Properties

Label 84.2.e.a.71.4
Level $84$
Weight $2$
Character 84.71
Analytic conductor $0.671$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,2,Mod(71,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 84.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.670743376979\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.4
Root \(1.19877 + 0.750295i\) of defining polynomial
Character \(\chi\) \(=\) 84.71
Dual form 84.2.e.a.71.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.750295 + 1.19877i) q^{2} +(-0.448478 - 1.67298i) q^{3} +(-0.874114 - 1.79887i) q^{4} -3.56257i q^{5} +(2.34202 + 0.717607i) q^{6} +1.00000i q^{7} +(2.81228 + 0.301817i) q^{8} +(-2.59774 + 1.50059i) q^{9} +(4.27072 + 2.67298i) q^{10} +0.335564 q^{11} +(-2.61745 + 2.26913i) q^{12} +3.34596 q^{13} +(-1.19877 - 0.750295i) q^{14} +(-5.96012 + 1.59774i) q^{15} +(-2.47185 + 3.14483i) q^{16} -0.335564i q^{17} +(0.150201 - 4.23998i) q^{18} -1.84951i q^{19} +(-6.40860 + 3.11410i) q^{20} +(1.67298 - 0.448478i) q^{21} +(-0.251772 + 0.402265i) q^{22} +4.45953 q^{23} +(-0.756309 - 4.84025i) q^{24} -7.69193 q^{25} +(-2.51046 + 4.01105i) q^{26} +(3.67549 + 3.67298i) q^{27} +(1.79887 - 0.874114i) q^{28} +5.91788i q^{29} +(2.55653 - 8.34360i) q^{30} +5.19547i q^{31} +(-1.91532 - 5.32274i) q^{32} +(-0.150493 - 0.561392i) q^{33} +(0.402265 + 0.251772i) q^{34} +3.56257 q^{35} +(4.97008 + 3.36129i) q^{36} +3.19547 q^{37} +(2.21714 + 1.38768i) q^{38} +(-1.50059 - 5.59774i) q^{39} +(1.07525 - 10.0189i) q^{40} -1.45835i q^{41} +(-0.717607 + 2.34202i) q^{42} -7.49646i q^{43} +(-0.293321 - 0.603635i) q^{44} +(5.34596 + 9.25462i) q^{45} +(-3.34596 + 5.34596i) q^{46} +8.91906 q^{47} +(6.36981 + 2.72497i) q^{48} -1.00000 q^{49} +(5.77122 - 9.22087i) q^{50} +(-0.561392 + 0.150493i) q^{51} +(-2.92475 - 6.01894i) q^{52} +4.79509i q^{53} +(-7.16077 + 1.65025i) q^{54} -1.19547i q^{55} +(-0.301817 + 2.81228i) q^{56} +(-3.09419 + 0.829463i) q^{57} +(-7.09419 - 4.44015i) q^{58} -14.0245 q^{59} +(8.08394 + 9.32486i) q^{60} -0.353051 q^{61} +(-6.22819 - 3.89814i) q^{62} +(-1.50059 - 2.59774i) q^{63} +(7.81781 + 1.69759i) q^{64} -11.9202i q^{65} +(0.785896 + 0.240803i) q^{66} +3.19547i q^{67} +(-0.603635 + 0.293321i) q^{68} +(-2.00000 - 7.46071i) q^{69} +(-2.67298 + 4.27072i) q^{70} -10.3774 q^{71} +(-7.75846 + 3.43604i) q^{72} -4.69193 q^{73} +(-2.39755 + 3.83064i) q^{74} +(3.44966 + 12.8685i) q^{75} +(-3.32702 + 1.61668i) q^{76} +0.335564i q^{77} +(7.83630 + 2.40109i) q^{78} +4.00000i q^{79} +(11.2037 + 8.80614i) q^{80} +(4.49646 - 7.79627i) q^{81} +(1.74823 + 1.09419i) q^{82} +6.89932 q^{83} +(-2.26913 - 2.61745i) q^{84} -1.19547 q^{85} +(8.98655 + 5.62456i) q^{86} +(9.90050 - 2.65404i) q^{87} +(0.943698 + 0.101279i) q^{88} +3.87289i q^{89} +(-15.1052 - 0.535101i) q^{90} +3.34596i q^{91} +(-3.89814 - 8.02210i) q^{92} +(8.69193 - 2.33005i) q^{93} +(-6.69193 + 10.6919i) q^{94} -6.58900 q^{95} +(-8.04586 + 5.59143i) q^{96} -2.00000 q^{97} +(0.750295 - 1.19877i) q^{98} +(-0.871706 + 0.503544i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} - 6 q^{6} - 4 q^{9} + 4 q^{10} - 6 q^{12} + 4 q^{16} - 8 q^{18} - 16 q^{22} + 2 q^{24} - 12 q^{25} + 8 q^{28} + 20 q^{30} - 16 q^{33} + 32 q^{34} - 20 q^{36} - 16 q^{37} + 20 q^{40} + 10 q^{42}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.750295 + 1.19877i −0.530539 + 0.847661i
\(3\) −0.448478 1.67298i −0.258929 0.965896i
\(4\) −0.874114 1.79887i −0.437057 0.899434i
\(5\) 3.56257i 1.59323i −0.604486 0.796616i \(-0.706622\pi\)
0.604486 0.796616i \(-0.293378\pi\)
\(6\) 2.34202 + 0.717607i 0.956124 + 0.292962i
\(7\) 1.00000i 0.377964i
\(8\) 2.81228 + 0.301817i 0.994290 + 0.106709i
\(9\) −2.59774 + 1.50059i −0.865912 + 0.500197i
\(10\) 4.27072 + 2.67298i 1.35052 + 0.845271i
\(11\) 0.335564 0.101176 0.0505881 0.998720i \(-0.483890\pi\)
0.0505881 + 0.998720i \(0.483890\pi\)
\(12\) −2.61745 + 2.26913i −0.755593 + 0.655041i
\(13\) 3.34596 0.928003 0.464002 0.885834i \(-0.346413\pi\)
0.464002 + 0.885834i \(0.346413\pi\)
\(14\) −1.19877 0.750295i −0.320386 0.200525i
\(15\) −5.96012 + 1.59774i −1.53890 + 0.412533i
\(16\) −2.47185 + 3.14483i −0.617962 + 0.786208i
\(17\) 0.335564i 0.0813862i −0.999172 0.0406931i \(-0.987043\pi\)
0.999172 0.0406931i \(-0.0129566\pi\)
\(18\) 0.150201 4.23998i 0.0354027 0.999373i
\(19\) 1.84951i 0.424306i −0.977236 0.212153i \(-0.931952\pi\)
0.977236 0.212153i \(-0.0680475\pi\)
\(20\) −6.40860 + 3.11410i −1.43301 + 0.696333i
\(21\) 1.67298 0.448478i 0.365075 0.0978659i
\(22\) −0.251772 + 0.402265i −0.0536779 + 0.0857631i
\(23\) 4.45953 0.929876 0.464938 0.885343i \(-0.346077\pi\)
0.464938 + 0.885343i \(0.346077\pi\)
\(24\) −0.756309 4.84025i −0.154381 0.988011i
\(25\) −7.69193 −1.53839
\(26\) −2.51046 + 4.01105i −0.492342 + 0.786632i
\(27\) 3.67549 + 3.67298i 0.707348 + 0.706866i
\(28\) 1.79887 0.874114i 0.339954 0.165192i
\(29\) 5.91788i 1.09892i 0.835519 + 0.549461i \(0.185167\pi\)
−0.835519 + 0.549461i \(0.814833\pi\)
\(30\) 2.55653 8.34360i 0.466756 1.52333i
\(31\) 5.19547i 0.933134i 0.884486 + 0.466567i \(0.154509\pi\)
−0.884486 + 0.466567i \(0.845491\pi\)
\(32\) −1.91532 5.32274i −0.338584 0.940936i
\(33\) −0.150493 0.561392i −0.0261975 0.0977258i
\(34\) 0.402265 + 0.251772i 0.0689878 + 0.0431785i
\(35\) 3.56257 0.602185
\(36\) 4.97008 + 3.36129i 0.828347 + 0.560216i
\(37\) 3.19547 0.525332 0.262666 0.964887i \(-0.415398\pi\)
0.262666 + 0.964887i \(0.415398\pi\)
\(38\) 2.21714 + 1.38768i 0.359668 + 0.225111i
\(39\) −1.50059 5.59774i −0.240287 0.896355i
\(40\) 1.07525 10.0189i 0.170011 1.58413i
\(41\) 1.45835i 0.227756i −0.993495 0.113878i \(-0.963673\pi\)
0.993495 0.113878i \(-0.0363272\pi\)
\(42\) −0.717607 + 2.34202i −0.110729 + 0.361381i
\(43\) 7.49646i 1.14320i −0.820533 0.571599i \(-0.806323\pi\)
0.820533 0.571599i \(-0.193677\pi\)
\(44\) −0.293321 0.603635i −0.0442198 0.0910014i
\(45\) 5.34596 + 9.25462i 0.796929 + 1.37960i
\(46\) −3.34596 + 5.34596i −0.493335 + 0.788219i
\(47\) 8.91906 1.30098 0.650489 0.759516i \(-0.274564\pi\)
0.650489 + 0.759516i \(0.274564\pi\)
\(48\) 6.36981 + 2.72497i 0.919403 + 0.393316i
\(49\) −1.00000 −0.142857
\(50\) 5.77122 9.22087i 0.816173 1.30403i
\(51\) −0.561392 + 0.150493i −0.0786106 + 0.0210732i
\(52\) −2.92475 6.01894i −0.405590 0.834677i
\(53\) 4.79509i 0.658657i 0.944215 + 0.329328i \(0.106822\pi\)
−0.944215 + 0.329328i \(0.893178\pi\)
\(54\) −7.16077 + 1.65025i −0.974458 + 0.224571i
\(55\) 1.19547i 0.161197i
\(56\) −0.301817 + 2.81228i −0.0403320 + 0.375806i
\(57\) −3.09419 + 0.829463i −0.409836 + 0.109865i
\(58\) −7.09419 4.44015i −0.931513 0.583021i
\(59\) −14.0245 −1.82583 −0.912915 0.408150i \(-0.866174\pi\)
−0.912915 + 0.408150i \(0.866174\pi\)
\(60\) 8.08394 + 9.32486i 1.04363 + 1.20383i
\(61\) −0.353051 −0.0452035 −0.0226018 0.999745i \(-0.507195\pi\)
−0.0226018 + 0.999745i \(0.507195\pi\)
\(62\) −6.22819 3.89814i −0.790981 0.495064i
\(63\) −1.50059 2.59774i −0.189057 0.327284i
\(64\) 7.81781 + 1.69759i 0.977227 + 0.212199i
\(65\) 11.9202i 1.47852i
\(66\) 0.785896 + 0.240803i 0.0967371 + 0.0296408i
\(67\) 3.19547i 0.390389i 0.980765 + 0.195194i \(0.0625338\pi\)
−0.980765 + 0.195194i \(0.937466\pi\)
\(68\) −0.603635 + 0.293321i −0.0732015 + 0.0355704i
\(69\) −2.00000 7.46071i −0.240772 0.898164i
\(70\) −2.67298 + 4.27072i −0.319482 + 0.510448i
\(71\) −10.3774 −1.23157 −0.615786 0.787914i \(-0.711161\pi\)
−0.615786 + 0.787914i \(0.711161\pi\)
\(72\) −7.75846 + 3.43604i −0.914343 + 0.404941i
\(73\) −4.69193 −0.549148 −0.274574 0.961566i \(-0.588537\pi\)
−0.274574 + 0.961566i \(0.588537\pi\)
\(74\) −2.39755 + 3.83064i −0.278709 + 0.445303i
\(75\) 3.44966 + 12.8685i 0.398332 + 1.48592i
\(76\) −3.32702 + 1.61668i −0.381635 + 0.185446i
\(77\) 0.335564i 0.0382410i
\(78\) 7.83630 + 2.40109i 0.887286 + 0.271870i
\(79\) 4.00000i 0.450035i 0.974355 + 0.225018i \(0.0722440\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(80\) 11.2037 + 8.80614i 1.25261 + 0.984557i
\(81\) 4.49646 7.79627i 0.499606 0.866253i
\(82\) 1.74823 + 1.09419i 0.193059 + 0.120833i
\(83\) 6.89932 0.757299 0.378649 0.925540i \(-0.376389\pi\)
0.378649 + 0.925540i \(0.376389\pi\)
\(84\) −2.26913 2.61745i −0.247582 0.285587i
\(85\) −1.19547 −0.129667
\(86\) 8.98655 + 5.62456i 0.969045 + 0.606511i
\(87\) 9.90050 2.65404i 1.06144 0.284543i
\(88\) 0.943698 + 0.101279i 0.100599 + 0.0107964i
\(89\) 3.87289i 0.410525i 0.978707 + 0.205263i \(0.0658048\pi\)
−0.978707 + 0.205263i \(0.934195\pi\)
\(90\) −15.1052 0.535101i −1.59223 0.0564046i
\(91\) 3.34596i 0.350752i
\(92\) −3.89814 8.02210i −0.406409 0.836362i
\(93\) 8.69193 2.33005i 0.901311 0.241615i
\(94\) −6.69193 + 10.6919i −0.690220 + 1.10279i
\(95\) −6.58900 −0.676018
\(96\) −8.04586 + 5.59143i −0.821178 + 0.570673i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0.750295 1.19877i 0.0757913 0.121094i
\(99\) −0.871706 + 0.503544i −0.0876097 + 0.0506081i
\(100\) 6.72362 + 13.8368i 0.672362 + 1.38368i
\(101\) 13.1528i 1.30875i −0.756171 0.654374i \(-0.772932\pi\)
0.756171 0.654374i \(-0.227068\pi\)
\(102\) 0.240803 0.785896i 0.0238430 0.0778153i
\(103\) 7.88740i 0.777168i −0.921413 0.388584i \(-0.872964\pi\)
0.921413 0.388584i \(-0.127036\pi\)
\(104\) 9.40978 + 1.00987i 0.922705 + 0.0990259i
\(105\) −1.59774 5.96012i −0.155923 0.581648i
\(106\) −5.74823 3.59774i −0.558317 0.349443i
\(107\) −8.13184 −0.786134 −0.393067 0.919510i \(-0.628586\pi\)
−0.393067 + 0.919510i \(0.628586\pi\)
\(108\) 3.39441 9.82232i 0.326628 0.945153i
\(109\) 19.0829 1.82781 0.913904 0.405931i \(-0.133053\pi\)
0.913904 + 0.405931i \(0.133053\pi\)
\(110\) 1.43310 + 0.896956i 0.136641 + 0.0855214i
\(111\) −1.43310 5.34596i −0.136024 0.507416i
\(112\) −3.14483 2.47185i −0.297159 0.233568i
\(113\) 12.5914i 1.18450i 0.805756 + 0.592248i \(0.201759\pi\)
−0.805756 + 0.592248i \(0.798241\pi\)
\(114\) 1.32722 4.33158i 0.124305 0.405689i
\(115\) 15.8874i 1.48151i
\(116\) 10.6455 5.17290i 0.988408 0.480292i
\(117\) −8.69193 + 5.02092i −0.803569 + 0.464184i
\(118\) 10.5225 16.8122i 0.968674 1.54768i
\(119\) 0.335564 0.0307611
\(120\) −17.2437 + 2.69441i −1.57413 + 0.245965i
\(121\) −10.8874 −0.989763
\(122\) 0.264892 0.423228i 0.0239822 0.0383173i
\(123\) −2.43979 + 0.654037i −0.219988 + 0.0589725i
\(124\) 9.34596 4.54143i 0.839292 0.407833i
\(125\) 9.59019i 0.857772i
\(126\) 4.23998 + 0.150201i 0.377728 + 0.0133810i
\(127\) 10.1884i 0.904073i 0.891999 + 0.452036i \(0.149302\pi\)
−0.891999 + 0.452036i \(0.850698\pi\)
\(128\) −7.90069 + 8.09809i −0.698329 + 0.715777i
\(129\) −12.5414 + 3.36199i −1.10421 + 0.296007i
\(130\) 14.2897 + 8.94370i 1.25329 + 0.784414i
\(131\) −10.4871 −0.916266 −0.458133 0.888884i \(-0.651482\pi\)
−0.458133 + 0.888884i \(0.651482\pi\)
\(132\) −0.878322 + 0.761437i −0.0764481 + 0.0662746i
\(133\) 1.84951 0.160373
\(134\) −3.83064 2.39755i −0.330917 0.207116i
\(135\) 13.0853 13.0942i 1.12620 1.12697i
\(136\) 0.101279 0.943698i 0.00868460 0.0809215i
\(137\) 8.91906i 0.762007i 0.924574 + 0.381003i \(0.124421\pi\)
−0.924574 + 0.381003i \(0.875579\pi\)
\(138\) 10.4443 + 3.20019i 0.889077 + 0.272418i
\(139\) 2.03789i 0.172852i 0.996258 + 0.0864258i \(0.0275445\pi\)
−0.996258 + 0.0864258i \(0.972455\pi\)
\(140\) −3.11410 6.40860i −0.263189 0.541625i
\(141\) −4.00000 14.9214i −0.336861 1.25661i
\(142\) 7.78612 12.4402i 0.653397 1.04395i
\(143\) 1.12278 0.0938919
\(144\) 1.70211 11.8787i 0.141842 0.989889i
\(145\) 21.0829 1.75084
\(146\) 3.52033 5.62456i 0.291345 0.465492i
\(147\) 0.448478 + 1.67298i 0.0369898 + 0.137985i
\(148\) −2.79321 5.74823i −0.229600 0.472501i
\(149\) 15.4576i 1.26633i 0.774016 + 0.633166i \(0.218245\pi\)
−0.774016 + 0.633166i \(0.781755\pi\)
\(150\) −18.0146 5.51978i −1.47089 0.450688i
\(151\) 15.1955i 1.23659i 0.785946 + 0.618295i \(0.212176\pi\)
−0.785946 + 0.618295i \(0.787824\pi\)
\(152\) 0.558213 5.20133i 0.0452771 0.421883i
\(153\) 0.503544 + 0.871706i 0.0407091 + 0.0704732i
\(154\) −0.402265 0.251772i −0.0324154 0.0202884i
\(155\) 18.5092 1.48670
\(156\) −8.75790 + 7.59242i −0.701193 + 0.607880i
\(157\) −0.955023 −0.0762191 −0.0381095 0.999274i \(-0.512134\pi\)
−0.0381095 + 0.999274i \(0.512134\pi\)
\(158\) −4.79509 3.00118i −0.381477 0.238761i
\(159\) 8.02210 2.15049i 0.636194 0.170545i
\(160\) −18.9626 + 6.82347i −1.49913 + 0.539443i
\(161\) 4.45953i 0.351460i
\(162\) 5.97229 + 11.2397i 0.469228 + 0.883077i
\(163\) 9.88740i 0.774441i 0.921987 + 0.387220i \(0.126565\pi\)
−0.921987 + 0.387220i \(0.873435\pi\)
\(164\) −2.62337 + 1.27476i −0.204851 + 0.0995422i
\(165\) −2.00000 + 0.536142i −0.155700 + 0.0417386i
\(166\) −5.17653 + 8.27072i −0.401776 + 0.641932i
\(167\) 1.12278 0.0868836 0.0434418 0.999056i \(-0.486168\pi\)
0.0434418 + 0.999056i \(0.486168\pi\)
\(168\) 4.84025 0.756309i 0.373433 0.0583505i
\(169\) −1.80453 −0.138810
\(170\) 0.896956 1.43310i 0.0687934 0.109914i
\(171\) 2.77535 + 4.80453i 0.212237 + 0.367412i
\(172\) −13.4851 + 6.55276i −1.02823 + 0.499643i
\(173\) 15.5673i 1.18356i −0.806100 0.591780i \(-0.798425\pi\)
0.806100 0.591780i \(-0.201575\pi\)
\(174\) −4.24671 + 13.8598i −0.321942 + 1.05071i
\(175\) 7.69193i 0.581455i
\(176\) −0.829463 + 1.05529i −0.0625231 + 0.0795456i
\(177\) 6.28966 + 23.4627i 0.472760 + 1.76356i
\(178\) −4.64271 2.90581i −0.347986 0.217800i
\(179\) 21.7110 1.62276 0.811378 0.584521i \(-0.198718\pi\)
0.811378 + 0.584521i \(0.198718\pi\)
\(180\) 11.9749 17.7063i 0.892553 1.31975i
\(181\) −16.4288 −1.22115 −0.610573 0.791960i \(-0.709061\pi\)
−0.610573 + 0.791960i \(0.709061\pi\)
\(182\) −4.01105 2.51046i −0.297319 0.186088i
\(183\) 0.158336 + 0.590648i 0.0117045 + 0.0436619i
\(184\) 12.5414 + 1.34596i 0.924567 + 0.0992257i
\(185\) 11.3841i 0.836975i
\(186\) −3.72831 + 12.1679i −0.273373 + 0.892192i
\(187\) 0.112603i 0.00823435i
\(188\) −7.79627 16.0442i −0.568602 1.17014i
\(189\) −3.67298 + 3.67549i −0.267170 + 0.267352i
\(190\) 4.94370 7.89872i 0.358654 0.573033i
\(191\) −12.1208 −0.877032 −0.438516 0.898723i \(-0.644496\pi\)
−0.438516 + 0.898723i \(0.644496\pi\)
\(192\) −0.666081 13.8404i −0.0480703 0.998844i
\(193\) −7.69901 −0.554187 −0.277094 0.960843i \(-0.589371\pi\)
−0.277094 + 0.960843i \(0.589371\pi\)
\(194\) 1.50059 2.39755i 0.107736 0.172134i
\(195\) −19.9423 + 5.34596i −1.42810 + 0.382832i
\(196\) 0.874114 + 1.79887i 0.0624367 + 0.128491i
\(197\) 7.04066i 0.501626i −0.968036 0.250813i \(-0.919302\pi\)
0.968036 0.250813i \(-0.0806980\pi\)
\(198\) 0.0504019 1.42278i 0.00358191 0.101113i
\(199\) 21.3839i 1.51586i 0.652335 + 0.757931i \(0.273789\pi\)
−0.652335 + 0.757931i \(0.726211\pi\)
\(200\) −21.6318 2.32156i −1.52960 0.164159i
\(201\) 5.34596 1.43310i 0.377075 0.101083i
\(202\) 15.7672 + 9.86845i 1.10937 + 0.694342i
\(203\) −5.91788 −0.415354
\(204\) 0.761437 + 0.878322i 0.0533113 + 0.0614948i
\(205\) −5.19547 −0.362867
\(206\) 9.45520 + 5.91788i 0.658775 + 0.412318i
\(207\) −11.5847 + 6.69193i −0.805191 + 0.465121i
\(208\) −8.27072 + 10.5225i −0.573471 + 0.729603i
\(209\) 0.620628i 0.0429297i
\(210\) 8.34360 + 2.55653i 0.575763 + 0.176417i
\(211\) 22.9703i 1.58134i −0.612244 0.790669i \(-0.709733\pi\)
0.612244 0.790669i \(-0.290267\pi\)
\(212\) 8.62574 4.19146i 0.592418 0.287871i
\(213\) 4.65404 + 17.3612i 0.318889 + 1.18957i
\(214\) 6.10128 9.74823i 0.417075 0.666375i
\(215\) −26.7067 −1.82138
\(216\) 9.22792 + 11.4388i 0.627881 + 0.778310i
\(217\) −5.19547 −0.352692
\(218\) −14.3178 + 22.8760i −0.969723 + 1.54936i
\(219\) 2.10423 + 7.84951i 0.142190 + 0.530421i
\(220\) −2.15049 + 1.04498i −0.144986 + 0.0704524i
\(221\) 1.12278i 0.0755266i
\(222\) 7.48384 + 2.29309i 0.502283 + 0.153902i
\(223\) 9.68484i 0.648545i −0.945964 0.324272i \(-0.894881\pi\)
0.945964 0.324272i \(-0.105119\pi\)
\(224\) 5.32274 1.91532i 0.355640 0.127973i
\(225\) 19.9816 11.5424i 1.33211 0.769495i
\(226\) −15.0942 9.44724i −1.00405 0.628421i
\(227\) 13.4038 0.889644 0.444822 0.895619i \(-0.353267\pi\)
0.444822 + 0.895619i \(0.353267\pi\)
\(228\) 4.19677 + 4.84100i 0.277938 + 0.320603i
\(229\) −16.7298 −1.10554 −0.552769 0.833335i \(-0.686429\pi\)
−0.552769 + 0.833335i \(0.686429\pi\)
\(230\) 19.0454 + 11.9202i 1.25582 + 0.785997i
\(231\) 0.561392 0.150493i 0.0369369 0.00990171i
\(232\) −1.78612 + 16.6427i −0.117264 + 1.09265i
\(233\) 20.9238i 1.37076i −0.728184 0.685381i \(-0.759636\pi\)
0.728184 0.685381i \(-0.240364\pi\)
\(234\) 0.502566 14.1868i 0.0328538 0.927422i
\(235\) 31.7748i 2.07276i
\(236\) 12.2590 + 25.2282i 0.797992 + 1.64221i
\(237\) 6.69193 1.79391i 0.434687 0.116527i
\(238\) −0.251772 + 0.402265i −0.0163199 + 0.0260750i
\(239\) 21.1244 1.36642 0.683211 0.730221i \(-0.260583\pi\)
0.683211 + 0.730221i \(0.260583\pi\)
\(240\) 9.70791 22.6929i 0.626643 1.46482i
\(241\) 26.3768 1.69908 0.849538 0.527527i \(-0.176881\pi\)
0.849538 + 0.527527i \(0.176881\pi\)
\(242\) 8.16876 13.0515i 0.525108 0.838983i
\(243\) −15.0596 4.02603i −0.966073 0.258270i
\(244\) 0.308607 + 0.635092i 0.0197565 + 0.0406576i
\(245\) 3.56257i 0.227604i
\(246\) 1.04652 3.41547i 0.0667237 0.217763i
\(247\) 6.18838i 0.393757i
\(248\) −1.56808 + 14.6111i −0.0995734 + 0.927806i
\(249\) −3.09419 11.5424i −0.196086 0.731472i
\(250\) −11.4965 7.19547i −0.727100 0.455082i
\(251\) −5.60756 −0.353946 −0.176973 0.984216i \(-0.556631\pi\)
−0.176973 + 0.984216i \(0.556631\pi\)
\(252\) −3.36129 + 4.97008i −0.211742 + 0.313086i
\(253\) 1.49646 0.0940814
\(254\) −12.2136 7.64430i −0.766347 0.479646i
\(255\) 0.536142 + 2.00000i 0.0335745 + 0.125245i
\(256\) −3.77992 15.5471i −0.236245 0.971693i
\(257\) 18.1737i 1.13364i 0.823841 + 0.566821i \(0.191827\pi\)
−0.823841 + 0.566821i \(0.808173\pi\)
\(258\) 5.37951 17.5568i 0.334914 1.09304i
\(259\) 3.19547i 0.198557i
\(260\) −21.4429 + 10.4196i −1.32983 + 0.646199i
\(261\) −8.88031 15.3731i −0.549677 0.951570i
\(262\) 7.86845 12.5717i 0.486115 0.776682i
\(263\) 17.7220 1.09279 0.546393 0.837529i \(-0.316000\pi\)
0.546393 + 0.837529i \(0.316000\pi\)
\(264\) −0.253790 1.62421i −0.0156197 0.0999633i
\(265\) 17.0829 1.04939
\(266\) −1.38768 + 2.21714i −0.0850839 + 0.135942i
\(267\) 6.47927 1.73690i 0.396525 0.106297i
\(268\) 5.74823 2.79321i 0.351129 0.170622i
\(269\) 12.4816i 0.761018i −0.924777 0.380509i \(-0.875749\pi\)
0.924777 0.380509i \(-0.124251\pi\)
\(270\) 5.87915 + 25.5108i 0.357794 + 1.55254i
\(271\) 1.79744i 0.109187i −0.998509 0.0545934i \(-0.982614\pi\)
0.998509 0.0545934i \(-0.0173863\pi\)
\(272\) 1.05529 + 0.829463i 0.0639864 + 0.0502936i
\(273\) 5.59774 1.50059i 0.338790 0.0908199i
\(274\) −10.6919 6.69193i −0.645923 0.404274i
\(275\) −2.58113 −0.155648
\(276\) −11.6726 + 10.1192i −0.702608 + 0.609107i
\(277\) −23.2713 −1.39823 −0.699117 0.715007i \(-0.746423\pi\)
−0.699117 + 0.715007i \(0.746423\pi\)
\(278\) −2.44297 1.52902i −0.146519 0.0917045i
\(279\) −7.79627 13.4965i −0.466751 0.808012i
\(280\) 10.0189 + 1.07525i 0.598746 + 0.0642583i
\(281\) 23.1693i 1.38217i −0.722775 0.691084i \(-0.757134\pi\)
0.722775 0.691084i \(-0.242866\pi\)
\(282\) 20.8886 + 6.40038i 1.24390 + 0.381137i
\(283\) 1.84951i 0.109942i 0.998488 + 0.0549709i \(0.0175066\pi\)
−0.998488 + 0.0549709i \(0.982493\pi\)
\(284\) 9.07104 + 18.6676i 0.538267 + 1.10772i
\(285\) 2.95502 + 11.0233i 0.175040 + 0.652963i
\(286\) −0.842420 + 1.34596i −0.0498133 + 0.0795885i
\(287\) 1.45835 0.0860835
\(288\) 12.9627 + 10.9530i 0.763837 + 0.645409i
\(289\) 16.8874 0.993376
\(290\) −15.8184 + 25.2736i −0.928887 + 1.48412i
\(291\) 0.896956 + 3.34596i 0.0525805 + 0.196144i
\(292\) 4.10128 + 8.44015i 0.240009 + 0.493923i
\(293\) 1.54919i 0.0905047i 0.998976 + 0.0452523i \(0.0144092\pi\)
−0.998976 + 0.0452523i \(0.985591\pi\)
\(294\) −2.34202 0.717607i −0.136589 0.0418517i
\(295\) 49.9632i 2.90897i
\(296\) 8.98655 + 0.964448i 0.522333 + 0.0560574i
\(297\) 1.23336 + 1.23252i 0.0715668 + 0.0715180i
\(298\) −18.5301 11.5977i −1.07342 0.671839i
\(299\) 14.9214 0.862928
\(300\) 20.1332 17.4540i 1.16239 1.00771i
\(301\) 7.49646 0.432089
\(302\) −18.2159 11.4011i −1.04821 0.656059i
\(303\) −22.0043 + 5.89872i −1.26412 + 0.338873i
\(304\) 5.81639 + 4.57170i 0.333593 + 0.262205i
\(305\) 1.25777i 0.0720197i
\(306\) −1.42278 0.0504019i −0.0813351 0.00288129i
\(307\) 12.5414i 0.715777i 0.933764 + 0.357889i \(0.116503\pi\)
−0.933764 + 0.357889i \(0.883497\pi\)
\(308\) 0.603635 0.293321i 0.0343953 0.0167135i
\(309\) −13.1955 + 3.53732i −0.750664 + 0.201231i
\(310\) −13.8874 + 22.1884i −0.788751 + 1.26022i
\(311\) −12.0552 −0.683589 −0.341795 0.939775i \(-0.611035\pi\)
−0.341795 + 0.939775i \(0.611035\pi\)
\(312\) −2.53058 16.1953i −0.143266 0.916878i
\(313\) −22.0758 −1.24780 −0.623898 0.781505i \(-0.714452\pi\)
−0.623898 + 0.781505i \(0.714452\pi\)
\(314\) 0.716549 1.14486i 0.0404372 0.0646079i
\(315\) −9.25462 + 5.34596i −0.521439 + 0.301211i
\(316\) 7.19547 3.49646i 0.404777 0.196691i
\(317\) 3.45284i 0.193931i 0.995288 + 0.0969653i \(0.0309136\pi\)
−0.995288 + 0.0969653i \(0.969086\pi\)
\(318\) −3.44099 + 11.2302i −0.192961 + 0.629757i
\(319\) 1.98582i 0.111185i
\(320\) 6.04778 27.8515i 0.338081 1.55695i
\(321\) 3.64695 + 13.6044i 0.203553 + 0.759324i
\(322\) −5.34596 3.34596i −0.297919 0.186463i
\(323\) −0.620628 −0.0345326
\(324\) −17.9549 1.27370i −0.997493 0.0707609i
\(325\) −25.7369 −1.42763
\(326\) −11.8527 7.41847i −0.656463 0.410871i
\(327\) −8.55824 31.9253i −0.473272 1.76547i
\(328\) 0.440155 4.10128i 0.0243035 0.226455i
\(329\) 8.91906i 0.491724i
\(330\) 0.857878 2.79981i 0.0472246 0.154125i
\(331\) 26.8945i 1.47825i −0.673566 0.739127i \(-0.735238\pi\)
0.673566 0.739127i \(-0.264762\pi\)
\(332\) −6.03079 12.4110i −0.330983 0.681140i
\(333\) −8.30099 + 4.79509i −0.454891 + 0.262769i
\(334\) −0.842420 + 1.34596i −0.0460951 + 0.0736478i
\(335\) 11.3841 0.621980
\(336\) −2.72497 + 6.36981i −0.148659 + 0.347502i
\(337\) 10.5793 0.576292 0.288146 0.957586i \(-0.406961\pi\)
0.288146 + 0.957586i \(0.406961\pi\)
\(338\) 1.35393 2.16322i 0.0736441 0.117664i
\(339\) 21.0651 5.64695i 1.14410 0.306700i
\(340\) 1.04498 + 2.15049i 0.0566719 + 0.116627i
\(341\) 1.74341i 0.0944110i
\(342\) −7.84188 0.277797i −0.424040 0.0150216i
\(343\) 1.00000i 0.0539949i
\(344\) 2.26256 21.0821i 0.121989 1.13667i
\(345\) −26.5793 + 7.12515i −1.43098 + 0.383605i
\(346\) 18.6617 + 11.6801i 1.00326 + 0.627924i
\(347\) −25.2483 −1.35540 −0.677701 0.735338i \(-0.737023\pi\)
−0.677701 + 0.735338i \(0.737023\pi\)
\(348\) −13.4284 15.4898i −0.719839 0.830338i
\(349\) 21.4359 1.14744 0.573719 0.819052i \(-0.305500\pi\)
0.573719 + 0.819052i \(0.305500\pi\)
\(350\) 9.22087 + 5.77122i 0.492876 + 0.308484i
\(351\) 12.2980 + 12.2897i 0.656421 + 0.655974i
\(352\) −0.642713 1.78612i −0.0342567 0.0952004i
\(353\) 8.58349i 0.456853i 0.973561 + 0.228427i \(0.0733581\pi\)
−0.973561 + 0.228427i \(0.926642\pi\)
\(354\) −32.8455 10.0641i −1.74572 0.534898i
\(355\) 36.9703i 1.96218i
\(356\) 6.96681 3.38534i 0.369240 0.179423i
\(357\) −0.150493 0.561392i −0.00796493 0.0297120i
\(358\) −16.2897 + 26.0266i −0.860935 + 1.37555i
\(359\) 6.70510 0.353881 0.176941 0.984222i \(-0.443380\pi\)
0.176941 + 0.984222i \(0.443380\pi\)
\(360\) 12.2411 + 27.6401i 0.645164 + 1.45676i
\(361\) 15.5793 0.819964
\(362\) 12.3265 19.6944i 0.647865 1.03512i
\(363\) 4.88276 + 18.2144i 0.256278 + 0.956009i
\(364\) 6.01894 2.92475i 0.315478 0.153299i
\(365\) 16.7153i 0.874920i
\(366\) −0.826851 0.253352i −0.0432202 0.0132429i
\(367\) 24.4809i 1.27789i −0.769251 0.638946i \(-0.779371\pi\)
0.769251 0.638946i \(-0.220629\pi\)
\(368\) −11.0233 + 14.0245i −0.574628 + 0.731076i
\(369\) 2.18838 + 3.78840i 0.113923 + 0.197216i
\(370\) 13.6469 + 8.54143i 0.709471 + 0.444048i
\(371\) −4.79509 −0.248949
\(372\) −11.7892 13.5989i −0.611241 0.705070i
\(373\) 4.39094 0.227354 0.113677 0.993518i \(-0.463737\pi\)
0.113677 + 0.993518i \(0.463737\pi\)
\(374\) 0.134985 + 0.0844855i 0.00697993 + 0.00436864i
\(375\) 16.0442 4.30099i 0.828519 0.222102i
\(376\) 25.0829 + 2.69193i 1.29355 + 0.138826i
\(377\) 19.8010i 1.01980i
\(378\) −1.65025 7.16077i −0.0848799 0.368310i
\(379\) 16.8803i 0.867083i −0.901134 0.433542i \(-0.857264\pi\)
0.901134 0.433542i \(-0.142736\pi\)
\(380\) 5.75954 + 11.8527i 0.295458 + 0.608033i
\(381\) 17.0450 4.56926i 0.873241 0.234091i
\(382\) 9.09419 14.5301i 0.465299 0.743425i
\(383\) 23.8405 1.21819 0.609096 0.793097i \(-0.291533\pi\)
0.609096 + 0.793097i \(0.291533\pi\)
\(384\) 17.0912 + 9.58590i 0.872184 + 0.489178i
\(385\) 1.19547 0.0609268
\(386\) 5.77653 9.22937i 0.294018 0.469763i
\(387\) 11.2491 + 19.4738i 0.571824 + 0.989909i
\(388\) 1.74823 + 3.59774i 0.0887528 + 0.182647i
\(389\) 20.1682i 1.02257i −0.859412 0.511283i \(-0.829170\pi\)
0.859412 0.511283i \(-0.170830\pi\)
\(390\) 8.55405 27.9174i 0.433151 1.41365i
\(391\) 1.49646i 0.0756790i
\(392\) −2.81228 0.301817i −0.142041 0.0152441i
\(393\) 4.70325 + 17.5448i 0.237248 + 0.885018i
\(394\) 8.44015 + 5.28257i 0.425209 + 0.266132i
\(395\) 14.2503 0.717010
\(396\) 1.66778 + 1.12793i 0.0838090 + 0.0566805i
\(397\) −18.3389 −0.920402 −0.460201 0.887815i \(-0.652223\pi\)
−0.460201 + 0.887815i \(0.652223\pi\)
\(398\) −25.6344 16.0442i −1.28494 0.804223i
\(399\) −0.829463 3.09419i −0.0415251 0.154903i
\(400\) 19.0133 24.1898i 0.950664 1.20949i
\(401\) 8.60239i 0.429583i 0.976660 + 0.214791i \(0.0689071\pi\)
−0.976660 + 0.214791i \(0.931093\pi\)
\(402\) −2.29309 + 7.48384i −0.114369 + 0.373260i
\(403\) 17.3839i 0.865951i
\(404\) −23.6601 + 11.4970i −1.17713 + 0.571998i
\(405\) −27.7748 16.0190i −1.38014 0.795988i
\(406\) 4.44015 7.09419i 0.220361 0.352079i
\(407\) 1.07228 0.0531511
\(408\) −1.62421 + 0.253790i −0.0804105 + 0.0125645i
\(409\) 4.31516 0.213371 0.106685 0.994293i \(-0.465976\pi\)
0.106685 + 0.994293i \(0.465976\pi\)
\(410\) 3.89814 6.22819i 0.192515 0.307588i
\(411\) 14.9214 4.00000i 0.736019 0.197305i
\(412\) −14.1884 + 6.89448i −0.699011 + 0.339667i
\(413\) 14.0245i 0.690099i
\(414\) 0.669825 18.9083i 0.0329201 0.929293i
\(415\) 24.5793i 1.20655i
\(416\) −6.40860 17.8097i −0.314207 0.873192i
\(417\) 3.40935 0.913949i 0.166957 0.0447563i
\(418\) 0.743992 + 0.465654i 0.0363898 + 0.0227759i
\(419\) −37.4133 −1.82776 −0.913879 0.405986i \(-0.866928\pi\)
−0.913879 + 0.405986i \(0.866928\pi\)
\(420\) −9.32486 + 8.08394i −0.455007 + 0.394456i
\(421\) 11.9016 0.580047 0.290024 0.957020i \(-0.406337\pi\)
0.290024 + 0.957020i \(0.406337\pi\)
\(422\) 27.5361 + 17.2345i 1.34044 + 0.838961i
\(423\) −23.1693 + 13.3839i −1.12653 + 0.650745i
\(424\) −1.44724 + 13.4851i −0.0702843 + 0.654896i
\(425\) 2.58113i 0.125203i
\(426\) −24.3041 7.44690i −1.17754 0.360803i
\(427\) 0.353051i 0.0170853i
\(428\) 7.10815 + 14.6281i 0.343586 + 0.707076i
\(429\) −0.503544 1.87840i −0.0243113 0.0906899i
\(430\) 20.0379 32.0152i 0.966313 1.54391i
\(431\) −3.38724 −0.163158 −0.0815789 0.996667i \(-0.525996\pi\)
−0.0815789 + 0.996667i \(0.525996\pi\)
\(432\) −20.6362 + 2.47973i −0.992858 + 0.119306i
\(433\) −26.7819 −1.28706 −0.643528 0.765423i \(-0.722530\pi\)
−0.643528 + 0.765423i \(0.722530\pi\)
\(434\) 3.89814 6.22819i 0.187117 0.298963i
\(435\) −9.45520 35.2713i −0.453342 1.69113i
\(436\) −16.6806 34.3276i −0.798856 1.64399i
\(437\) 8.24793i 0.394552i
\(438\) −10.9886 3.36696i −0.525054 0.160880i
\(439\) 3.77479i 0.180161i −0.995934 0.0900805i \(-0.971288\pi\)
0.995934 0.0900805i \(-0.0287124\pi\)
\(440\) 0.360814 3.36199i 0.0172011 0.160277i
\(441\) 2.59774 1.50059i 0.123702 0.0714567i
\(442\) 1.34596 + 0.842420i 0.0640209 + 0.0400698i
\(443\) 6.78958 0.322583 0.161291 0.986907i \(-0.448434\pi\)
0.161291 + 0.986907i \(0.448434\pi\)
\(444\) −8.36399 + 7.25093i −0.396937 + 0.344114i
\(445\) 13.7974 0.654061
\(446\) 11.6099 + 7.26649i 0.549746 + 0.344078i
\(447\) 25.8602 6.93237i 1.22315 0.327890i
\(448\) −1.69759 + 7.81781i −0.0802035 + 0.369357i
\(449\) 12.9080i 0.609168i 0.952485 + 0.304584i \(0.0985174\pi\)
−0.952485 + 0.304584i \(0.901483\pi\)
\(450\) −1.15533 + 32.6136i −0.0544629 + 1.53742i
\(451\) 0.489369i 0.0230435i
\(452\) 22.6502 11.0063i 1.06538 0.517692i
\(453\) 25.4217 6.81483i 1.19442 0.320189i
\(454\) −10.0568 + 16.0682i −0.471991 + 0.754116i
\(455\) 11.9202 0.558829
\(456\) −8.95207 + 1.39880i −0.419219 + 0.0655048i
\(457\) 27.1813 1.27149 0.635744 0.771900i \(-0.280694\pi\)
0.635744 + 0.771900i \(0.280694\pi\)
\(458\) 12.5523 20.0553i 0.586531 0.937121i
\(459\) 1.23252 1.23336i 0.0575291 0.0575683i
\(460\) −28.5793 + 13.8874i −1.33252 + 0.647503i
\(461\) 7.31937i 0.340897i 0.985367 + 0.170448i \(0.0545216\pi\)
−0.985367 + 0.170448i \(0.945478\pi\)
\(462\) −0.240803 + 0.785896i −0.0112032 + 0.0365632i
\(463\) 3.77479i 0.175430i 0.996146 + 0.0877148i \(0.0279564\pi\)
−0.996146 + 0.0877148i \(0.972044\pi\)
\(464\) −18.6107 14.6281i −0.863981 0.679092i
\(465\) −8.30099 30.9656i −0.384949 1.43600i
\(466\) 25.0829 + 15.6990i 1.16194 + 0.727243i
\(467\) −29.4480 −1.36269 −0.681346 0.731961i \(-0.738605\pi\)
−0.681346 + 0.731961i \(0.738605\pi\)
\(468\) 16.6297 + 11.2468i 0.768708 + 0.519882i
\(469\) −3.19547 −0.147553
\(470\) 38.0908 + 23.8405i 1.75700 + 1.09968i
\(471\) 0.428306 + 1.59774i 0.0197353 + 0.0736198i
\(472\) −39.4407 4.23283i −1.81540 0.194832i
\(473\) 2.51554i 0.115665i
\(474\) −2.87043 + 9.36807i −0.131843 + 0.430289i
\(475\) 14.2263i 0.652746i
\(476\) −0.293321 0.603635i −0.0134443 0.0276676i
\(477\) −7.19547 12.4564i −0.329458 0.570338i
\(478\) −15.8495 + 25.3233i −0.724940 + 1.15826i
\(479\) −33.6628 −1.53809 −0.769047 0.639192i \(-0.779269\pi\)
−0.769047 + 0.639192i \(0.779269\pi\)
\(480\) 19.9199 + 28.6640i 0.909214 + 1.30833i
\(481\) 10.6919 0.487510
\(482\) −19.7904 + 31.6198i −0.901426 + 1.44024i
\(483\) 7.46071 2.00000i 0.339474 0.0910032i
\(484\) 9.51683 + 19.5850i 0.432583 + 0.890227i
\(485\) 7.12515i 0.323536i
\(486\) 16.1254 15.0323i 0.731465 0.681879i
\(487\) 21.1813i 0.959816i −0.877319 0.479908i \(-0.840670\pi\)
0.877319 0.479908i \(-0.159330\pi\)
\(488\) −0.992877 0.106557i −0.0449454 0.00482360i
\(489\) 16.5414 4.43428i 0.748029 0.200525i
\(490\) −4.27072 2.67298i −0.192931 0.120753i
\(491\) −12.1208 −0.547005 −0.273502 0.961871i \(-0.588182\pi\)
−0.273502 + 0.961871i \(0.588182\pi\)
\(492\) 3.30918 + 3.81715i 0.149189 + 0.172091i
\(493\) 1.98582 0.0894371
\(494\) 7.41847 + 4.64311i 0.333773 + 0.208904i
\(495\) 1.79391 + 3.10552i 0.0806303 + 0.139583i
\(496\) −16.3389 12.8424i −0.733637 0.576642i
\(497\) 10.3774i 0.465490i
\(498\) 16.1583 + 4.95100i 0.724071 + 0.221860i
\(499\) 36.5793i 1.63752i 0.574139 + 0.818758i \(0.305337\pi\)
−0.574139 + 0.818758i \(0.694663\pi\)
\(500\) 17.2515 8.38292i 0.771509 0.374895i
\(501\) −0.503544 1.87840i −0.0224967 0.0839206i
\(502\) 4.20733 6.72220i 0.187782 0.300026i
\(503\) 0.890599 0.0397098 0.0198549 0.999803i \(-0.493680\pi\)
0.0198549 + 0.999803i \(0.493680\pi\)
\(504\) −3.43604 7.75846i −0.153053 0.345589i
\(505\) −46.8577 −2.08514
\(506\) −1.12278 + 1.79391i −0.0499138 + 0.0797491i
\(507\) 0.809292 + 3.01894i 0.0359419 + 0.134076i
\(508\) 18.3276 8.90581i 0.813154 0.395131i
\(509\) 1.54919i 0.0686667i −0.999410 0.0343333i \(-0.989069\pi\)
0.999410 0.0343333i \(-0.0109308\pi\)
\(510\) −2.79981 0.857878i −0.123978 0.0379875i
\(511\) 4.69193i 0.207559i
\(512\) 21.4735 + 7.13364i 0.949004 + 0.315265i
\(513\) 6.79321 6.79784i 0.299927 0.300132i
\(514\) −21.7861 13.6356i −0.960944 0.601442i
\(515\) −28.0994 −1.23821
\(516\) 17.0104 + 19.6216i 0.748842 + 0.863793i
\(517\) 2.99291 0.131628
\(518\) −3.83064 2.39755i −0.168309 0.105342i
\(519\) −26.0438 + 6.98159i −1.14320 + 0.306458i
\(520\) 3.59774 33.5230i 0.157771 1.47008i
\(521\) 35.5601i 1.55792i 0.627075 + 0.778959i \(0.284252\pi\)
−0.627075 + 0.778959i \(0.715748\pi\)
\(522\) 25.0917 + 0.888870i 1.09823 + 0.0389048i
\(523\) 14.0379i 0.613834i 0.951736 + 0.306917i \(0.0992974\pi\)
−0.951736 + 0.306917i \(0.900703\pi\)
\(524\) 9.16696 + 18.8650i 0.400460 + 0.824120i
\(525\) −12.8685 + 3.44966i −0.561625 + 0.150555i
\(526\) −13.2967 + 21.2447i −0.579766 + 0.926312i
\(527\) 1.74341 0.0759442
\(528\) 2.13748 + 0.914402i 0.0930218 + 0.0397942i
\(529\) −3.11260 −0.135331
\(530\) −12.8172 + 20.4785i −0.556743 + 0.889528i
\(531\) 36.4318 21.0450i 1.58101 0.913274i
\(532\) −1.61668 3.32702i −0.0700920 0.144245i
\(533\) 4.87958i 0.211358i
\(534\) −2.77921 + 9.07036i −0.120268 + 0.392513i
\(535\) 28.9703i 1.25249i
\(536\) −0.964448 + 8.98655i −0.0416578 + 0.388160i
\(537\) −9.73690 36.3221i −0.420178 1.56741i
\(538\) 14.9626 + 9.36491i 0.645085 + 0.403750i
\(539\) −0.335564 −0.0144538
\(540\) −34.9927 12.0928i −1.50585 0.520393i
\(541\) −32.2783 −1.38775 −0.693877 0.720093i \(-0.744099\pi\)
−0.693877 + 0.720093i \(0.744099\pi\)
\(542\) 2.15473 + 1.34861i 0.0925534 + 0.0579279i
\(543\) 7.36797 + 27.4851i 0.316190 + 1.17950i
\(544\) −1.78612 + 0.642713i −0.0765792 + 0.0275561i
\(545\) 67.9841i 2.91212i
\(546\) −2.40109 + 7.83630i −0.102757 + 0.335363i
\(547\) 19.8732i 0.849718i −0.905260 0.424859i \(-0.860324\pi\)
0.905260 0.424859i \(-0.139676\pi\)
\(548\) 16.0442 7.79627i 0.685374 0.333040i
\(549\) 0.917133 0.529785i 0.0391423 0.0226107i
\(550\) 1.93661 3.09419i 0.0825774 0.131937i
\(551\) 10.9452 0.466279
\(552\) −3.37278 21.5852i −0.143555 0.918728i
\(553\) −4.00000 −0.170097
\(554\) 17.4603 27.8969i 0.741817 1.18523i
\(555\) −19.0454 + 5.10552i −0.808432 + 0.216717i
\(556\) 3.66589 1.78135i 0.155469 0.0755460i
\(557\) 29.5389i 1.25160i 0.779983 + 0.625801i \(0.215228\pi\)
−0.779983 + 0.625801i \(0.784772\pi\)
\(558\) 22.0287 + 0.780364i 0.932549 + 0.0330354i
\(559\) 25.0829i 1.06089i
\(560\) −8.80614 + 11.2037i −0.372127 + 0.473442i
\(561\) −0.188383 + 0.0505000i −0.00795353 + 0.00213211i
\(562\) 27.7748 + 17.3839i 1.17161 + 0.733294i
\(563\) 20.7485 0.874443 0.437222 0.899354i \(-0.355963\pi\)
0.437222 + 0.899354i \(0.355963\pi\)
\(564\) −23.3452 + 20.2385i −0.983010 + 0.852194i
\(565\) 44.8577 1.88718
\(566\) −2.21714 1.38768i −0.0931933 0.0583284i
\(567\) 7.79627 + 4.49646i 0.327413 + 0.188833i
\(568\) −29.1841 3.13208i −1.22454 0.131419i
\(569\) 4.74459i 0.198904i 0.995042 + 0.0994518i \(0.0317089\pi\)
−0.995042 + 0.0994518i \(0.968291\pi\)
\(570\) −15.4316 4.72832i −0.646357 0.198047i
\(571\) 18.2642i 0.764331i −0.924094 0.382166i \(-0.875178\pi\)
0.924094 0.382166i \(-0.124822\pi\)
\(572\) −0.981441 2.01974i −0.0410361 0.0844496i
\(573\) 5.43592 + 20.2779i 0.227089 + 0.847122i
\(574\) −1.09419 + 1.74823i −0.0456707 + 0.0729696i
\(575\) −34.3024 −1.43051
\(576\) −22.8560 + 7.32145i −0.952333 + 0.305060i
\(577\) −6.37677 −0.265468 −0.132734 0.991152i \(-0.542376\pi\)
−0.132734 + 0.991152i \(0.542376\pi\)
\(578\) −12.6705 + 20.2442i −0.527025 + 0.842046i
\(579\) 3.45284 + 12.8803i 0.143495 + 0.535287i
\(580\) −18.4288 37.9253i −0.765216 1.57476i
\(581\) 6.89932i 0.286232i
\(582\) −4.68403 1.43521i −0.194159 0.0594915i
\(583\) 1.60906i 0.0666404i
\(584\) −13.1950 1.41610i −0.546013 0.0585988i
\(585\) 17.8874 + 30.9656i 0.739553 + 1.28027i
\(586\) −1.85713 1.16235i −0.0767172 0.0480162i
\(587\) 16.8907 0.697152 0.348576 0.937280i \(-0.386665\pi\)
0.348576 + 0.937280i \(0.386665\pi\)
\(588\) 2.61745 2.26913i 0.107942 0.0935773i
\(589\) 9.60906 0.395934
\(590\) −59.8945 37.4871i −2.46582 1.54332i
\(591\) −11.7789 + 3.15758i −0.484519 + 0.129886i
\(592\) −7.89872 + 10.0492i −0.324635 + 0.413020i
\(593\) 40.6719i 1.67019i −0.550102 0.835097i \(-0.685411\pi\)
0.550102 0.835097i \(-0.314589\pi\)
\(594\) −2.40290 + 0.553766i −0.0985920 + 0.0227213i
\(595\) 1.19547i 0.0490095i
\(596\) 27.8061 13.5117i 1.13898 0.553460i
\(597\) 35.7748 9.59019i 1.46416 0.392500i
\(598\) −11.1955 + 17.8874i −0.457817 + 0.731470i
\(599\) 7.29174 0.297932 0.148966 0.988842i \(-0.452405\pi\)
0.148966 + 0.988842i \(0.452405\pi\)
\(600\) 5.81748 + 37.2308i 0.237497 + 1.51994i
\(601\) −30.6778 −1.25137 −0.625686 0.780075i \(-0.715181\pi\)
−0.625686 + 0.780075i \(0.715181\pi\)
\(602\) −5.62456 + 8.98655i −0.229240 + 0.366264i
\(603\) −4.79509 8.30099i −0.195271 0.338042i
\(604\) 27.3346 13.2826i 1.11223 0.540460i
\(605\) 38.7871i 1.57692i
\(606\) 9.43851 30.8040i 0.383413 1.25133i
\(607\) 13.3081i 0.540158i −0.962838 0.270079i \(-0.912950\pi\)
0.962838 0.270079i \(-0.0870498\pi\)
\(608\) −9.84444 + 3.54240i −0.399245 + 0.143663i
\(609\) 2.65404 + 9.90050i 0.107547 + 0.401188i
\(610\) −1.50778 0.943698i −0.0610482 0.0382092i
\(611\) 29.8428 1.20731
\(612\) 1.12793 1.66778i 0.0455938 0.0674160i
\(613\) 19.6848 0.795063 0.397532 0.917588i \(-0.369867\pi\)
0.397532 + 0.917588i \(0.369867\pi\)
\(614\) −15.0343 9.40978i −0.606736 0.379748i
\(615\) 2.33005 + 8.69193i 0.0939568 + 0.350492i
\(616\) −0.101279 + 0.943698i −0.00408065 + 0.0380227i
\(617\) 10.7470i 0.432656i −0.976321 0.216328i \(-0.930592\pi\)
0.976321 0.216328i \(-0.0694081\pi\)
\(618\) 5.66005 18.4724i 0.227681 0.743069i
\(619\) 45.7369i 1.83832i −0.393883 0.919161i \(-0.628868\pi\)
0.393883 0.919161i \(-0.371132\pi\)
\(620\) −16.1792 33.2957i −0.649772 1.33719i
\(621\) 16.3909 + 16.3798i 0.657746 + 0.657297i
\(622\) 9.04498 14.4515i 0.362671 0.579452i
\(623\) −3.87289 −0.155164
\(624\) 21.3132 + 9.11765i 0.853209 + 0.364998i
\(625\) −4.29390 −0.171756
\(626\) 16.5634 26.4639i 0.662005 1.05771i
\(627\) −1.03830 + 0.278338i −0.0414656 + 0.0111157i
\(628\) 0.834799 + 1.71796i 0.0333121 + 0.0685540i
\(629\) 1.07228i 0.0427548i
\(630\) 0.535101 15.1052i 0.0213189 0.601807i
\(631\) 2.61615i 0.104147i −0.998643 0.0520736i \(-0.983417\pi\)
0.998643 0.0520736i \(-0.0165830\pi\)
\(632\) −1.20727 + 11.2491i −0.0480226 + 0.447466i
\(633\) −38.4288 + 10.3017i −1.52741 + 0.409454i
\(634\) −4.13917 2.59065i −0.164387 0.102888i
\(635\) 36.2969 1.44040
\(636\) −10.8807 12.5509i −0.431447 0.497676i
\(637\) −3.34596 −0.132572
\(638\) −2.38055 1.48995i −0.0942470 0.0589879i
\(639\) 26.9578 15.5722i 1.06643 0.616028i
\(640\) 28.8500 + 28.1468i 1.14040 + 1.11260i
\(641\) 22.5827i 0.891963i 0.895042 + 0.445982i \(0.147145\pi\)
−0.895042 + 0.445982i \(0.852855\pi\)
\(642\) −19.0449 5.83546i −0.751642 0.230307i
\(643\) 9.32332i 0.367676i −0.982957 0.183838i \(-0.941148\pi\)
0.982957 0.183838i \(-0.0588521\pi\)
\(644\) 8.02210 3.89814i 0.316115 0.153608i
\(645\) 11.9774 + 44.6798i 0.471608 + 1.75926i
\(646\) 0.465654 0.743992i 0.0183209 0.0292720i
\(647\) 15.5420 0.611021 0.305510 0.952189i \(-0.401173\pi\)
0.305510 + 0.952189i \(0.401173\pi\)
\(648\) 14.9983 20.5682i 0.589190 0.807994i
\(649\) −4.70610 −0.184731
\(650\) 19.3103 30.8527i 0.757411 1.21014i
\(651\) 2.33005 + 8.69193i 0.0913220 + 0.340663i
\(652\) 17.7861 8.64271i 0.696558 0.338475i
\(653\) 9.40470i 0.368034i −0.982923 0.184017i \(-0.941090\pi\)
0.982923 0.184017i \(-0.0589102\pi\)
\(654\) 44.6924 + 13.6940i 1.74761 + 0.535478i
\(655\) 37.3612i 1.45982i
\(656\) 4.58626 + 3.60482i 0.179063 + 0.140744i
\(657\) 12.1884 7.04066i 0.475514 0.274682i
\(658\) −10.6919 6.69193i −0.416815 0.260878i
\(659\) −31.2507 −1.21735 −0.608677 0.793418i \(-0.708299\pi\)
−0.608677 + 0.793418i \(0.708299\pi\)
\(660\) 2.71268 + 3.12909i 0.105591 + 0.121800i
\(661\) −23.9479 −0.931467 −0.465733 0.884925i \(-0.654209\pi\)
−0.465733 + 0.884925i \(0.654209\pi\)
\(662\) 32.2404 + 20.1788i 1.25306 + 0.784271i
\(663\) −1.87840 + 0.503544i −0.0729509 + 0.0195560i
\(664\) 19.4028 + 2.08233i 0.752975 + 0.0808102i
\(665\) 6.58900i 0.255511i
\(666\) 0.479962 13.5487i 0.0185982 0.525003i
\(667\) 26.3909i 1.02186i
\(668\) −0.981441 2.01974i −0.0379731 0.0781461i
\(669\) −16.2026 + 4.34344i −0.626427 + 0.167927i
\(670\) −8.54143 + 13.6469i −0.329984 + 0.527228i
\(671\) −0.118471 −0.00457353
\(672\) −5.59143 8.04586i −0.215694 0.310376i
\(673\) −23.8732 −0.920245 −0.460123 0.887855i \(-0.652195\pi\)
−0.460123 + 0.887855i \(0.652195\pi\)
\(674\) −7.93762 + 12.6822i −0.305746 + 0.488500i
\(675\) −28.2716 28.2523i −1.08817 1.08743i
\(676\) 1.57736 + 3.24611i 0.0606679 + 0.124850i
\(677\) 26.9514i 1.03583i 0.855433 + 0.517913i \(0.173291\pi\)
−0.855433 + 0.517913i \(0.826709\pi\)
\(678\) −9.03565 + 29.4892i −0.347012 + 1.13253i
\(679\) 2.00000i 0.0767530i
\(680\) −3.36199 0.360814i −0.128927 0.0138366i
\(681\) −6.01132 22.4244i −0.230354 0.859304i
\(682\) −2.08995 1.30807i −0.0800285 0.0500887i
\(683\) 23.5554 0.901323 0.450661 0.892695i \(-0.351188\pi\)
0.450661 + 0.892695i \(0.351188\pi\)
\(684\) 6.21674 9.19220i 0.237703 0.351473i
\(685\) 31.7748 1.21405
\(686\) 1.19877 + 0.750295i 0.0457694 + 0.0286464i
\(687\) 7.50295 + 27.9887i 0.286255 + 1.06783i
\(688\) 23.5751 + 18.5301i 0.898792 + 0.706454i
\(689\) 16.0442i 0.611235i
\(690\) 11.4009 37.2085i 0.434025 1.41650i
\(691\) 4.24892i 0.161637i 0.996729 + 0.0808183i \(0.0257533\pi\)
−0.996729 + 0.0808183i \(0.974247\pi\)
\(692\) −28.0035 + 13.6076i −1.06453 + 0.517283i
\(693\) −0.503544 0.871706i −0.0191280 0.0331134i
\(694\) 18.9437 30.2670i 0.719093 1.14892i
\(695\) 7.26013 0.275392
\(696\) 28.6440 4.47575i 1.08575 0.169653i
\(697\) −0.489369 −0.0185362
\(698\) −16.0833 + 25.6968i −0.608761 + 0.972638i
\(699\) −35.0051 + 9.38385i −1.32401 + 0.354930i
\(700\) −13.8368 + 6.72362i −0.522980 + 0.254129i
\(701\) 8.60239i 0.324908i −0.986716 0.162454i \(-0.948059\pi\)
0.986716 0.162454i \(-0.0519409\pi\)
\(702\) −23.9597 + 5.52169i −0.904300 + 0.208403i
\(703\) 5.91005i 0.222902i
\(704\) 2.62337 + 0.569649i 0.0988721 + 0.0214695i
\(705\) −53.1586 + 14.2503i −2.00207 + 0.536697i
\(706\) −10.2897 6.44015i −0.387257 0.242378i
\(707\) 13.1528 0.494660
\(708\) 36.7084 31.8233i 1.37958 1.19599i
\(709\) −14.7061 −0.552299 −0.276150 0.961115i \(-0.589059\pi\)
−0.276150 + 0.961115i \(0.589059\pi\)
\(710\) −44.3190 27.7386i −1.66326 1.04101i
\(711\) −6.00236 10.3909i −0.225106 0.389691i
\(712\) −1.16890 + 10.8916i −0.0438066 + 0.408181i
\(713\) 23.1693i 0.867699i
\(714\) 0.785896 + 0.240803i 0.0294114 + 0.00901182i
\(715\) 4.00000i 0.149592i
\(716\) −18.9779 39.0552i −0.709237 1.45956i
\(717\) −9.47381 35.3407i −0.353806 1.31982i
\(718\) −5.03080 + 8.03789i −0.187748 + 0.299971i
\(719\) 10.9324 0.407711 0.203856 0.979001i \(-0.434653\pi\)
0.203856 + 0.979001i \(0.434653\pi\)
\(720\) −42.3186 6.06388i −1.57712 0.225987i
\(721\) 7.88740 0.293742
\(722\) −11.6891 + 18.6761i −0.435023 + 0.695052i
\(723\) −11.8294 44.1278i −0.439940 1.64113i
\(724\) 14.3607 + 29.5533i 0.533710 + 1.09834i
\(725\) 45.5199i 1.69057i
\(726\) −25.4985 7.81287i −0.946337 0.289963i
\(727\) 38.8803i 1.44199i 0.692940 + 0.720995i \(0.256315\pi\)
−0.692940 + 0.720995i \(0.743685\pi\)
\(728\) −1.00987 + 9.40978i −0.0374283 + 0.348750i
\(729\) 0.0184116 + 27.0000i 0.000681912 + 1.00000i
\(730\) −20.0379 12.5414i −0.741636 0.464179i
\(731\) −2.51554 −0.0930406
\(732\) 0.924094 0.801118i 0.0341555 0.0296102i
\(733\) 11.1208 0.410755 0.205377 0.978683i \(-0.434158\pi\)
0.205377 + 0.978683i \(0.434158\pi\)
\(734\) 29.3470 + 18.3679i 1.08322 + 0.677972i
\(735\) 5.96012 1.59774i 0.219842 0.0589334i
\(736\) −8.54143 23.7369i −0.314841 0.874954i
\(737\) 1.07228i 0.0394981i
\(738\) −6.18337 0.219045i −0.227613 0.00806316i
\(739\) 31.8732i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(740\) −20.4785 + 9.95100i −0.752804 + 0.365806i
\(741\) −10.3531 + 2.77535i −0.380329 + 0.101955i
\(742\) 3.59774 5.74823i 0.132077 0.211024i
\(743\) −24.5432 −0.900403 −0.450202 0.892927i \(-0.648648\pi\)
−0.450202 + 0.892927i \(0.648648\pi\)
\(744\) 25.1474 3.92938i 0.921947 0.144058i
\(745\) 55.0687 2.01756
\(746\) −3.29450 + 5.26374i −0.120620 + 0.192719i
\(747\) −17.9226 + 10.3531i −0.655754 + 0.378798i
\(748\) −0.202558 + 0.0984279i −0.00740625 + 0.00359888i
\(749\) 8.13184i 0.297131i
\(750\) −6.88198 + 22.4604i −0.251295 + 0.820137i
\(751\) 0.427764i 0.0156093i −0.999970 0.00780467i \(-0.997516\pi\)
0.999970 0.00780467i \(-0.00248433\pi\)
\(752\) −22.0466 + 28.0489i −0.803956 + 1.02284i
\(753\) 2.51487 + 9.38135i 0.0916469 + 0.341875i
\(754\) −23.7369 14.8566i −0.864447 0.541045i
\(755\) 54.1350 1.97017
\(756\) 9.82232 + 3.39441i 0.357234 + 0.123454i
\(757\) 51.4596 1.87033 0.935166 0.354210i \(-0.115250\pi\)
0.935166 + 0.354210i \(0.115250\pi\)
\(758\) 20.2357 + 12.6652i 0.734992 + 0.460021i
\(759\) −0.671128 2.50354i −0.0243604 0.0908729i
\(760\) −18.5301 1.98868i −0.672158 0.0721369i
\(761\) 9.03515i 0.327524i 0.986500 + 0.163762i \(0.0523629\pi\)
−0.986500 + 0.163762i \(0.947637\pi\)
\(762\) −7.31125 + 23.8614i −0.264859 + 0.864406i
\(763\) 19.0829i 0.690846i
\(764\) 10.5950 + 21.8037i 0.383313 + 0.788832i
\(765\) 3.10552 1.79391i 0.112280 0.0648590i
\(766\) −17.8874 + 28.5793i −0.646298 + 1.03261i
\(767\) −46.9253 −1.69438
\(768\) −24.3148 + 13.2963i −0.877385 + 0.479788i
\(769\) −21.1728 −0.763511 −0.381756 0.924263i \(-0.624680\pi\)
−0.381756 + 0.924263i \(0.624680\pi\)
\(770\) −0.896956 + 1.43310i −0.0323240 + 0.0516453i
\(771\) 30.4042 8.15049i 1.09498 0.293533i
\(772\) 6.72982 + 13.8495i 0.242211 + 0.498455i
\(773\) 4.11523i 0.148015i 0.997258 + 0.0740073i \(0.0235788\pi\)
−0.997258 + 0.0740073i \(0.976421\pi\)
\(774\) −31.7848 1.12597i −1.14248 0.0404723i
\(775\) 39.9632i 1.43552i
\(776\) −5.62456 0.603635i −0.201910 0.0216692i
\(777\) 5.34596 1.43310i 0.191785 0.0514121i
\(778\) 24.1771 + 15.1321i 0.866790 + 0.542511i
\(779\) −2.69722 −0.0966381
\(780\) 27.0486 + 31.2006i 0.968494 + 1.11716i
\(781\) −3.48228 −0.124606
\(782\) 1.79391 + 1.12278i 0.0641501 + 0.0401507i
\(783\) −21.7363 + 21.7511i −0.776790 + 0.777320i
\(784\) 2.47185 3.14483i 0.0882803 0.112315i
\(785\) 3.40234i 0.121435i
\(786\) −24.5611 7.52565i −0.876064 0.268431i
\(787\) 29.9621i 1.06803i 0.845474 + 0.534017i \(0.179318\pi\)
−0.845474 + 0.534017i \(0.820682\pi\)
\(788\) −12.6652 + 6.15434i −0.451180 + 0.219239i
\(789\) −7.94793 29.6486i −0.282954 1.05552i
\(790\) −10.6919 + 17.0829i −0.380402 + 0.607781i
\(791\) −12.5914 −0.447697
\(792\) −2.60346 + 1.15301i −0.0925098 + 0.0409704i
\(793\) −1.18130 −0.0419490
\(794\) 13.7596 21.9842i 0.488309 0.780188i
\(795\) −7.66129 28.5793i −0.271718 1.01360i
\(796\) 38.4667 18.6919i 1.36342 0.662518i
\(797\) 49.0485i 1.73739i −0.495351 0.868693i \(-0.664961\pi\)
0.495351 0.868693i \(-0.335039\pi\)
\(798\) 4.33158 + 1.32722i 0.153336 + 0.0469830i
\(799\) 2.99291i 0.105882i
\(800\) 14.7325 + 40.9421i 0.520873 + 1.44752i
\(801\) −5.81162 10.0607i −0.205343 0.355479i
\(802\) −10.3123 6.45433i −0.364140 0.227910i
\(803\) −1.57444 −0.0555608
\(804\) −7.25093 8.36399i −0.255721 0.294975i
\(805\) 15.8874 0.559957
\(806\) −20.8393 13.0430i −0.734033 0.459421i
\(807\) −20.8815 + 5.59774i −0.735065 + 0.197050i
\(808\) 3.96973 36.9892i 0.139655 1.30128i
\(809\) 52.6577i 1.85135i −0.378323 0.925674i \(-0.623499\pi\)
0.378323 0.925674i \(-0.376501\pi\)
\(810\) 40.0424 21.2767i 1.40695 0.747588i
\(811\) 37.5117i 1.31721i 0.752487 + 0.658607i \(0.228854\pi\)
−0.752487 + 0.658607i \(0.771146\pi\)
\(812\) 5.17290 + 10.6455i 0.181533 + 0.373583i
\(813\) −3.00709 + 0.806113i −0.105463 + 0.0282716i
\(814\) −0.804530 + 1.28543i −0.0281987 + 0.0450541i
\(815\) 35.2246 1.23386
\(816\) 0.914402 2.13748i 0.0320105 0.0748267i
\(817\) −13.8647 −0.485066
\(818\) −3.23764 + 5.17290i −0.113202 + 0.180866i
\(819\) −5.02092 8.69193i −0.175445 0.303720i
\(820\) 4.54143 + 9.34596i 0.158594 + 0.326375i
\(821\) 2.11058i 0.0736598i −0.999322 0.0368299i \(-0.988274\pi\)
0.999322 0.0368299i \(-0.0117260\pi\)
\(822\) −6.40038 + 20.8886i −0.223239 + 0.728573i
\(823\) 52.5567i 1.83201i −0.401166 0.916005i \(-0.631395\pi\)
0.401166 0.916005i \(-0.368605\pi\)
\(824\) 2.38055 22.1816i 0.0829305 0.772731i
\(825\) 1.15758 + 4.31819i 0.0403018 + 0.150340i
\(826\) 16.8122 + 10.5225i 0.584970 + 0.366124i
\(827\) 10.3774 0.360858 0.180429 0.983588i \(-0.442251\pi\)
0.180429 + 0.983588i \(0.442251\pi\)
\(828\) 22.1642 + 14.9898i 0.770260 + 0.520931i
\(829\) 1.43592 0.0498715 0.0249358 0.999689i \(-0.492062\pi\)
0.0249358 + 0.999689i \(0.492062\pi\)
\(830\) 29.4650 + 18.4417i 1.02275 + 0.640122i
\(831\) 10.4366 + 38.9324i 0.362043 + 1.35055i
\(832\) 26.1581 + 5.68007i 0.906869 + 0.196921i
\(833\) 0.335564i 0.0116266i
\(834\) −1.46240 + 4.77277i −0.0506389 + 0.165268i
\(835\) 4.00000i 0.138426i
\(836\) −1.11643 + 0.542499i −0.0386124 + 0.0187627i
\(837\) −19.0829 + 19.0959i −0.659600 + 0.660050i
\(838\) 28.0710 44.8500i 0.969697 1.54932i
\(839\) −1.39275 −0.0480832 −0.0240416 0.999711i \(-0.507653\pi\)
−0.0240416 + 0.999711i \(0.507653\pi\)
\(840\) −2.69441 17.2437i −0.0929659 0.594965i
\(841\) −6.02126 −0.207630
\(842\) −8.92969 + 14.2673i −0.307738 + 0.491683i
\(843\) −38.7619 + 10.3909i −1.33503 + 0.357883i
\(844\) −41.3205 + 20.0786i −1.42231 + 0.691135i
\(845\) 6.42877i 0.221156i
\(846\) 1.33965 37.8166i 0.0460581 1.30016i
\(847\) 10.8874i 0.374095i
\(848\) −15.0798 11.8527i −0.517841 0.407025i
\(849\) 3.09419 0.829463i 0.106192 0.0284671i
\(850\) −3.09419 1.93661i −0.106130 0.0664252i
\(851\) 14.2503 0.488494
\(852\) 27.1624 23.5477i 0.930567 0.806730i
\(853\) 18.6399 0.638217 0.319108 0.947718i \(-0.396617\pi\)
0.319108 + 0.947718i \(0.396617\pi\)
\(854\) 0.423228 + 0.264892i 0.0144826 + 0.00906443i
\(855\) 17.1165 9.88740i 0.585372 0.338142i
\(856\) −22.8690 2.45433i −0.781646 0.0838873i
\(857\) 30.8622i 1.05423i −0.849793 0.527117i \(-0.823273\pi\)
0.849793 0.527117i \(-0.176727\pi\)
\(858\) 2.62958 + 0.805718i 0.0897723 + 0.0275067i
\(859\) 17.9253i 0.611603i −0.952095 0.305801i \(-0.901076\pi\)
0.952095 0.305801i \(-0.0989244\pi\)
\(860\) 23.3447 + 48.0418i 0.796047 + 1.63821i
\(861\) −0.654037 2.43979i −0.0222895 0.0831478i
\(862\) 2.54143 4.06054i 0.0865616 0.138302i
\(863\) 5.04617 0.171774 0.0858868 0.996305i \(-0.472628\pi\)
0.0858868 + 0.996305i \(0.472628\pi\)
\(864\) 12.5106 26.5986i 0.425619 0.904903i
\(865\) −55.4596 −1.88568
\(866\) 20.0943 32.1054i 0.682833 1.09099i
\(867\) −7.57362 28.2523i −0.257214 0.959499i
\(868\) 4.54143 + 9.34596i 0.154146 + 0.317223i
\(869\) 1.34226i 0.0455329i
\(870\) 49.3764 + 15.1292i 1.67402 + 0.512928i
\(871\) 10.6919i 0.362282i
\(872\) 53.6663 + 5.75954i 1.81737 + 0.195043i
\(873\) 5.19547 3.00118i 0.175840 0.101575i
\(874\) 9.88740 + 6.18838i 0.334446 + 0.209325i
\(875\) −9.59019 −0.324207
\(876\) 12.2809 10.6466i 0.414933 0.359715i
\(877\) −0.691927 −0.0233647 −0.0116824 0.999932i \(-0.503719\pi\)
−0.0116824 + 0.999932i \(0.503719\pi\)
\(878\) 4.52512 + 2.83221i 0.152715 + 0.0955825i
\(879\) 2.59177 0.694778i 0.0874181 0.0234343i
\(880\) 3.75955 + 2.95502i 0.126734 + 0.0996138i
\(881\) 38.2574i 1.28892i 0.764637 + 0.644462i \(0.222918\pi\)
−0.764637 + 0.644462i \(0.777082\pi\)
\(882\) −0.150201 + 4.23998i −0.00505752 + 0.142768i
\(883\) 3.42068i 0.115115i 0.998342 + 0.0575575i \(0.0183312\pi\)
−0.998342 + 0.0575575i \(0.981669\pi\)
\(884\) −2.01974 + 0.981441i −0.0679312 + 0.0330094i
\(885\) 83.5875 22.4074i 2.80976 0.753216i
\(886\) −5.09419 + 8.13917i −0.171143 + 0.273441i
\(887\) 17.1543 0.575984 0.287992 0.957633i \(-0.407012\pi\)
0.287992 + 0.957633i \(0.407012\pi\)
\(888\) −2.41676 15.4669i −0.0811013 0.519034i
\(889\) −10.1884 −0.341707
\(890\) −10.3522 + 16.5400i −0.347005 + 0.554422i
\(891\) 1.50885 2.61615i 0.0505483 0.0876442i
\(892\) −17.4217 + 8.46565i −0.583323 + 0.283451i
\(893\) 16.4959i 0.552013i
\(894\) −11.0925 + 36.2019i −0.370987 + 1.21077i
\(895\) 77.3470i 2.58543i
\(896\) −8.09809 7.90069i −0.270538 0.263944i
\(897\) −6.69193 24.9633i −0.223437 0.833499i
\(898\) −15.4738 9.68484i −0.516368 0.323187i
\(899\) −30.7462 −1.02544
\(900\) −38.2295 25.8548i −1.27432 0.861828i
\(901\) 1.60906 0.0536055
\(902\) 0.586642 + 0.367171i 0.0195330 + 0.0122255i
\(903\) −3.36199 12.5414i −0.111880 0.417353i
\(904\) −3.80029 + 35.4104i −0.126396 + 1.17773i
\(905\) 58.5289i 1.94557i
\(906\) −10.9044 + 35.5880i −0.362274 + 1.18233i
\(907\) 30.7904i 1.02238i −0.859469 0.511188i \(-0.829205\pi\)
0.859469 0.511188i \(-0.170795\pi\)
\(908\) −11.7165 24.1117i −0.388825 0.800176i
\(909\) 19.7369 + 34.1674i 0.654632 + 1.13326i
\(910\) −8.94370 + 14.2897i −0.296481 + 0.473698i
\(911\) −14.8898 −0.493321 −0.246661 0.969102i \(-0.579333\pi\)
−0.246661 + 0.969102i \(0.579333\pi\)
\(912\) 5.03985 11.7810i 0.166886 0.390108i
\(913\) 2.31516 0.0766206
\(914\) −20.3940 + 32.5842i −0.674573 + 1.07779i
\(915\) 2.10423 0.564082i 0.0695635 0.0186480i
\(916\) 14.6238 + 30.0947i 0.483183 + 0.994358i
\(917\) 10.4871i 0.346316i
\(918\) 0.553766 + 2.40290i 0.0182770 + 0.0793074i
\(919\) 2.99291i 0.0987271i −0.998781 0.0493635i \(-0.984281\pi\)
0.998781 0.0493635i \(-0.0157193\pi\)
\(920\) 4.79509 44.6798i 0.158090 1.47305i
\(921\) 20.9816 5.62456i 0.691367 0.185335i
\(922\) −8.77426 5.49169i −0.288965 0.180859i
\(923\) −34.7224 −1.14290
\(924\) −0.761437 0.878322i −0.0250495 0.0288947i
\(925\) −24.5793 −0.808163
\(926\) −4.52512 2.83221i −0.148705 0.0930722i
\(927\) 11.8358 + 20.4894i 0.388737 + 0.672959i
\(928\) 31.4993 11.3346i 1.03402 0.372078i
\(929\) 11.5002i 0.377309i −0.982044 0.188654i \(-0.939587\pi\)
0.982044 0.188654i \(-0.0604126\pi\)
\(930\) 43.3489 + 13.2824i 1.42147 + 0.435546i
\(931\) 1.84951i 0.0606151i
\(932\) −37.6391 + 18.2898i −1.23291 + 0.599101i
\(933\) 5.40650 + 20.1682i 0.177001 + 0.660276i
\(934\) 22.0947 35.3015i 0.722961 1.15510i
\(935\) −0.401157 −0.0131192
\(936\) −25.9595 + 11.4968i −0.848513 + 0.375786i
\(937\) 49.6254 1.62119 0.810595 0.585607i \(-0.199144\pi\)
0.810595 + 0.585607i \(0.199144\pi\)
\(938\) 2.39755 3.83064i 0.0782827 0.125075i
\(939\) 9.90050 + 36.9324i 0.323091 + 1.20524i
\(940\) −57.1586 + 27.7748i −1.86431 + 0.905914i
\(941\) 33.1859i 1.08183i 0.841077 + 0.540915i \(0.181922\pi\)
−0.841077 + 0.540915i \(0.818078\pi\)
\(942\) −2.23668 0.685331i −0.0728749 0.0223293i
\(943\) 6.50354i 0.211785i
\(944\) 34.6664 44.1046i 1.12829 1.43548i
\(945\) 13.0942 + 13.0853i 0.425954 + 0.425664i
\(946\) 3.01556 + 1.88740i 0.0980443 + 0.0613646i
\(947\) −50.0299 −1.62575 −0.812877 0.582436i \(-0.802100\pi\)
−0.812877 + 0.582436i \(0.802100\pi\)
\(948\) −9.07652 10.4698i −0.294792 0.340044i
\(949\) −15.6990 −0.509612
\(950\) −17.0541 10.6739i −0.553307 0.346307i
\(951\) 5.77653 1.54852i 0.187317 0.0502142i
\(952\) 0.943698 + 0.101279i 0.0305854 + 0.00328247i
\(953\) 45.2664i 1.46632i −0.680055 0.733162i \(-0.738044\pi\)
0.680055 0.733162i \(-0.261956\pi\)
\(954\) 20.3311 + 0.720227i 0.658244 + 0.0233182i
\(955\) 43.1813i 1.39731i
\(956\) −18.4651 37.9999i −0.597204 1.22901i
\(957\) 3.32225 0.890599i 0.107393 0.0287890i
\(958\) 25.2571 40.3541i 0.816019 1.30378i
\(959\) −8.91906 −0.288011
\(960\) −49.3074 + 2.37296i −1.59139 + 0.0765871i
\(961\) 4.00709 0.129261
\(962\) −8.02210 + 12.8172i −0.258643 + 0.413243i
\(963\) 21.1244 12.2026i 0.680723 0.393222i
\(964\) −23.0563 47.4483i −0.742593 1.52821i
\(965\) 27.4283i 0.882948i
\(966\) −3.20019 + 10.4443i −0.102964 + 0.336039i
\(967\) 3.60059i 0.115787i −0.998323 0.0578935i \(-0.981562\pi\)
0.998323 0.0578935i \(-0.0184384\pi\)
\(968\) −30.6184 3.28601i −0.984112 0.105616i
\(969\) 0.278338 + 1.03830i 0.00894150 + 0.0333550i
\(970\) −8.54143 5.34596i −0.274249 0.171649i
\(971\) −32.7027 −1.04948 −0.524739 0.851263i \(-0.675837\pi\)
−0.524739 + 0.851263i \(0.675837\pi\)
\(972\) 5.92149 + 30.6094i 0.189932 + 0.981797i
\(973\) −2.03789 −0.0653318
\(974\) 25.3916 + 15.8922i 0.813598 + 0.509220i
\(975\) 11.5424 + 43.0574i 0.369654 + 1.37894i
\(976\) 0.872689 1.11029i 0.0279341 0.0355394i
\(977\) 17.6059i 0.563264i −0.959523 0.281632i \(-0.909124\pi\)
0.959523 0.281632i \(-0.0908757\pi\)
\(978\) −7.09526 + 23.1564i −0.226882 + 0.740461i
\(979\) 1.29960i 0.0415354i
\(980\) 6.40860 3.11410i 0.204715 0.0994761i
\(981\) −49.5722 + 28.6356i −1.58272 + 0.914263i
\(982\) 9.09419 14.5301i 0.290207 0.463674i
\(983\) 45.6171 1.45496 0.727479 0.686130i \(-0.240692\pi\)
0.727479 + 0.686130i \(0.240692\pi\)
\(984\) −7.05876 + 1.10296i −0.225025 + 0.0351611i
\(985\) −25.0829 −0.799207
\(986\) −1.48995 + 2.38055i −0.0474498 + 0.0758123i
\(987\) 14.9214 4.00000i 0.474954 0.127321i
\(988\) −11.1321 + 5.40935i −0.354159 + 0.172094i
\(989\) 33.4307i 1.06303i
\(990\) −5.06877 0.179561i −0.161096 0.00570681i
\(991\) 49.5354i 1.57354i 0.617244 + 0.786772i \(0.288249\pi\)
−0.617244 + 0.786772i \(0.711751\pi\)
\(992\) 27.6541 9.95100i 0.878019 0.315945i
\(993\) −44.9940 + 12.0616i −1.42784 + 0.382763i
\(994\) 12.4402 + 7.78612i 0.394578 + 0.246961i
\(995\) 76.1815 2.41512
\(996\) −18.0586 + 15.6554i −0.572210 + 0.496062i
\(997\) −55.5259 −1.75852 −0.879261 0.476340i \(-0.841963\pi\)
−0.879261 + 0.476340i \(0.841963\pi\)
\(998\) −43.8503 27.4453i −1.38806 0.868766i
\(999\) 11.7449 + 11.7369i 0.371593 + 0.371339i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.2.e.a.71.4 yes 12
3.2 odd 2 inner 84.2.e.a.71.9 yes 12
4.3 odd 2 inner 84.2.e.a.71.10 yes 12
7.2 even 3 588.2.n.f.263.12 24
7.3 odd 6 588.2.n.g.275.5 24
7.4 even 3 588.2.n.f.275.5 24
7.5 odd 6 588.2.n.g.263.12 24
7.6 odd 2 588.2.e.c.491.4 12
8.3 odd 2 1344.2.h.h.575.5 12
8.5 even 2 1344.2.h.h.575.8 12
12.11 even 2 inner 84.2.e.a.71.3 12
21.2 odd 6 588.2.n.f.263.1 24
21.5 even 6 588.2.n.g.263.1 24
21.11 odd 6 588.2.n.f.275.8 24
21.17 even 6 588.2.n.g.275.8 24
21.20 even 2 588.2.e.c.491.9 12
24.5 odd 2 1344.2.h.h.575.6 12
24.11 even 2 1344.2.h.h.575.7 12
28.3 even 6 588.2.n.g.275.1 24
28.11 odd 6 588.2.n.f.275.1 24
28.19 even 6 588.2.n.g.263.8 24
28.23 odd 6 588.2.n.f.263.8 24
28.27 even 2 588.2.e.c.491.10 12
84.11 even 6 588.2.n.f.275.12 24
84.23 even 6 588.2.n.f.263.5 24
84.47 odd 6 588.2.n.g.263.5 24
84.59 odd 6 588.2.n.g.275.12 24
84.83 odd 2 588.2.e.c.491.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.3 12 12.11 even 2 inner
84.2.e.a.71.4 yes 12 1.1 even 1 trivial
84.2.e.a.71.9 yes 12 3.2 odd 2 inner
84.2.e.a.71.10 yes 12 4.3 odd 2 inner
588.2.e.c.491.3 12 84.83 odd 2
588.2.e.c.491.4 12 7.6 odd 2
588.2.e.c.491.9 12 21.20 even 2
588.2.e.c.491.10 12 28.27 even 2
588.2.n.f.263.1 24 21.2 odd 6
588.2.n.f.263.5 24 84.23 even 6
588.2.n.f.263.8 24 28.23 odd 6
588.2.n.f.263.12 24 7.2 even 3
588.2.n.f.275.1 24 28.11 odd 6
588.2.n.f.275.5 24 7.4 even 3
588.2.n.f.275.8 24 21.11 odd 6
588.2.n.f.275.12 24 84.11 even 6
588.2.n.g.263.1 24 21.5 even 6
588.2.n.g.263.5 24 84.47 odd 6
588.2.n.g.263.8 24 28.19 even 6
588.2.n.g.263.12 24 7.5 odd 6
588.2.n.g.275.1 24 28.3 even 6
588.2.n.g.275.5 24 7.3 odd 6
588.2.n.g.275.8 24 21.17 even 6
588.2.n.g.275.12 24 84.59 odd 6
1344.2.h.h.575.5 12 8.3 odd 2
1344.2.h.h.575.6 12 24.5 odd 2
1344.2.h.h.575.7 12 24.11 even 2
1344.2.h.h.575.8 12 8.5 even 2