Properties

Label 588.2.n.d.263.5
Level $588$
Weight $2$
Character 588.263
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.5
Character \(\chi\) \(=\) 588.263
Dual form 588.2.n.d.275.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.287629 + 1.38466i) q^{2} +(-1.66143 - 0.489533i) q^{3} +(-1.83454 - 0.796533i) q^{4} +(-1.08570 + 0.626827i) q^{5} +(1.15571 - 2.15971i) q^{6} +(1.63059 - 2.31110i) q^{8} +(2.52072 + 1.62665i) q^{9} +(-0.555662 - 1.68361i) q^{10} +(2.52914 - 4.38059i) q^{11} +(2.65803 + 2.22145i) q^{12} -4.41798 q^{13} +(2.11066 - 0.509947i) q^{15} +(2.73107 + 2.92254i) q^{16} +(5.06920 + 2.92671i) q^{17} +(-2.97738 + 3.02245i) q^{18} +(-1.32654 + 0.765881i) q^{19} +(2.49104 - 0.285146i) q^{20} +(5.33816 + 4.76197i) q^{22} +(0.156785 + 0.271560i) q^{23} +(-3.84047 + 3.04151i) q^{24} +(-1.71417 + 2.96904i) q^{25} +(1.27074 - 6.11738i) q^{26} +(-3.39170 - 3.93654i) q^{27} +5.53862i q^{29} +(0.0990132 + 3.06922i) q^{30} +(4.24264 + 2.44949i) q^{31} +(-4.83225 + 2.94098i) q^{32} +(-6.34643 + 6.03996i) q^{33} +(-5.51053 + 6.17729i) q^{34} +(-3.32867 - 4.99199i) q^{36} +(2.66908 + 4.62298i) q^{37} +(-0.678928 - 2.05710i) q^{38} +(7.34017 + 2.16275i) q^{39} +(-0.321666 + 3.53125i) q^{40} -1.97938i q^{41} +3.18613i q^{43} +(-8.12909 + 6.02183i) q^{44} +(-3.75636 - 0.185997i) q^{45} +(-0.421113 + 0.138985i) q^{46} +(5.74813 + 9.95606i) q^{47} +(-3.10681 - 6.19256i) q^{48} +(-3.61805 - 3.22752i) q^{50} +(-6.98942 - 7.34407i) q^{51} +(8.10496 + 3.51907i) q^{52} +(11.0767 + 6.39513i) q^{53} +(6.42631 - 3.56407i) q^{54} +6.34133i q^{55} +(2.57889 - 0.623072i) q^{57} +(-7.66908 - 1.59307i) q^{58} +(3.98351 - 6.89964i) q^{59} +(-4.27829 - 0.745696i) q^{60} +(-0.151445 - 0.262310i) q^{61} +(-4.61200 + 5.17005i) q^{62} +(-2.68236 - 7.53691i) q^{64} +(4.79659 - 2.76931i) q^{65} +(-6.53785 - 10.5249i) q^{66} +(-9.13122 - 5.27191i) q^{67} +(-6.96844 - 9.40695i) q^{68} +(-0.127550 - 0.527930i) q^{69} -4.53490 q^{71} +(7.86960 - 3.17322i) q^{72} +(0.707107 - 1.22474i) q^{73} +(-7.16894 + 2.36605i) q^{74} +(4.30143 - 4.09371i) q^{75} +(3.04365 - 0.348402i) q^{76} +(-5.10590 + 9.54154i) q^{78} +(6.00000 - 3.46410i) q^{79} +(-4.79704 - 1.46108i) q^{80} +(3.70801 + 8.20065i) q^{81} +(2.74076 + 0.569326i) q^{82} +6.78340 q^{83} -7.33816 q^{85} +(-4.41169 - 0.916423i) q^{86} +(2.71134 - 9.20204i) q^{87} +(-6.00000 - 12.9880i) q^{88} +(4.15480 - 2.39878i) q^{89} +(1.33798 - 5.14777i) q^{90} +(-0.0713222 - 0.623072i) q^{92} +(-5.84975 - 6.14657i) q^{93} +(-15.4390 + 5.09553i) q^{94} +(0.960150 - 1.66303i) q^{95} +(9.46816 - 2.52070i) q^{96} +13.6844 q^{97} +(13.5009 - 6.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 36 q^{16} - 12 q^{18} + 12 q^{25} + 12 q^{30} + 12 q^{36} + 96 q^{39} - 96 q^{46} - 12 q^{51} - 24 q^{57} - 120 q^{58} - 84 q^{60} - 48 q^{64} + 48 q^{67} - 72 q^{72} - 24 q^{78} + 144 q^{79}+ \cdots - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.287629 + 1.38466i −0.203384 + 0.979099i
\(3\) −1.66143 0.489533i −0.959228 0.282632i
\(4\) −1.83454 0.796533i −0.917270 0.398266i
\(5\) −1.08570 + 0.626827i −0.485538 + 0.280326i −0.722722 0.691139i \(-0.757109\pi\)
0.237183 + 0.971465i \(0.423776\pi\)
\(6\) 1.15571 2.15971i 0.471817 0.881697i
\(7\) 0 0
\(8\) 1.63059 2.31110i 0.576500 0.817097i
\(9\) 2.52072 + 1.62665i 0.840238 + 0.542217i
\(10\) −0.555662 1.68361i −0.175716 0.532404i
\(11\) 2.52914 4.38059i 0.762563 1.32080i −0.178962 0.983856i \(-0.557274\pi\)
0.941525 0.336942i \(-0.109393\pi\)
\(12\) 2.65803 + 2.22145i 0.767308 + 0.641278i
\(13\) −4.41798 −1.22533 −0.612664 0.790344i \(-0.709902\pi\)
−0.612664 + 0.790344i \(0.709902\pi\)
\(14\) 0 0
\(15\) 2.11066 0.509947i 0.544971 0.131668i
\(16\) 2.73107 + 2.92254i 0.682768 + 0.730636i
\(17\) 5.06920 + 2.92671i 1.22946 + 0.709831i 0.966918 0.255089i \(-0.0821048\pi\)
0.262545 + 0.964920i \(0.415438\pi\)
\(18\) −2.97738 + 3.02245i −0.701775 + 0.712398i
\(19\) −1.32654 + 0.765881i −0.304330 + 0.175705i −0.644386 0.764700i \(-0.722887\pi\)
0.340056 + 0.940405i \(0.389554\pi\)
\(20\) 2.49104 0.285146i 0.557014 0.0637607i
\(21\) 0 0
\(22\) 5.33816 + 4.76197i 1.13810 + 1.01525i
\(23\) 0.156785 + 0.271560i 0.0326920 + 0.0566242i 0.881908 0.471421i \(-0.156259\pi\)
−0.849217 + 0.528045i \(0.822925\pi\)
\(24\) −3.84047 + 3.04151i −0.783933 + 0.620845i
\(25\) −1.71417 + 2.96904i −0.342835 + 0.593808i
\(26\) 1.27074 6.11738i 0.249212 1.19972i
\(27\) −3.39170 3.93654i −0.652733 0.757588i
\(28\) 0 0
\(29\) 5.53862i 1.02850i 0.857642 + 0.514248i \(0.171929\pi\)
−0.857642 + 0.514248i \(0.828071\pi\)
\(30\) 0.0990132 + 3.06922i 0.0180773 + 0.560360i
\(31\) 4.24264 + 2.44949i 0.762001 + 0.439941i 0.830014 0.557743i \(-0.188333\pi\)
−0.0680129 + 0.997684i \(0.521666\pi\)
\(32\) −4.83225 + 2.94098i −0.854229 + 0.519897i
\(33\) −6.34643 + 6.03996i −1.10477 + 1.05142i
\(34\) −5.51053 + 6.17729i −0.945048 + 1.05940i
\(35\) 0 0
\(36\) −3.32867 4.99199i −0.554778 0.831998i
\(37\) 2.66908 + 4.62298i 0.438794 + 0.760013i 0.997597 0.0692872i \(-0.0220725\pi\)
−0.558803 + 0.829301i \(0.688739\pi\)
\(38\) −0.678928 2.05710i −0.110137 0.333705i
\(39\) 7.34017 + 2.16275i 1.17537 + 0.346317i
\(40\) −0.321666 + 3.53125i −0.0508598 + 0.558340i
\(41\) 1.97938i 0.309127i −0.987983 0.154564i \(-0.950603\pi\)
0.987983 0.154564i \(-0.0493971\pi\)
\(42\) 0 0
\(43\) 3.18613i 0.485881i 0.970041 + 0.242940i \(0.0781119\pi\)
−0.970041 + 0.242940i \(0.921888\pi\)
\(44\) −8.12909 + 6.02183i −1.22551 + 0.907825i
\(45\) −3.75636 0.185997i −0.559965 0.0277268i
\(46\) −0.421113 + 0.138985i −0.0620897 + 0.0204922i
\(47\) 5.74813 + 9.95606i 0.838451 + 1.45224i 0.891189 + 0.453632i \(0.149872\pi\)
−0.0527378 + 0.998608i \(0.516795\pi\)
\(48\) −3.10681 6.19256i −0.448429 0.893818i
\(49\) 0 0
\(50\) −3.61805 3.22752i −0.511669 0.456440i
\(51\) −6.98942 7.34407i −0.978715 1.02838i
\(52\) 8.10496 + 3.51907i 1.12396 + 0.488007i
\(53\) 11.0767 + 6.39513i 1.52150 + 0.878439i 0.999678 + 0.0253856i \(0.00808135\pi\)
0.521823 + 0.853054i \(0.325252\pi\)
\(54\) 6.42631 3.56407i 0.874509 0.485008i
\(55\) 6.34133i 0.855064i
\(56\) 0 0
\(57\) 2.57889 0.623072i 0.341582 0.0825279i
\(58\) −7.66908 1.59307i −1.00700 0.209180i
\(59\) 3.98351 6.89964i 0.518608 0.898256i −0.481158 0.876634i \(-0.659784\pi\)
0.999766 0.0216222i \(-0.00688310\pi\)
\(60\) −4.27829 0.745696i −0.552324 0.0962689i
\(61\) −0.151445 0.262310i −0.0193905 0.0335853i 0.856167 0.516699i \(-0.172839\pi\)
−0.875558 + 0.483113i \(0.839506\pi\)
\(62\) −4.61200 + 5.17005i −0.585725 + 0.656597i
\(63\) 0 0
\(64\) −2.68236 7.53691i −0.335295 0.942113i
\(65\) 4.79659 2.76931i 0.594943 0.343491i
\(66\) −6.53785 10.5249i −0.804754 1.29552i
\(67\) −9.13122 5.27191i −1.11556 0.644067i −0.175293 0.984516i \(-0.556087\pi\)
−0.940263 + 0.340450i \(0.889421\pi\)
\(68\) −6.96844 9.40695i −0.845047 1.14076i
\(69\) −0.127550 0.527930i −0.0153553 0.0635553i
\(70\) 0 0
\(71\) −4.53490 −0.538194 −0.269097 0.963113i \(-0.586725\pi\)
−0.269097 + 0.963113i \(0.586725\pi\)
\(72\) 7.86960 3.17322i 0.927442 0.373968i
\(73\) 0.707107 1.22474i 0.0827606 0.143346i −0.821674 0.569958i \(-0.806960\pi\)
0.904435 + 0.426612i \(0.140293\pi\)
\(74\) −7.16894 + 2.36605i −0.833372 + 0.275048i
\(75\) 4.30143 4.09371i 0.496686 0.472701i
\(76\) 3.04365 0.348402i 0.349130 0.0399645i
\(77\) 0 0
\(78\) −5.10590 + 9.54154i −0.578130 + 1.08037i
\(79\) 6.00000 3.46410i 0.675053 0.389742i −0.122936 0.992415i \(-0.539231\pi\)
0.797988 + 0.602673i \(0.205898\pi\)
\(80\) −4.79704 1.46108i −0.536326 0.163354i
\(81\) 3.70801 + 8.20065i 0.412001 + 0.911183i
\(82\) 2.74076 + 0.569326i 0.302666 + 0.0628716i
\(83\) 6.78340 0.744575 0.372287 0.928118i \(-0.378574\pi\)
0.372287 + 0.928118i \(0.378574\pi\)
\(84\) 0 0
\(85\) −7.33816 −0.795935
\(86\) −4.41169 0.916423i −0.475725 0.0988204i
\(87\) 2.71134 9.20204i 0.290686 0.986563i
\(88\) −6.00000 12.9880i −0.639602 1.38453i
\(89\) 4.15480 2.39878i 0.440408 0.254270i −0.263363 0.964697i \(-0.584832\pi\)
0.703771 + 0.710427i \(0.251498\pi\)
\(90\) 1.33798 5.14777i 0.141035 0.542622i
\(91\) 0 0
\(92\) −0.0713222 0.623072i −0.00743586 0.0649597i
\(93\) −5.84975 6.14657i −0.606591 0.637370i
\(94\) −15.4390 + 5.09553i −1.59241 + 0.525564i
\(95\) 0.960150 1.66303i 0.0985093 0.170623i
\(96\) 9.46816 2.52070i 0.966340 0.257268i
\(97\) 13.6844 1.38944 0.694719 0.719281i \(-0.255529\pi\)
0.694719 + 0.719281i \(0.255529\pi\)
\(98\) 0 0
\(99\) 13.5009 6.92820i 1.35689 0.696311i
\(100\) 5.50966 4.08142i 0.550966 0.408142i
\(101\) 3.52631 + 2.03591i 0.350881 + 0.202581i 0.665073 0.746778i \(-0.268400\pi\)
−0.314192 + 0.949359i \(0.601734\pi\)
\(102\) 12.1794 7.56557i 1.20594 0.749103i
\(103\) −11.3239 + 6.53788i −1.11578 + 0.644197i −0.940321 0.340290i \(-0.889475\pi\)
−0.175461 + 0.984486i \(0.556141\pi\)
\(104\) −7.20391 + 10.2104i −0.706402 + 1.00121i
\(105\) 0 0
\(106\) −12.0410 + 13.4980i −1.16953 + 1.31104i
\(107\) 1.95388 + 3.38422i 0.188889 + 0.327165i 0.944880 0.327417i \(-0.106178\pi\)
−0.755991 + 0.654582i \(0.772845\pi\)
\(108\) 3.08662 + 9.92335i 0.297010 + 0.954874i
\(109\) 4.12398 7.14295i 0.395006 0.684170i −0.598096 0.801424i \(-0.704076\pi\)
0.993102 + 0.117254i \(0.0374092\pi\)
\(110\) −8.78055 1.82395i −0.837193 0.173907i
\(111\) −2.17139 8.98737i −0.206100 0.853044i
\(112\) 0 0
\(113\) 6.72485i 0.632621i 0.948656 + 0.316311i \(0.102444\pi\)
−0.948656 + 0.316311i \(0.897556\pi\)
\(114\) 0.120978 + 3.75008i 0.0113306 + 0.351227i
\(115\) −0.340442 0.196554i −0.0317464 0.0183288i
\(116\) 4.41169 10.1608i 0.409615 0.943408i
\(117\) −11.1365 7.18651i −1.02957 0.664393i
\(118\) 8.40785 + 7.50032i 0.774005 + 0.690460i
\(119\) 0 0
\(120\) 2.26309 5.70947i 0.206591 0.521201i
\(121\) −7.29306 12.6320i −0.663006 1.14836i
\(122\) 0.406768 0.134251i 0.0368271 0.0121545i
\(123\) −0.968971 + 3.28861i −0.0873692 + 0.296524i
\(124\) −5.83219 7.87309i −0.523746 0.707024i
\(125\) 10.5662i 0.945073i
\(126\) 0 0
\(127\) 8.50404i 0.754611i 0.926089 + 0.377306i \(0.123149\pi\)
−0.926089 + 0.377306i \(0.876851\pi\)
\(128\) 11.2075 1.54631i 0.990616 0.136676i
\(129\) 1.55972 5.29354i 0.137325 0.466070i
\(130\) 2.45490 + 7.43815i 0.215309 + 0.652369i
\(131\) 4.20524 + 7.28368i 0.367413 + 0.636378i 0.989160 0.146840i \(-0.0469102\pi\)
−0.621747 + 0.783218i \(0.713577\pi\)
\(132\) 16.4538 6.02541i 1.43212 0.524445i
\(133\) 0 0
\(134\) 9.92618 11.1272i 0.857491 0.961247i
\(135\) 6.14989 + 2.14788i 0.529298 + 0.184860i
\(136\) 15.0297 6.94318i 1.28879 0.595372i
\(137\) −11.9136 6.87834i −1.01785 0.587657i −0.104370 0.994539i \(-0.533283\pi\)
−0.913481 + 0.406882i \(0.866616\pi\)
\(138\) 0.767688 0.0247657i 0.0653499 0.00210819i
\(139\) 13.1652i 1.11666i 0.829620 + 0.558328i \(0.188557\pi\)
−0.829620 + 0.558328i \(0.811443\pi\)
\(140\) 0 0
\(141\) −4.67632 19.3552i −0.393817 1.63000i
\(142\) 1.30437 6.27927i 0.109460 0.526945i
\(143\) −11.1737 + 19.3534i −0.934389 + 1.61841i
\(144\) 2.13029 + 11.8094i 0.177524 + 0.984116i
\(145\) −3.47176 6.01326i −0.288314 0.499374i
\(146\) 1.49247 + 1.33137i 0.123517 + 0.110185i
\(147\) 0 0
\(148\) −1.21417 10.6071i −0.0998046 0.871894i
\(149\) 9.78354 5.64853i 0.801499 0.462745i −0.0424963 0.999097i \(-0.513531\pi\)
0.843995 + 0.536351i \(0.180198\pi\)
\(150\) 4.43116 + 7.13346i 0.361803 + 0.582445i
\(151\) 9.61268 + 5.54988i 0.782269 + 0.451643i 0.837234 0.546845i \(-0.184171\pi\)
−0.0549650 + 0.998488i \(0.517505\pi\)
\(152\) −0.393023 + 4.31461i −0.0318784 + 0.349961i
\(153\) 8.01729 + 15.6232i 0.648159 + 1.26306i
\(154\) 0 0
\(155\) −6.14163 −0.493307
\(156\) −11.7431 9.81433i −0.940204 0.785776i
\(157\) −7.39785 + 12.8135i −0.590413 + 1.02262i 0.403764 + 0.914863i \(0.367702\pi\)
−0.994177 + 0.107762i \(0.965632\pi\)
\(158\) 3.07081 + 9.30431i 0.244301 + 0.740211i
\(159\) −15.2726 16.0475i −1.21119 1.27265i
\(160\) 3.40287 6.22200i 0.269020 0.491892i
\(161\) 0 0
\(162\) −12.4216 + 2.77557i −0.975933 + 0.218070i
\(163\) −11.4887 + 6.63300i −0.899864 + 0.519537i −0.877156 0.480205i \(-0.840562\pi\)
−0.0227080 + 0.999742i \(0.507229\pi\)
\(164\) −1.57664 + 3.63125i −0.123115 + 0.283553i
\(165\) 3.10429 10.5357i 0.241668 0.820202i
\(166\) −1.95110 + 9.39267i −0.151435 + 0.729012i
\(167\) 4.78624 0.370371 0.185185 0.982704i \(-0.440711\pi\)
0.185185 + 0.982704i \(0.440711\pi\)
\(168\) 0 0
\(169\) 6.51854 0.501426
\(170\) 2.11066 10.1608i 0.161881 0.779299i
\(171\) −4.58966 0.227258i −0.350980 0.0173789i
\(172\) 2.53786 5.84508i 0.193510 0.445684i
\(173\) 12.4811 7.20596i 0.948920 0.547859i 0.0561749 0.998421i \(-0.482110\pi\)
0.892745 + 0.450562i \(0.148776\pi\)
\(174\) 11.9618 + 6.40104i 0.906822 + 0.485261i
\(175\) 0 0
\(176\) 19.7097 4.57220i 1.48568 0.344643i
\(177\) −9.99593 + 9.51322i −0.751340 + 0.715058i
\(178\) 2.12644 + 6.44293i 0.159383 + 0.482918i
\(179\) 0.347150 0.601281i 0.0259472 0.0449419i −0.852760 0.522303i \(-0.825073\pi\)
0.878707 + 0.477361i \(0.158406\pi\)
\(180\) 6.74304 + 3.33328i 0.502597 + 0.248448i
\(181\) −6.31042 −0.469050 −0.234525 0.972110i \(-0.575353\pi\)
−0.234525 + 0.972110i \(0.575353\pi\)
\(182\) 0 0
\(183\) 0.123206 + 0.509947i 0.00910763 + 0.0376964i
\(184\) 0.883254 + 0.0804567i 0.0651144 + 0.00593134i
\(185\) −5.79562 3.34610i −0.426103 0.246010i
\(186\) 10.1934 6.33196i 0.747419 0.464282i
\(187\) 25.6414 14.8041i 1.87509 1.08258i
\(188\) −2.61485 22.8434i −0.190707 1.66602i
\(189\) 0 0
\(190\) 2.02655 + 1.80781i 0.147022 + 0.131152i
\(191\) 1.95388 + 3.38422i 0.141378 + 0.244873i 0.928016 0.372541i \(-0.121513\pi\)
−0.786638 + 0.617415i \(0.788180\pi\)
\(192\) 0.766990 + 13.8352i 0.0553527 + 0.998467i
\(193\) −0.785825 + 1.36109i −0.0565649 + 0.0979733i −0.892921 0.450213i \(-0.851348\pi\)
0.836356 + 0.548186i \(0.184681\pi\)
\(194\) −3.93602 + 18.9481i −0.282590 + 1.36040i
\(195\) −9.32487 + 2.25294i −0.667768 + 0.161336i
\(196\) 0 0
\(197\) 1.83285i 0.130585i 0.997866 + 0.0652924i \(0.0207980\pi\)
−0.997866 + 0.0652924i \(0.979202\pi\)
\(198\) 5.70992 + 20.6869i 0.405786 + 1.47015i
\(199\) 3.17910 + 1.83546i 0.225361 + 0.130112i 0.608430 0.793608i \(-0.291800\pi\)
−0.383069 + 0.923720i \(0.625133\pi\)
\(200\) 4.06663 + 8.80291i 0.287554 + 0.622460i
\(201\) 12.5901 + 13.2290i 0.888039 + 0.933099i
\(202\) −3.83331 + 4.29713i −0.269710 + 0.302345i
\(203\) 0 0
\(204\) 6.97258 + 19.0403i 0.488178 + 1.33309i
\(205\) 1.24073 + 2.14901i 0.0866563 + 0.150093i
\(206\) −5.79562 17.5602i −0.403800 1.22348i
\(207\) −0.0465225 + 0.939560i −0.00323354 + 0.0653039i
\(208\) −12.0658 12.9117i −0.836614 0.895267i
\(209\) 7.74807i 0.535945i
\(210\) 0 0
\(211\) 14.8763i 1.02413i −0.858948 0.512063i \(-0.828881\pi\)
0.858948 0.512063i \(-0.171119\pi\)
\(212\) −15.2267 20.5551i −1.04577 1.41173i
\(213\) 7.53443 + 2.21998i 0.516251 + 0.152111i
\(214\) −5.24797 + 1.73205i −0.358744 + 0.118401i
\(215\) −1.99715 3.45917i −0.136205 0.235914i
\(216\) −14.6282 + 1.41966i −0.995324 + 0.0965958i
\(217\) 0 0
\(218\) 8.70434 + 7.76481i 0.589533 + 0.525899i
\(219\) −1.77436 + 1.68868i −0.119900 + 0.114110i
\(220\) 5.05108 11.6334i 0.340543 0.784325i
\(221\) −22.3956 12.9301i −1.50649 0.869775i
\(222\) 13.0690 0.421606i 0.877131 0.0282963i
\(223\) 19.4171i 1.30026i −0.759821 0.650132i \(-0.774713\pi\)
0.759821 0.650132i \(-0.225287\pi\)
\(224\) 0 0
\(225\) −9.15054 + 4.69573i −0.610036 + 0.313049i
\(226\) −9.31160 1.93426i −0.619399 0.128665i
\(227\) −5.34136 + 9.25151i −0.354519 + 0.614045i −0.987035 0.160502i \(-0.948689\pi\)
0.632517 + 0.774547i \(0.282022\pi\)
\(228\) −5.22737 0.911118i −0.346191 0.0603403i
\(229\) 3.75075 + 6.49650i 0.247857 + 0.429301i 0.962931 0.269748i \(-0.0869404\pi\)
−0.715074 + 0.699049i \(0.753607\pi\)
\(230\) 0.370081 0.414861i 0.0244024 0.0273551i
\(231\) 0 0
\(232\) 12.8003 + 9.03122i 0.840381 + 0.592928i
\(233\) −2.42423 + 1.39963i −0.158817 + 0.0916930i −0.577302 0.816531i \(-0.695895\pi\)
0.418485 + 0.908224i \(0.362561\pi\)
\(234\) 13.1540 13.3531i 0.859904 0.872921i
\(235\) −12.4815 7.20617i −0.814201 0.470079i
\(236\) −12.8037 + 9.48466i −0.833449 + 0.617399i
\(237\) −11.6644 + 2.81817i −0.757683 + 0.183060i
\(238\) 0 0
\(239\) −20.5467 −1.32905 −0.664527 0.747265i \(-0.731367\pi\)
−0.664527 + 0.747265i \(0.731367\pi\)
\(240\) 7.25472 + 4.77580i 0.468290 + 0.308277i
\(241\) 9.02728 15.6357i 0.581499 1.00718i −0.413804 0.910366i \(-0.635800\pi\)
0.995302 0.0968188i \(-0.0308667\pi\)
\(242\) 19.5886 6.46506i 1.25920 0.415590i
\(243\) −2.14612 15.4400i −0.137674 0.990478i
\(244\) 0.0688928 + 0.601848i 0.00441041 + 0.0385294i
\(245\) 0 0
\(246\) −4.27488 2.28759i −0.272556 0.145851i
\(247\) 5.86064 3.38364i 0.372904 0.215296i
\(248\) 12.5790 5.81105i 0.798768 0.369002i
\(249\) −11.2702 3.32070i −0.714217 0.210441i
\(250\) 14.6306 + 3.03915i 0.925320 + 0.192213i
\(251\) −10.4810 −0.661555 −0.330777 0.943709i \(-0.607311\pi\)
−0.330777 + 0.943709i \(0.607311\pi\)
\(252\) 0 0
\(253\) 1.58612 0.0997188
\(254\) −11.7752 2.44600i −0.738839 0.153476i
\(255\) 12.1919 + 3.59227i 0.763483 + 0.224957i
\(256\) −1.08251 + 15.9633i −0.0676566 + 0.997709i
\(257\) 7.24060 4.18036i 0.451656 0.260764i −0.256873 0.966445i \(-0.582692\pi\)
0.708529 + 0.705681i \(0.249359\pi\)
\(258\) 6.88111 + 3.68224i 0.428399 + 0.229246i
\(259\) 0 0
\(260\) −11.0054 + 1.25977i −0.682524 + 0.0781277i
\(261\) −9.00941 + 13.9613i −0.557668 + 0.864182i
\(262\) −11.2949 + 3.72781i −0.697803 + 0.230305i
\(263\) −14.6850 + 25.4352i −0.905517 + 1.56840i −0.0852962 + 0.996356i \(0.527184\pi\)
−0.820221 + 0.572046i \(0.806150\pi\)
\(264\) 3.61053 + 24.5159i 0.222212 + 1.50885i
\(265\) −16.0346 −0.984996
\(266\) 0 0
\(267\) −8.07720 + 1.95149i −0.494317 + 0.119429i
\(268\) 12.5523 + 16.9448i 0.766756 + 1.03507i
\(269\) −17.6649 10.1988i −1.07705 0.621834i −0.146950 0.989144i \(-0.546946\pi\)
−0.930099 + 0.367310i \(0.880279\pi\)
\(270\) −4.74296 + 7.89768i −0.288648 + 0.480638i
\(271\) −17.8370 + 10.2982i −1.08352 + 0.625572i −0.931844 0.362858i \(-0.881801\pi\)
−0.151678 + 0.988430i \(0.548468\pi\)
\(272\) 5.29093 + 22.8080i 0.320810 + 1.38294i
\(273\) 0 0
\(274\) 12.9508 14.5179i 0.782389 0.877057i
\(275\) 8.67076 + 15.0182i 0.522867 + 0.905632i
\(276\) −0.186517 + 1.07011i −0.0112270 + 0.0644128i
\(277\) 1.97345 3.41811i 0.118573 0.205374i −0.800629 0.599160i \(-0.795501\pi\)
0.919202 + 0.393786i \(0.128835\pi\)
\(278\) −18.2292 3.78668i −1.09332 0.227110i
\(279\) 6.71002 + 13.0758i 0.401719 + 0.782825i
\(280\) 0 0
\(281\) 1.18623i 0.0707648i 0.999374 + 0.0353824i \(0.0112649\pi\)
−0.999374 + 0.0353824i \(0.988735\pi\)
\(282\) 28.1453 0.907971i 1.67603 0.0540689i
\(283\) −23.9744 13.8416i −1.42513 0.822800i −0.428401 0.903589i \(-0.640923\pi\)
−0.996731 + 0.0807885i \(0.974256\pi\)
\(284\) 8.31945 + 3.61220i 0.493669 + 0.214344i
\(285\) −2.40933 + 2.29298i −0.142716 + 0.135825i
\(286\) −23.5839 21.0383i −1.39454 1.24402i
\(287\) 0 0
\(288\) −16.9647 0.446999i −0.999653 0.0263396i
\(289\) 8.63122 + 14.9497i 0.507719 + 0.879395i
\(290\) 9.32487 3.07760i 0.547575 0.180723i
\(291\) −22.7357 6.69895i −1.33279 0.392700i
\(292\) −2.27276 + 1.68361i −0.133004 + 0.0985258i
\(293\) 0.197795i 0.0115553i −0.999983 0.00577765i \(-0.998161\pi\)
0.999983 0.00577765i \(-0.00183909\pi\)
\(294\) 0 0
\(295\) 9.98789i 0.581517i
\(296\) 15.0363 + 1.36968i 0.873969 + 0.0796109i
\(297\) −25.8225 + 4.90159i −1.49837 + 0.284419i
\(298\) 5.00724 + 15.1715i 0.290061 + 0.878862i
\(299\) −0.692674 1.19975i −0.0400584 0.0693831i
\(300\) −11.1519 + 4.08385i −0.643856 + 0.235781i
\(301\) 0 0
\(302\) −10.4496 + 11.7139i −0.601304 + 0.674061i
\(303\) −4.86207 5.10878i −0.279319 0.293492i
\(304\) −5.86120 1.78521i −0.336163 0.102389i
\(305\) 0.328846 + 0.189859i 0.0188297 + 0.0108713i
\(306\) −23.9388 + 6.60749i −1.36849 + 0.377725i
\(307\) 16.6218i 0.948657i −0.880348 0.474328i \(-0.842691\pi\)
0.880348 0.474328i \(-0.157309\pi\)
\(308\) 0 0
\(309\) 22.0145 5.31881i 1.25236 0.302576i
\(310\) 1.76651 8.50404i 0.100331 0.482997i
\(311\) 5.37805 9.31506i 0.304961 0.528209i −0.672291 0.740287i \(-0.734690\pi\)
0.977253 + 0.212078i \(0.0680231\pi\)
\(312\) 16.9671 13.4373i 0.960575 0.760738i
\(313\) 2.47200 + 4.28163i 0.139726 + 0.242012i 0.927393 0.374089i \(-0.122045\pi\)
−0.787667 + 0.616101i \(0.788711\pi\)
\(314\) −15.6144 13.9290i −0.881170 0.786058i
\(315\) 0 0
\(316\) −13.7665 + 1.57583i −0.774427 + 0.0886476i
\(317\) −18.9960 + 10.9673i −1.06692 + 0.615987i −0.927338 0.374224i \(-0.877909\pi\)
−0.139582 + 0.990211i \(0.544576\pi\)
\(318\) 26.6131 16.5315i 1.49239 0.927041i
\(319\) 24.2624 + 14.0079i 1.35844 + 0.784293i
\(320\) 7.63656 + 6.50142i 0.426897 + 0.363441i
\(321\) −1.58955 6.57914i −0.0887202 0.367212i
\(322\) 0 0
\(323\) −8.96603 −0.498883
\(324\) −0.270403 17.9980i −0.0150224 0.999887i
\(325\) 7.57319 13.1171i 0.420085 0.727609i
\(326\) −5.87994 17.8157i −0.325660 0.986722i
\(327\) −10.3484 + 9.84870i −0.572269 + 0.544634i
\(328\) −4.57454 3.22756i −0.252587 0.178212i
\(329\) 0 0
\(330\) 13.6954 + 7.32873i 0.753908 + 0.403433i
\(331\) 3.24073 1.87104i 0.178127 0.102841i −0.408286 0.912854i \(-0.633873\pi\)
0.586412 + 0.810013i \(0.300540\pi\)
\(332\) −12.4444 5.40320i −0.682976 0.296539i
\(333\) −0.791990 + 15.9949i −0.0434008 + 0.876514i
\(334\) −1.37666 + 6.62730i −0.0753275 + 0.362629i
\(335\) 13.2183 0.722194
\(336\) 0 0
\(337\) 22.9774 1.25166 0.625829 0.779960i \(-0.284761\pi\)
0.625829 + 0.779960i \(0.284761\pi\)
\(338\) −1.87492 + 9.02593i −0.101982 + 0.490946i
\(339\) 3.29204 11.1729i 0.178799 0.606828i
\(340\) 13.4621 + 5.84508i 0.730087 + 0.316994i
\(341\) 21.4604 12.3902i 1.16215 0.670966i
\(342\) 1.63479 6.28973i 0.0883994 0.340110i
\(343\) 0 0
\(344\) 7.36347 + 5.19527i 0.397011 + 0.280110i
\(345\) 0.469402 + 0.493220i 0.0252718 + 0.0265541i
\(346\) 6.38786 + 19.3547i 0.343413 + 1.04051i
\(347\) −1.06505 + 1.84472i −0.0571750 + 0.0990299i −0.893196 0.449667i \(-0.851543\pi\)
0.836021 + 0.548697i \(0.184876\pi\)
\(348\) −12.3038 + 14.7218i −0.659552 + 0.789174i
\(349\) 3.55710 0.190407 0.0952036 0.995458i \(-0.469650\pi\)
0.0952036 + 0.995458i \(0.469650\pi\)
\(350\) 0 0
\(351\) 14.9845 + 17.3916i 0.799811 + 0.928293i
\(352\) 0.661842 + 28.6063i 0.0352763 + 1.52472i
\(353\) 16.3912 + 9.46348i 0.872417 + 0.503690i 0.868151 0.496301i \(-0.165309\pi\)
0.00426642 + 0.999991i \(0.498642\pi\)
\(354\) −10.2974 16.5772i −0.547302 0.881068i
\(355\) 4.92353 2.84260i 0.261314 0.150869i
\(356\) −9.53285 + 1.09121i −0.505240 + 0.0578342i
\(357\) 0 0
\(358\) 0.732717 + 0.653628i 0.0387253 + 0.0345453i
\(359\) −0.613000 1.06175i −0.0323529 0.0560369i 0.849396 0.527757i \(-0.176967\pi\)
−0.881748 + 0.471720i \(0.843633\pi\)
\(360\) −6.55494 + 8.37804i −0.345476 + 0.441561i
\(361\) −8.32685 + 14.4225i −0.438255 + 0.759081i
\(362\) 1.81506 8.73776i 0.0953973 0.459246i
\(363\) 5.93317 + 24.5573i 0.311411 + 1.28893i
\(364\) 0 0
\(365\) 1.77294i 0.0927997i
\(366\) −0.741538 + 0.0239221i −0.0387608 + 0.00125043i
\(367\) 17.4966 + 10.1017i 0.913314 + 0.527302i 0.881496 0.472192i \(-0.156537\pi\)
0.0318180 + 0.999494i \(0.489870\pi\)
\(368\) −0.365454 + 1.19986i −0.0190506 + 0.0625471i
\(369\) 3.21976 4.98945i 0.167614 0.259740i
\(370\) 6.30019 7.06250i 0.327531 0.367162i
\(371\) 0 0
\(372\) 5.83566 + 15.9357i 0.302565 + 0.826225i
\(373\) 4.09019 + 7.08442i 0.211782 + 0.366817i 0.952272 0.305250i \(-0.0987400\pi\)
−0.740490 + 0.672067i \(0.765407\pi\)
\(374\) 13.1233 + 39.7626i 0.678592 + 2.05607i
\(375\) −5.17252 + 17.5551i −0.267108 + 0.906541i
\(376\) 32.3823 + 2.94974i 1.66999 + 0.152121i
\(377\) 24.4695i 1.26024i
\(378\) 0 0
\(379\) 31.2020i 1.60274i −0.598170 0.801369i \(-0.704105\pi\)
0.598170 0.801369i \(-0.295895\pi\)
\(380\) −3.08609 + 2.28610i −0.158313 + 0.117274i
\(381\) 4.16301 14.1289i 0.213277 0.723845i
\(382\) −5.24797 + 1.73205i −0.268509 + 0.0886194i
\(383\) −12.2089 21.1465i −0.623848 1.08054i −0.988763 0.149495i \(-0.952235\pi\)
0.364915 0.931041i \(-0.381098\pi\)
\(384\) −19.3775 2.91737i −0.988856 0.148877i
\(385\) 0 0
\(386\) −1.65861 1.47958i −0.0844212 0.0753089i
\(387\) −5.18273 + 8.03133i −0.263453 + 0.408255i
\(388\) −25.1045 10.9001i −1.27449 0.553367i
\(389\) 7.86740 + 4.54225i 0.398893 + 0.230301i 0.686006 0.727596i \(-0.259362\pi\)
−0.287113 + 0.957897i \(0.592696\pi\)
\(390\) −0.437438 13.5597i −0.0221505 0.686624i
\(391\) 1.83546i 0.0928230i
\(392\) 0 0
\(393\) −3.42111 14.1599i −0.172572 0.714275i
\(394\) −2.53786 0.527179i −0.127855 0.0265589i
\(395\) −4.34279 + 7.52193i −0.218509 + 0.378469i
\(396\) −30.2865 + 1.95613i −1.52196 + 0.0982991i
\(397\) 11.6405 + 20.1619i 0.584220 + 1.01190i 0.994972 + 0.100151i \(0.0319326\pi\)
−0.410753 + 0.911747i \(0.634734\pi\)
\(398\) −3.45588 + 3.87403i −0.173227 + 0.194188i
\(399\) 0 0
\(400\) −13.3587 + 3.09890i −0.667934 + 0.154945i
\(401\) 6.57424 3.79564i 0.328302 0.189545i −0.326785 0.945099i \(-0.605965\pi\)
0.655087 + 0.755553i \(0.272632\pi\)
\(402\) −21.9388 + 13.6280i −1.09421 + 0.679701i
\(403\) −18.7439 10.8218i −0.933700 0.539072i
\(404\) −4.84748 6.54378i −0.241171 0.325565i
\(405\) −9.16617 6.57914i −0.455470 0.326920i
\(406\) 0 0
\(407\) 27.0019 1.33843
\(408\) −28.3697 + 4.17809i −1.40451 + 0.206846i
\(409\) −3.19509 + 5.53406i −0.157987 + 0.273642i −0.934143 0.356900i \(-0.883834\pi\)
0.776156 + 0.630541i \(0.217167\pi\)
\(410\) −3.33250 + 1.09987i −0.164580 + 0.0543185i
\(411\) 16.4265 + 17.2600i 0.810261 + 0.851374i
\(412\) 25.9819 2.97411i 1.28003 0.146524i
\(413\) 0 0
\(414\) −1.28759 0.334662i −0.0632814 0.0164477i
\(415\) −7.36471 + 4.25202i −0.361520 + 0.208723i
\(416\) 21.3488 12.9932i 1.04671 0.637044i
\(417\) 6.44479 21.8731i 0.315603 1.07113i
\(418\) −10.7284 2.22857i −0.524743 0.109003i
\(419\) 29.1307 1.42313 0.711565 0.702620i \(-0.247987\pi\)
0.711565 + 0.702620i \(0.247987\pi\)
\(420\) 0 0
\(421\) −32.0821 −1.56358 −0.781792 0.623539i \(-0.785694\pi\)
−0.781792 + 0.623539i \(0.785694\pi\)
\(422\) 20.5985 + 4.27885i 1.00272 + 0.208291i
\(423\) −1.70563 + 34.4466i −0.0829306 + 1.67485i
\(424\) 32.8413 15.1715i 1.59492 0.736793i
\(425\) −17.3790 + 10.0338i −0.843006 + 0.486710i
\(426\) −5.24103 + 9.79405i −0.253929 + 0.474523i
\(427\) 0 0
\(428\) −0.888828 7.76481i −0.0429631 0.375326i
\(429\) 28.0384 26.6844i 1.35371 1.28834i
\(430\) 5.36420 1.77041i 0.258685 0.0853769i
\(431\) 9.12282 15.8012i 0.439431 0.761116i −0.558215 0.829696i \(-0.688514\pi\)
0.997646 + 0.0685802i \(0.0218469\pi\)
\(432\) 2.24175 20.6634i 0.107856 0.994167i
\(433\) −4.84842 −0.233000 −0.116500 0.993191i \(-0.537168\pi\)
−0.116500 + 0.993191i \(0.537168\pi\)
\(434\) 0 0
\(435\) 2.82440 + 11.6902i 0.135420 + 0.560501i
\(436\) −13.2552 + 9.81913i −0.634809 + 0.470251i
\(437\) −0.415965 0.240157i −0.0198983 0.0114883i
\(438\) −1.82788 2.94259i −0.0873395 0.140603i
\(439\) 17.5388 10.1260i 0.837081 0.483289i −0.0191902 0.999816i \(-0.506109\pi\)
0.856271 + 0.516527i \(0.172775\pi\)
\(440\) 14.6554 + 10.3401i 0.698670 + 0.492945i
\(441\) 0 0
\(442\) 24.3454 27.2912i 1.15799 1.29811i
\(443\) −11.2335 19.4570i −0.533719 0.924428i −0.999224 0.0393830i \(-0.987461\pi\)
0.465505 0.885045i \(-0.345873\pi\)
\(444\) −3.17523 + 18.2173i −0.150690 + 0.864554i
\(445\) −3.00724 + 5.20869i −0.142557 + 0.246915i
\(446\) 26.8860 + 5.58491i 1.27309 + 0.264453i
\(447\) −19.0198 + 4.59528i −0.899607 + 0.217349i
\(448\) 0 0
\(449\) 29.5660i 1.39531i −0.716435 0.697654i \(-0.754227\pi\)
0.716435 0.697654i \(-0.245773\pi\)
\(450\) −3.87002 14.0210i −0.182434 0.660955i
\(451\) −8.67086 5.00612i −0.408295 0.235729i
\(452\) 5.35657 12.3370i 0.251952 0.580284i
\(453\) −13.2540 13.9265i −0.622726 0.654323i
\(454\) −11.2738 10.0569i −0.529107 0.471996i
\(455\) 0 0
\(456\) 2.76513 6.97604i 0.129489 0.326683i
\(457\) −9.09743 15.7572i −0.425560 0.737091i 0.570913 0.821011i \(-0.306589\pi\)
−0.996473 + 0.0839196i \(0.973256\pi\)
\(458\) −10.0742 + 3.32492i −0.470738 + 0.155363i
\(459\) −5.67210 29.8817i −0.264751 1.39476i
\(460\) 0.467993 + 0.631761i 0.0218203 + 0.0294560i
\(461\) 24.9782i 1.16335i 0.813422 + 0.581675i \(0.197602\pi\)
−0.813422 + 0.581675i \(0.802398\pi\)
\(462\) 0 0
\(463\) 6.37226i 0.296144i −0.988977 0.148072i \(-0.952693\pi\)
0.988977 0.148072i \(-0.0473068\pi\)
\(464\) −16.1869 + 15.1264i −0.751456 + 0.702224i
\(465\) 10.2039 + 3.00653i 0.473195 + 0.139424i
\(466\) −1.24073 3.75930i −0.0574757 0.174146i
\(467\) 13.6785 + 23.6918i 0.632964 + 1.09633i 0.986943 + 0.161072i \(0.0514951\pi\)
−0.353979 + 0.935253i \(0.615172\pi\)
\(468\) 14.7060 + 22.0545i 0.679785 + 1.01947i
\(469\) 0 0
\(470\) 13.5681 15.2098i 0.625849 0.701576i
\(471\) 18.5636 17.6672i 0.855367 0.814061i
\(472\) −9.45028 20.4568i −0.434984 0.941598i
\(473\) 13.9571 + 8.05816i 0.641750 + 0.370515i
\(474\) −0.547187 16.9617i −0.0251331 0.779078i
\(475\) 5.25141i 0.240951i
\(476\) 0 0
\(477\) 17.5185 + 34.1382i 0.802119 + 1.56308i
\(478\) 5.90981 28.4500i 0.270308 1.30127i
\(479\) 9.91668 17.1762i 0.453105 0.784800i −0.545472 0.838129i \(-0.683650\pi\)
0.998577 + 0.0533285i \(0.0169830\pi\)
\(480\) −8.69951 + 8.67162i −0.397076 + 0.395804i
\(481\) −11.7919 20.4242i −0.537666 0.931265i
\(482\) 19.0536 + 16.9970i 0.867866 + 0.774190i
\(483\) 0 0
\(484\) 3.31764 + 28.9830i 0.150802 + 1.31741i
\(485\) −14.8571 + 8.57774i −0.674625 + 0.389495i
\(486\) 21.9964 + 1.46936i 0.997776 + 0.0666513i
\(487\) 35.3792 + 20.4262i 1.60318 + 0.925599i 0.990845 + 0.135003i \(0.0431045\pi\)
0.612339 + 0.790595i \(0.290229\pi\)
\(488\) −0.853168 0.0777160i −0.0386211 0.00351804i
\(489\) 22.3348 5.39619i 1.01001 0.244024i
\(490\) 0 0
\(491\) 20.3003 0.916137 0.458069 0.888917i \(-0.348541\pi\)
0.458069 + 0.888917i \(0.348541\pi\)
\(492\) 4.39710 5.26126i 0.198236 0.237196i
\(493\) −16.2099 + 28.0764i −0.730058 + 1.26450i
\(494\) 2.99949 + 9.08821i 0.134954 + 0.408898i
\(495\) −10.3151 + 15.9847i −0.463631 + 0.718458i
\(496\) 4.42821 + 19.0890i 0.198833 + 0.857123i
\(497\) 0 0
\(498\) 7.83964 14.6502i 0.351303 0.656489i
\(499\) −29.6416 + 17.1136i −1.32694 + 0.766110i −0.984825 0.173548i \(-0.944477\pi\)
−0.342116 + 0.939658i \(0.611144\pi\)
\(500\) −8.41636 + 19.3842i −0.376391 + 0.866887i
\(501\) −7.95202 2.34302i −0.355270 0.104679i
\(502\) 3.01464 14.5126i 0.134550 0.647728i
\(503\) −31.1279 −1.38792 −0.693962 0.720011i \(-0.744137\pi\)
−0.693962 + 0.720011i \(0.744137\pi\)
\(504\) 0 0
\(505\) −5.10467 −0.227155
\(506\) −0.456215 + 2.19624i −0.0202812 + 0.0976346i
\(507\) −10.8301 3.19104i −0.480982 0.141719i
\(508\) 6.77375 15.6010i 0.300536 0.692182i
\(509\) −34.2107 + 19.7516i −1.51636 + 0.875474i −0.516549 + 0.856257i \(0.672784\pi\)
−0.999815 + 0.0192162i \(0.993883\pi\)
\(510\) −8.48078 + 15.8483i −0.375535 + 0.701773i
\(511\) 0 0
\(512\) −21.7924 6.09041i −0.963095 0.269161i
\(513\) 7.51416 + 2.62436i 0.331758 + 0.115868i
\(514\) 3.70576 + 11.2281i 0.163454 + 0.495251i
\(515\) 8.19625 14.1963i 0.361170 0.625564i
\(516\) −7.07784 + 8.46885i −0.311585 + 0.372820i
\(517\) 58.1512 2.55749
\(518\) 0 0
\(519\) −24.2641 + 5.86232i −1.06507 + 0.257327i
\(520\) 1.42111 15.6010i 0.0623199 0.684149i
\(521\) 20.8808 + 12.0555i 0.914803 + 0.528162i 0.881973 0.471299i \(-0.156215\pi\)
0.0328296 + 0.999461i \(0.489548\pi\)
\(522\) −16.7402 16.4906i −0.732699 0.721773i
\(523\) 8.02520 4.63335i 0.350917 0.202602i −0.314172 0.949366i \(-0.601727\pi\)
0.665089 + 0.746764i \(0.268394\pi\)
\(524\) −1.91298 16.7118i −0.0835689 0.730059i
\(525\) 0 0
\(526\) −30.9952 27.6496i −1.35145 1.20558i
\(527\) 14.3379 + 24.8339i 0.624568 + 1.08178i
\(528\) −34.9846 2.05215i −1.52251 0.0893085i
\(529\) 11.4508 19.8334i 0.497862 0.862323i
\(530\) 4.61200 22.2024i 0.200333 0.964409i
\(531\) 21.2646 10.9122i 0.922805 0.473551i
\(532\) 0 0
\(533\) 8.74486i 0.378782i
\(534\) −0.378909 11.7454i −0.0163970 0.508275i
\(535\) −4.24264 2.44949i −0.183425 0.105901i
\(536\) −27.0732 + 12.5068i −1.16938 + 0.540213i
\(537\) −0.871113 + 0.829047i −0.0375913 + 0.0357760i
\(538\) 19.2028 21.5263i 0.827892 0.928066i
\(539\) 0 0
\(540\) −9.57136 8.83897i −0.411886 0.380369i
\(541\) −12.9508 22.4315i −0.556800 0.964406i −0.997761 0.0668796i \(-0.978696\pi\)
0.440961 0.897526i \(-0.354638\pi\)
\(542\) −9.12903 27.6602i −0.392125 1.18811i
\(543\) 10.4843 + 3.08916i 0.449926 + 0.132568i
\(544\) −33.1030 + 0.765881i −1.41928 + 0.0328369i
\(545\) 10.3401i 0.442921i
\(546\) 0 0
\(547\) 32.9387i 1.40836i 0.710022 + 0.704179i \(0.248685\pi\)
−0.710022 + 0.704179i \(0.751315\pi\)
\(548\) 16.3772 + 22.1082i 0.699600 + 0.944415i
\(549\) 0.0449378 0.907556i 0.00191790 0.0387335i
\(550\) −23.2890 + 7.68635i −0.993046 + 0.327747i
\(551\) −4.24192 7.34722i −0.180712 0.313002i
\(552\) −1.42808 0.566055i −0.0607832 0.0240929i
\(553\) 0 0
\(554\) 4.16528 + 3.71569i 0.176966 + 0.157864i
\(555\) 7.99101 + 8.39647i 0.339199 + 0.356410i
\(556\) 10.4865 24.1520i 0.444727 1.02427i
\(557\) 25.8991 + 14.9528i 1.09738 + 0.633572i 0.935531 0.353244i \(-0.114921\pi\)
0.161847 + 0.986816i \(0.448255\pi\)
\(558\) −20.0354 + 5.53010i −0.848167 + 0.234108i
\(559\) 14.0763i 0.595363i
\(560\) 0 0
\(561\) −49.8486 + 12.0437i −2.10461 + 0.508484i
\(562\) −1.64252 0.341195i −0.0692857 0.0143924i
\(563\) 15.5531 26.9388i 0.655487 1.13534i −0.326284 0.945272i \(-0.605797\pi\)
0.981771 0.190065i \(-0.0608699\pi\)
\(564\) −6.83818 + 39.2328i −0.287939 + 1.65200i
\(565\) −4.21532 7.30115i −0.177340 0.307162i
\(566\) 26.0616 29.2151i 1.09545 1.22800i
\(567\) 0 0
\(568\) −7.39456 + 10.4806i −0.310269 + 0.439756i
\(569\) 15.3022 8.83472i 0.641501 0.370371i −0.143691 0.989623i \(-0.545897\pi\)
0.785193 + 0.619252i \(0.212564\pi\)
\(570\) −2.48200 3.99562i −0.103960 0.167358i
\(571\) 6.51130 + 3.75930i 0.272490 + 0.157322i 0.630018 0.776580i \(-0.283047\pi\)
−0.357529 + 0.933902i \(0.616381\pi\)
\(572\) 35.9141 26.6043i 1.50165 1.11238i
\(573\) −1.58955 6.57914i −0.0664045 0.274847i
\(574\) 0 0
\(575\) −1.07503 −0.0448318
\(576\) 5.49846 23.3617i 0.229103 0.973402i
\(577\) −2.13156 + 3.69196i −0.0887378 + 0.153698i −0.906978 0.421178i \(-0.861617\pi\)
0.818240 + 0.574877i \(0.194950\pi\)
\(578\) −23.1828 + 7.65130i −0.964277 + 0.318252i
\(579\) 1.97189 1.87667i 0.0819491 0.0779917i
\(580\) 1.57932 + 13.7969i 0.0655776 + 0.572887i
\(581\) 0 0
\(582\) 15.8152 29.5542i 0.655560 1.22506i
\(583\) 56.0289 32.3483i 2.32048 1.33973i
\(584\) −1.67751 3.63125i −0.0694157 0.150262i
\(585\) 16.5955 + 0.821731i 0.686141 + 0.0339744i
\(586\) 0.273878 + 0.0568914i 0.0113138 + 0.00235016i
\(587\) −43.2909 −1.78681 −0.893404 0.449253i \(-0.851690\pi\)
−0.893404 + 0.449253i \(0.851690\pi\)
\(588\) 0 0
\(589\) −7.50407 −0.309200
\(590\) −13.8298 2.87280i −0.569363 0.118271i
\(591\) 0.897238 3.04515i 0.0369074 0.125261i
\(592\) −6.22141 + 20.4262i −0.255698 + 0.839511i
\(593\) 4.99583 2.88434i 0.205154 0.118446i −0.393903 0.919152i \(-0.628875\pi\)
0.599057 + 0.800706i \(0.295542\pi\)
\(594\) 0.640266 37.1650i 0.0262704 1.52490i
\(595\) 0 0
\(596\) −22.4475 + 2.56954i −0.919486 + 0.105252i
\(597\) −4.38335 4.60576i −0.179399 0.188501i
\(598\) 1.86047 0.614033i 0.0760802 0.0251097i
\(599\) 17.8985 31.0011i 0.731312 1.26667i −0.225010 0.974356i \(-0.572242\pi\)
0.956323 0.292313i \(-0.0944251\pi\)
\(600\) −2.44711 16.6162i −0.0999028 0.678353i
\(601\) −42.3193 −1.72624 −0.863121 0.504998i \(-0.831493\pi\)
−0.863121 + 0.504998i \(0.831493\pi\)
\(602\) 0 0
\(603\) −14.4416 28.1423i −0.588109 1.14604i
\(604\) −13.2142 17.8383i −0.537677 0.725830i
\(605\) 15.8361 + 9.14298i 0.643829 + 0.371715i
\(606\) 8.47236 5.26286i 0.344166 0.213789i
\(607\) −41.0224 + 23.6843i −1.66505 + 0.961316i −0.694801 + 0.719202i \(0.744508\pi\)
−0.970248 + 0.242115i \(0.922159\pi\)
\(608\) 4.15775 7.60227i 0.168619 0.308313i
\(609\) 0 0
\(610\) −0.357475 + 0.400729i −0.0144737 + 0.0162250i
\(611\) −25.3951 43.9857i −1.02738 1.77947i
\(612\) −2.26362 35.0475i −0.0915015 1.41671i
\(613\) −1.39456 + 2.41545i −0.0563257 + 0.0975590i −0.892813 0.450427i \(-0.851272\pi\)
0.836488 + 0.547986i \(0.184605\pi\)
\(614\) 23.0155 + 4.78091i 0.928829 + 0.192942i
\(615\) −1.00938 4.17781i −0.0407021 0.168465i
\(616\) 0 0
\(617\) 21.6549i 0.871795i 0.899996 + 0.435898i \(0.143569\pi\)
−0.899996 + 0.435898i \(0.856431\pi\)
\(618\) 1.03272 + 32.0123i 0.0415421 + 1.28772i
\(619\) 4.88830 + 2.82226i 0.196477 + 0.113436i 0.595011 0.803717i \(-0.297148\pi\)
−0.398534 + 0.917154i \(0.630481\pi\)
\(620\) 11.2671 + 4.89201i 0.452496 + 0.196468i
\(621\) 0.537240 1.53824i 0.0215587 0.0617275i
\(622\) 11.3513 + 10.1260i 0.455144 + 0.406017i
\(623\) 0 0
\(624\) 13.7258 + 27.3586i 0.549472 + 1.09522i
\(625\) −1.94767 3.37346i −0.0779067 0.134938i
\(626\) −6.63959 + 2.19135i −0.265371 + 0.0875838i
\(627\) 3.79293 12.8729i 0.151475 0.514094i
\(628\) 23.7780 17.6142i 0.948845 0.702881i
\(629\) 31.2464i 1.24588i
\(630\) 0 0
\(631\) 6.37226i 0.253676i −0.991923 0.126838i \(-0.959517\pi\)
0.991923 0.126838i \(-0.0404828\pi\)
\(632\) 1.77766 19.5151i 0.0707113 0.776270i
\(633\) −7.28244 + 24.7160i −0.289451 + 0.982372i
\(634\) −9.72219 29.4574i −0.386117 1.16990i
\(635\) −5.33056 9.23281i −0.211537 0.366393i
\(636\) 15.2358 + 41.6048i 0.604137 + 1.64974i
\(637\) 0 0
\(638\) −26.3747 + 29.5660i −1.04419 + 1.17053i
\(639\) −11.4312 7.37670i −0.452211 0.291818i
\(640\) −11.1987 + 8.70401i −0.442668 + 0.344056i
\(641\) 14.2860 + 8.24802i 0.564263 + 0.325777i 0.754855 0.655892i \(-0.227707\pi\)
−0.190592 + 0.981669i \(0.561041\pi\)
\(642\) 9.56704 0.308633i 0.377581 0.0121808i
\(643\) 2.36672i 0.0933343i 0.998910 + 0.0466671i \(0.0148600\pi\)
−0.998910 + 0.0466671i \(0.985140\pi\)
\(644\) 0 0
\(645\) 1.62476 + 6.72485i 0.0639748 + 0.264791i
\(646\) 2.57889 12.4149i 0.101465 0.488456i
\(647\) 5.67476 9.82897i 0.223098 0.386417i −0.732649 0.680606i \(-0.761716\pi\)
0.955747 + 0.294190i \(0.0950497\pi\)
\(648\) 24.9988 + 4.80232i 0.982044 + 0.188653i
\(649\) −20.1497 34.9002i −0.790944 1.36995i
\(650\) 15.9845 + 14.2591i 0.626962 + 0.559289i
\(651\) 0 0
\(652\) 26.3599 3.01738i 1.03233 0.118170i
\(653\) 38.5978 22.2844i 1.51045 0.872057i 0.510522 0.859865i \(-0.329452\pi\)
0.999926 0.0121923i \(-0.00388102\pi\)
\(654\) −10.6605 17.1618i −0.416860 0.671078i
\(655\) −9.13122 5.27191i −0.356786 0.205991i
\(656\) 5.78482 5.40582i 0.225859 0.211062i
\(657\) 3.77465 1.93702i 0.147263 0.0755702i
\(658\) 0 0
\(659\) −0.590533 −0.0230039 −0.0115019 0.999934i \(-0.503661\pi\)
−0.0115019 + 0.999934i \(0.503661\pi\)
\(660\) −14.0870 + 16.8555i −0.548334 + 0.656098i
\(661\) 21.5502 37.3261i 0.838206 1.45182i −0.0531863 0.998585i \(-0.516938\pi\)
0.891393 0.453232i \(-0.149729\pi\)
\(662\) 1.65861 + 5.02546i 0.0644638 + 0.195320i
\(663\) 30.8791 + 32.4459i 1.19925 + 1.26010i
\(664\) 11.0609 15.6771i 0.429248 0.608390i
\(665\) 0 0
\(666\) −21.9196 5.69722i −0.849367 0.220763i
\(667\) −1.50407 + 0.868374i −0.0582377 + 0.0336236i
\(668\) −8.78055 3.81240i −0.339730 0.147506i
\(669\) −9.50530 + 32.2602i −0.367496 + 1.24725i
\(670\) −3.80197 + 18.3028i −0.146883 + 0.707099i
\(671\) −1.53210 −0.0591459
\(672\) 0 0
\(673\) 15.2706 0.588637 0.294319 0.955707i \(-0.404907\pi\)
0.294319 + 0.955707i \(0.404907\pi\)
\(674\) −6.60896 + 31.8158i −0.254567 + 1.22550i
\(675\) 17.5017 3.32216i 0.673641 0.127870i
\(676\) −11.9585 5.19223i −0.459943 0.199701i
\(677\) −35.8437 + 20.6944i −1.37759 + 0.795349i −0.991868 0.127268i \(-0.959379\pi\)
−0.385717 + 0.922617i \(0.626046\pi\)
\(678\) 14.5237 + 7.77198i 0.557780 + 0.298481i
\(679\) 0 0
\(680\) −11.9655 + 16.9592i −0.458857 + 0.650356i
\(681\) 13.4032 12.7560i 0.513613 0.488811i
\(682\) 10.9835 + 33.2791i 0.420580 + 1.27432i
\(683\) −2.26745 + 3.92734i −0.0867615 + 0.150275i −0.906140 0.422977i \(-0.860985\pi\)
0.819379 + 0.573252i \(0.194318\pi\)
\(684\) 8.23890 + 4.07273i 0.315022 + 0.155725i
\(685\) 17.2461 0.658941
\(686\) 0 0
\(687\) −3.05138 12.6296i −0.116417 0.481850i
\(688\) −9.31160 + 8.70155i −0.355002 + 0.331744i
\(689\) −48.9366 28.2536i −1.86434 1.07638i
\(690\) −0.817953 + 0.508096i −0.0311389 + 0.0193429i
\(691\) 23.6340 13.6451i 0.899079 0.519084i 0.0221779 0.999754i \(-0.492940\pi\)
0.876901 + 0.480670i \(0.159607\pi\)
\(692\) −28.6369 + 3.27802i −1.08861 + 0.124612i
\(693\) 0 0
\(694\) −2.24797 2.00532i −0.0853316 0.0761211i
\(695\) −8.25229 14.2934i −0.313027 0.542179i
\(696\) −16.8458 21.2709i −0.638537 0.806272i
\(697\) 5.79306 10.0339i 0.219428 0.380060i
\(698\) −1.02312 + 4.92536i −0.0387258 + 0.186428i
\(699\) 4.71287 1.13865i 0.178257 0.0430678i
\(700\) 0 0
\(701\) 9.20431i 0.347642i −0.984777 0.173821i \(-0.944389\pi\)
0.984777 0.173821i \(-0.0556114\pi\)
\(702\) −28.3913 + 15.7460i −1.07156 + 0.594294i
\(703\) −7.08130 4.08839i −0.267076 0.154197i
\(704\) −39.8002 7.31156i −1.50003 0.275565i
\(705\) 17.2094 + 18.0827i 0.648145 + 0.681032i
\(706\) −17.8182 + 19.9742i −0.670598 + 0.751740i
\(707\) 0 0
\(708\) 25.9155 9.49030i 0.973965 0.356667i
\(709\) 14.8003 + 25.6349i 0.555837 + 0.962738i 0.997838 + 0.0657232i \(0.0209354\pi\)
−0.442001 + 0.897015i \(0.645731\pi\)
\(710\) 2.51987 + 7.63500i 0.0945691 + 0.286536i
\(711\) 20.7592 + 1.02790i 0.778530 + 0.0385491i
\(712\) 1.23097 13.5136i 0.0461325 0.506443i
\(713\) 1.53617i 0.0575302i
\(714\) 0 0
\(715\) 28.0159i 1.04773i
\(716\) −1.11580 + 0.826558i −0.0416994 + 0.0308899i
\(717\) 34.1369 + 10.0583i 1.27487 + 0.375633i
\(718\) 1.64647 0.543405i 0.0614457 0.0202797i
\(719\) 1.35786 + 2.35188i 0.0506395 + 0.0877102i 0.890234 0.455503i \(-0.150541\pi\)
−0.839595 + 0.543214i \(0.817207\pi\)
\(720\) −9.71531 11.4861i −0.362068 0.428062i
\(721\) 0 0
\(722\) −17.5752 15.6782i −0.654081 0.583480i
\(723\) −22.6524 + 21.5585i −0.842453 + 0.801770i
\(724\) 11.5767 + 5.02646i 0.430245 + 0.186807i
\(725\) −16.4444 9.49416i −0.610729 0.352604i
\(726\) −35.7100 + 1.15201i −1.32532 + 0.0427550i
\(727\) 18.9752i 0.703753i 0.936046 + 0.351876i \(0.114456\pi\)
−0.936046 + 0.351876i \(0.885544\pi\)
\(728\) 0 0
\(729\) −3.99276 + 26.7031i −0.147880 + 0.989005i
\(730\) −2.45490 0.509947i −0.0908601 0.0188740i
\(731\) −9.32487 + 16.1512i −0.344893 + 0.597372i
\(732\) 0.180164 1.03366i 0.00665905 0.0382050i
\(733\) 7.65295 + 13.2553i 0.282668 + 0.489596i 0.972041 0.234811i \(-0.0754471\pi\)
−0.689373 + 0.724407i \(0.742114\pi\)
\(734\) −19.0198 + 21.3212i −0.702035 + 0.786980i
\(735\) 0 0
\(736\) −1.55628 0.851142i −0.0573652 0.0313735i
\(737\) −46.1882 + 26.6668i −1.70136 + 0.982283i
\(738\) 5.98257 + 5.89337i 0.220222 + 0.216938i
\(739\) −23.2697 13.4348i −0.855989 0.494205i 0.00667810 0.999978i \(-0.497874\pi\)
−0.862667 + 0.505772i \(0.831208\pi\)
\(740\) 7.96701 + 10.7550i 0.292873 + 0.395360i
\(741\) −11.3935 + 2.75272i −0.418550 + 0.101124i
\(742\) 0 0
\(743\) 23.4748 0.861208 0.430604 0.902541i \(-0.358301\pi\)
0.430604 + 0.902541i \(0.358301\pi\)
\(744\) −23.7439 + 3.49682i −0.870493 + 0.128200i
\(745\) −7.08130 + 12.2652i −0.259439 + 0.449361i
\(746\) −10.9859 + 3.62582i −0.402224 + 0.132751i
\(747\) 17.0990 + 11.0342i 0.625620 + 0.403721i
\(748\) −58.8321 + 6.73444i −2.15112 + 0.246235i
\(749\) 0 0
\(750\) −22.8200 12.2115i −0.833268 0.445901i
\(751\) −31.1457 + 17.9820i −1.13652 + 0.656172i −0.945567 0.325427i \(-0.894492\pi\)
−0.190955 + 0.981599i \(0.561159\pi\)
\(752\) −13.3984 + 43.9899i −0.488591 + 1.60415i
\(753\) 17.4135 + 5.13079i 0.634582 + 0.186977i
\(754\) 33.8818 + 7.03813i 1.23390 + 0.256314i
\(755\) −13.9153 −0.506429
\(756\) 0 0
\(757\) 23.4202 0.851222 0.425611 0.904906i \(-0.360059\pi\)
0.425611 + 0.904906i \(0.360059\pi\)
\(758\) 43.2040 + 8.97458i 1.56924 + 0.325972i
\(759\) −2.63524 0.776460i −0.0956531 0.0281837i
\(760\) −2.27781 4.93072i −0.0826250 0.178856i
\(761\) −34.9126 + 20.1568i −1.26558 + 0.730684i −0.974149 0.225908i \(-0.927465\pi\)
−0.291433 + 0.956591i \(0.594132\pi\)
\(762\) 18.3662 + 9.82820i 0.665338 + 0.356038i
\(763\) 0 0
\(764\) −0.888828 7.76481i −0.0321567 0.280921i
\(765\) −18.4974 11.9366i −0.668775 0.431570i
\(766\) 32.7922 10.8228i 1.18483 0.391045i
\(767\) −17.5991 + 30.4825i −0.635465 + 1.10066i
\(768\) 9.61309 25.9921i 0.346882 0.937909i
\(769\) −20.6279 −0.743861 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(770\) 0 0
\(771\) −14.0762 + 3.40088i −0.506942 + 0.122480i
\(772\) 2.52578 1.87104i 0.0909048 0.0673401i
\(773\) 20.1789 + 11.6503i 0.725784 + 0.419032i 0.816878 0.576811i \(-0.195703\pi\)
−0.0910936 + 0.995842i \(0.529036\pi\)
\(774\) −9.62992 9.48633i −0.346140 0.340979i
\(775\) −14.5453 + 8.39771i −0.522481 + 0.301655i
\(776\) 22.3136 31.6260i 0.801012 1.13531i
\(777\) 0 0
\(778\) −8.55233 + 9.58716i −0.306616 + 0.343716i
\(779\) 1.51597 + 2.62573i 0.0543152 + 0.0940767i
\(780\) 18.9014 + 3.29447i 0.676778 + 0.117961i
\(781\) −11.4694 + 19.8655i −0.410407 + 0.710845i
\(782\) −2.54147 0.527930i −0.0908829 0.0188787i
\(783\) 21.8030 18.7853i 0.779177 0.671333i
\(784\) 0 0
\(785\) 18.5487i 0.662032i
\(786\) 20.5906 0.664256i 0.734444 0.0236932i
\(787\) 2.76123 + 1.59420i 0.0984271 + 0.0568269i 0.548406 0.836212i \(-0.315235\pi\)
−0.449978 + 0.893039i \(0.648568\pi\)
\(788\) 1.45992 3.36243i 0.0520076 0.119782i
\(789\) 36.8495 35.0701i 1.31188 1.24853i
\(790\) −9.16617 8.17678i −0.326118 0.290917i
\(791\) 0 0
\(792\) 6.00271 42.4990i 0.213297 1.51014i
\(793\) 0.669079 + 1.15888i 0.0237597 + 0.0411530i
\(794\) −31.2654 + 10.3189i −1.10957 + 0.366205i
\(795\) 26.6404 + 7.84945i 0.944836 + 0.278391i
\(796\) −4.37019 5.89948i −0.154897 0.209102i
\(797\) 55.9985i 1.98357i −0.127925 0.991784i \(-0.540832\pi\)
0.127925 0.991784i \(-0.459168\pi\)
\(798\) 0 0
\(799\) 67.2924i 2.38063i
\(800\) −0.448577 19.3885i −0.0158596 0.685487i
\(801\) 14.3750 + 0.711784i 0.507917 + 0.0251496i
\(802\) 3.36471 + 10.1948i 0.118812 + 0.359991i
\(803\) −3.57674 6.19509i −0.126220 0.218620i
\(804\) −12.5598 34.2975i −0.442950 1.20958i
\(805\) 0 0
\(806\) 20.3757 22.8412i 0.717705 0.804546i
\(807\) 24.3564 + 25.5922i 0.857385 + 0.900890i
\(808\) 10.4552 4.82990i 0.367811 0.169915i
\(809\) 18.4879 + 10.6740i 0.649999 + 0.375277i 0.788456 0.615091i \(-0.210881\pi\)
−0.138457 + 0.990368i \(0.544214\pi\)
\(810\) 11.7463 10.7996i 0.412722 0.379460i
\(811\) 52.7856i 1.85355i 0.375614 + 0.926776i \(0.377432\pi\)
−0.375614 + 0.926776i \(0.622568\pi\)
\(812\) 0 0
\(813\) 34.6763 8.37797i 1.21615 0.293828i
\(814\) −7.76651 + 37.3883i −0.272216 + 1.31046i
\(815\) 8.31549 14.4029i 0.291279 0.504510i
\(816\) 2.37474 40.4840i 0.0831326 1.41722i
\(817\) −2.44020 4.22654i −0.0853717 0.147868i
\(818\) −6.74377 6.01585i −0.235790 0.210339i
\(819\) 0 0
\(820\) −0.564413 4.93072i −0.0197101 0.172188i
\(821\) −5.03883 + 2.90917i −0.175857 + 0.101531i −0.585344 0.810785i \(-0.699041\pi\)
0.409488 + 0.912316i \(0.365707\pi\)
\(822\) −28.6239 + 17.7806i −0.998374 + 0.620170i
\(823\) −8.78912 5.07440i −0.306369 0.176882i 0.338931 0.940811i \(-0.389935\pi\)
−0.645301 + 0.763929i \(0.723268\pi\)
\(824\) −3.35501 + 36.8314i −0.116877 + 1.28308i
\(825\) −7.05398 29.1964i −0.245588 1.01649i
\(826\) 0 0
\(827\) 53.0241 1.84383 0.921915 0.387393i \(-0.126624\pi\)
0.921915 + 0.387393i \(0.126624\pi\)
\(828\) 0.833738 1.68660i 0.0289744 0.0586135i
\(829\) −16.3511 + 28.3210i −0.567898 + 0.983628i 0.428876 + 0.903364i \(0.358910\pi\)
−0.996774 + 0.0802647i \(0.974423\pi\)
\(830\) −3.76928 11.4206i −0.130834 0.396414i
\(831\) −4.95202 + 4.71289i −0.171784 + 0.163488i
\(832\) 11.8506 + 33.2979i 0.410845 + 1.15440i
\(833\) 0 0
\(834\) 28.4329 + 15.2151i 0.984552 + 0.526857i
\(835\) −5.19641 + 3.00015i −0.179829 + 0.103824i
\(836\) 6.17159 14.2141i 0.213449 0.491606i
\(837\) −4.74723 25.0093i −0.164088 0.864447i
\(838\) −8.37884 + 40.3360i −0.289442 + 1.39339i
\(839\) 37.5962 1.29796 0.648982 0.760803i \(-0.275195\pi\)
0.648982 + 0.760803i \(0.275195\pi\)
\(840\) 0 0
\(841\) −1.67632 −0.0578040
\(842\) 9.22772 44.4226i 0.318008 1.53090i
\(843\) 0.580701 1.97085i 0.0200004 0.0678796i
\(844\) −11.8495 + 27.2912i −0.407875 + 0.939401i
\(845\) −7.07716 + 4.08600i −0.243462 + 0.140563i
\(846\) −47.2061 12.2695i −1.62298 0.421835i
\(847\) 0 0
\(848\) 11.5612 + 49.8377i 0.397013 + 1.71143i
\(849\) 33.0560 + 34.7332i 1.13448 + 1.19204i
\(850\) −8.89462 26.9499i −0.305083 0.924375i
\(851\) −0.836944 + 1.44963i −0.0286901 + 0.0496927i
\(852\) −12.0539 10.0741i −0.412960 0.345132i
\(853\) 5.68417 0.194622 0.0973112 0.995254i \(-0.468976\pi\)
0.0973112 + 0.995254i \(0.468976\pi\)
\(854\) 0 0
\(855\) 5.12543 2.63019i 0.175286 0.0899507i
\(856\) 11.0072 + 1.00266i 0.376220 + 0.0342703i
\(857\) −27.4440 15.8448i −0.937471 0.541249i −0.0483040 0.998833i \(-0.515382\pi\)
−0.889166 + 0.457584i \(0.848715\pi\)
\(858\) 28.8841 + 46.4987i 0.986086 + 1.58744i
\(859\) −5.22874 + 3.01882i −0.178402 + 0.103001i −0.586542 0.809919i \(-0.699511\pi\)
0.408139 + 0.912920i \(0.366178\pi\)
\(860\) 0.908514 + 7.93679i 0.0309801 + 0.270642i
\(861\) 0 0
\(862\) 19.2552 + 17.1768i 0.655835 + 0.585045i
\(863\) −20.0569 34.7395i −0.682744 1.18255i −0.974140 0.225944i \(-0.927453\pi\)
0.291396 0.956602i \(-0.405880\pi\)
\(864\) 27.9668 + 9.04742i 0.951451 + 0.307800i
\(865\) −9.03379 + 15.6470i −0.307158 + 0.532013i
\(866\) 1.39454 6.71339i 0.0473885 0.228130i
\(867\) −7.02181 29.0632i −0.238473 0.987038i
\(868\) 0 0
\(869\) 35.0447i 1.18881i
\(870\) −16.9992 + 0.548397i −0.576328 + 0.0185924i
\(871\) 40.3415 + 23.2912i 1.36692 + 0.789192i
\(872\) −9.78354 21.1781i −0.331312 0.717183i
\(873\) 34.4944 + 22.2597i 1.16746 + 0.753377i
\(874\) 0.452179 0.506892i 0.0152952 0.0171459i
\(875\) 0 0
\(876\) 4.60023 1.68461i 0.155427 0.0569177i
\(877\) 21.9436 + 38.0074i 0.740983 + 1.28342i 0.952048 + 0.305948i \(0.0989733\pi\)
−0.211066 + 0.977472i \(0.567693\pi\)
\(878\) 8.97639 + 27.1977i 0.302939 + 0.917878i
\(879\) −0.0968270 + 0.328623i −0.00326590 + 0.0110842i
\(880\) −18.5328 + 17.3186i −0.624740 + 0.583810i
\(881\) 1.27293i 0.0428860i −0.999770 0.0214430i \(-0.993174\pi\)
0.999770 0.0214430i \(-0.00682603\pi\)
\(882\) 0 0
\(883\) 19.5118i 0.656625i 0.944569 + 0.328312i \(0.106480\pi\)
−0.944569 + 0.328312i \(0.893520\pi\)
\(884\) 30.7864 + 41.5597i 1.03546 + 1.39780i
\(885\) 4.88940 16.5942i 0.164355 0.557808i
\(886\) 30.1722 9.95812i 1.01366 0.334550i
\(887\) −13.4459 23.2890i −0.451470 0.781969i 0.547007 0.837128i \(-0.315767\pi\)
−0.998478 + 0.0551585i \(0.982434\pi\)
\(888\) −24.3114 9.63641i −0.815836 0.323377i
\(889\) 0 0
\(890\) −6.34727 5.66215i −0.212761 0.189796i
\(891\) 45.3018 + 4.49728i 1.51767 + 0.150665i
\(892\) −15.4664 + 35.6214i −0.517852 + 1.19269i
\(893\) −15.2503 8.80477i −0.510332 0.294640i
\(894\) −0.892237 27.6576i −0.0298409 0.925010i
\(895\) 0.870412i 0.0290947i
\(896\) 0 0
\(897\) 0.563515 + 2.33238i 0.0188152 + 0.0778760i
\(898\) 40.9388 + 8.50404i 1.36614 + 0.283783i
\(899\) −13.5668 + 23.4984i −0.452478 + 0.783715i
\(900\) 20.5273 1.32581i 0.684244 0.0441935i
\(901\) 37.4334 + 64.8365i 1.24709 + 2.16002i
\(902\) 9.42574 10.5662i 0.313843 0.351817i
\(903\) 0 0
\(904\) 15.5418 + 10.9655i 0.516913 + 0.364706i
\(905\) 6.85120 3.95554i 0.227742 0.131487i
\(906\) 23.0956 14.3465i 0.767299 0.476631i
\(907\) −16.1538 9.32642i −0.536379 0.309679i 0.207231 0.978292i \(-0.433555\pi\)
−0.743610 + 0.668613i \(0.766888\pi\)
\(908\) 17.1681 12.7177i 0.569743 0.422052i
\(909\) 5.57709 + 10.8680i 0.184980 + 0.360470i
\(910\) 0 0
\(911\) −8.12909 −0.269329 −0.134664 0.990891i \(-0.542996\pi\)
−0.134664 + 0.990891i \(0.542996\pi\)
\(912\) 8.86408 + 5.83525i 0.293519 + 0.193225i
\(913\) 17.1561 29.7153i 0.567785 0.983433i
\(914\) 24.4350 8.06458i 0.808237 0.266753i
\(915\) −0.453413 0.476419i −0.0149894 0.0157499i
\(916\) −1.70623 14.9057i −0.0563755 0.492497i
\(917\) 0 0
\(918\) 43.0072 + 0.740913i 1.41945 + 0.0244538i
\(919\) 15.2109 8.78201i 0.501761 0.289692i −0.227680 0.973736i \(-0.573114\pi\)
0.729440 + 0.684044i \(0.239781\pi\)
\(920\) −1.00938 + 0.466296i −0.0332782 + 0.0153733i
\(921\) −8.13692 + 27.6160i −0.268121 + 0.909979i
\(922\) −34.5862 7.18444i −1.13903 0.236607i
\(923\) 20.0351 0.659463
\(924\) 0 0
\(925\) −18.3011 −0.601736
\(926\) 8.82339 + 1.83285i 0.289954 + 0.0602310i
\(927\) −39.1793 1.93997i −1.28682 0.0637170i
\(928\) −16.2890 26.7640i −0.534712 0.878571i
\(929\) 33.7624 19.4927i 1.10771 0.639535i 0.169473 0.985535i \(-0.445793\pi\)
0.938235 + 0.345999i \(0.112460\pi\)
\(930\) −7.09794 + 13.2641i −0.232751 + 0.434948i
\(931\) 0 0
\(932\) 5.56221 0.636699i 0.182196 0.0208558i
\(933\) −13.4953 + 12.8436i −0.441816 + 0.420481i
\(934\) −36.7393 + 12.1255i −1.20215 + 0.396759i
\(935\) −18.5592 + 32.1455i −0.606951 + 1.05127i
\(936\) −34.7677 + 14.0192i −1.13642 + 0.458233i
\(937\) −23.7865 −0.777072 −0.388536 0.921434i \(-0.627019\pi\)
−0.388536 + 0.921434i \(0.627019\pi\)
\(938\) 0 0
\(939\) −2.01106 8.32376i −0.0656285 0.271636i
\(940\) 17.1578 + 23.1619i 0.559625 + 0.755458i
\(941\) −26.5129 15.3073i −0.864297 0.499002i 0.00115159 0.999999i \(-0.499633\pi\)
−0.865449 + 0.500997i \(0.832967\pi\)
\(942\) 19.1235 + 30.7858i 0.623079 + 1.00306i
\(943\) 0.537520 0.310337i 0.0175041 0.0101060i
\(944\) 31.0437 7.20143i 1.01039 0.234387i
\(945\) 0 0
\(946\) −15.1722 + 17.0081i −0.493292 + 0.552980i
\(947\) 7.73005 + 13.3888i 0.251193 + 0.435079i 0.963855 0.266429i \(-0.0858438\pi\)
−0.712662 + 0.701508i \(0.752510\pi\)
\(948\) 23.6435 + 4.12102i 0.767907 + 0.133844i
\(949\) −3.12398 + 5.41090i −0.101409 + 0.175645i
\(950\) 7.27140 + 1.51046i 0.235915 + 0.0490057i
\(951\) 36.9294 8.92233i 1.19752 0.289326i
\(952\) 0 0
\(953\) 13.4497i 0.435679i −0.975985 0.217839i \(-0.930099\pi\)
0.975985 0.217839i \(-0.0699009\pi\)
\(954\) −52.3085 + 14.4380i −1.69355 + 0.467448i
\(955\) −4.24264 2.44949i −0.137289 0.0792636i
\(956\) 37.6937 + 16.3661i 1.21910 + 0.529317i
\(957\) −33.4531 35.1505i −1.08138 1.13625i
\(958\) 20.9308 + 18.6715i 0.676243 + 0.603250i
\(959\) 0 0
\(960\) −9.50498 14.5400i −0.306772 0.469277i
\(961\) −3.50000 6.06218i −0.112903 0.195554i
\(962\) 31.6722 10.4532i 1.02115 0.337024i
\(963\) −0.579770 + 11.7089i −0.0186828 + 0.377315i
\(964\) −29.0153 + 21.4938i −0.934519 + 0.692269i
\(965\) 1.97031i 0.0634264i
\(966\) 0 0
\(967\) 41.1554i 1.32347i −0.749738 0.661734i \(-0.769821\pi\)
0.749738 0.661734i \(-0.230179\pi\)
\(968\) −41.0857 3.74254i −1.32054 0.120290i
\(969\) 14.8965 + 4.38917i 0.478543 + 0.141000i
\(970\) −7.60389 23.0391i −0.244146 0.739742i
\(971\) −14.4445 25.0186i −0.463546 0.802886i 0.535588 0.844479i \(-0.320090\pi\)
−0.999135 + 0.0415934i \(0.986757\pi\)
\(972\) −8.36134 + 30.0348i −0.268190 + 0.963366i
\(973\) 0 0
\(974\) −38.4593 + 43.1128i −1.23232 + 1.38142i
\(975\) −19.0036 + 18.0859i −0.608603 + 0.579213i
\(976\) 0.353005 1.15899i 0.0112994 0.0370984i
\(977\) −40.6932 23.4942i −1.30189 0.751646i −0.321161 0.947024i \(-0.604073\pi\)
−0.980728 + 0.195378i \(0.937407\pi\)
\(978\) 1.04774 + 32.4780i 0.0335032 + 1.03853i
\(979\) 24.2673i 0.775587i
\(980\) 0 0
\(981\) 22.0145 11.2971i 0.702868 0.360687i
\(982\) −5.83893 + 28.1088i −0.186328 + 0.896989i
\(983\) −13.6677 + 23.6731i −0.435931 + 0.755054i −0.997371 0.0724632i \(-0.976914\pi\)
0.561440 + 0.827517i \(0.310247\pi\)
\(984\) 6.02030 + 7.60175i 0.191920 + 0.242335i
\(985\) −1.14888 1.98991i −0.0366063 0.0634039i
\(986\) −34.2137 30.5207i −1.08959 0.971978i
\(987\) 0 0
\(988\) −13.4468 + 1.53923i −0.427799 + 0.0489696i
\(989\) −0.865226 + 0.499538i −0.0275126 + 0.0158844i
\(990\) −19.1663 18.8805i −0.609146 0.600063i
\(991\) −18.0000 10.3923i −0.571789 0.330122i 0.186075 0.982536i \(-0.440423\pi\)
−0.757863 + 0.652413i \(0.773757\pi\)
\(992\) −27.7054 + 0.640999i −0.879647 + 0.0203517i
\(993\) −6.30019 + 1.52216i −0.199930 + 0.0483042i
\(994\) 0 0
\(995\) −4.60206 −0.145895
\(996\) 18.0305 + 15.0690i 0.571318 + 0.477479i
\(997\) −6.02119 + 10.4290i −0.190693 + 0.330290i −0.945480 0.325680i \(-0.894407\pi\)
0.754787 + 0.655970i \(0.227740\pi\)
\(998\) −15.1707 45.9658i −0.480219 1.45502i
\(999\) 9.14586 26.1867i 0.289362 0.828511i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.d.263.5 24
3.2 odd 2 inner 588.2.n.d.263.7 24
4.3 odd 2 588.2.n.h.263.4 24
7.2 even 3 588.2.n.h.275.10 24
7.3 odd 6 588.2.e.f.491.5 24
7.4 even 3 588.2.e.f.491.6 yes 24
7.5 odd 6 588.2.n.h.275.9 24
7.6 odd 2 inner 588.2.n.d.263.6 24
12.11 even 2 588.2.n.h.263.10 24
21.2 odd 6 588.2.n.h.275.4 24
21.5 even 6 588.2.n.h.275.3 24
21.11 odd 6 588.2.e.f.491.19 yes 24
21.17 even 6 588.2.e.f.491.20 yes 24
21.20 even 2 inner 588.2.n.d.263.8 24
28.3 even 6 588.2.e.f.491.18 yes 24
28.11 odd 6 588.2.e.f.491.17 yes 24
28.19 even 6 inner 588.2.n.d.275.8 24
28.23 odd 6 inner 588.2.n.d.275.7 24
28.27 even 2 588.2.n.h.263.3 24
84.11 even 6 588.2.e.f.491.8 yes 24
84.23 even 6 inner 588.2.n.d.275.5 24
84.47 odd 6 inner 588.2.n.d.275.6 24
84.59 odd 6 588.2.e.f.491.7 yes 24
84.83 odd 2 588.2.n.h.263.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.f.491.5 24 7.3 odd 6
588.2.e.f.491.6 yes 24 7.4 even 3
588.2.e.f.491.7 yes 24 84.59 odd 6
588.2.e.f.491.8 yes 24 84.11 even 6
588.2.e.f.491.17 yes 24 28.11 odd 6
588.2.e.f.491.18 yes 24 28.3 even 6
588.2.e.f.491.19 yes 24 21.11 odd 6
588.2.e.f.491.20 yes 24 21.17 even 6
588.2.n.d.263.5 24 1.1 even 1 trivial
588.2.n.d.263.6 24 7.6 odd 2 inner
588.2.n.d.263.7 24 3.2 odd 2 inner
588.2.n.d.263.8 24 21.20 even 2 inner
588.2.n.d.275.5 24 84.23 even 6 inner
588.2.n.d.275.6 24 84.47 odd 6 inner
588.2.n.d.275.7 24 28.23 odd 6 inner
588.2.n.d.275.8 24 28.19 even 6 inner
588.2.n.h.263.3 24 28.27 even 2
588.2.n.h.263.4 24 4.3 odd 2
588.2.n.h.263.9 24 84.83 odd 2
588.2.n.h.263.10 24 12.11 even 2
588.2.n.h.275.3 24 21.5 even 6
588.2.n.h.275.4 24 21.2 odd 6
588.2.n.h.275.9 24 7.5 odd 6
588.2.n.h.275.10 24 7.2 even 3