Properties

Label 588.2.e.f.491.8
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(491,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.8
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.f.491.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05533 + 0.941421i) q^{2} +(0.406768 - 1.68361i) q^{3} +(0.227452 - 1.98702i) q^{4} +1.25365i q^{5} +(1.15571 + 2.15971i) q^{6} +(1.63059 + 2.31110i) q^{8} +(-2.66908 - 1.36968i) q^{9} +(-1.18022 - 1.32302i) q^{10} -5.05827 q^{11} +(-3.25285 - 1.19120i) q^{12} -4.41798 q^{13} +(2.11066 + 0.509947i) q^{15} +(-3.89653 - 0.903905i) q^{16} +5.85341i q^{17} +(4.10621 - 1.06726i) q^{18} +1.53176i q^{19} +(2.49104 + 0.285146i) q^{20} +(5.33816 - 4.76197i) q^{22} -0.313570 q^{23} +(4.55426 - 1.80519i) q^{24} +3.42835 q^{25} +(4.66244 - 4.15918i) q^{26} +(-3.39170 + 3.93654i) q^{27} -5.53862i q^{29} +(-2.70753 + 1.44886i) q^{30} +4.89898i q^{31} +(4.96309 - 2.71436i) q^{32} +(-2.05755 + 8.51615i) q^{33} +(-5.51053 - 6.17729i) q^{34} +(-3.32867 + 4.99199i) q^{36} -5.33816 q^{37} +(-1.44203 - 1.61652i) q^{38} +(-1.79709 + 7.43815i) q^{39} +(-2.89732 + 2.04420i) q^{40} +1.97938i q^{41} -3.18613i q^{43} +(-1.15051 + 10.0509i) q^{44} +(1.71710 - 3.34610i) q^{45} +(0.330921 - 0.295202i) q^{46} -11.4963 q^{47} +(-3.10681 + 6.19256i) q^{48} +(-3.61805 + 3.22752i) q^{50} +(9.85486 + 2.38098i) q^{51} +(-1.00488 + 8.77863i) q^{52} +12.7903i q^{53} +(-0.126578 - 7.34738i) q^{54} -6.34133i q^{55} +(2.57889 + 0.623072i) q^{57} +(5.21417 + 5.84508i) q^{58} -7.96701 q^{59} +(1.49335 - 4.07795i) q^{60} +0.302889 q^{61} +(-4.61200 - 5.17005i) q^{62} +(-2.68236 + 7.53691i) q^{64} -5.53862i q^{65} +(-5.84589 - 10.9244i) q^{66} -10.5438i q^{67} +(11.6309 + 1.33137i) q^{68} +(-0.127550 + 0.527930i) q^{69} -4.53490 q^{71} +(-1.18671 - 8.40189i) q^{72} -1.41421 q^{73} +(5.63353 - 5.02546i) q^{74} +(1.39454 - 5.77200i) q^{75} +(3.04365 + 0.348402i) q^{76} +(-5.10590 - 9.54154i) q^{78} -6.92820i q^{79} +(1.13319 - 4.88490i) q^{80} +(5.24797 + 7.31156i) q^{81} +(-1.86343 - 2.08890i) q^{82} +6.78340 q^{83} -7.33816 q^{85} +(2.99949 + 3.36243i) q^{86} +(-9.32487 - 2.25294i) q^{87} +(-8.24797 - 11.6902i) q^{88} -4.79755i q^{89} +(1.33798 + 5.14777i) q^{90} +(-0.0713222 + 0.623072i) q^{92} +(8.24797 + 1.99275i) q^{93} +(12.1324 - 10.8228i) q^{94} -1.92030 q^{95} +(-2.55109 - 9.46002i) q^{96} +13.6844 q^{97} +(13.5009 + 6.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{16} - 12 q^{18} - 24 q^{25} - 48 q^{30} + 12 q^{36} + 72 q^{46} - 24 q^{57} + 72 q^{58} + 72 q^{60} - 48 q^{64} + 108 q^{72} - 24 q^{78} - 24 q^{81} - 48 q^{85} - 48 q^{88} + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.05533 + 0.941421i −0.746233 + 0.665685i
\(3\) 0.406768 1.68361i 0.234848 0.972032i
\(4\) 0.227452 1.98702i 0.113726 0.993512i
\(5\) 1.25365i 0.560651i 0.959905 + 0.280326i \(0.0904425\pi\)
−0.959905 + 0.280326i \(0.909558\pi\)
\(6\) 1.15571 + 2.15971i 0.471817 + 0.881697i
\(7\) 0 0
\(8\) 1.63059 + 2.31110i 0.576500 + 0.817097i
\(9\) −2.66908 1.36968i −0.889693 0.456559i
\(10\) −1.18022 1.32302i −0.373217 0.418376i
\(11\) −5.05827 −1.52513 −0.762563 0.646914i \(-0.776059\pi\)
−0.762563 + 0.646914i \(0.776059\pi\)
\(12\) −3.25285 1.19120i −0.939017 0.343869i
\(13\) −4.41798 −1.22533 −0.612664 0.790344i \(-0.709902\pi\)
−0.612664 + 0.790344i \(0.709902\pi\)
\(14\) 0 0
\(15\) 2.11066 + 0.509947i 0.544971 + 0.131668i
\(16\) −3.89653 0.903905i −0.974133 0.225976i
\(17\) 5.85341i 1.41966i 0.704372 + 0.709831i \(0.251229\pi\)
−0.704372 + 0.709831i \(0.748771\pi\)
\(18\) 4.10621 1.06726i 0.967843 0.251556i
\(19\) 1.53176i 0.351410i 0.984443 + 0.175705i \(0.0562205\pi\)
−0.984443 + 0.175705i \(0.943779\pi\)
\(20\) 2.49104 + 0.285146i 0.557014 + 0.0637607i
\(21\) 0 0
\(22\) 5.33816 4.76197i 1.13810 1.01525i
\(23\) −0.313570 −0.0653839 −0.0326920 0.999465i \(-0.510408\pi\)
−0.0326920 + 0.999465i \(0.510408\pi\)
\(24\) 4.55426 1.80519i 0.929634 0.368484i
\(25\) 3.42835 0.685670
\(26\) 4.66244 4.15918i 0.914379 0.815682i
\(27\) −3.39170 + 3.93654i −0.652733 + 0.757588i
\(28\) 0 0
\(29\) 5.53862i 1.02850i −0.857642 0.514248i \(-0.828071\pi\)
0.857642 0.514248i \(-0.171929\pi\)
\(30\) −2.70753 + 1.44886i −0.494325 + 0.264525i
\(31\) 4.89898i 0.879883i 0.898027 + 0.439941i \(0.145001\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 4.96309 2.71436i 0.877359 0.479835i
\(33\) −2.05755 + 8.51615i −0.358173 + 1.48247i
\(34\) −5.51053 6.17729i −0.945048 1.05940i
\(35\) 0 0
\(36\) −3.32867 + 4.99199i −0.554778 + 0.831998i
\(37\) −5.33816 −0.877588 −0.438794 0.898588i \(-0.644594\pi\)
−0.438794 + 0.898588i \(0.644594\pi\)
\(38\) −1.44203 1.61652i −0.233929 0.262234i
\(39\) −1.79709 + 7.43815i −0.287765 + 1.19106i
\(40\) −2.89732 + 2.04420i −0.458106 + 0.323216i
\(41\) 1.97938i 0.309127i 0.987983 + 0.154564i \(0.0493971\pi\)
−0.987983 + 0.154564i \(0.950603\pi\)
\(42\) 0 0
\(43\) 3.18613i 0.485881i −0.970041 0.242940i \(-0.921888\pi\)
0.970041 0.242940i \(-0.0781119\pi\)
\(44\) −1.15051 + 10.0509i −0.173447 + 1.51523i
\(45\) 1.71710 3.34610i 0.255971 0.498808i
\(46\) 0.330921 0.295202i 0.0487916 0.0435251i
\(47\) −11.4963 −1.67690 −0.838451 0.544977i \(-0.816539\pi\)
−0.838451 + 0.544977i \(0.816539\pi\)
\(48\) −3.10681 + 6.19256i −0.448429 + 0.893818i
\(49\) 0 0
\(50\) −3.61805 + 3.22752i −0.511669 + 0.456440i
\(51\) 9.85486 + 2.38098i 1.37996 + 0.333404i
\(52\) −1.00488 + 8.77863i −0.139352 + 1.21738i
\(53\) 12.7903i 1.75688i 0.477854 + 0.878439i \(0.341415\pi\)
−0.477854 + 0.878439i \(0.658585\pi\)
\(54\) −0.126578 7.34738i −0.0172251 0.999852i
\(55\) 6.34133i 0.855064i
\(56\) 0 0
\(57\) 2.57889 + 0.623072i 0.341582 + 0.0825279i
\(58\) 5.21417 + 5.84508i 0.684655 + 0.767497i
\(59\) −7.96701 −1.03722 −0.518608 0.855012i \(-0.673550\pi\)
−0.518608 + 0.855012i \(0.673550\pi\)
\(60\) 1.49335 4.07795i 0.192791 0.526461i
\(61\) 0.302889 0.0387810 0.0193905 0.999812i \(-0.493827\pi\)
0.0193905 + 0.999812i \(0.493827\pi\)
\(62\) −4.61200 5.17005i −0.585725 0.656597i
\(63\) 0 0
\(64\) −2.68236 + 7.53691i −0.335295 + 0.942113i
\(65\) 5.53862i 0.686981i
\(66\) −5.84589 10.9244i −0.719580 1.34470i
\(67\) 10.5438i 1.28813i −0.764969 0.644067i \(-0.777246\pi\)
0.764969 0.644067i \(-0.222754\pi\)
\(68\) 11.6309 + 1.33137i 1.41045 + 0.161452i
\(69\) −0.127550 + 0.527930i −0.0153553 + 0.0635553i
\(70\) 0 0
\(71\) −4.53490 −0.538194 −0.269097 0.963113i \(-0.586725\pi\)
−0.269097 + 0.963113i \(0.586725\pi\)
\(72\) −1.18671 8.40189i −0.139855 0.990172i
\(73\) −1.41421 −0.165521 −0.0827606 0.996569i \(-0.526374\pi\)
−0.0827606 + 0.996569i \(0.526374\pi\)
\(74\) 5.63353 5.02546i 0.654885 0.584197i
\(75\) 1.39454 5.77200i 0.161028 0.666493i
\(76\) 3.04365 + 0.348402i 0.349130 + 0.0399645i
\(77\) 0 0
\(78\) −5.10590 9.54154i −0.578130 1.08037i
\(79\) 6.92820i 0.779484i −0.920924 0.389742i \(-0.872564\pi\)
0.920924 0.389742i \(-0.127436\pi\)
\(80\) 1.13319 4.88490i 0.126694 0.546149i
\(81\) 5.24797 + 7.31156i 0.583107 + 0.812395i
\(82\) −1.86343 2.08890i −0.205781 0.230681i
\(83\) 6.78340 0.744575 0.372287 0.928118i \(-0.378574\pi\)
0.372287 + 0.928118i \(0.378574\pi\)
\(84\) 0 0
\(85\) −7.33816 −0.795935
\(86\) 2.99949 + 3.36243i 0.323444 + 0.362580i
\(87\) −9.32487 2.25294i −0.999731 0.241540i
\(88\) −8.24797 11.6902i −0.879236 1.24618i
\(89\) 4.79755i 0.508540i −0.967133 0.254270i \(-0.918165\pi\)
0.967133 0.254270i \(-0.0818351\pi\)
\(90\) 1.33798 + 5.14777i 0.141035 + 0.542622i
\(91\) 0 0
\(92\) −0.0713222 + 0.623072i −0.00743586 + 0.0649597i
\(93\) 8.24797 + 1.99275i 0.855274 + 0.206639i
\(94\) 12.1324 10.8228i 1.25136 1.11629i
\(95\) −1.92030 −0.197019
\(96\) −2.55109 9.46002i −0.260369 0.965509i
\(97\) 13.6844 1.38944 0.694719 0.719281i \(-0.255529\pi\)
0.694719 + 0.719281i \(0.255529\pi\)
\(98\) 0 0
\(99\) 13.5009 + 6.92820i 1.35689 + 0.696311i
\(100\) 0.779785 6.81221i 0.0779785 0.681221i
\(101\) 4.07183i 0.405162i 0.979266 + 0.202581i \(0.0649329\pi\)
−0.979266 + 0.202581i \(0.935067\pi\)
\(102\) −12.6417 + 6.76485i −1.25171 + 0.669820i
\(103\) 13.0758i 1.28839i 0.764860 + 0.644197i \(0.222808\pi\)
−0.764860 + 0.644197i \(0.777192\pi\)
\(104\) −7.20391 10.2104i −0.706402 1.00121i
\(105\) 0 0
\(106\) −12.0410 13.4980i −1.16953 1.31104i
\(107\) −3.90776 −0.377777 −0.188889 0.981999i \(-0.560489\pi\)
−0.188889 + 0.981999i \(0.560489\pi\)
\(108\) 7.05056 + 7.63476i 0.678441 + 0.734655i
\(109\) −8.24797 −0.790012 −0.395006 0.918679i \(-0.629257\pi\)
−0.395006 + 0.918679i \(0.629257\pi\)
\(110\) 5.96986 + 6.69221i 0.569204 + 0.638077i
\(111\) −2.17139 + 8.98737i −0.206100 + 0.853044i
\(112\) 0 0
\(113\) 6.72485i 0.632621i −0.948656 0.316311i \(-0.897556\pi\)
0.948656 0.316311i \(-0.102444\pi\)
\(114\) −3.30816 + 1.77027i −0.309837 + 0.165801i
\(115\) 0.393109i 0.0366576i
\(116\) −11.0054 1.25977i −1.02182 0.116967i
\(117\) 11.7919 + 6.05121i 1.09016 + 0.559434i
\(118\) 8.40785 7.50032i 0.774005 0.690460i
\(119\) 0 0
\(120\) 2.26309 + 5.70947i 0.206591 + 0.521201i
\(121\) 14.5861 1.32601
\(122\) −0.319649 + 0.285146i −0.0289396 + 0.0258159i
\(123\) 3.33250 + 0.805149i 0.300482 + 0.0725978i
\(124\) 9.73439 + 1.11428i 0.874174 + 0.100066i
\(125\) 10.5662i 0.945073i
\(126\) 0 0
\(127\) 8.50404i 0.754611i −0.926089 0.377306i \(-0.876851\pi\)
0.926089 0.377306i \(-0.123149\pi\)
\(128\) −4.26463 10.4792i −0.376943 0.926236i
\(129\) −5.36420 1.29602i −0.472291 0.114108i
\(130\) 5.21417 + 5.84508i 0.457313 + 0.512648i
\(131\) −8.41047 −0.734826 −0.367413 0.930058i \(-0.619756\pi\)
−0.367413 + 0.930058i \(0.619756\pi\)
\(132\) 16.4538 + 6.02541i 1.43212 + 0.524445i
\(133\) 0 0
\(134\) 9.92618 + 11.1272i 0.857491 + 0.961247i
\(135\) −4.93507 4.25202i −0.424743 0.365955i
\(136\) −13.5278 + 9.54451i −1.16000 + 0.818435i
\(137\) 13.7567i 1.17531i −0.809111 0.587657i \(-0.800051\pi\)
0.809111 0.587657i \(-0.199949\pi\)
\(138\) −0.362396 0.677220i −0.0308492 0.0576488i
\(139\) 13.1652i 1.11666i −0.829620 0.558328i \(-0.811443\pi\)
0.829620 0.558328i \(-0.188557\pi\)
\(140\) 0 0
\(141\) −4.67632 + 19.3552i −0.393817 + 1.63000i
\(142\) 4.78583 4.26925i 0.401618 0.358268i
\(143\) 22.3473 1.86878
\(144\) 9.16209 + 7.74959i 0.763508 + 0.645799i
\(145\) 6.94352 0.576628
\(146\) 1.49247 1.33137i 0.123517 0.110185i
\(147\) 0 0
\(148\) −1.21417 + 10.6071i −0.0998046 + 0.871894i
\(149\) 11.2971i 0.925491i −0.886491 0.462745i \(-0.846864\pi\)
0.886491 0.462745i \(-0.153136\pi\)
\(150\) 3.96218 + 7.40423i 0.323510 + 0.604553i
\(151\) 11.0998i 0.903286i 0.892199 + 0.451643i \(0.149162\pi\)
−0.892199 + 0.451643i \(0.850838\pi\)
\(152\) −3.54005 + 2.49767i −0.287136 + 0.202588i
\(153\) 8.01729 15.6232i 0.648159 1.26306i
\(154\) 0 0
\(155\) −6.14163 −0.493307
\(156\) 14.3710 + 5.26269i 1.15060 + 0.421353i
\(157\) 14.7957 1.18083 0.590413 0.807101i \(-0.298965\pi\)
0.590413 + 0.807101i \(0.298965\pi\)
\(158\) 6.52236 + 7.31156i 0.518891 + 0.581676i
\(159\) 21.5338 + 5.20268i 1.70774 + 0.412599i
\(160\) 3.40287 + 6.22200i 0.269020 + 0.491892i
\(161\) 0 0
\(162\) −12.4216 2.77557i −0.975933 0.218070i
\(163\) 13.2660i 1.03907i 0.854448 + 0.519537i \(0.173895\pi\)
−0.854448 + 0.519537i \(0.826105\pi\)
\(164\) 3.93307 + 0.450214i 0.307122 + 0.0351558i
\(165\) −10.6763 2.57945i −0.831150 0.200810i
\(166\) −7.15874 + 6.38603i −0.555626 + 0.495652i
\(167\) 4.78624 0.370371 0.185185 0.982704i \(-0.440711\pi\)
0.185185 + 0.982704i \(0.440711\pi\)
\(168\) 0 0
\(169\) 6.51854 0.501426
\(170\) 7.74419 6.90830i 0.593953 0.529842i
\(171\) 2.09802 4.08839i 0.160440 0.312647i
\(172\) −6.33092 0.724692i −0.482728 0.0552573i
\(173\) 14.4119i 1.09572i −0.836570 0.547859i \(-0.815443\pi\)
0.836570 0.547859i \(-0.184557\pi\)
\(174\) 11.9618 6.40104i 0.906822 0.485261i
\(175\) 0 0
\(176\) 19.7097 + 4.57220i 1.48568 + 0.344643i
\(177\) −3.24073 + 13.4133i −0.243588 + 1.00821i
\(178\) 4.51652 + 5.06301i 0.338527 + 0.379489i
\(179\) −0.694300 −0.0518944 −0.0259472 0.999663i \(-0.508260\pi\)
−0.0259472 + 0.999663i \(0.508260\pi\)
\(180\) −6.25823 4.17300i −0.466461 0.311037i
\(181\) −6.31042 −0.469050 −0.234525 0.972110i \(-0.575353\pi\)
−0.234525 + 0.972110i \(0.575353\pi\)
\(182\) 0 0
\(183\) 0.123206 0.509947i 0.00910763 0.0376964i
\(184\) −0.511305 0.724692i −0.0376939 0.0534250i
\(185\) 6.69221i 0.492021i
\(186\) −10.5804 + 5.66180i −0.775790 + 0.415143i
\(187\) 29.6082i 2.16516i
\(188\) −2.61485 + 22.8434i −0.190707 + 1.66602i
\(189\) 0 0
\(190\) 2.02655 1.80781i 0.147022 0.131152i
\(191\) −3.90776 −0.282755 −0.141378 0.989956i \(-0.545153\pi\)
−0.141378 + 0.989956i \(0.545153\pi\)
\(192\) 11.5981 + 7.58181i 0.837021 + 0.547170i
\(193\) 1.57165 0.113130 0.0565649 0.998399i \(-0.481985\pi\)
0.0565649 + 0.998399i \(0.481985\pi\)
\(194\) −14.4416 + 12.8828i −1.03684 + 0.924929i
\(195\) −9.32487 2.25294i −0.667768 0.161336i
\(196\) 0 0
\(197\) 1.83285i 0.130585i −0.997866 0.0652924i \(-0.979202\pi\)
0.997866 0.0652924i \(-0.0207980\pi\)
\(198\) −20.7703 + 5.39851i −1.47608 + 0.383655i
\(199\) 3.67091i 0.260224i 0.991499 + 0.130112i \(0.0415337\pi\)
−0.991499 + 0.130112i \(0.958466\pi\)
\(200\) 5.59023 + 7.92326i 0.395289 + 0.560259i
\(201\) −17.7517 4.28889i −1.25211 0.302515i
\(202\) −3.83331 4.29713i −0.269710 0.302345i
\(203\) 0 0
\(204\) 6.97258 19.0403i 0.488178 1.33309i
\(205\) −2.48146 −0.173313
\(206\) −12.3098 13.7993i −0.857665 0.961441i
\(207\) 0.836944 + 0.429490i 0.0581716 + 0.0298516i
\(208\) 17.2148 + 3.99344i 1.19363 + 0.276895i
\(209\) 7.74807i 0.535945i
\(210\) 0 0
\(211\) 14.8763i 1.02413i 0.858948 + 0.512063i \(0.171119\pi\)
−0.858948 + 0.512063i \(0.828881\pi\)
\(212\) 25.4146 + 2.90917i 1.74548 + 0.199803i
\(213\) −1.84465 + 7.63500i −0.126394 + 0.523141i
\(214\) 4.12398 3.67885i 0.281910 0.251481i
\(215\) 3.99431 0.272410
\(216\) −14.6282 1.41966i −0.995324 0.0965958i
\(217\) 0 0
\(218\) 8.70434 7.76481i 0.589533 0.525899i
\(219\) −0.575257 + 2.38098i −0.0388723 + 0.160892i
\(220\) −12.6004 1.44235i −0.849517 0.0972431i
\(221\) 25.8603i 1.73955i
\(222\) −6.16936 11.5289i −0.414060 0.773766i
\(223\) 19.4171i 1.30026i 0.759821 + 0.650132i \(0.225287\pi\)
−0.759821 + 0.650132i \(0.774713\pi\)
\(224\) 0 0
\(225\) −9.15054 4.69573i −0.610036 0.313049i
\(226\) 6.33092 + 7.09696i 0.421127 + 0.472082i
\(227\) 10.6827 0.709038 0.354519 0.935049i \(-0.384645\pi\)
0.354519 + 0.935049i \(0.384645\pi\)
\(228\) 1.82463 4.98259i 0.120839 0.329980i
\(229\) −7.50151 −0.495714 −0.247857 0.968797i \(-0.579726\pi\)
−0.247857 + 0.968797i \(0.579726\pi\)
\(230\) 0.370081 + 0.414861i 0.0244024 + 0.0273551i
\(231\) 0 0
\(232\) 12.8003 9.03122i 0.840381 0.592928i
\(233\) 2.79927i 0.183386i 0.995787 + 0.0916930i \(0.0292278\pi\)
−0.995787 + 0.0916930i \(0.970772\pi\)
\(234\) −18.1411 + 4.71515i −1.18592 + 0.308239i
\(235\) 14.4123i 0.940158i
\(236\) −1.81211 + 15.8307i −0.117959 + 1.03049i
\(237\) −11.6644 2.81817i −0.757683 0.183060i
\(238\) 0 0
\(239\) −20.5467 −1.32905 −0.664527 0.747265i \(-0.731367\pi\)
−0.664527 + 0.747265i \(0.731367\pi\)
\(240\) −7.76333 3.89487i −0.501121 0.251412i
\(241\) −18.0546 −1.16300 −0.581499 0.813547i \(-0.697533\pi\)
−0.581499 + 0.813547i \(0.697533\pi\)
\(242\) −15.3932 + 13.7317i −0.989513 + 0.882706i
\(243\) 14.4445 5.86141i 0.926616 0.376010i
\(244\) 0.0688928 0.601848i 0.00441041 0.0385294i
\(245\) 0 0
\(246\) −4.27488 + 2.28759i −0.272556 + 0.145851i
\(247\) 6.76729i 0.430592i
\(248\) −11.3220 + 7.98822i −0.718949 + 0.507253i
\(249\) 2.75927 11.4206i 0.174862 0.723750i
\(250\) −9.94728 11.1509i −0.629121 0.705244i
\(251\) −10.4810 −0.661555 −0.330777 0.943709i \(-0.607311\pi\)
−0.330777 + 0.943709i \(0.607311\pi\)
\(252\) 0 0
\(253\) 1.58612 0.0997188
\(254\) 8.00588 + 8.97458i 0.502334 + 0.563115i
\(255\) −2.98493 + 12.3546i −0.186924 + 0.773674i
\(256\) 14.3659 + 7.04419i 0.897869 + 0.440262i
\(257\) 8.36072i 0.521528i −0.965403 0.260764i \(-0.916026\pi\)
0.965403 0.260764i \(-0.0839744\pi\)
\(258\) 6.88111 3.68224i 0.428399 0.229246i
\(259\) 0 0
\(260\) −11.0054 1.25977i −0.682524 0.0781277i
\(261\) −7.58612 + 14.7830i −0.469569 + 0.915046i
\(262\) 8.87584 7.91780i 0.548351 0.489163i
\(263\) 29.3700 1.81103 0.905517 0.424309i \(-0.139483\pi\)
0.905517 + 0.424309i \(0.139483\pi\)
\(264\) −23.0367 + 9.13116i −1.41781 + 0.561984i
\(265\) −16.0346 −0.984996
\(266\) 0 0
\(267\) −8.07720 1.95149i −0.494317 0.119429i
\(268\) −20.9508 2.39821i −1.27978 0.146494i
\(269\) 20.3977i 1.24367i −0.783149 0.621834i \(-0.786388\pi\)
0.783149 0.621834i \(-0.213612\pi\)
\(270\) 9.21108 0.158685i 0.560568 0.00965726i
\(271\) 20.5964i 1.25114i 0.780167 + 0.625572i \(0.215134\pi\)
−0.780167 + 0.625572i \(0.784866\pi\)
\(272\) 5.29093 22.8080i 0.320810 1.38294i
\(273\) 0 0
\(274\) 12.9508 + 14.5179i 0.782389 + 0.877057i
\(275\) −17.3415 −1.04573
\(276\) 1.02000 + 0.373525i 0.0613967 + 0.0224835i
\(277\) −3.94689 −0.237146 −0.118573 0.992945i \(-0.537832\pi\)
−0.118573 + 0.992945i \(0.537832\pi\)
\(278\) 12.3940 + 13.8936i 0.743341 + 0.833285i
\(279\) 6.71002 13.0758i 0.401719 0.782825i
\(280\) 0 0
\(281\) 1.18623i 0.0707648i −0.999374 0.0353824i \(-0.988735\pi\)
0.999374 0.0353824i \(-0.0112649\pi\)
\(282\) −13.2863 24.8286i −0.791190 1.47852i
\(283\) 27.6833i 1.64560i −0.568331 0.822800i \(-0.692410\pi\)
0.568331 0.822800i \(-0.307590\pi\)
\(284\) −1.03147 + 9.01095i −0.0612066 + 0.534702i
\(285\) −0.781117 + 3.23303i −0.0462694 + 0.191508i
\(286\) −23.5839 + 21.0383i −1.39454 + 1.24402i
\(287\) 0 0
\(288\) −16.9647 + 0.446999i −0.999653 + 0.0263396i
\(289\) −17.2624 −1.01544
\(290\) −7.32772 + 6.53677i −0.430298 + 0.383853i
\(291\) 5.56637 23.0391i 0.326306 1.35058i
\(292\) −0.321666 + 2.81008i −0.0188241 + 0.164447i
\(293\) 0.197795i 0.0115553i 0.999983 + 0.00577765i \(0.00183909\pi\)
−0.999983 + 0.00577765i \(0.998161\pi\)
\(294\) 0 0
\(295\) 9.98789i 0.581517i
\(296\) −8.70434 12.3370i −0.505930 0.717074i
\(297\) 17.1561 19.9121i 0.995500 1.15542i
\(298\) 10.6353 + 11.9221i 0.616086 + 0.690631i
\(299\) 1.38535 0.0801167
\(300\) −11.1519 4.08385i −0.643856 0.235781i
\(301\) 0 0
\(302\) −10.4496 11.7139i −0.601304 0.674061i
\(303\) 6.85537 + 1.65629i 0.393831 + 0.0951514i
\(304\) 1.38457 5.96856i 0.0794104 0.342320i
\(305\) 0.379718i 0.0217426i
\(306\) 6.24713 + 24.0353i 0.357125 + 1.37401i
\(307\) 16.6218i 0.948657i 0.880348 + 0.474328i \(0.157309\pi\)
−0.880348 + 0.474328i \(0.842691\pi\)
\(308\) 0 0
\(309\) 22.0145 + 5.31881i 1.25236 + 0.302576i
\(310\) 6.48146 5.78186i 0.368122 0.328388i
\(311\) −10.7561 −0.609923 −0.304961 0.952365i \(-0.598644\pi\)
−0.304961 + 0.952365i \(0.598644\pi\)
\(312\) −20.1206 + 7.97531i −1.13911 + 0.451513i
\(313\) −4.94400 −0.279451 −0.139726 0.990190i \(-0.544622\pi\)
−0.139726 + 0.990190i \(0.544622\pi\)
\(314\) −15.6144 + 13.9290i −0.881170 + 0.786058i
\(315\) 0 0
\(316\) −13.7665 1.57583i −0.774427 0.0886476i
\(317\) 21.9347i 1.23197i 0.787756 + 0.615987i \(0.211243\pi\)
−0.787756 + 0.615987i \(0.788757\pi\)
\(318\) −27.6232 + 14.7818i −1.54903 + 0.828924i
\(319\) 28.0159i 1.56859i
\(320\) −9.44868 3.36275i −0.528197 0.187983i
\(321\) −1.58955 + 6.57914i −0.0887202 + 0.367212i
\(322\) 0 0
\(323\) −8.96603 −0.498883
\(324\) 15.7219 8.76481i 0.873439 0.486934i
\(325\) −15.1464 −0.840170
\(326\) −12.4889 14.0000i −0.691696 0.775390i
\(327\) −3.35501 + 13.8864i −0.185533 + 0.767917i
\(328\) −4.57454 + 3.22756i −0.252587 + 0.178212i
\(329\) 0 0
\(330\) 13.6954 7.32873i 0.753908 0.403433i
\(331\) 3.74207i 0.205683i −0.994698 0.102841i \(-0.967207\pi\)
0.994698 0.102841i \(-0.0327934\pi\)
\(332\) 1.54290 13.4788i 0.0846775 0.739744i
\(333\) 14.2480 + 7.31156i 0.780784 + 0.400671i
\(334\) −5.05108 + 4.50587i −0.276383 + 0.246550i
\(335\) 13.2183 0.722194
\(336\) 0 0
\(337\) 22.9774 1.25166 0.625829 0.779960i \(-0.284761\pi\)
0.625829 + 0.779960i \(0.284761\pi\)
\(338\) −6.87923 + 6.13669i −0.374181 + 0.333792i
\(339\) −11.3220 2.73546i −0.614928 0.148570i
\(340\) −1.66908 + 14.5811i −0.0905185 + 0.790771i
\(341\) 24.7804i 1.34193i
\(342\) 1.63479 + 6.28973i 0.0883994 + 0.340110i
\(343\) 0 0
\(344\) 7.36347 5.19527i 0.397011 0.280110i
\(345\) −0.661842 0.159904i −0.0356324 0.00860896i
\(346\) 13.5677 + 15.2094i 0.729404 + 0.817661i
\(347\) 2.13010 0.114350 0.0571750 0.998364i \(-0.481791\pi\)
0.0571750 + 0.998364i \(0.481791\pi\)
\(348\) −6.59760 + 18.0163i −0.353668 + 0.965776i
\(349\) 3.55710 0.190407 0.0952036 0.995458i \(-0.469650\pi\)
0.0952036 + 0.995458i \(0.469650\pi\)
\(350\) 0 0
\(351\) 14.9845 17.3916i 0.799811 0.928293i
\(352\) −25.1047 + 13.7300i −1.33808 + 0.731809i
\(353\) 18.9270i 1.00738i 0.863884 + 0.503690i \(0.168025\pi\)
−0.863884 + 0.503690i \(0.831975\pi\)
\(354\) −9.20756 17.2064i −0.489376 0.914511i
\(355\) 5.68520i 0.301739i
\(356\) −9.53285 1.09121i −0.505240 0.0578342i
\(357\) 0 0
\(358\) 0.732717 0.653628i 0.0387253 0.0345453i
\(359\) 1.22600 0.0647058 0.0323529 0.999477i \(-0.489700\pi\)
0.0323529 + 0.999477i \(0.489700\pi\)
\(360\) 10.5331 1.48773i 0.555141 0.0784101i
\(361\) 16.6537 0.876511
\(362\) 6.65959 5.94076i 0.350020 0.312240i
\(363\) 5.93317 24.5573i 0.311411 1.28893i
\(364\) 0 0
\(365\) 1.77294i 0.0927997i
\(366\) 0.350052 + 0.654152i 0.0182975 + 0.0341931i
\(367\) 20.2033i 1.05460i 0.849678 + 0.527302i \(0.176796\pi\)
−0.849678 + 0.527302i \(0.823204\pi\)
\(368\) 1.22184 + 0.283438i 0.0636926 + 0.0147752i
\(369\) 2.71111 5.28312i 0.141135 0.275028i
\(370\) 6.30019 + 7.06250i 0.327531 + 0.367162i
\(371\) 0 0
\(372\) 5.83566 15.9357i 0.302565 0.826225i
\(373\) −8.18038 −0.423564 −0.211782 0.977317i \(-0.567927\pi\)
−0.211782 + 0.977317i \(0.567927\pi\)
\(374\) 27.8738 + 31.2464i 1.44132 + 1.61572i
\(375\) 17.7894 + 4.29801i 0.918642 + 0.221948i
\(376\) −18.7457 26.5690i −0.966735 1.37019i
\(377\) 24.4695i 1.26024i
\(378\) 0 0
\(379\) 31.2020i 1.60274i 0.598170 + 0.801369i \(0.295895\pi\)
−0.598170 + 0.801369i \(0.704105\pi\)
\(380\) −0.436776 + 3.81568i −0.0224061 + 0.195740i
\(381\) −14.3175 3.45917i −0.733506 0.177219i
\(382\) 4.12398 3.67885i 0.211001 0.188226i
\(383\) 24.4179 1.24770 0.623848 0.781546i \(-0.285569\pi\)
0.623848 + 0.781546i \(0.285569\pi\)
\(384\) −19.3775 + 2.91737i −0.988856 + 0.148877i
\(385\) 0 0
\(386\) −1.65861 + 1.47958i −0.0844212 + 0.0753089i
\(387\) −4.36397 + 8.50404i −0.221833 + 0.432285i
\(388\) 3.11254 27.1912i 0.158015 1.38042i
\(389\) 9.08449i 0.460602i 0.973119 + 0.230301i \(0.0739711\pi\)
−0.973119 + 0.230301i \(0.926029\pi\)
\(390\) 11.9618 6.40104i 0.605709 0.324129i
\(391\) 1.83546i 0.0928230i
\(392\) 0 0
\(393\) −3.42111 + 14.1599i −0.172572 + 0.714275i
\(394\) 1.72548 + 1.93426i 0.0869284 + 0.0974466i
\(395\) 8.68557 0.437019
\(396\) 16.8373 25.2508i 0.846107 1.26890i
\(397\) −23.2810 −1.16844 −0.584220 0.811596i \(-0.698599\pi\)
−0.584220 + 0.811596i \(0.698599\pi\)
\(398\) −3.45588 3.87403i −0.173227 0.194188i
\(399\) 0 0
\(400\) −13.3587 3.09890i −0.667934 0.154945i
\(401\) 7.59128i 0.379090i −0.981872 0.189545i \(-0.939299\pi\)
0.981872 0.189545i \(-0.0607014\pi\)
\(402\) 22.7716 12.1856i 1.13574 0.607763i
\(403\) 21.6436i 1.07814i
\(404\) 8.09082 + 0.926146i 0.402533 + 0.0460775i
\(405\) −9.16617 + 6.57914i −0.455470 + 0.326920i
\(406\) 0 0
\(407\) 27.0019 1.33843
\(408\) 10.5665 + 26.6580i 0.523122 + 1.31977i
\(409\) 6.39018 0.315974 0.157987 0.987441i \(-0.449500\pi\)
0.157987 + 0.987441i \(0.449500\pi\)
\(410\) 2.61876 2.33610i 0.129331 0.115372i
\(411\) −23.1609 5.59578i −1.14244 0.276020i
\(412\) 25.9819 + 2.97411i 1.28003 + 0.146524i
\(413\) 0 0
\(414\) −1.28759 + 0.334662i −0.0632814 + 0.0164477i
\(415\) 8.50404i 0.417447i
\(416\) −21.9268 + 11.9920i −1.07505 + 0.587955i
\(417\) −22.1650 5.35518i −1.08543 0.262244i
\(418\) 7.29419 + 8.17678i 0.356771 + 0.399940i
\(419\) 29.1307 1.42313 0.711565 0.702620i \(-0.247987\pi\)
0.711565 + 0.702620i \(0.247987\pi\)
\(420\) 0 0
\(421\) −32.0821 −1.56358 −0.781792 0.623539i \(-0.785694\pi\)
−0.781792 + 0.623539i \(0.785694\pi\)
\(422\) −14.0049 15.6994i −0.681746 0.764237i
\(423\) 30.6844 + 15.7462i 1.49193 + 0.765605i
\(424\) −29.5596 + 20.8557i −1.43554 + 1.01284i
\(425\) 20.0675i 0.973419i
\(426\) −5.24103 9.79405i −0.253929 0.474523i
\(427\) 0 0
\(428\) −0.888828 + 7.76481i −0.0429631 + 0.375326i
\(429\) 9.09019 37.6242i 0.438879 1.81651i
\(430\) −4.21532 + 3.76033i −0.203281 + 0.181339i
\(431\) −18.2456 −0.878861 −0.439431 0.898277i \(-0.644820\pi\)
−0.439431 + 0.898277i \(0.644820\pi\)
\(432\) 16.7741 12.2731i 0.807045 0.590489i
\(433\) −4.84842 −0.233000 −0.116500 0.993191i \(-0.537168\pi\)
−0.116500 + 0.993191i \(0.537168\pi\)
\(434\) 0 0
\(435\) 2.82440 11.6902i 0.135420 0.560501i
\(436\) −1.87602 + 16.3889i −0.0898449 + 0.784886i
\(437\) 0.480315i 0.0229766i
\(438\) −1.63442 3.05429i −0.0780956 0.145939i
\(439\) 20.2520i 0.966578i −0.875461 0.483289i \(-0.839442\pi\)
0.875461 0.483289i \(-0.160558\pi\)
\(440\) 14.6554 10.3401i 0.698670 0.492945i
\(441\) 0 0
\(442\) 24.3454 + 27.2912i 1.15799 + 1.29811i
\(443\) 22.4670 1.06744 0.533719 0.845662i \(-0.320794\pi\)
0.533719 + 0.845662i \(0.320794\pi\)
\(444\) 17.3642 + 6.35881i 0.824070 + 0.301776i
\(445\) 6.01447 0.285113
\(446\) −18.2797 20.4915i −0.865567 0.970300i
\(447\) −19.0198 4.59528i −0.899607 0.217349i
\(448\) 0 0
\(449\) 29.5660i 1.39531i 0.716435 + 0.697654i \(0.245773\pi\)
−0.716435 + 0.697654i \(0.754227\pi\)
\(450\) 14.0775 3.65895i 0.663621 0.172485i
\(451\) 10.0122i 0.471458i
\(452\) −13.3624 1.52958i −0.628517 0.0719455i
\(453\) 18.6877 + 4.51503i 0.878023 + 0.212135i
\(454\) −11.2738 + 10.0569i −0.529107 + 0.471996i
\(455\) 0 0
\(456\) 2.76513 + 6.97604i 0.129489 + 0.326683i
\(457\) 18.1949 0.851120 0.425560 0.904930i \(-0.360077\pi\)
0.425560 + 0.904930i \(0.360077\pi\)
\(458\) 7.91658 7.06208i 0.369918 0.329989i
\(459\) −23.0422 19.8530i −1.07552 0.926659i
\(460\) −0.781117 0.0894134i −0.0364198 0.00416892i
\(461\) 24.9782i 1.16335i −0.813422 0.581675i \(-0.802398\pi\)
0.813422 0.581675i \(-0.197602\pi\)
\(462\) 0 0
\(463\) 6.37226i 0.296144i 0.988977 + 0.148072i \(0.0473068\pi\)
−0.988977 + 0.148072i \(0.952693\pi\)
\(464\) −5.00639 + 21.5814i −0.232416 + 1.00189i
\(465\) −2.49822 + 10.3401i −0.115852 + 0.479511i
\(466\) −2.63529 2.95415i −0.122077 0.136849i
\(467\) −27.3569 −1.26593 −0.632964 0.774182i \(-0.718162\pi\)
−0.632964 + 0.774182i \(0.718162\pi\)
\(468\) 14.7060 22.0545i 0.679785 1.01947i
\(469\) 0 0
\(470\) 13.5681 + 15.2098i 0.625849 + 0.701576i
\(471\) 6.01842 24.9102i 0.277314 1.14780i
\(472\) −12.9909 18.4126i −0.597956 0.847507i
\(473\) 16.1163i 0.741029i
\(474\) 14.9629 8.00699i 0.687268 0.367773i
\(475\) 5.25141i 0.240951i
\(476\) 0 0
\(477\) 17.5185 34.1382i 0.802119 1.56308i
\(478\) 21.6836 19.3431i 0.991783 0.884731i
\(479\) −19.8334 −0.906209 −0.453105 0.891457i \(-0.649684\pi\)
−0.453105 + 0.891457i \(0.649684\pi\)
\(480\) 11.8596 3.19818i 0.541314 0.145976i
\(481\) 23.5839 1.07533
\(482\) 19.0536 16.9970i 0.867866 0.774190i
\(483\) 0 0
\(484\) 3.31764 28.9830i 0.150802 1.31741i
\(485\) 17.1555i 0.778990i
\(486\) −9.72569 + 19.7841i −0.441166 + 0.897425i
\(487\) 40.8524i 1.85120i 0.378506 + 0.925599i \(0.376438\pi\)
−0.378506 + 0.925599i \(0.623562\pi\)
\(488\) 0.493888 + 0.700007i 0.0223573 + 0.0316878i
\(489\) 22.3348 + 5.39619i 1.01001 + 0.244024i
\(490\) 0 0
\(491\) 20.3003 0.916137 0.458069 0.888917i \(-0.348541\pi\)
0.458069 + 0.888917i \(0.348541\pi\)
\(492\) 2.35783 6.43863i 0.106299 0.290276i
\(493\) 32.4198 1.46012
\(494\) 6.37087 + 7.14174i 0.286639 + 0.321322i
\(495\) −8.68557 + 16.9255i −0.390388 + 0.760745i
\(496\) 4.42821 19.0890i 0.198833 0.857123i
\(497\) 0 0
\(498\) 7.83964 + 14.6502i 0.351303 + 0.656489i
\(499\) 34.2272i 1.53222i 0.642709 + 0.766110i \(0.277810\pi\)
−0.642709 + 0.766110i \(0.722190\pi\)
\(500\) 20.9954 + 2.40331i 0.938942 + 0.107479i
\(501\) 1.94689 8.05816i 0.0869807 0.360012i
\(502\) 11.0609 9.86704i 0.493674 0.440387i
\(503\) −31.1279 −1.38792 −0.693962 0.720011i \(-0.744137\pi\)
−0.693962 + 0.720011i \(0.744137\pi\)
\(504\) 0 0
\(505\) −5.10467 −0.227155
\(506\) −1.67389 + 1.49321i −0.0744134 + 0.0663813i
\(507\) 2.65154 10.9747i 0.117759 0.487402i
\(508\) −16.8977 1.93426i −0.749715 0.0858189i
\(509\) 39.5032i 1.75095i 0.483266 + 0.875474i \(0.339450\pi\)
−0.483266 + 0.875474i \(0.660550\pi\)
\(510\) −8.48078 15.8483i −0.375535 0.701773i
\(511\) 0 0
\(512\) −21.7924 + 6.09041i −0.963095 + 0.269161i
\(513\) −6.02985 5.19527i −0.266224 0.229377i
\(514\) 7.87096 + 8.82334i 0.347173 + 0.389181i
\(515\) −16.3925 −0.722340
\(516\) −3.79532 + 10.3640i −0.167079 + 0.456250i
\(517\) 58.1512 2.55749
\(518\) 0 0
\(519\) −24.2641 5.86232i −1.06507 0.257327i
\(520\) 12.8003 9.03122i 0.561330 0.396045i
\(521\) 24.1110i 1.05632i 0.849144 + 0.528162i \(0.177119\pi\)
−0.849144 + 0.528162i \(0.822881\pi\)
\(522\) −5.91116 22.7427i −0.258725 0.995422i
\(523\) 9.26670i 0.405204i −0.979261 0.202602i \(-0.935060\pi\)
0.979261 0.202602i \(-0.0649398\pi\)
\(524\) −1.91298 + 16.7118i −0.0835689 + 0.730059i
\(525\) 0 0
\(526\) −30.9952 + 27.6496i −1.35145 + 1.20558i
\(527\) −28.6757 −1.24914
\(528\) 15.7151 31.3236i 0.683911 1.36319i
\(529\) −22.9017 −0.995725
\(530\) 16.9218 15.0953i 0.735036 0.655698i
\(531\) 21.2646 + 10.9122i 0.922805 + 0.473551i
\(532\) 0 0
\(533\) 8.74486i 0.378782i
\(534\) 10.3613 5.54458i 0.448378 0.239937i
\(535\) 4.89898i 0.211801i
\(536\) 24.3678 17.1926i 1.05253 0.742609i
\(537\) −0.282419 + 1.16893i −0.0121873 + 0.0504430i
\(538\) 19.2028 + 21.5263i 0.827892 + 0.928066i
\(539\) 0 0
\(540\) −9.57136 + 8.83897i −0.411886 + 0.380369i
\(541\) 25.9017 1.11360 0.556800 0.830647i \(-0.312029\pi\)
0.556800 + 0.830647i \(0.312029\pi\)
\(542\) −19.3899 21.7361i −0.832868 0.933644i
\(543\) −2.56688 + 10.6243i −0.110155 + 0.455932i
\(544\) 15.8882 + 29.0510i 0.681203 + 1.24555i
\(545\) 10.3401i 0.442921i
\(546\) 0 0
\(547\) 32.9387i 1.40836i −0.710022 0.704179i \(-0.751315\pi\)
0.710022 0.704179i \(-0.248685\pi\)
\(548\) −27.3349 3.12899i −1.16769 0.133664i
\(549\) −0.808435 0.414861i −0.0345032 0.0177058i
\(550\) 18.3011 16.3257i 0.780360 0.696130i
\(551\) 8.48384 0.361424
\(552\) −1.42808 + 0.566055i −0.0607832 + 0.0240929i
\(553\) 0 0
\(554\) 4.16528 3.71569i 0.176966 0.157864i
\(555\) −11.2671 2.72218i −0.478260 0.115550i
\(556\) −26.1595 2.99445i −1.10941 0.126993i
\(557\) 29.9057i 1.26714i 0.773684 + 0.633572i \(0.218412\pi\)
−0.773684 + 0.633572i \(0.781588\pi\)
\(558\) 5.22850 + 20.1162i 0.221340 + 0.851588i
\(559\) 14.0763i 0.595363i
\(560\) 0 0
\(561\) −49.8486 12.0437i −2.10461 0.508484i
\(562\) 1.11675 + 1.25187i 0.0471071 + 0.0528070i
\(563\) −31.1063 −1.31097 −0.655487 0.755206i \(-0.727537\pi\)
−0.655487 + 0.755206i \(0.727537\pi\)
\(564\) 37.3956 + 13.6943i 1.57464 + 0.576636i
\(565\) 8.43065 0.354680
\(566\) 26.0616 + 29.2151i 1.09545 + 1.22800i
\(567\) 0 0
\(568\) −7.39456 10.4806i −0.310269 0.439756i
\(569\) 17.6694i 0.740742i −0.928884 0.370371i \(-0.879231\pi\)
0.928884 0.370371i \(-0.120769\pi\)
\(570\) −2.21931 4.14729i −0.0929566 0.173711i
\(571\) 7.51861i 0.314644i 0.987547 + 0.157322i \(0.0502860\pi\)
−0.987547 + 0.157322i \(0.949714\pi\)
\(572\) 5.08295 44.4047i 0.212529 1.85665i
\(573\) −1.58955 + 6.57914i −0.0664045 + 0.274847i
\(574\) 0 0
\(575\) −1.07503 −0.0448318
\(576\) 17.4826 16.4426i 0.728440 0.685110i
\(577\) 4.26311 0.177476 0.0887378 0.996055i \(-0.471717\pi\)
0.0887378 + 0.996055i \(0.471717\pi\)
\(578\) 18.2176 16.2512i 0.757753 0.675962i
\(579\) 0.639297 2.64604i 0.0265683 0.109966i
\(580\) 1.57932 13.7969i 0.0655776 0.572887i
\(581\) 0 0
\(582\) 15.8152 + 29.5542i 0.655560 + 1.22506i
\(583\) 64.6967i 2.67946i
\(584\) −2.30600 3.26839i −0.0954230 0.135247i
\(585\) −7.58612 + 14.7830i −0.313648 + 0.611202i
\(586\) −0.186208 0.208739i −0.00769219 0.00862294i
\(587\) −43.2909 −1.78681 −0.893404 0.449253i \(-0.851690\pi\)
−0.893404 + 0.449253i \(0.851690\pi\)
\(588\) 0 0
\(589\) −7.50407 −0.309200
\(590\) 9.40281 + 10.5405i 0.387107 + 0.433947i
\(591\) −3.08580 0.745543i −0.126933 0.0306676i
\(592\) 20.8003 + 4.82519i 0.854887 + 0.198314i
\(593\) 5.76869i 0.236892i −0.992961 0.118446i \(-0.962209\pi\)
0.992961 0.118446i \(-0.0377912\pi\)
\(594\) 0.640266 + 37.1650i 0.0262704 + 1.52490i
\(595\) 0 0
\(596\) −22.4475 2.56954i −0.919486 0.105252i
\(597\) 6.18038 + 1.49321i 0.252946 + 0.0611131i
\(598\) −1.46200 + 1.30420i −0.0597857 + 0.0533325i
\(599\) −35.7970 −1.46262 −0.731312 0.682043i \(-0.761092\pi\)
−0.731312 + 0.682043i \(0.761092\pi\)
\(600\) 15.6136 6.18883i 0.637422 0.252658i
\(601\) −42.3193 −1.72624 −0.863121 0.504998i \(-0.831493\pi\)
−0.863121 + 0.504998i \(0.831493\pi\)
\(602\) 0 0
\(603\) −14.4416 + 28.1423i −0.588109 + 1.14604i
\(604\) 22.0555 + 2.52466i 0.897426 + 0.102727i
\(605\) 18.2860i 0.743430i
\(606\) −8.79396 + 4.70585i −0.357230 + 0.191162i
\(607\) 47.3686i 1.92263i 0.275446 + 0.961316i \(0.411174\pi\)
−0.275446 + 0.961316i \(0.588826\pi\)
\(608\) 4.15775 + 7.60227i 0.168619 + 0.308313i
\(609\) 0 0
\(610\) −0.357475 0.400729i −0.0144737 0.0162250i
\(611\) 50.7903 2.05475
\(612\) −29.2202 19.4841i −1.18116 0.787597i
\(613\) 2.78912 0.112651 0.0563257 0.998412i \(-0.482061\pi\)
0.0563257 + 0.998412i \(0.482061\pi\)
\(614\) −15.6481 17.5415i −0.631507 0.707919i
\(615\) −1.00938 + 4.17781i −0.0407021 + 0.168465i
\(616\) 0 0
\(617\) 21.6549i 0.871795i −0.899996 0.435898i \(-0.856431\pi\)
0.899996 0.435898i \(-0.143569\pi\)
\(618\) −28.2398 + 15.1118i −1.13597 + 0.607885i
\(619\) 5.64452i 0.226873i 0.993545 + 0.113436i \(0.0361858\pi\)
−0.993545 + 0.113436i \(0.963814\pi\)
\(620\) −1.39693 + 12.2036i −0.0561019 + 0.490107i
\(621\) 1.06354 1.23438i 0.0426782 0.0495341i
\(622\) 11.3513 10.1260i 0.455144 0.406017i
\(623\) 0 0
\(624\) 13.7258 27.3586i 0.549472 1.09522i
\(625\) 3.89533 0.155813
\(626\) 5.21756 4.65438i 0.208536 0.186027i
\(627\) −13.0447 3.15167i −0.520956 0.125865i
\(628\) 3.36531 29.3994i 0.134291 1.17316i
\(629\) 31.2464i 1.24588i
\(630\) 0 0
\(631\) 6.37226i 0.253676i 0.991923 + 0.126838i \(0.0404828\pi\)
−0.991923 + 0.126838i \(0.959517\pi\)
\(632\) 16.0118 11.2971i 0.636914 0.449373i
\(633\) 25.0459 + 6.05121i 0.995484 + 0.240514i
\(634\) −20.6498 23.1484i −0.820107 0.919339i
\(635\) 10.6611 0.423074
\(636\) 15.2358 41.6048i 0.604137 1.64974i
\(637\) 0 0
\(638\) −26.3747 29.5660i −1.04419 1.17053i
\(639\) 12.1040 + 6.21135i 0.478827 + 0.245717i
\(640\) 13.1373 5.34637i 0.519296 0.211334i
\(641\) 16.4960i 0.651554i 0.945447 + 0.325777i \(0.105626\pi\)
−0.945447 + 0.325777i \(0.894374\pi\)
\(642\) −4.51623 8.43961i −0.178242 0.333085i
\(643\) 2.36672i 0.0933343i −0.998910 0.0466671i \(-0.985140\pi\)
0.998910 0.0466671i \(-0.0148600\pi\)
\(644\) 0 0
\(645\) 1.62476 6.72485i 0.0639748 0.264791i
\(646\) 9.46214 8.44081i 0.372283 0.332099i
\(647\) −11.3495 −0.446196 −0.223098 0.974796i \(-0.571617\pi\)
−0.223098 + 0.974796i \(0.571617\pi\)
\(648\) −8.34045 + 24.0507i −0.327644 + 0.944801i
\(649\) 40.2993 1.58189
\(650\) 15.9845 14.2591i 0.626962 0.559289i
\(651\) 0 0
\(652\) 26.3599 + 3.01738i 1.03233 + 0.118170i
\(653\) 44.5689i 1.74411i −0.489404 0.872057i \(-0.662786\pi\)
0.489404 0.872057i \(-0.337214\pi\)
\(654\) −9.53225 17.8132i −0.372741 0.696551i
\(655\) 10.5438i 0.411981i
\(656\) 1.78917 7.71271i 0.0698554 0.301131i
\(657\) 3.77465 + 1.93702i 0.147263 + 0.0755702i
\(658\) 0 0
\(659\) −0.590533 −0.0230039 −0.0115019 0.999934i \(-0.503661\pi\)
−0.0115019 + 0.999934i \(0.503661\pi\)
\(660\) −7.55378 + 20.6274i −0.294031 + 0.802920i
\(661\) −43.1004 −1.67641 −0.838206 0.545353i \(-0.816396\pi\)
−0.838206 + 0.545353i \(0.816396\pi\)
\(662\) 3.52287 + 3.94913i 0.136920 + 0.153487i
\(663\) −43.5386 10.5191i −1.69090 0.408529i
\(664\) 11.0609 + 15.6771i 0.429248 + 0.608390i
\(665\) 0 0
\(666\) −21.9196 + 5.69722i −0.849367 + 0.220763i
\(667\) 1.73675i 0.0672471i
\(668\) 1.08864 9.51038i 0.0421208 0.367968i
\(669\) 32.6908 + 7.89826i 1.26390 + 0.305364i
\(670\) −13.9497 + 12.4440i −0.538924 + 0.480754i
\(671\) −1.53210 −0.0591459
\(672\) 0 0
\(673\) 15.2706 0.588637 0.294319 0.955707i \(-0.404907\pi\)
0.294319 + 0.955707i \(0.404907\pi\)
\(674\) −24.2488 + 21.6314i −0.934028 + 0.833211i
\(675\) −11.6279 + 13.4959i −0.447559 + 0.519456i
\(676\) 1.48266 12.9525i 0.0570252 0.498173i
\(677\) 41.3887i 1.59070i 0.606151 + 0.795349i \(0.292713\pi\)
−0.606151 + 0.795349i \(0.707287\pi\)
\(678\) 14.5237 7.77198i 0.557780 0.298481i
\(679\) 0 0
\(680\) −11.9655 16.9592i −0.458857 0.650356i
\(681\) 4.34540 17.9855i 0.166516 0.689207i
\(682\) 23.3288 + 26.1515i 0.893305 + 1.00139i
\(683\) 4.53490 0.173523 0.0867615 0.996229i \(-0.472348\pi\)
0.0867615 + 0.996229i \(0.472348\pi\)
\(684\) −7.64654 5.09873i −0.292373 0.194955i
\(685\) 17.2461 0.658941
\(686\) 0 0
\(687\) −3.05138 + 12.6296i −0.116417 + 0.481850i
\(688\) −2.87996 + 12.4149i −0.109798 + 0.473312i
\(689\) 56.5071i 2.15275i
\(690\) 0.849000 0.454320i 0.0323209 0.0172957i
\(691\) 27.2902i 1.03817i −0.854723 0.519084i \(-0.826273\pi\)
0.854723 0.519084i \(-0.173727\pi\)
\(692\) −28.6369 3.27802i −1.08861 0.124612i
\(693\) 0 0
\(694\) −2.24797 + 2.00532i −0.0853316 + 0.0761211i
\(695\) 16.5046 0.626055
\(696\) −9.99828 25.2243i −0.378984 0.956125i
\(697\) −11.5861 −0.438856
\(698\) −3.75392 + 3.34873i −0.142088 + 0.126751i
\(699\) 4.71287 + 1.13865i 0.178257 + 0.0430678i
\(700\) 0 0
\(701\) 9.20431i 0.347642i 0.984777 + 0.173821i \(0.0556114\pi\)
−0.984777 + 0.173821i \(0.944389\pi\)
\(702\) 0.559219 + 32.4606i 0.0211063 + 1.22515i
\(703\) 8.17678i 0.308393i
\(704\) 13.5681 38.1237i 0.511367 1.43684i
\(705\) −24.2648 5.86249i −0.913864 0.220794i
\(706\) −17.8182 19.9742i −0.670598 0.751740i
\(707\) 0 0
\(708\) 25.9155 + 9.49030i 0.973965 + 0.356667i
\(709\) −29.6006 −1.11167 −0.555837 0.831291i \(-0.687602\pi\)
−0.555837 + 0.831291i \(0.687602\pi\)
\(710\) 5.35217 + 5.99977i 0.200863 + 0.225167i
\(711\) −9.48941 + 18.4919i −0.355880 + 0.693501i
\(712\) 11.0876 7.82284i 0.415526 0.293173i
\(713\) 1.53617i 0.0575302i
\(714\) 0 0
\(715\) 28.0159i 1.04773i
\(716\) −0.157920 + 1.37959i −0.00590174 + 0.0515577i
\(717\) −8.35773 + 34.5925i −0.312125 + 1.29188i
\(718\) −1.29384 + 1.15418i −0.0482856 + 0.0430737i
\(719\) −2.71571 −0.101279 −0.0506395 0.998717i \(-0.516126\pi\)
−0.0506395 + 0.998717i \(0.516126\pi\)
\(720\) −9.71531 + 11.4861i −0.362068 + 0.428062i
\(721\) 0 0
\(722\) −17.5752 + 15.6782i −0.654081 + 0.583480i
\(723\) −7.34403 + 30.3968i −0.273127 + 1.13047i
\(724\) −1.43532 + 12.5390i −0.0533432 + 0.466007i
\(725\) 18.9883i 0.705209i
\(726\) 16.8573 + 31.5018i 0.625634 + 1.16914i
\(727\) 18.9752i 0.703753i −0.936046 0.351876i \(-0.885544\pi\)
0.936046 0.351876i \(-0.114456\pi\)
\(728\) 0 0
\(729\) −3.99276 26.7031i −0.147880 0.989005i
\(730\) 1.66908 + 1.87104i 0.0617754 + 0.0692501i
\(731\) 18.6497 0.689786
\(732\) −0.985254 0.360801i −0.0364160 0.0133356i
\(733\) −15.3059 −0.565336 −0.282668 0.959218i \(-0.591220\pi\)
−0.282668 + 0.959218i \(0.591220\pi\)
\(734\) −19.0198 21.3212i −0.702035 0.786980i
\(735\) 0 0
\(736\) −1.55628 + 0.851142i −0.0573652 + 0.0313735i
\(737\) 53.3335i 1.96457i
\(738\) 2.11252 + 8.12774i 0.0777629 + 0.299186i
\(739\) 26.8695i 0.988411i −0.869345 0.494205i \(-0.835459\pi\)
0.869345 0.494205i \(-0.164541\pi\)
\(740\) −13.2976 1.52216i −0.488829 0.0559556i
\(741\) −11.3935 2.75272i −0.418550 0.101124i
\(742\) 0 0
\(743\) 23.4748 0.861208 0.430604 0.902541i \(-0.358301\pi\)
0.430604 + 0.902541i \(0.358301\pi\)
\(744\) 8.84361 + 22.3112i 0.324222 + 0.817969i
\(745\) 14.1626 0.518878
\(746\) 8.63302 7.70119i 0.316077 0.281960i
\(747\) −18.1054 9.29107i −0.662443 0.339942i
\(748\) −58.8321 6.73444i −2.15112 0.246235i
\(749\) 0 0
\(750\) −22.8200 + 12.2115i −0.833268 + 0.445901i
\(751\) 35.9640i 1.31234i 0.754612 + 0.656172i \(0.227825\pi\)
−0.754612 + 0.656172i \(0.772175\pi\)
\(752\) 44.7956 + 10.3915i 1.63353 + 0.378940i
\(753\) −4.26334 + 17.6459i −0.155365 + 0.643053i
\(754\) −23.0361 25.8235i −0.838926 0.940435i
\(755\) −13.9153 −0.506429
\(756\) 0 0
\(757\) 23.4202 0.851222 0.425611 0.904906i \(-0.360059\pi\)
0.425611 + 0.904906i \(0.360059\pi\)
\(758\) −29.3742 32.9285i −1.06692 1.19602i
\(759\) 0.645185 2.67041i 0.0234187 0.0969299i
\(760\) −3.13122 4.43800i −0.113581 0.160983i
\(761\) 40.3136i 1.46137i 0.682716 + 0.730684i \(0.260799\pi\)
−0.682716 + 0.730684i \(0.739201\pi\)
\(762\) 18.3662 9.82820i 0.665338 0.356038i
\(763\) 0 0
\(764\) −0.888828 + 7.76481i −0.0321567 + 0.280921i
\(765\) 19.5861 + 10.0509i 0.708138 + 0.363391i
\(766\) −25.7690 + 22.9875i −0.931071 + 0.830572i
\(767\) 35.1981 1.27093
\(768\) 17.7033 21.3212i 0.638811 0.769363i
\(769\) −20.6279 −0.743861 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(770\) 0 0
\(771\) −14.0762 3.40088i −0.506942 0.122480i
\(772\) 0.357475 3.12291i 0.0128658 0.112396i
\(773\) 23.3006i 0.838064i 0.907972 + 0.419032i \(0.137630\pi\)
−0.907972 + 0.419032i \(0.862370\pi\)
\(774\) −3.40044 13.0829i −0.122226 0.470256i
\(775\) 16.7954i 0.603309i
\(776\) 22.3136 + 31.6260i 0.801012 + 1.13531i
\(777\) 0 0
\(778\) −8.55233 9.58716i −0.306616 0.343716i
\(779\) −3.03194 −0.108630
\(780\) −6.59760 + 18.0163i −0.236232 + 0.645087i
\(781\) 22.9388 0.820813
\(782\) 1.72794 + 1.93702i 0.0617909 + 0.0692676i
\(783\) 21.8030 + 18.7853i 0.779177 + 0.671333i
\(784\) 0 0
\(785\) 18.5487i 0.662032i
\(786\) −9.72006 18.1642i −0.346703 0.647894i
\(787\) 3.18839i 0.113654i 0.998384 + 0.0568269i \(0.0180983\pi\)
−0.998384 + 0.0568269i \(0.981902\pi\)
\(788\) −3.64191 0.416884i −0.129738 0.0148509i
\(789\) 11.9468 49.4477i 0.425318 1.76038i
\(790\) −9.16617 + 8.17678i −0.326118 + 0.290917i
\(791\) 0 0
\(792\) 6.00271 + 42.4990i 0.213297 + 1.51014i
\(793\) −1.33816 −0.0475194
\(794\) 24.5692 21.9172i 0.871927 0.777813i
\(795\) −6.52236 + 26.9960i −0.231324 + 0.957448i
\(796\) 7.29419 + 0.834957i 0.258536 + 0.0295943i
\(797\) 55.9985i 1.98357i 0.127925 + 0.991784i \(0.459168\pi\)
−0.127925 + 0.991784i \(0.540832\pi\)
\(798\) 0 0
\(799\) 67.2924i 2.38063i
\(800\) 17.0152 9.30576i 0.601579 0.329008i
\(801\) −6.57110 + 12.8050i −0.232178 + 0.452444i
\(802\) 7.14659 + 8.01132i 0.252355 + 0.282890i
\(803\) 7.15348 0.252441
\(804\) −12.5598 + 34.2975i −0.442950 + 1.20958i
\(805\) 0 0
\(806\) 20.3757 + 22.8412i 0.717705 + 0.804546i
\(807\) −34.3417 8.29713i −1.20889 0.292073i
\(808\) −9.41040 + 6.63948i −0.331057 + 0.233576i
\(809\) 21.3480i 0.750555i 0.926913 + 0.375277i \(0.122453\pi\)
−0.926913 + 0.375277i \(0.877547\pi\)
\(810\) 3.47961 15.5724i 0.122261 0.547158i
\(811\) 52.7856i 1.85355i −0.375614 0.926776i \(-0.622568\pi\)
0.375614 0.926776i \(-0.377432\pi\)
\(812\) 0 0
\(813\) 34.6763 + 8.37797i 1.21615 + 0.293828i
\(814\) −28.4959 + 25.4201i −0.998782 + 0.890975i
\(815\) −16.6310 −0.582558
\(816\) −36.2476 18.1854i −1.26892 0.636618i
\(817\) 4.88039 0.170743
\(818\) −6.74377 + 6.01585i −0.235790 + 0.210339i
\(819\) 0 0
\(820\) −0.564413 + 4.93072i −0.0197101 + 0.172188i
\(821\) 5.81834i 0.203062i 0.994832 + 0.101531i \(0.0323740\pi\)
−0.994832 + 0.101531i \(0.967626\pi\)
\(822\) 29.7104 15.8987i 1.03627 0.554532i
\(823\) 10.1488i 0.353765i −0.984232 0.176882i \(-0.943399\pi\)
0.984232 0.176882i \(-0.0566012\pi\)
\(824\) −30.2194 + 21.3212i −1.05274 + 0.742759i
\(825\) −7.05398 + 29.1964i −0.245588 + 1.01649i
\(826\) 0 0
\(827\) 53.0241 1.84383 0.921915 0.387393i \(-0.126624\pi\)
0.921915 + 0.387393i \(0.126624\pi\)
\(828\) 1.04377 1.56534i 0.0362736 0.0543993i
\(829\) 32.7023 1.13580 0.567898 0.823099i \(-0.307757\pi\)
0.567898 + 0.823099i \(0.307757\pi\)
\(830\) −8.00588 8.97458i −0.277888 0.311512i
\(831\) −1.60547 + 6.64502i −0.0556932 + 0.230513i
\(832\) 11.8506 33.2979i 0.410845 1.15440i
\(833\) 0 0
\(834\) 28.4329 15.2151i 0.984552 0.526857i
\(835\) 6.00030i 0.207649i
\(836\) −15.3956 1.76231i −0.532468 0.0609509i
\(837\) −19.2850 16.6159i −0.666589 0.574328i
\(838\) −30.7426 + 27.4243i −1.06199 + 0.947357i
\(839\) 37.5962 1.29796 0.648982 0.760803i \(-0.275195\pi\)
0.648982 + 0.760803i \(0.275195\pi\)
\(840\) 0 0
\(841\) −1.67632 −0.0578040
\(842\) 33.8572 30.2027i 1.16680 1.04085i
\(843\) −1.99715 0.482522i −0.0687857 0.0166190i
\(844\) 29.5596 + 3.38364i 1.01748 + 0.116470i
\(845\) 8.17200i 0.281125i
\(846\) −47.2061 + 12.2695i −1.62298 + 0.421835i
\(847\) 0 0
\(848\) 11.5612 49.8377i 0.397013 1.71143i
\(849\) −46.6078 11.2607i −1.59958 0.386466i
\(850\) −18.8920 21.1779i −0.647991 0.726397i
\(851\) 1.67389 0.0573802
\(852\) 14.7514 + 5.40197i 0.505373 + 0.185068i
\(853\) 5.68417 0.194622 0.0973112 0.995254i \(-0.468976\pi\)
0.0973112 + 0.995254i \(0.468976\pi\)
\(854\) 0 0
\(855\) 5.12543 + 2.63019i 0.175286 + 0.0899507i
\(856\) −6.37195 9.03122i −0.217789 0.308681i
\(857\) 31.6896i 1.08250i −0.840862 0.541249i \(-0.817952\pi\)
0.840862 0.541249i \(-0.182048\pi\)
\(858\) 25.8270 + 48.2637i 0.881721 + 1.64770i
\(859\) 6.03763i 0.206001i 0.994681 + 0.103001i \(0.0328444\pi\)
−0.994681 + 0.103001i \(0.967156\pi\)
\(860\) 0.908514 7.93679i 0.0309801 0.270642i
\(861\) 0 0
\(862\) 19.2552 17.1768i 0.655835 0.585045i
\(863\) 40.1137 1.36549 0.682744 0.730658i \(-0.260787\pi\)
0.682744 + 0.730658i \(0.260787\pi\)
\(864\) −6.14812 + 28.7437i −0.209163 + 0.977881i
\(865\) 18.0676 0.614316
\(866\) 5.11669 4.56440i 0.173872 0.155105i
\(867\) −7.02181 + 29.0632i −0.238473 + 0.987038i
\(868\) 0 0
\(869\) 35.0447i 1.18881i
\(870\) 8.02469 + 14.9960i 0.272062 + 0.508411i
\(871\) 46.5824i 1.57838i
\(872\) −13.4490 19.0619i −0.455442 0.645516i
\(873\) −36.5247 18.7432i −1.23617 0.634361i
\(874\) 0.452179 + 0.506892i 0.0152952 + 0.0171459i
\(875\) 0 0
\(876\) 4.60023 + 1.68461i 0.155427 + 0.0569177i
\(877\) −43.8872 −1.48197 −0.740983 0.671524i \(-0.765640\pi\)
−0.740983 + 0.671524i \(0.765640\pi\)
\(878\) 19.0657 + 21.3726i 0.643436 + 0.721292i
\(879\) 0.333009 + 0.0804567i 0.0112321 + 0.00271374i
\(880\) −5.73196 + 24.7092i −0.193224 + 0.832946i
\(881\) 1.27293i 0.0428860i 0.999770 + 0.0214430i \(0.00682603\pi\)
−0.999770 + 0.0214430i \(0.993174\pi\)
\(882\) 0 0
\(883\) 19.5118i 0.656625i −0.944569 0.328312i \(-0.893520\pi\)
0.944569 0.328312i \(-0.106480\pi\)
\(884\) −51.3850 5.88197i −1.72826 0.197832i
\(885\) −16.8157 4.06276i −0.565253 0.136568i
\(886\) −23.7101 + 21.1509i −0.796557 + 0.710578i
\(887\) 26.8919 0.902940 0.451470 0.892286i \(-0.350900\pi\)
0.451470 + 0.892286i \(0.350900\pi\)
\(888\) −24.3114 + 9.63641i −0.815836 + 0.323377i
\(889\) 0 0
\(890\) −6.34727 + 5.66215i −0.212761 + 0.189796i
\(891\) −26.5456 36.9838i −0.889313 1.23901i
\(892\) 38.5822 + 4.41646i 1.29183 + 0.147874i
\(893\) 17.6095i 0.589281i
\(894\) 24.3983 13.0561i 0.816002 0.436662i
\(895\) 0.870412i 0.0290947i
\(896\) 0 0
\(897\) 0.563515 2.33238i 0.0188152 0.0778760i
\(898\) −27.8341 31.2020i −0.928836 1.04122i
\(899\) 27.1336 0.904956
\(900\) −11.4118 + 17.1143i −0.380395 + 0.570476i
\(901\) −74.8667 −2.49417
\(902\) 9.42574 + 10.5662i 0.313843 + 0.351817i
\(903\) 0 0
\(904\) 15.5418 10.9655i 0.516913 0.364706i
\(905\) 7.91109i 0.262973i
\(906\) −23.9722 + 12.8281i −0.796424 + 0.426185i
\(907\) 18.6528i 0.619357i −0.950841 0.309679i \(-0.899779\pi\)
0.950841 0.309679i \(-0.100221\pi\)
\(908\) 2.42981 21.2268i 0.0806360 0.704437i
\(909\) 5.57709 10.8680i 0.184980 0.360470i
\(910\) 0 0
\(911\) −8.12909 −0.269329 −0.134664 0.990891i \(-0.542996\pi\)
−0.134664 + 0.990891i \(0.542996\pi\)
\(912\) −9.48552 4.75889i −0.314097 0.157583i
\(913\) −34.3123 −1.13557
\(914\) −19.2016 + 17.1290i −0.635133 + 0.566578i
\(915\) 0.639297 + 0.154457i 0.0211345 + 0.00510621i
\(916\) −1.70623 + 14.9057i −0.0563755 + 0.492497i
\(917\) 0 0
\(918\) 43.0072 0.740913i 1.41945 0.0244538i
\(919\) 17.5640i 0.579383i −0.957120 0.289692i \(-0.906447\pi\)
0.957120 0.289692i \(-0.0935528\pi\)
\(920\) 0.908514 0.640999i 0.0299528 0.0211331i
\(921\) 27.9846 + 6.76123i 0.922125 + 0.222790i
\(922\) 23.5150 + 26.3603i 0.774425 + 0.868129i
\(923\) 20.0351 0.659463
\(924\) 0 0
\(925\) −18.3011 −0.601736
\(926\) −5.99898 6.72485i −0.197139 0.220992i
\(927\) 17.9096 34.9002i 0.588228 1.14627i
\(928\) −15.0338 27.4887i −0.493508 0.902360i
\(929\) 38.9854i 1.27907i −0.768762 0.639535i \(-0.779127\pi\)
0.768762 0.639535i \(-0.220873\pi\)
\(930\) −7.09794 13.2641i −0.232751 0.434948i
\(931\) 0 0
\(932\) 5.56221 + 0.636699i 0.182196 + 0.0208558i
\(933\) −4.37524 + 18.1091i −0.143239 + 0.592864i
\(934\) 28.8706 25.7544i 0.944676 0.842709i
\(935\) 37.1184 1.21390
\(936\) 5.24287 + 37.1194i 0.171368 + 1.21328i
\(937\) −23.7865 −0.777072 −0.388536 0.921434i \(-0.627019\pi\)
−0.388536 + 0.921434i \(0.627019\pi\)
\(938\) 0 0
\(939\) −2.01106 + 8.32376i −0.0656285 + 0.271636i
\(940\) −28.6377 3.27812i −0.934058 0.106920i
\(941\) 30.6145i 0.998005i −0.866601 0.499002i \(-0.833700\pi\)
0.866601 0.499002i \(-0.166300\pi\)
\(942\) 17.0995 + 31.9544i 0.557133 + 1.04113i
\(943\) 0.620675i 0.0202120i
\(944\) 31.0437 + 7.20143i 1.01039 + 0.234387i
\(945\) 0 0
\(946\) −15.1722 17.0081i −0.493292 0.552980i
\(947\) −15.4601 −0.502386 −0.251193 0.967937i \(-0.580823\pi\)
−0.251193 + 0.967937i \(0.580823\pi\)
\(948\) −8.25287 + 22.5364i −0.268041 + 0.731949i
\(949\) 6.24797 0.202818
\(950\) −4.94379 5.54199i −0.160398 0.179806i
\(951\) 36.9294 + 8.92233i 1.19752 + 0.289326i
\(952\) 0 0
\(953\) 13.4497i 0.435679i 0.975985 + 0.217839i \(0.0699009\pi\)
−0.975985 + 0.217839i \(0.930099\pi\)
\(954\) 13.6506 + 52.5195i 0.441954 + 1.70038i
\(955\) 4.89898i 0.158527i
\(956\) −4.67338 + 40.8267i −0.151148 + 1.32043i
\(957\) 47.1677 + 11.3960i 1.52472 + 0.368379i
\(958\) 20.9308 18.6715i 0.676243 0.603250i
\(959\) 0 0
\(960\) −9.50498 + 14.5400i −0.306772 + 0.469277i
\(961\) 7.00000 0.225806
\(962\) −24.8888 + 22.2024i −0.802448 + 0.715833i
\(963\) 10.4301 + 5.35237i 0.336106 + 0.172478i
\(964\) −4.10655 + 35.8749i −0.132263 + 1.15545i
\(965\) 1.97031i 0.0634264i
\(966\) 0 0
\(967\) 41.1554i 1.32347i 0.749738 + 0.661734i \(0.230179\pi\)
−0.749738 + 0.661734i \(0.769821\pi\)
\(968\) 23.7840 + 33.7100i 0.764446 + 1.08348i
\(969\) −3.64710 + 15.0953i −0.117162 + 0.484931i
\(970\) −16.1505 18.1047i −0.518562 0.581308i
\(971\) 28.8890 0.927093 0.463546 0.886073i \(-0.346577\pi\)
0.463546 + 0.886073i \(0.346577\pi\)
\(972\) −8.36134 30.0348i −0.268190 0.963366i
\(973\) 0 0
\(974\) −38.4593 43.1128i −1.23232 1.38142i
\(975\) −6.16107 + 25.5006i −0.197312 + 0.816672i
\(976\) −1.18022 0.273783i −0.0377778 0.00876359i
\(977\) 46.9884i 1.50329i −0.659567 0.751646i \(-0.729260\pi\)
0.659567 0.751646i \(-0.270740\pi\)
\(978\) −28.6507 + 15.3316i −0.916148 + 0.490252i
\(979\) 24.2673i 0.775587i
\(980\) 0 0
\(981\) 22.0145 + 11.2971i 0.702868 + 0.360687i
\(982\) −21.4235 + 19.1111i −0.683652 + 0.609859i
\(983\) 27.3353 0.871861 0.435931 0.899980i \(-0.356419\pi\)
0.435931 + 0.899980i \(0.356419\pi\)
\(984\) 3.57316 + 9.01461i 0.113908 + 0.287375i
\(985\) 2.29776 0.0732126
\(986\) −34.2137 + 30.5207i −1.08959 + 0.971978i
\(987\) 0 0
\(988\) −13.4468 1.53923i −0.427799 0.0489696i
\(989\) 0.999076i 0.0317688i
\(990\) −6.76786 26.0388i −0.215097 0.827568i
\(991\) 20.7846i 0.660245i −0.943938 0.330122i \(-0.892910\pi\)
0.943938 0.330122i \(-0.107090\pi\)
\(992\) 13.2976 + 24.3141i 0.422199 + 0.771973i
\(993\) −6.30019 1.52216i −0.199930 0.0483042i
\(994\) 0 0
\(995\) −4.60206 −0.145895
\(996\) −22.0654 8.08037i −0.699168 0.256036i
\(997\) 12.0424 0.381386 0.190693 0.981650i \(-0.438926\pi\)
0.190693 + 0.981650i \(0.438926\pi\)
\(998\) −32.2222 36.1211i −1.01998 1.14339i
\(999\) 18.1054 21.0139i 0.572830 0.664850i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.f.491.8 yes 24
3.2 odd 2 inner 588.2.e.f.491.17 yes 24
4.3 odd 2 inner 588.2.e.f.491.19 yes 24
7.2 even 3 588.2.n.h.263.10 24
7.3 odd 6 588.2.n.d.275.6 24
7.4 even 3 588.2.n.d.275.5 24
7.5 odd 6 588.2.n.h.263.9 24
7.6 odd 2 inner 588.2.e.f.491.7 yes 24
12.11 even 2 inner 588.2.e.f.491.6 yes 24
21.2 odd 6 588.2.n.h.263.4 24
21.5 even 6 588.2.n.h.263.3 24
21.11 odd 6 588.2.n.d.275.7 24
21.17 even 6 588.2.n.d.275.8 24
21.20 even 2 inner 588.2.e.f.491.18 yes 24
28.3 even 6 588.2.n.h.275.3 24
28.11 odd 6 588.2.n.h.275.4 24
28.19 even 6 588.2.n.d.263.8 24
28.23 odd 6 588.2.n.d.263.7 24
28.27 even 2 inner 588.2.e.f.491.20 yes 24
84.11 even 6 588.2.n.h.275.10 24
84.23 even 6 588.2.n.d.263.5 24
84.47 odd 6 588.2.n.d.263.6 24
84.59 odd 6 588.2.n.h.275.9 24
84.83 odd 2 inner 588.2.e.f.491.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.f.491.5 24 84.83 odd 2 inner
588.2.e.f.491.6 yes 24 12.11 even 2 inner
588.2.e.f.491.7 yes 24 7.6 odd 2 inner
588.2.e.f.491.8 yes 24 1.1 even 1 trivial
588.2.e.f.491.17 yes 24 3.2 odd 2 inner
588.2.e.f.491.18 yes 24 21.20 even 2 inner
588.2.e.f.491.19 yes 24 4.3 odd 2 inner
588.2.e.f.491.20 yes 24 28.27 even 2 inner
588.2.n.d.263.5 24 84.23 even 6
588.2.n.d.263.6 24 84.47 odd 6
588.2.n.d.263.7 24 28.23 odd 6
588.2.n.d.263.8 24 28.19 even 6
588.2.n.d.275.5 24 7.4 even 3
588.2.n.d.275.6 24 7.3 odd 6
588.2.n.d.275.7 24 21.11 odd 6
588.2.n.d.275.8 24 21.17 even 6
588.2.n.h.263.3 24 21.5 even 6
588.2.n.h.263.4 24 21.2 odd 6
588.2.n.h.263.9 24 7.5 odd 6
588.2.n.h.263.10 24 7.2 even 3
588.2.n.h.275.3 24 28.3 even 6
588.2.n.h.275.4 24 28.11 odd 6
588.2.n.h.275.9 24 84.59 odd 6
588.2.n.h.275.10 24 84.11 even 6