731472i
\(250\) 11.4965 7.19547i 0.727100 0.455082i
\(251\) −5.60756 −0.353946 −0.176973 0.984216i \(-0.556631\pi\)
−0.176973 + 0.984216i \(0.556631\pi\)
\(252\) 0 0
\(253\) 1.49646 0.0940814
\(254\) 12.2136 7.64430i 0.766347 0.479646i
\(255\) 0.536142 + 2.00000i 0.0335745 + 0.125245i
\(256\) −3.77992 + 15.5471i −0.236245 + 0.971693i
\(257\) 18.1737i 1.13364i −0.823841 0.566821i \(-0.808173\pi\)
0.823841 0.566821i \(-0.191827\pi\)
\(258\) 13.4400 + 12.5118i 0.836741 + 0.778953i
\(259\) 0 0
\(260\) 21.4429 + 10.4196i 1.32983 + 0.646199i
\(261\) −8.88031 15.3731i −0.549677 0.951570i
\(262\) −7.86845 12.5717i −0.486115 0.776682i
\(263\) −17.7220 −1.09279 −0.546393 0.837529i \(-0.684000\pi\)
−0.546393 + 0.837529i \(0.684000\pi\)
\(264\) −0.592666 1.53337i −0.0364761 0.0943723i
\(265\) −17.0829 −1.04939
\(266\) 0 0
\(267\) −6.47927 + 1.73690i −0.396525 + 0.106297i
\(268\) 5.74823 + 2.79321i 0.351129 + 0.170622i
\(269\) 12.4816i 0.761018i 0.924777 + 0.380509i \(0.124251\pi\)
−0.924777 + 0.380509i \(0.875749\pi\)
\(270\) −25.5148 5.86175i −1.55278 0.356735i
\(271\) 1.79744i 0.109187i −0.998509 0.0545934i \(-0.982614\pi\)
0.998509 0.0545934i \(-0.0173863\pi\)
\(272\) 1.05529 0.829463i 0.0639864 0.0502936i
\(273\) 0 0
\(274\) −10.6919 + 6.69193i −0.645923 + 0.404274i
\(275\) 2.58113 0.155648
\(276\) −15.1691 2.92378i −0.913070 0.175991i
\(277\) −23.2713 −1.39823 −0.699117 0.715007i \(-0.746423\pi\)
−0.699117 + 0.715007i \(0.746423\pi\)
\(278\) −2.44297 + 1.52902i −0.146519 + 0.0917045i
\(279\) −7.79627 13.4965i −0.466751 0.808012i
\(280\) 0 0
\(281\) 23.1693i 1.38217i −0.722775 0.691084i \(-0.757134\pi\)
0.722775 0.691084i \(-0.242866\pi\)
\(282\) 14.8862 15.9906i 0.886461 0.952224i
\(283\) 1.84951i 0.109942i 0.998488 + 0.0549709i \(0.0175066\pi\)
−0.998488 + 0.0549709i \(0.982493\pi\)
\(284\) −9.07104 + 18.6676i −0.538267 + 1.10772i
\(285\) −2.95502 11.0233i −0.175040 0.652963i
\(286\) 0.842420 + 1.34596i 0.0498133 + 0.0795885i
\(287\) 0 0
\(288\) 3.01175 + 16.7012i 0.177469 + 0.984126i
\(289\) 16.8874 0.993376
\(290\) −15.8184 25.2736i −0.928887 1.48412i
\(291\) −0.896956 3.34596i −0.0525805 0.196144i
\(292\) −4.10128 + 8.44015i −0.240009 + 0.493923i
\(293\) 1.54919i 0.0905047i −0.998976 0.0452523i \(-0.985591\pi\)
0.998976 0.0452523i \(-0.0144092\pi\)
\(294\) 0 0
\(295\) 49.9632i 2.90897i
\(296\) −8.98655 + 0.964448i −0.522333 + 0.0560574i
\(297\) −1.23336 1.23252i −0.0715668 0.0715180i
\(298\) −18.5301 + 11.5977i −1.07342 + 0.671839i
\(299\) 14.9214 0.862928
\(300\) −26.1640 5.04302i −1.51058 0.291159i
\(301\) 0 0
\(302\) 18.2159 11.4011i 1.04821 0.656059i
\(303\) 22.0043 5.89872i 1.26412 0.338873i
\(304\) −5.81639 + 4.57170i −0.333593 + 0.262205i
\(305\) 1.25777i 0.0720197i
\(306\) 0.667171 1.25767i 0.0381396 0.0718963i
\(307\) 12.5414i 0.715777i 0.933764 + 0.357889i \(0.116503\pi\)
−0.933764 + 0.357889i \(0.883497\pi\)
\(308\) 0 0
\(309\) −13.1955 + 3.53732i −0.750664 + 0.201231i
\(310\) −13.8874 22.1884i −0.788751 1.26022i
\(311\) −12.0552 −0.683589 −0.341795 0.939775i \(-0.611035\pi\)
−0.341795 + 0.939775i \(0.611035\pi\)
\(312\) −5.90957 15.2895i −0.334564 0.865596i
\(313\) 22.0758 1.24780 0.623898 0.781505i \(-0.285548\pi\)
0.623898 + 0.781505i \(0.285548\pi\)
\(314\) 0.716549 + 1.14486i 0.0404372 + 0.0646079i
\(315\) 0 0
\(316\) 7.19547 + 3.49646i 0.404777 + 0.196691i
\(317\) 3.45284i 0.193931i 0.995288 + 0.0969653i \(0.0309136\pi\)
−0.995288 + 0.0969653i \(0.969086\pi\)
\(318\) 8.59690 + 8.00318i 0.482090 + 0.448796i
\(319\) 1.98582i 0.111185i
\(320\) 6.04778 + 27.8515i 0.338081 + 1.55695i
\(321\) −3.64695 13.6044i −0.203553 0.759324i
\(322\) 0 0
\(323\) 0.620628 0.0345326
\(324\) 10.0940 + 14.9034i 0.560780 + 0.827965i
\(325\) 25.7369 1.42763
\(326\) 11.8527 7.41847i 0.656463 0.410871i
\(327\) −8.55824 31.9253i −0.473272 1.76547i
\(328\) −0.440155 4.10128i −0.0243035 0.226455i
\(329\) 0 0
\(330\) −2.14330 1.99528i −0.117985 0.109837i
\(331\) 26.8945i 1.47825i 0.673566 + 0.739127i \(0.264762\pi\)
−0.673566 + 0.739127i \(0.735238\pi\)
\(332\) −6.03079 + 12.4110i −0.330983 + 0.681140i
\(333\) −8.30099 + 4.79509i −0.454891 + 0.262769i
\(334\) 0.842420 + 1.34596i 0.0460951 + 0.0736478i
\(335\) 11.3841 0.621980
\(336\) 0 0
\(337\) 10.5793 0.576292 0.288146 0.957586i \(-0.406961\pi\)
0.288146 + 0.957586i \(0.406961\pi\)
\(338\) −1.35393 2.16322i −0.0736441 0.117664i
\(339\) 21.0651 5.64695i 1.14410 0.306700i
\(340\) 1.04498 2.15049i 0.0566719 0.116627i
\(341\) 1.74341i 0.0944110i
\(342\) −3.67721 + 6.93183i −0.198841 + 0.374831i
\(343\) 0 0
\(344\) −2.26256 21.0821i −0.121989 1.13667i
\(345\) −26.5793 + 7.12515i −1.43098 + 0.383605i
\(346\) −18.6617 + 11.6801i −1.00326 + 0.627924i
\(347\) 25.2483 1.35540 0.677701 0.735338i \(-0.262977\pi\)
0.677701 + 0.735338i \(0.262977\pi\)
\(348\) −3.87990 + 20.1296i −0.207985 + 1.07906i
\(349\) −21.4359 −1.14744 −0.573719 0.819052i \(-0.694500\pi\)
−0.573719 + 0.819052i \(0.694500\pi\)
\(350\) 0 0
\(351\) −12.2980 12.2897i −0.656421 0.655974i
\(352\) −0.642713 + 1.78612i −0.0342567 + 0.0952004i
\(353\) 8.58349i 0.456853i −0.973561 0.228427i \(-0.926642\pi\)
0.973561 0.228427i \(-0.0733581\pi\)
\(354\) −23.4073 + 25.1438i −1.24408 + 1.33638i
\(355\) 36.9703i 1.96218i
\(356\) 6.96681 + 3.38534i 0.369240 + 0.179423i
\(357\) 0 0
\(358\) −16.2897 26.0266i −0.860935 1.37555i
\(359\) −6.70510 −0.353881 −0.176941 0.984222i \(-0.556620\pi\)
−0.176941 + 0.984222i \(0.556620\pi\)
\(360\) 17.8275 + 24.4131i 0.939594 + 1.28668i
\(361\) 15.5793 0.819964
\(362\) 12.3265 + 19.6944i 0.647865 + 1.03512i
\(363\) 4.88276 + 18.2144i 0.256278 + 0.956009i
\(364\) 0 0
\(365\) 16.7153i 0.874920i
\(366\) 0.589254 0.632968i 0.0308008 0.0330858i
\(367\) 24.4809i 1.27789i −0.769251 0.638946i \(-0.779371\pi\)
0.769251 0.638946i \(-0.220629\pi\)
\(368\) 11.0233 + 14.0245i 0.574628 + 0.731076i
\(369\) −2.18838 3.78840i −0.113923 0.197216i
\(370\) −13.6469 + 8.54143i −0.709471 + 0.444048i
\(371\) 0 0
\(372\) −3.40628 + 17.6724i −0.176607 + 0.916269i
\(373\) 4.39094 0.227354 0.113677 0.993518i \(-0.463737\pi\)
0.113677 + 0.993518i \(0.463737\pi\)
\(374\) 0.134985 0.0844855i 0.00697993 0.00436864i
\(375\) −16.0442 + 4.30099i −0.828519 + 0.222102i
\(376\) −25.0829 + 2.69193i −1.29355 + 0.138826i
\(377\) 19.8010i 1.01980i
\(378\) 0 0
\(379\) 16.8803i 0.867083i 0.901134 + 0.433542i \(0.142736\pi\)
−0.901134 + 0.433542i \(0.857264\pi\)
\(380\) −5.75954 + 11.8527i −0.295458 + 0.608033i
\(381\) −17.0450 + 4.56926i −0.873241 + 0.234091i
\(382\) 9.09419 + 14.5301i 0.465299 + 0.743425i
\(383\) 23.8405 1.21819 0.609096 0.793097i \(-0.291533\pi\)
0.609096 + 0.793097i \(0.291533\pi\)
\(384\) 10.0047 16.8495i 0.510549 0.859849i
\(385\) 0 0
\(386\) −5.77653 9.22937i −0.294018 0.469763i
\(387\) −11.2491 19.4738i −0.571824 0.989909i
\(388\) −1.74823 + 3.59774i −0.0887528 + 0.182647i
\(389\) 20.1682i 1.02257i −0.859412 0.511283i \(-0.829170\pi\)
0.859412 0.511283i \(-0.170830\pi\)
\(390\) −21.3712 19.8953i −1.08217 1.00744i
\(391\) 1.49646i 0.0756790i
\(392\) 0 0
\(393\) 4.70325 + 17.5448i 0.237248 + 0.885018i
\(394\) 8.44015 5.28257i 0.425209 0.266132i
\(395\) 14.2503 0.717010
\(396\) 0.143838 + 2.00824i 0.00722815 + 0.100918i
\(397\) 18.3389 0.920402 0.460201 0.887815i \(-0.347777\pi\)
0.460201 + 0.887815i \(0.347777\pi\)
\(398\) −25.6344 + 16.0442i −1.28494 + 0.804223i
\(399\) 0 0
\(400\) 19.0133 + 24.1898i 0.950664 + 1.20949i
\(401\) 8.60239i 0.429583i 0.976660 + 0.214791i \(0.0689071\pi\)
−0.976660 + 0.214791i \(0.931093\pi\)
\(402\) −5.72901 5.33335i −0.285737 0.266003i
\(403\) 17.3839i 0.865951i
\(404\) −23.6601 11.4970i −1.17713 0.571998i
\(405\) 27.7748 + 16.0190i 1.38014 + 0.795988i
\(406\) 0 0
\(407\) −1.07228 −0.0531511
\(408\) −1.53337 + 0.592666i −0.0759131 + 0.0293413i
\(409\) −4.31516 −0.213371 −0.106685 0.994293i \(-0.534024\pi\)
−0.106685 + 0.994293i \(0.534024\pi\)
\(410\) −3.89814 6.22819i −0.192515 0.307588i
\(411\) 14.9214 4.00000i 0.736019 0.197305i
\(412\) 14.1884 + 6.89448i 0.699011 + 0.339667i
\(413\) 0 0
\(414\) 16.7140 + 8.86648i 0.821450 + 0.435764i
\(415\) 24.5793i 1.20655i
\(416\) −6.40860 + 17.8097i −0.314207 + 0.873192i
\(417\) 3.40935 0.913949i 0.166957 0.0447563i
\(418\) −0.743992 + 0.465654i −0.0363898 + 0.0227759i
\(419\) −37.4133 −1.82776 −0.913879 0.405986i \(-0.866928\pi\)
−0.913879 + 0.405986i \(0.866928\pi\)
\(420\) 0 0
\(421\) 11.9016 0.580047 0.290024 0.957020i \(-0.406337\pi\)
0.290024 + 0.957020i \(0.406337\pi\)
\(422\) −27.5361 + 17.2345i −1.34044 + 0.838961i
\(423\) −23.1693 + 13.3839i −1.12653 + 0.650745i
\(424\) −1.44724 13.4851i −0.0702843 0.654896i
\(425\) 2.58113i 0.125203i
\(426\) 17.3202 18.6052i 0.839169 0.901423i
\(427\) 0 0
\(428\) −7.10815 + 14.6281i −0.343586 + 0.707076i
\(429\) −0.503544 1.87840i −0.0243113 0.0906899i
\(430\) −20.0379 32.0152i −0.966313 1.54391i
\(431\) 3.38724 0.163158 0.0815789 0.996667i \(-0.474004\pi\)
0.0815789 + 0.996667i \(0.474004\pi\)
\(432\) 2.46566 20.6378i 0.118629 0.992939i
\(433\) 26.7819 1.28706 0.643528 0.765423i \(-0.277470\pi\)
0.643528 + 0.765423i \(0.277470\pi\)
\(434\) 0 0
\(435\) 9.45520 + 35.2713i 0.453342 + 1.69113i
\(436\) −16.6806 + 34.3276i −0.798856 + 1.64399i
\(437\) 8.24793i 0.394552i
\(438\) 7.83099 8.41194i 0.374179 0.401938i
\(439\) 3.77479i 0.180161i −0.995934 0.0900805i \(-0.971288\pi\)
0.995934 0.0900805i \(-0.0287124\pi\)
\(440\) 0.360814 + 3.36199i 0.0172011 + 0.160277i
\(441\) 0 0
\(442\) 1.34596 0.842420i 0.0640209 0.0400698i
\(443\) −6.78958 −0.322583 −0.161291 0.986907i \(-0.551566\pi\)
−0.161291 + 0.986907i \(0.551566\pi\)
\(444\) 10.8694 + 2.09503i 0.515838 + 0.0994257i
\(445\) 13.7974 0.654061
\(446\) 11.6099 7.26649i 0.549746 0.344078i
\(447\) 25.8602 6.93237i 1.22315 0.327890i
\(448\) 0 0
\(449\) 12.9080i 0.609168i 0.952485 + 0.304584i \(0.0985174\pi\)
−0.952485 + 0.304584i \(0.901483\pi\)
\(450\) 28.8288 + 15.2932i 1.35900 + 0.720926i
\(451\) 0.489369i 0.0230435i
\(452\) −22.6502 11.0063i −1.06538 0.517692i
\(453\) −25.4217 + 6.81483i −1.19442 + 0.320189i
\(454\) 10.0568 + 16.0682i 0.471991 + 0.754116i
\(455\) 0 0
\(456\) 8.45138 3.26656i 0.395772 0.152971i
\(457\) 27.1813 1.27149 0.635744 0.771900i \(-0.280694\pi\)
0.635744 + 0.771900i \(0.280694\pi\)
\(458\) 12.5523 + 20.0553i 0.586531 + 0.937121i
\(459\) −1.23252 + 1.23336i −0.0575291 + 0.0575683i
\(460\) 28.5793 + 13.8874i 1.33252 + 0.647503i
\(461\) 7.31937i 0.340897i −0.985367 0.170448i \(-0.945478\pi\)
0.985367 0.170448i \(-0.0545216\pi\)
\(462\) 0 0
\(463\) 3.77479i 0.175430i −0.996146 0.0877148i \(-0.972044\pi\)
0.996146 0.0877148i \(-0.0279564\pi\)
\(464\) 18.6107 14.6281i 0.863981 0.679092i
\(465\) 8.30099 + 30.9656i 0.384949 + 1.43600i
\(466\) 25.0829 15.6990i 1.16194 0.727243i
\(467\) −29.4480 −1.36269 −0.681346 0.731961i \(-0.738605\pi\)
−0.681346 + 0.731961i \(0.738605\pi\)
\(468\) 1.43424 + 20.0245i 0.0662976 + 0.925632i
\(469\) 0 0
\(470\) −38.0908 + 23.8405i −1.75700 + 1.09968i
\(471\) −0.428306 1.59774i −0.0197353 0.0736198i
\(472\) 39.4407 4.23283i 1.81540 0.194832i
\(473\) 2.51554i 0.115665i
\(474\) −7.17141 6.67614i −0.329394 0.306645i
\(475\) 14.2263i 0.652746i
\(476\) 0 0
\(477\) −7.19547 12.4564i −0.329458 0.570338i
\(478\) −15.8495 25.3233i −0.724940 1.15826i
\(479\) −33.6628 −1.53809 −0.769047 0.639192i \(-0.779269\pi\)
−0.769047 + 0.639192i \(0.779269\pi\)
\(480\) 2.91122 34.7843i 0.132878 1.58768i
\(481\) −10.6919 −0.487510
\(482\) −19.7904 31.6198i −0.901426 1.44024i
\(483\) 0 0
\(484\) 9.51683 19.5850i 0.432583 0.890227i
\(485\) 7.12515i 0.323536i
\(486\) −6.47283 21.0737i −0.293614 0.955924i
\(487\) 21.1813i 0.959816i 0.877319 + 0.479908i \(0.159330\pi\)
−0.877319 + 0.479908i \(0.840670\pi\)
\(488\) −0.992877 + 0.106557i −0.0449454 + 0.00482360i
\(489\) −16.5414 + 4.43428i −0.748029 + 0.200525i
\(490\) 0 0
\(491\) 12.1208 0.547005 0.273502 0.961871i \(-0.411818\pi\)
0.273502 + 0.961871i \(0.411818\pi\)
\(492\) −0.956128 + 4.96056i −0.0431056 + 0.223639i
\(493\) −1.98582 −0.0894371
\(494\) −7.41847 + 4.64311i −0.333773 + 0.208904i
\(495\) 1.79391 + 3.10552i 0.0806303 + 0.139583i
\(496\) 16.3389 12.8424i 0.733637 0.576642i
\(497\) 0 0
\(498\) 11.5152 12.3695i 0.516008 0.554289i
\(499\) 36.5793i 1.63752i −0.574139 0.818758i \(-0.694663\pi\)
0.574139 0.818758i \(-0.305337\pi\)
\(500\) 17.2515 + 8.38292i 0.771509 + 0.374895i
\(501\) −0.503544 1.87840i −0.0224967 0.0839206i
\(502\) −4.20733 6.72220i −0.187782 0.300026i
\(503\) 0.890599 0.0397098 0.0198549 0.999803i \(-0.493680\pi\)
0.0198549 + 0.999803i \(0.493680\pi\)
\(504\) 0 0
\(505\) −46.8577 −2.08514
\(506\) 1.12278 + 1.79391i 0.0499138 + 0.0797491i
\(507\) 0.809292 + 3.01894i 0.0359419 + 0.134076i
\(508\) 18.3276 + 8.90581i 0.813154 + 0.395131i
\(509\) 1.54919i 0.0686667i 0.999410 + 0.0343333i \(0.0109308\pi\)
−0.999410 + 0.0343333i \(0.989069\pi\)
\(510\) −1.99528 + 2.14330i −0.0883525 + 0.0949071i
\(511\) 0 0
\(512\) −21.4735 + 7.13364i −0.949004 + 0.315265i
\(513\) 6.79321 6.79784i 0.299927 0.300132i
\(514\) 21.7861 13.6356i 0.960944 0.601442i
\(515\) 28.0994 1.23821
\(516\) −4.91486 + 25.4991i −0.216365 + 1.12254i
\(517\) −2.99291 −0.131628
\(518\) 0 0
\(519\) 26.0438 6.98159i 1.14320 0.306458i
\(520\) 3.59774 + 33.5230i 0.157771 + 1.47008i
\(521\) 35.5601i 1.55792i −0.627075 0.778959i \(-0.715748\pi\)
0.627075 0.778959i \(-0.284252\pi\)
\(522\) 11.7660 22.1798i 0.514983 0.970784i
\(523\) 14.0379i 0.613834i 0.951736 + 0.306917i \(0.0992974\pi\)
−0.951736 + 0.306917i \(0.900703\pi\)
\(524\) 9.16696 18.8650i 0.400460 0.824120i
\(525\) 0 0
\(526\) −13.2967 21.2447i −0.579766 0.926312i
\(527\) −1.74341 −0.0759442
\(528\) 1.39349 1.86095i 0.0606437 0.0809875i
\(529\) −3.11260 −0.135331
\(530\) −12.8172 20.4785i −0.556743 0.889528i
\(531\) 36.4318 21.0450i 1.58101 0.913274i
\(532\) 0 0
\(533\) 4.87958i 0.211358i
\(534\) −6.94352 6.46398i −0.300475 0.279724i
\(535\) 28.9703i 1.25249i
\(536\) 0.964448 + 8.98655i 0.0416578 + 0.388160i
\(537\) 9.73690 + 36.3221i 0.420178 + 1.56741i
\(538\) −14.9626 + 9.36491i −0.645085 + 0.403750i
\(539\) 0 0
\(540\) −12.1167 34.9845i −0.521420 1.50549i
\(541\) −32.2783 −1.38775 −0.693877 0.720093i \(-0.744099\pi\)
−0.693877 + 0.720093i \(0.744099\pi\)
\(542\) 2.15473 1.34861i 0.0925534 0.0579279i
\(543\) −7.36797 27.4851i −0.316190 1.17950i
\(544\) 1.78612 + 0.642713i 0.0765792 + 0.0275561i
\(545\) 67.9841i 2.91212i
\(546\) 0 0
\(547\) 19.8732i 0.849718i 0.905260 + 0.424859i \(0.139676\pi\)
−0.905260 + 0.424859i \(0.860324\pi\)
\(548\) −16.0442 7.79627i −0.685374 0.333040i
\(549\) −0.917133 + 0.529785i −0.0391423 + 0.0226107i
\(550\) 1.93661 + 3.09419i 0.0825774 + 0.131937i
\(551\) 10.9452 0.466279
\(552\) −7.87633 20.3780i −0.335239 0.867343i
\(553\) 0 0
\(554\) −17.4603 27.8969i −0.741817 1.18523i
\(555\) 19.0454 5.10552i 0.808432 0.216717i
\(556\) −3.66589 1.78135i −0.155469 0.0755460i
\(557\) 29.5389i 1.25160i 0.779983 + 0.625801i \(0.215228\pi\)
−0.779983 + 0.625801i \(0.784772\pi\)
\(558\) 10.3297 19.4723i 0.437290 0.824328i
\(559\) 25.0829i 1.06089i
\(560\) 0 0
\(561\) −0.188383 + 0.0505000i −0.00795353 + 0.00213211i
\(562\) 27.7748 17.3839i 1.17161 0.733294i
\(563\) 20.7485 0.874443 0.437222 0.899354i \(-0.355963\pi\)
0.437222 + 0.899354i \(0.355963\pi\)
\(564\) 30.3381 + 5.84755i 1.27747 + 0.246226i
\(565\) −44.8577 −1.88718
\(566\) −2.21714 + 1.38768i −0.0931933 + 0.0583284i
\(567\) 0 0
\(568\) −29.1841 + 3.13208i −1.22454 + 0.131419i
\(569\) 4.74459i 0.198904i 0.995042 + 0.0994518i \(0.0317089\pi\)
−0.995042 + 0.0994518i \(0.968291\pi\)
\(570\) 10.9973 11.8131i 0.460625 0.494797i
\(571\) 18.2642i 0.764331i 0.924094 + 0.382166i \(0.124822\pi\)
−0.924094 + 0.382166i \(0.875178\pi\)
\(572\) −0.981441 + 2.01974i −0.0410361 + 0.0844496i
\(573\) −5.43592 20.2779i −0.227089 0.847122i
\(574\) 0 0
\(575\) 34.3024 1.43051
\(576\) −17.7612 + 16.1412i −0.740051 + 0.672551i
\(577\) 6.37677 0.265468 0.132734 0.991152i \(-0.457624\pi\)
0.132734 + 0.991152i \(0.457624\pi\)
\(578\) 12.6705 + 20.2442i 0.527025 + 0.842046i
\(579\) 3.45284 + 12.8803i 0.143495 + 0.535287i
\(580\) 18.4288 37.9253i 0.765216 1.57476i
\(581\) 0 0
\(582\) 3.33807 3.58571i 0.138367 0.148632i
\(583\) 1.60906i 0.0666404i
\(584\) −13.1950 + 1.41610i −0.546013 + 0.0585988i
\(585\) 17.8874 + 30.9656i 0.739553 + 1.28027i
\(586\) 1.85713 1.16235i 0.0767172 0.0480162i
\(587\) 16.8907 0.697152 0.348576 0.937280i \(-0.386665\pi\)
0.348576 + 0.937280i \(0.386665\pi\)
\(588\) 0 0
\(589\) 9.60906 0.395934
\(590\) 59.8945 37.4871i 2.46582 1.54332i
\(591\) −11.7789 + 3.15758i −0.484519 + 0.129886i
\(592\) −7.89872 10.0492i −0.324635 0.413020i
\(593\) 40.6719i 1.67019i 0.550102 + 0.835097i \(0.314589\pi\)
−0.550102 + 0.835097i \(0.685411\pi\)
\(594\) 0.552127 2.40327i 0.0226540 0.0986075i
\(595\) 0 0
\(596\) −27.8061 13.5117i −1.13898 0.553460i
\(597\) 35.7748 9.59019i 1.46416 0.392500i
\(598\) 11.1955 + 17.8874i 0.457817 + 0.731470i
\(599\) −7.29174 −0.297932 −0.148966 0.988842i \(-0.547595\pi\)
−0.148966 + 0.988842i \(0.547595\pi\)
\(600\) −13.5853 35.1485i −0.554618 1.43493i
\(601\) 30.6778 1.25137 0.625686 0.780075i \(-0.284819\pi\)
0.625686 + 0.780075i \(0.284819\pi\)
\(602\) 0 0
\(603\) 4.79509 + 8.30099i 0.195271 + 0.338042i
\(604\) 27.3346 + 13.2826i 1.11223 + 0.540460i
\(605\) 38.7871i 1.57692i
\(606\) 23.5810 + 21.9524i 0.957911 + 0.891756i
\(607\) 13.3081i 0.540158i −0.962838 0.270079i \(-0.912950\pi\)
0.962838 0.270079i \(-0.0870498\pi\)
\(608\) −9.84444 3.54240i −0.399245 0.143663i
\(609\) 0 0
\(610\) −1.50778 + 0.943698i −0.0610482 + 0.0382092i
\(611\) −29.8428 −1.20731
\(612\) 2.00824 0.143838i 0.0811782 0.00581432i
\(613\) 19.6848 0.795063 0.397532 0.917588i \(-0.369867\pi\)
0.397532 + 0.917588i \(0.369867\pi\)
\(614\) −15.0343 + 9.40978i −0.606736 + 0.379748i
\(615\) 2.33005 + 8.69193i 0.0939568 + 0.350492i
\(616\) 0 0
\(617\) 10.7470i 0.432656i −0.976321 0.216328i \(-0.930592\pi\)
0.976321 0.216328i \(-0.0694081\pi\)
\(618\) −14.1409 13.1643i −0.568832 0.529547i
\(619\) 45.7369i 1.83832i −0.393883 0.919161i \(-0.628868\pi\)
0.393883 0.919161i \(-0.371132\pi\)
\(620\) 16.1792 33.2957i 0.649772 1.33719i
\(621\) −16.3909 16.3798i −0.657746 0.657297i
\(622\) −9.04498 14.4515i −0.362671 0.579452i
\(623\) 0 0
\(624\) 13.8947 18.5559i 0.556233 0.742829i
\(625\) −4.29390 −0.171756
\(626\) 16.5634 + 26.4639i 0.662005 + 1.05771i
\(627\) 1.03830 0.278338i 0.0414656 0.0111157i
\(628\) −0.834799 + 1.71796i −0.0333121 + 0.0685540i
\(629\) 1.07228i 0.0427548i
\(630\) 0 0
\(631\) 2.61615i 0.104147i 0.998643 + 0.0520736i \(0.0165830\pi\)
−0.998643 + 0.0520736i \(0.983417\pi\)
\(632\) 1.20727 + 11.2491i 0.0480226 + 0.447466i
\(633\) 38.4288 10.3017i 1.52741 0.409454i
\(634\) −4.13917 + 2.59065i −0.164387 + 0.102888i
\(635\) 36.2969 1.44040
\(636\) −3.14378 + 16.3105i −0.124659 + 0.646752i
\(637\) 0 0
\(638\) 2.38055 1.48995i 0.0942470 0.0589879i
\(639\) −26.9578 + 15.5722i −1.06643 + 0.616028i
\(640\) −28.8500 + 28.1468i −1.14040 + 1.11260i
\(641\) 22.5827i 0.891963i 0.895042 + 0.445982i \(0.147145\pi\)
−0.895042 + 0.445982i \(0.852855\pi\)
\(642\) 13.5723 14.5792i 0.535657 0.575395i
\(643\) 9.32332i 0.367676i −0.982957 0.183838i \(-0.941148\pi\)
0.982957 0.183838i \(-0.0588521\pi\)
\(644\) 0 0
\(645\) 11.9774 + 44.6798i 0.471608 + 1.75926i
\(646\) 0.465654 + 0.743992i 0.0183209 + 0.0292720i
\(647\) 15.5420 0.611021 0.305510 0.952189i \(-0.401173\pi\)
0.305510 + 0.952189i \(0.401173\pi\)
\(648\) −10.2922 + 23.2824i −0.404317 + 0.914619i
\(649\) 4.70610 0.184731
\(650\) 19.3103 + 30.8527i 0.757411 + 1.21014i
\(651\) 0 0
\(652\) 17.7861 + 8.64271i 0.696558 + 0.338475i
\(653\) 9.40470i 0.368034i −0.982923 0.184017i \(-0.941090\pi\)
0.982923 0.184017i \(-0.0589102\pi\)
\(654\) 31.8500 34.2128i 1.24543 1.33783i
\(655\) 37.3612i 1.45982i
\(656\) 4.58626 3.60482i 0.179063 0.140744i
\(657\) −12.1884 + 7.04066i −0.475514 + 0.274682i
\(658\) 0 0
\(659\) 31.2507 1.21735 0.608677 0.793418i \(-0.291701\pi\)
0.608677 + 0.793418i \(0.291701\pi\)
\(660\) 0.783780 4.06638i 0.0305086 0.158284i
\(661\) 23.9479 0.931467 0.465733 0.884925i \(-0.345791\pi\)
0.465733 + 0.884925i \(0.345791\pi\)
\(662\) −32.2404 + 20.1788i −1.25306 + 0.784271i
\(663\) −1.87840 + 0.503544i −0.0729509 + 0.0195560i
\(664\) −19.4028 + 2.08233i −0.752975 + 0.0808102i
\(665\) 0 0
\(666\) −11.9764 6.35326i −0.464077 0.246184i
\(667\) 26.3909i 1.02186i
\(668\) −0.981441 + 2.01974i −0.0379731 + 0.0781461i
\(669\) −16.2026 + 4.34344i −0.626427 + 0.167927i
\(670\) 8.54143 + 13.6469i 0.329984 + 0.527228i
\(671\) −0.118471 −0.00457353
\(672\) 0 0
\(673\) −23.8732 −0.920245 −0.460123 0.887855i \(-0.652195\pi\)
−0.460123 + 0.887855i \(0.652195\pi\)
\(674\) 7.93762 + 12.6822i 0.305746 + 0.488500i
\(675\) −28.2716 28.2523i −1.08817 1.08743i
\(676\) 1.57736 3.24611i 0.0606679 0.124850i
\(677\) 26.9514i 1.03583i −0.855433 0.517913i \(-0.826709\pi\)
0.855433 0.517913i \(-0.173291\pi\)
\(678\) 22.5745 + 21.0154i 0.866967 + 0.807093i
\(679\) 0 0
\(680\) 3.36199 0.360814i 0.128927 0.0138366i
\(681\) −6.01132 22.4244i −0.230354 0.859304i
\(682\) 2.08995 1.30807i 0.0800285 0.0500887i
\(683\) −23.5554 −0.901323 −0.450661 0.892695i \(-0.648812\pi\)
−0.450661 + 0.892695i \(0.648812\pi\)
\(684\) −11.0687 + 0.792785i −0.423222 + 0.0303129i
\(685\) −31.7748 −1.21405
\(686\) 0 0
\(687\) −7.50295 27.9887i −0.286255 1.06783i
\(688\) 23.5751 18.5301i 0.898792 0.706454i
\(689\) 16.0442i 0.611235i
\(690\) −28.4838 26.5166i −1.08436 1.00947i
\(691\) 4.24892i 0.161637i 0.996729 + 0.0808183i \(0.0257533\pi\)
−0.996729 + 0.0808183i \(0.974247\pi\)
\(692\) −28.0035 13.6076i −1.06453 0.517283i
\(693\) 0 0
\(694\) 18.9437 + 30.2670i 0.719093 + 1.14892i
\(695\) −7.26013 −0.275392
\(696\) −27.0419 + 10.4520i −1.02502 + 0.396183i
\(697\) −0.489369 −0.0185362
\(698\) −16.0833 25.6968i −0.608761 0.972638i
\(699\) −35.0051 + 9.38385i −1.32401 + 0.354930i
\(700\) 0 0
\(701\) 8.60239i 0.324908i −0.986716 0.162454i \(-0.948059\pi\)
0.986716 0.162454i \(-0.0519409\pi\)
\(702\) 5.50535 23.9634i 0.207786 0.904442i
\(703\) 5.91005i 0.222902i
\(704\) −2.62337 + 0.569649i −0.0988721 + 0.0214695i
\(705\) 53.1586 14.2503i 2.00207 0.536697i
\(706\) 10.2897 6.44015i 0.387257 0.242378i
\(707\) 0 0
\(708\) −47.7041 9.19478i −1.79283 0.345561i
\(709\) −14.7061 −0.552299 −0.276150 0.961115i \(-0.589059\pi\)
−0.276150 + 0.961115i \(0.589059\pi\)
\(710\) −44.3190 + 27.7386i −1.66326 + 1.04101i
\(711\) 6.00236 + 10.3909i 0.225106 + 0.389691i
\(712\) 1.16890 + 10.8916i 0.0438066 + 0.408181i
\(713\) 23.1693i 0.867699i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) 18.9779 39.0552i 0.709237 1.45956i
\(717\) 9.47381 + 35.3407i 0.353806 + 1.31982i
\(718\) −5.03080 8.03789i −0.187748 0.299971i
\(719\) 10.9324 0.407711 0.203856 0.979001i \(-0.434653\pi\)
0.203856 + 0.979001i \(0.434653\pi\)
\(720\) −15.8898 + 39.6882i −0.592178 + 1.47909i
\(721\) 0 0
\(722\) 11.6891 + 18.6761i 0.435023 + 0.695052i
\(723\) 11.8294 + 44.1278i 0.439940 + 1.64113i
\(724\) −14.3607 + 29.5533i −0.533710 + 1.09834i
\(725\) 45.5199i 1.69057i
\(726\) −18.1714 + 19.5195i −0.674405 + 0.724437i
\(727\) 38.8803i 1.44199i 0.692940 + 0.720995i \(0.256315\pi\)
−0.692940 + 0.720995i \(0.743685\pi\)
\(728\) 0 0
\(729\) 0.0184116 + 27.0000i 0.000681912 + 1.00000i
\(730\) −20.0379 + 12.5414i −0.741636 + 0.464179i
\(731\) −2.51554 −0.0930406
\(732\) 1.20090 + 0.231469i 0.0443865 + 0.00855533i
\(733\) −11.1208 −0.410755 −0.205377 0.978683i \(-0.565842\pi\)
−0.205377 + 0.978683i \(0.565842\pi\)
\(734\) 29.3470 18.3679i 1.08322 0.677972i
\(735\) 0 0
\(736\) −8.54143 + 23.7369i −0.314841 + 0.874954i
\(737\) 1.07228i 0.0394981i
\(738\) 2.89950 5.46579i 0.106732 0.201199i
\(739\) 31.8732i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(740\) −20.4785 9.95100i −0.752804 0.365806i
\(741\) 10.3531 2.77535i 0.380329 0.101955i
\(742\) 0 0
\(743\) 24.5432 0.900403 0.450202 0.892927i \(-0.351352\pi\)
0.450202 + 0.892927i \(0.351352\pi\)
\(744\) −23.7409 + 9.17613i −0.870382 + 0.336413i
\(745\) −55.0687 −2.01756
\(746\) 3.29450 + 5.26374i 0.120620 + 0.192719i
\(747\) −17.9226 + 10.3531i −0.655754 + 0.378798i
\(748\) 0.202558 + 0.0984279i 0.00740625 + 0.00359888i
\(749\) 0 0
\(750\) −17.1938 16.0064i −0.627829 0.584469i
\(751\) 0.427764i 0.0156093i 0.999970 + 0.00780467i \(0.00248433\pi\)
−0.999970 + 0.00780467i \(0.997516\pi\)
\(752\) −22.0466 28.0489i −0.803956 1.02284i
\(753\) 2.51487 + 9.38135i 0.0916469 + 0.341875i
\(754\) 23.7369 14.8566i 0.864447 0.541045i
\(755\) 54.1350 1.97017
\(756\) 0 0
\(757\) 51.4596 1.87033 0.935166 0.354210i \(-0.115250\pi\)
0.935166 + 0.354210i \(0.115250\pi\)
\(758\) −20.2357 + 12.6652i −0.734992 + 0.460021i
\(759\) −0.671128 2.50354i −0.0243604 0.0908729i
\(760\) −18.5301 + 1.98868i −0.672158 + 0.0721369i
\(761\) 9.03515i 0.327524i −0.986500 0.163762i \(-0.947637\pi\)
0.986500 0.163762i \(-0.0523629\pi\)
\(762\) −18.2663 17.0048i −0.661717 0.616018i
\(763\) 0 0
\(764\) −10.5950 + 21.8037i −0.383313 + 0.788832i
\(765\) 3.10552 1.79391i 0.112280 0.0648590i
\(766\) 17.8874 + 28.5793i 0.646298 + 1.03261i
\(767\) 46.9253 1.69438
\(768\) 27.7052 0.648787i 0.999726 0.0234111i
\(769\) 21.1728 0.763511 0.381756 0.924263i \(-0.375320\pi\)
0.381756 + 0.924263i \(0.375320\pi\)
\(770\) 0 0
\(771\) −30.4042 + 8.15049i −1.09498 + 0.293533i
\(772\) 6.72982 13.8495i 0.242211 0.498455i
\(773\) 4.11523i 0.148015i −0.997258 0.0740073i \(-0.976421\pi\)
0.997258 0.0740073i \(-0.0235788\pi\)
\(774\) 14.9045 28.0962i 0.535732 1.00990i
\(775\) 39.9632i 1.43552i
\(776\) −5.62456 + 0.603635i −0.201910 + 0.0216692i
\(777\) 0 0
\(778\) 24.1771 15.1321i 0.866790 0.542511i
\(779\) 2.69722 0.0966381
\(780\) 7.81520 40.5466i 0.279829 1.45180i
\(781\) −3.48228 −0.124606
\(782\) 1.79391 1.12278i 0.0641501 0.0401507i
\(783\) −21.7363 + 21.7511i −0.776790 + 0.777320i
\(784\) 0 0
\(785\) 3.40234i 0.121435i
\(786\) −17.5034 + 18.8019i −0.624326 + 0.670642i
\(787\) 29.9621i 1.06803i 0.845474 + 0.534017i \(0.179318\pi\)
−0.845474 + 0.534017i \(0.820682\pi\)
\(788\) 12.6652 + 6.15434i 0.451180 + 0.219239i
\(789\) 7.94793 + 29.6486i 0.282954 + 1.05552i
\(790\) 10.6919 + 17.0829i 0.380402 + 0.607781i
\(791\) 0 0
\(792\) −2.29950 + 1.67920i −0.0817092 + 0.0596678i
\(793\) −1.18130 −0.0419490
\(794\) 13.7596 + 21.9842i 0.488309 + 0.780188i
\(795\) 7.66129 + 28.5793i 0.271718 + 1.01360i
\(796\) −38.4667 18.6919i −1.36342 0.662518i
\(797\) 49.0485i 1.73739i 0.495351 + 0.868693i \(0.335039\pi\)
−0.495351 + 0.868693i \(0.664961\pi\)
\(798\) 0 0
\(799\) 2.99291i 0.105882i
\(800\) −14.7325 + 40.9421i −0.520873 + 1.44752i
\(801\) 5.81162 + 10.0607i 0.205343 + 0.355479i
\(802\) −10.3123 + 6.45433i −0.364140 + 0.227910i
\(803\) −1.57444 −0.0555608
\(804\) 2.09503 10.8694i 0.0738860 0.383333i
\(805\) 0 0
\(806\) 20.8393 13.0430i 0.734033 0.459421i
\(807\) 20.8815 5.59774i 0.735065 0.197050i
\(808\) −3.96973 36.9892i −0.139655 1.30128i
\(809\) 52.6577i 1.85135i −0.378323 0.925674i \(-0.623499\pi\)
0.378323 0.925674i \(-0.376501\pi\)
\(810\) 1.63620 + 45.3146i 0.0574904 + 1.59219i
\(811\) 37.5117i 1.31721i 0.752487 + 0.658607i \(0.228854\pi\)
−0.752487 + 0.658607i \(0.771146\pi\)
\(812\) 0 0
\(813\) −3.00709 + 0.806113i −0.105463 + 0.0282716i
\(814\) −0.804530 1.28543i −0.0281987 0.0450541i
\(815\) 35.2246 1.23386
\(816\) −1.86095 1.39349i −0.0651463 0.0487818i
\(817\) 13.8647 0.485066
\(818\) −3.23764 5.17290i −0.113202 0.180866i
\(819\) 0 0
\(820\) 4.54143 9.34596i 0.158594 0.326375i
\(821\) 2.11058i 0.0736598i −0.999322 0.0368299i \(-0.988274\pi\)
0.999322 0.0368299i \(-0.0117260\pi\)
\(822\) 15.9906 + 14.8862i 0.557735 + 0.519216i
\(823\) 52.5567i 1.83201i 0.401166 + 0.916005i \(0.368605\pi\)
−0.401166 + 0.916005i \(0.631395\pi\)
\(824\) 2.38055 + 22.1816i 0.0829305 + 0.772731i
\(825\) −1.15758 4.31819i −0.0403018 0.150340i
\(826\) 0 0
\(827\) −10.3774 −0.360858 −0.180429 0.983588i \(-0.557749\pi\)
−0.180429 + 0.983588i \(0.557749\pi\)
\(828\) 1.91156 + 26.6888i 0.0664314 + 0.927500i
\(829\) −1.43592 −0.0498715 −0.0249358 0.999689i \(-0.507938\pi\)
−0.0249358 + 0.999689i \(0.507938\pi\)
\(830\) −29.4650 + 18.4417i −1.02275 + 0.640122i
\(831\) 10.4366 + 38.9324i 0.362043 + 1.35055i
\(832\) −26.1581 + 5.68007i −0.906869 + 0.196921i
\(833\) 0 0
\(834\) 3.65364 + 3.40131i 0.126515 + 0.117778i
\(835\) 4.00000i 0.138426i
\(836\) −1.11643 0.542499i −0.0386124 0.0187627i
\(837\) −19.0829 + 19.0959i −0.659600 + 0.660050i
\(838\) −28.0710 44.8500i −0.969697 1.54932i
\(839\) −1.39275 −0.0480832 −0.0240416 0.999711i \(-0.507653\pi\)
−0.0240416 + 0.999711i \(0.507653\pi\)
\(840\) 0 0
\(841\) −6.02126 −0.207630
\(842\) 8.92969 + 14.2673i 0.307738 + 0.491683i
\(843\) −38.7619 + 10.3909i −1.33503 + 0.357883i
\(844\) −41.3205 20.0786i −1.42231 0.691135i
\(845\) 6.42877i 0.221156i
\(846\) −33.4281 17.7330i −1.14928 0.609671i
\(847\) 0 0
\(848\) 15.0798 11.8527i 0.517841 0.407025i
\(849\) 3.09419 0.829463i 0.106192 0.0284671i
\(850\) 3.09419 1.93661i 0.106130 0.0664252i
\(851\) −14.2503 −0.488494
\(852\) 35.2987 + 6.80368i 1.20931 + 0.233090i
\(853\) −18.6399 −0.638217 −0.319108 0.947718i \(-0.603383\pi\)
−0.319108 + 0.947718i \(0.603383\pi\)
\(854\) 0 0
\(855\) −17.1165 + 9.88740i −0.585372 + 0.338142i
\(856\) −22.8690 + 2.45433i −0.781646 + 0.0838873i
\(857\) 30.8622i 1.05423i 0.849793 + 0.527117i \(0.176727\pi\)
−0.849793 + 0.527117i \(0.823273\pi\)
\(858\) 1.87397 2.01299i 0.0639761 0.0687222i
\(859\) 17.9253i 0.611603i −0.952095 0.305801i \(-0.901076\pi\)
0.952095 0.305801i \(-0.0989244\pi\)
\(860\) 23.3447 48.0418i 0.796047 1.63821i
\(861\) 0 0
\(862\) 2.54143 + 4.06054i 0.0865616 + 0.138302i
\(863\) −5.04617 −0.171774 −0.0858868 0.996305i \(-0.527372\pi\)
−0.0858868 + 0.996305i \(0.527372\pi\)
\(864\) 26.5901 12.5287i 0.904612 0.426235i
\(865\) −55.4596 −1.88568
\(866\) 20.0943 + 32.1054i 0.682833 + 1.09099i
\(867\) −7.57362 28.2523i −0.257214 0.959499i
\(868\) 0 0
\(869\) 1.34226i 0.0455329i
\(870\) −35.1880 + 37.7985i −1.19299 + 1.28149i
\(871\) 10.6919i 0.362282i
\(872\) −53.6663 + 5.75954i −1.81737 + 0.195043i
\(873\) −5.19547 + 3.00118i −0.175840 + 0.101575i
\(874\) −9.88740 + 6.18838i −0.334446 + 0.209325i
\(875\) 0 0
\(876\) 15.9596 + 3.07614i 0.539223 + 0.103933i
\(877\) −0.691927 −0.0233647 −0.0116824 0.999932i \(-0.503719\pi\)
−0.0116824 + 0.999932i \(0.503719\pi\)
\(878\) 4.52512 2.83221i 0.152715 0.0955825i
\(879\) −2.59177 + 0.694778i −0.0874181 + 0.0234343i
\(880\) −3.75955 + 2.95502i −0.126734 + 0.0996138i
\(881\) 38.2574i 1.28892i −0.764637 0.644462i \(-0.777082\pi\)
0.764637 0.644462i \(-0.222918\pi\)
\(882\) 0 0
\(883\) 3.42068i 0.115115i −0.998342 0.0575575i \(-0.981669\pi\)
0.998342 0.0575575i \(-0.0183312\pi\)
\(884\) 2.01974 + 0.981441i 0.0679312 + 0.0330094i
\(885\) −83.5875 + 22.4074i −2.80976 + 0.753216i
\(886\) −5.09419 8.13917i −0.171143 0.273441i
\(887\) 17.1543 0.575984 0.287992 0.957633i \(-0.407012\pi\)
0.287992 + 0.957633i \(0.407012\pi\)
\(888\) 5.64377 + 14.6018i 0.189393 + 0.490004i
\(889\) 0 0
\(890\) 10.3522 + 16.5400i 0.347005 + 0.554422i
\(891\) −1.50885 + 2.61615i −0.0505483 + 0.0876442i
\(892\) 17.4217 + 8.46565i 0.583323 + 0.283451i
\(893\) 16.4959i 0.552013i
\(894\) 27.7131 + 25.7992i 0.926866 + 0.862855i
\(895\) 77.3470i 2.58543i
\(896\) 0 0
\(897\) −6.69193 24.9633i −0.223437 0.833499i
\(898\) −15.4738 + 9.68484i −0.516368 + 0.323187i
\(899\) −30.7462 −1.02544
\(900\) 3.29712 + 46.0336i 0.109904 + 1.53445i
\(901\) −1.60906 −0.0536055
\(902\) 0.586642 0.367171i 0.0195330 0.0122255i
\(903\) 0 0
\(904\) −3.80029 35.4104i −0.126396 1.17773i
\(905\) 58.5289i 1.94557i
\(906\) −27.2433 25.3618i −0.905096 0.842588i
\(907\) 30.7904i 1.02238i 0.859469 + 0.511188i \(0.170795\pi\)
−0.859469 + 0.511188i \(0.829205\pi\)
\(908\) −11.7165 + 24.1117i −0.388825 + 0.800176i
\(909\) −19.7369 34.1674i −0.654632 1.13326i
\(910\) 0 0
\(911\) 14.8898 0.493321 0.246661 0.969102i \(-0.420667\pi\)
0.246661 + 0.969102i \(0.420667\pi\)
\(912\) 10.2569 + 7.68040i 0.339640 + 0.254323i
\(913\) −2.31516 −0.0766206
\(914\) 20.3940 + 32.5842i 0.674573 + 1.07779i
\(915\) 2.10423 0.564082i 0.0695635 0.0186480i
\(916\) −14.6238 + 30.0947i −0.483183 + 0.994358i
\(917\) 0 0
\(918\) −2.40327 0.552127i −0.0793198 0.0182229i
\(919\) 2.99291i 0.0987271i 0.998781 + 0.0493635i \(0.0157193\pi\)
−0.998781 + 0.0493635i \(0.984281\pi\)
\(920\) 4.79509 + 44.6798i 0.158090 + 1.47305i
\(921\) 20.9816 5.62456i 0.691367 0.185335i
\(922\) 8.77426 5.49169i 0.288965 0.180859i
\(923\) −34.7224 −1.14290
\(924\) 0 0
\(925\) −24.5793 −0.808163
\(926\) 4.52512 2.83221i 0.148705 0.0930722i
\(927\) 11.8358 + 20.4894i 0.388737 + 0.672959i
\(928\) 31.4993 + 11.3346i 1.03402 + 0.372078i
\(929\) 11.5002i 0.377309i 0.982044 + 0.188654i \(0.0604126\pi\)
−0.982044 + 0.188654i \(0.939587\pi\)
\(930\) −30.8926 + 33.1844i −1.01301 + 1.08816i
\(931\) 0 0
\(932\) 37.6391 + 18.2898i 1.23291 + 0.599101i
\(933\) 5.40650 + 20.1682i 0.177001 + 0.660276i
\(934\) −22.0947 35.3015i −0.722961 1.15510i
\(935\) 0.401157 0.0131192
\(936\) −22.9287 + 16.7436i −0.749448 + 0.547282i
\(937\) −49.6254 −1.62119 −0.810595 0.585607i \(-0.800856\pi\)
−0.810595 + 0.585607i \(0.800856\pi\)
\(938\) 0 0
\(939\) −9.90050 36.9324i −0.323091 1.20524i
\(940\) −57.1586 27.7748i −1.86431 0.905914i
\(941\) 33.1859i 1.08183i −0.841077 0.540915i \(-0.818078\pi\)
0.841077 0.540915i \(-0.181922\pi\)
\(942\) 1.59397 1.71222i 0.0519342 0.0557870i
\(943\) 6.50354i 0.211785i
\(944\) 34.6664 + 44.1046i 1.12829 + 1.43548i
\(945\) 0 0
\(946\) 3.01556 1.88740i 0.0980443 0.0613646i
\(947\) 50.0299 1.62575 0.812877 0.582436i \(-0.197900\pi\)
0.812877 + 0.582436i \(0.197900\pi\)
\(948\) 2.62250 13.6060i 0.0851748 0.441901i
\(949\) −15.6990 −0.509612
\(950\) −17.0541 + 10.6739i −0.553307 + 0.346307i
\(951\) 5.77653 1.54852i 0.187317 0.0502142i
\(952\) 0 0
\(953\) 45.2664i 1.46632i −0.680055 0.733162i \(-0.738044\pi\)
0.680055 0.733162i \(-0.261956\pi\)
\(954\) 9.53365 17.9717i 0.308663 0.581855i
\(955\) 43.1813i 1.39731i
\(956\) 18.4651 37.9999i 0.597204 1.22901i
\(957\) −3.32225 + 0.890599i −0.107393 + 0.0287890i
\(958\) −25.2571 40.3541i −0.816019 1.30378i
\(959\) 0 0
\(960\) 43.8828 22.6086i 1.41631 0.729690i
\(961\) 4.00709 0.129261
\(962\) −8.02210 12.8172i −0.258643 0.413243i
\(963\) −21.1244 + 12.2026i −0.680723 + 0.393222i
\(964\) 23.0563 47.4483i 0.742593 1.52821i
\(965\) 27.4283i 0.882948i
\(966\) 0 0
\(967\) 3.60059i 0.115787i 0.998323 + 0.0578935i \(0.0184384\pi\)
−0.998323 + 0.0578935i \(0.981562\pi\)
\(968\) 30.6184 3.28601i 0.984112 0.105616i
\(969\) −0.278338 1.03830i −0.00894150 0.0333550i
\(970\) −8.54143 + 5.34596i −0.274249 + 0.171649i
\(971\) −32.7027 −1.04948 −0.524739 0.851263i \(-0.675837\pi\)
−0.524739 + 0.851263i \(0.675837\pi\)
\(972\) 20.4061 23.5710i 0.654526 0.756040i
\(973\) 0 0
\(974\) −25.3916 + 15.8922i −0.813598 + 0.509220i
\(975\) −11.5424 43.0574i −0.369654 1.37894i
\(976\) −0.872689 1.11029i −0.0279341 0.0355394i
\(977\) 17.6059i 0.563264i −0.959523 0.281632i \(-0.909124\pi\)
0.959523 0.281632i \(-0.0908757\pi\)
\(978\) −17.7267 16.5024i −0.566836 0.527689i
\(979\) 1.29960i 0.0415354i
\(980\) 0 0
\(981\) −49.5722 + 28.6356i −1.58272 + 0.914263i
\(982\) 9.09419 + 14.5301i 0.290207 + 0.463674i
\(983\) 45.6171 1.45496 0.727479 0.686130i \(-0.240692\pi\)
0.727479 + 0.686130i \(0.240692\pi\)
\(984\) −6.66396 + 2.57570i −0.212439 + 0.0821104i
\(985\) 25.0829 0.799207
\(986\) −1.48995 2.38055i −0.0474498 0.0758123i
\(987\) 0 0
\(988\) −11.1321 5.40935i −0.354159 0.172094i
\(989\) 33.4307i 1.06303i
\(990\) −2.37685 + 4.48055i −0.0755411 + 0.142401i
\(991\) 49.5354i 1.57354i −0.617244 0.786772i \(-0.711751\pi\)
0.617244 0.786772i \(-0.288249\pi\)
\(992\) 27.6541 + 9.95100i 0.878019 + 0.315945i
\(993\) 44.9940 12.0616i 1.42784 0.382763i
\(994\) 0 0
\(995\) −76.1815 −2.41512
\(996\) 23.4680 + 4.52336i 0.743612 + 0.143328i
\(997\) 55.5259 1.75852 0.879261 0.476340i \(-0.158037\pi\)
0.879261 + 0.476340i \(0.158037\pi\)
\(998\) 43.8503 27.4453i 1.38806 0.868766i
\(999\) 11.7449 + 11.7369i 0.371593 + 0.371339i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.c.491.10 12
3.2 odd 2 inner 588.2.e.c.491.3 12
4.3 odd 2 inner 588.2.e.c.491.4 12
7.2 even 3 588.2.n.g.263.8 24
7.3 odd 6 588.2.n.f.275.1 24
7.4 even 3 588.2.n.g.275.1 24
7.5 odd 6 588.2.n.f.263.8 24
7.6 odd 2 84.2.e.a.71.10 yes 12
12.11 even 2 inner 588.2.e.c.491.9 12
21.2 odd 6 588.2.n.g.263.5 24
21.5 even 6 588.2.n.f.263.5 24
21.11 odd 6 588.2.n.g.275.12 24
21.17 even 6 588.2.n.f.275.12 24
21.20 even 2 84.2.e.a.71.3 12
28.3 even 6 588.2.n.f.275.5 24
28.11 odd 6 588.2.n.g.275.5 24
28.19 even 6 588.2.n.f.263.12 24
28.23 odd 6 588.2.n.g.263.12 24
28.27 even 2 84.2.e.a.71.4 yes 12
56.13 odd 2 1344.2.h.h.575.5 12
56.27 even 2 1344.2.h.h.575.8 12
84.11 even 6 588.2.n.g.275.8 24
84.23 even 6 588.2.n.g.263.1 24
84.47 odd 6 588.2.n.f.263.1 24
84.59 odd 6 588.2.n.f.275.8 24
84.83 odd 2 84.2.e.a.71.9 yes 12
168.83 odd 2 1344.2.h.h.575.6 12
168.125 even 2 1344.2.h.h.575.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.3 12 21.20 even 2
84.2.e.a.71.4 yes 12 28.27 even 2
84.2.e.a.71.9 yes 12 84.83 odd 2
84.2.e.a.71.10 yes 12 7.6 odd 2
588.2.e.c.491.3 12 3.2 odd 2 inner
588.2.e.c.491.4 12 4.3 odd 2 inner
588.2.e.c.491.9 12 12.11 even 2 inner
588.2.e.c.491.10 12 1.1 even 1 trivial
588.2.n.f.263.1 24 84.47 odd 6
588.2.n.f.263.5 24 21.5 even 6
588.2.n.f.263.8 24 7.5 odd 6
588.2.n.f.263.12 24 28.19 even 6
588.2.n.f.275.1 24 7.3 odd 6
588.2.n.f.275.5 24 28.3 even 6
588.2.n.f.275.8 24 84.59 odd 6
588.2.n.f.275.12 24 21.17 even 6
588.2.n.g.263.1 24 84.23 even 6
588.2.n.g.263.5 24 21.2 odd 6
588.2.n.g.263.8 24 7.2 even 3
588.2.n.g.263.12 24 28.23 odd 6
588.2.n.g.275.1 24 7.4 even 3
588.2.n.g.275.5 24 28.11 odd 6
588.2.n.g.275.8 24 84.11 even 6
588.2.n.g.275.12 24 21.11 odd 6
1344.2.h.h.575.5 12 56.13 odd 2
1344.2.h.h.575.6 12 168.83 odd 2
1344.2.h.h.575.7 12 168.125 even 2
1344.2.h.h.575.8 12 56.27 even 2