Properties

Label 588.2.n.c.263.1
Level $588$
Weight $2$
Character 588.263
Analytic conductor $4.695$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.11007531417600000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.1
Root \(0.159959 + 0.596975i\) of defining polynomial
Character \(\chi\) \(=\) 588.263
Dual form 588.2.n.c.275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40126 - 0.190983i) q^{2} +(-1.40294 + 1.01575i) q^{3} +(1.92705 + 0.535233i) q^{4} +(-2.12132 + 1.22474i) q^{5} +(2.15988 - 1.15539i) q^{6} +(-2.59808 - 1.11803i) q^{8} +(0.936492 - 2.85008i) q^{9} +(3.20642 - 1.31105i) q^{10} +(1.73205 - 3.00000i) q^{11} +(-3.24721 + 1.20651i) q^{12} +5.47723 q^{13} +(1.73205 - 3.87298i) q^{15} +(3.42705 + 2.06284i) q^{16} +(4.24264 + 2.44949i) q^{17} +(-1.85658 + 3.81485i) q^{18} +(-3.67423 + 2.12132i) q^{19} +(-4.74342 + 1.22474i) q^{20} +(-3.00000 + 3.87298i) q^{22} +(4.78060 - 1.07047i) q^{24} +(0.500000 - 0.866025i) q^{25} +(-7.67501 - 1.04606i) q^{26} +(1.58114 + 4.94975i) q^{27} +4.47214i q^{29} +(-3.16672 + 5.09626i) q^{30} +(-7.34847 - 4.24264i) q^{31} +(-4.40822 - 3.54508i) q^{32} +(0.617292 + 5.96816i) q^{33} +(-5.47723 - 4.24264i) q^{34} +(3.33013 - 4.99102i) q^{36} +(1.00000 + 1.73205i) q^{37} +(5.55369 - 2.27080i) q^{38} +(-7.68423 + 5.56351i) q^{39} +(6.88066 - 0.810272i) q^{40} +7.74597i q^{43} +(4.94345 - 4.85410i) q^{44} +(1.50403 + 7.19291i) q^{45} +(-6.90329 + 0.586988i) q^{48} +(-0.866025 + 1.11803i) q^{50} +(-8.44025 + 0.872983i) q^{51} +(10.5549 + 2.93159i) q^{52} +(3.87298 + 2.23607i) q^{53} +(-1.27027 - 7.23785i) q^{54} +8.48528i q^{55} +(3.00000 - 6.70820i) q^{57} +(0.854102 - 6.26662i) q^{58} +(-4.74342 + 8.21584i) q^{59} +(5.41070 - 6.53639i) q^{60} +(2.73861 + 4.74342i) q^{61} +(9.48683 + 7.34847i) q^{62} +(5.50000 + 5.80948i) q^{64} +(-11.6190 + 6.70820i) q^{65} +(0.274831 - 8.48083i) q^{66} +(6.70820 + 3.87298i) q^{67} +(6.86474 + 6.99109i) q^{68} -3.46410 q^{71} +(-5.61957 + 6.35771i) q^{72} +(-5.47723 + 9.48683i) q^{73} +(-1.07047 - 2.61803i) q^{74} +(0.178197 + 1.72286i) q^{75} +(-8.21584 + 2.12132i) q^{76} +(11.8301 - 6.32836i) q^{78} +(13.4164 - 7.74597i) q^{79} +(-9.79633 - 0.178688i) q^{80} +(-7.24597 - 5.33816i) q^{81} +9.48683 q^{83} -12.0000 q^{85} +(1.47935 - 10.8541i) q^{86} +(-4.54259 - 6.27415i) q^{87} +(-7.85410 + 5.85774i) q^{88} +(8.48528 - 4.89898i) q^{89} +(-0.733809 - 10.3664i) q^{90} +(14.6190 - 1.51205i) q^{93} +(5.19615 - 9.00000i) q^{95} +(9.78540 + 0.495889i) q^{96} +(-6.92820 - 7.74597i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 16 q^{9} + 28 q^{16} - 20 q^{18} - 48 q^{22} + 8 q^{25} - 12 q^{30} - 16 q^{36} + 16 q^{37} + 48 q^{57} - 40 q^{58} + 60 q^{60} + 88 q^{64} - 20 q^{72} + 120 q^{78} + 8 q^{81} - 192 q^{85}+ \cdots + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40126 0.190983i −0.990839 0.135045i
\(3\) −1.40294 + 1.01575i −0.809989 + 0.586445i
\(4\) 1.92705 + 0.535233i 0.963525 + 0.267617i
\(5\) −2.12132 + 1.22474i −0.948683 + 0.547723i −0.892672 0.450708i \(-0.851172\pi\)
−0.0560116 + 0.998430i \(0.517838\pi\)
\(6\) 2.15988 1.15539i 0.881766 0.471688i
\(7\) 0 0
\(8\) −2.59808 1.11803i −0.918559 0.395285i
\(9\) 0.936492 2.85008i 0.312164 0.950028i
\(10\) 3.20642 1.31105i 1.01396 0.414590i
\(11\) 1.73205 3.00000i 0.522233 0.904534i −0.477432 0.878668i \(-0.658432\pi\)
0.999665 0.0258656i \(-0.00823419\pi\)
\(12\) −3.24721 + 1.20651i −0.937387 + 0.348289i
\(13\) 5.47723 1.51911 0.759555 0.650444i \(-0.225417\pi\)
0.759555 + 0.650444i \(0.225417\pi\)
\(14\) 0 0
\(15\) 1.73205 3.87298i 0.447214 1.00000i
\(16\) 3.42705 + 2.06284i 0.856763 + 0.515711i
\(17\) 4.24264 + 2.44949i 1.02899 + 0.594089i 0.916696 0.399586i \(-0.130846\pi\)
0.112296 + 0.993675i \(0.464180\pi\)
\(18\) −1.85658 + 3.81485i −0.437601 + 0.899169i
\(19\) −3.67423 + 2.12132i −0.842927 + 0.486664i −0.858258 0.513218i \(-0.828453\pi\)
0.0153309 + 0.999882i \(0.495120\pi\)
\(20\) −4.74342 + 1.22474i −1.06066 + 0.273861i
\(21\) 0 0
\(22\) −3.00000 + 3.87298i −0.639602 + 0.825723i
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 4.78060 1.07047i 0.975835 0.218508i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) −7.67501 1.04606i −1.50519 0.205149i
\(27\) 1.58114 + 4.94975i 0.304290 + 0.952579i
\(28\) 0 0
\(29\) 4.47214i 0.830455i 0.909718 + 0.415227i \(0.136298\pi\)
−0.909718 + 0.415227i \(0.863702\pi\)
\(30\) −3.16672 + 5.09626i −0.578162 + 0.930445i
\(31\) −7.34847 4.24264i −1.31982 0.762001i −0.336124 0.941818i \(-0.609116\pi\)
−0.983700 + 0.179817i \(0.942449\pi\)
\(32\) −4.40822 3.54508i −0.779270 0.626688i
\(33\) 0.617292 + 5.96816i 0.107457 + 1.03892i
\(34\) −5.47723 4.24264i −0.939336 0.727607i
\(35\) 0 0
\(36\) 3.33013 4.99102i 0.555021 0.831836i
\(37\) 1.00000 + 1.73205i 0.164399 + 0.284747i 0.936442 0.350823i \(-0.114098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 5.55369 2.27080i 0.900927 0.368373i
\(39\) −7.68423 + 5.56351i −1.23046 + 0.890874i
\(40\) 6.88066 0.810272i 1.08793 0.128115i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 7.74597i 1.18125i 0.806947 + 0.590624i \(0.201119\pi\)
−0.806947 + 0.590624i \(0.798881\pi\)
\(44\) 4.94345 4.85410i 0.745253 0.731783i
\(45\) 1.50403 + 7.19291i 0.224207 + 1.07226i
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −6.90329 + 0.586988i −0.996404 + 0.0847245i
\(49\) 0 0
\(50\) −0.866025 + 1.11803i −0.122474 + 0.158114i
\(51\) −8.44025 + 0.872983i −1.18187 + 0.122242i
\(52\) 10.5549 + 2.93159i 1.46370 + 0.406539i
\(53\) 3.87298 + 2.23607i 0.531995 + 0.307148i 0.741829 0.670590i \(-0.233959\pi\)
−0.209833 + 0.977737i \(0.567292\pi\)
\(54\) −1.27027 7.23785i −0.172861 0.984946i
\(55\) 8.48528i 1.14416i
\(56\) 0 0
\(57\) 3.00000 6.70820i 0.397360 0.888523i
\(58\) 0.854102 6.26662i 0.112149 0.822847i
\(59\) −4.74342 + 8.21584i −0.617540 + 1.06961i 0.372393 + 0.928075i \(0.378537\pi\)
−0.989933 + 0.141536i \(0.954796\pi\)
\(60\) 5.41070 6.53639i 0.698518 0.843844i
\(61\) 2.73861 + 4.74342i 0.350643 + 0.607332i 0.986362 0.164588i \(-0.0526296\pi\)
−0.635719 + 0.771921i \(0.719296\pi\)
\(62\) 9.48683 + 7.34847i 1.20483 + 0.933257i
\(63\) 0 0
\(64\) 5.50000 + 5.80948i 0.687500 + 0.726184i
\(65\) −11.6190 + 6.70820i −1.44115 + 0.832050i
\(66\) 0.274831 8.48083i 0.0338294 1.04392i
\(67\) 6.70820 + 3.87298i 0.819538 + 0.473160i 0.850257 0.526368i \(-0.176447\pi\)
−0.0307194 + 0.999528i \(0.509780\pi\)
\(68\) 6.86474 + 6.99109i 0.832472 + 0.847795i
\(69\) 0 0
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) −5.61957 + 6.35771i −0.662272 + 0.749263i
\(73\) −5.47723 + 9.48683i −0.641061 + 1.11035i 0.344136 + 0.938920i \(0.388172\pi\)
−0.985196 + 0.171430i \(0.945161\pi\)
\(74\) −1.07047 2.61803i −0.124439 0.304340i
\(75\) 0.178197 + 1.72286i 0.0205764 + 0.198939i
\(76\) −8.21584 + 2.12132i −0.942421 + 0.243332i
\(77\) 0 0
\(78\) 11.8301 6.32836i 1.33950 0.716545i
\(79\) 13.4164 7.74597i 1.50946 0.871489i 0.509525 0.860456i \(-0.329821\pi\)
0.999939 0.0110333i \(-0.00351208\pi\)
\(80\) −9.79633 0.178688i −1.09526 0.0199779i
\(81\) −7.24597 5.33816i −0.805107 0.593129i
\(82\) 0 0
\(83\) 9.48683 1.04132 0.520658 0.853766i \(-0.325687\pi\)
0.520658 + 0.853766i \(0.325687\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) 1.47935 10.8541i 0.159522 1.17043i
\(87\) −4.54259 6.27415i −0.487016 0.672659i
\(88\) −7.85410 + 5.85774i −0.837250 + 0.624437i
\(89\) 8.48528 4.89898i 0.899438 0.519291i 0.0224202 0.999749i \(-0.492863\pi\)
0.877018 + 0.480458i \(0.159529\pi\)
\(90\) −0.733809 10.3664i −0.0773503 1.09271i
\(91\) 0 0
\(92\) 0 0
\(93\) 14.6190 1.51205i 1.51591 0.156792i
\(94\) 0 0
\(95\) 5.19615 9.00000i 0.533114 0.923381i
\(96\) 9.78540 + 0.495889i 0.998718 + 0.0506115i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) −6.92820 7.74597i −0.696311 0.778499i
\(100\) 1.42705 1.40126i 0.142705 0.140126i
\(101\) −6.36396 3.67423i −0.633238 0.365600i 0.148767 0.988872i \(-0.452470\pi\)
−0.782005 + 0.623272i \(0.785803\pi\)
\(102\) 11.9937 + 0.388670i 1.18755 + 0.0384840i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) −14.2302 6.12372i −1.39539 0.600481i
\(105\) 0 0
\(106\) −5.00000 3.87298i −0.485643 0.376177i
\(107\) 8.66025 + 15.0000i 0.837218 + 1.45010i 0.892211 + 0.451618i \(0.149153\pi\)
−0.0549930 + 0.998487i \(0.517514\pi\)
\(108\) 0.397666 + 10.3847i 0.0382655 + 0.999268i
\(109\) −5.00000 + 8.66025i −0.478913 + 0.829502i −0.999708 0.0241802i \(-0.992302\pi\)
0.520794 + 0.853682i \(0.325636\pi\)
\(110\) 1.62054 11.8901i 0.154513 1.13367i
\(111\) −3.16228 1.41421i −0.300150 0.134231i
\(112\) 0 0
\(113\) 4.47214i 0.420703i −0.977626 0.210352i \(-0.932539\pi\)
0.977626 0.210352i \(-0.0674609\pi\)
\(114\) −5.48493 + 8.82698i −0.513711 + 0.826722i
\(115\) 0 0
\(116\) −2.39364 + 8.61803i −0.222243 + 0.800164i
\(117\) 5.12938 15.6106i 0.474211 1.44320i
\(118\) 8.21584 10.6066i 0.756329 0.976417i
\(119\) 0 0
\(120\) −8.83013 + 8.12581i −0.806077 + 0.741782i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −2.93159 7.16978i −0.265414 0.649122i
\(123\) 0 0
\(124\) −11.8901 12.1089i −1.06776 1.08741i
\(125\) 9.79796i 0.876356i
\(126\) 0 0
\(127\) 7.74597i 0.687343i 0.939090 + 0.343672i \(0.111671\pi\)
−0.939090 + 0.343672i \(0.888329\pi\)
\(128\) −6.59741 9.19098i −0.583134 0.812376i
\(129\) −7.86799 10.8671i −0.692738 0.956798i
\(130\) 17.5623 7.18091i 1.54032 0.629807i
\(131\) 4.74342 + 8.21584i 0.414434 + 0.717821i 0.995369 0.0961291i \(-0.0306462\pi\)
−0.580935 + 0.813950i \(0.697313\pi\)
\(132\) −2.00480 + 11.8313i −0.174496 + 1.02979i
\(133\) 0 0
\(134\) −8.66025 6.70820i −0.748132 0.579501i
\(135\) −9.41628 8.56351i −0.810424 0.737029i
\(136\) −8.28409 11.1074i −0.710355 0.952450i
\(137\) 7.74597 + 4.47214i 0.661783 + 0.382080i 0.792956 0.609279i \(-0.208541\pi\)
−0.131173 + 0.991359i \(0.541874\pi\)
\(138\) 0 0
\(139\) 4.24264i 0.359856i −0.983680 0.179928i \(-0.942414\pi\)
0.983680 0.179928i \(-0.0575865\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.85410 + 0.661585i 0.407347 + 0.0555189i
\(143\) 9.48683 16.4317i 0.793329 1.37409i
\(144\) 9.08868 7.83555i 0.757390 0.652963i
\(145\) −5.47723 9.48683i −0.454859 0.787839i
\(146\) 9.48683 12.2474i 0.785136 1.01361i
\(147\) 0 0
\(148\) 1.00000 + 3.87298i 0.0821995 + 0.318357i
\(149\) −3.87298 + 2.23607i −0.317287 + 0.183186i −0.650183 0.759778i \(-0.725308\pi\)
0.332896 + 0.942964i \(0.391974\pi\)
\(150\) 0.0793369 2.44820i 0.00647783 0.199895i
\(151\) −6.70820 3.87298i −0.545906 0.315179i 0.201563 0.979476i \(-0.435398\pi\)
−0.747469 + 0.664297i \(0.768731\pi\)
\(152\) 11.9176 1.40343i 0.966649 0.113833i
\(153\) 10.9545 9.79796i 0.885615 0.792118i
\(154\) 0 0
\(155\) 20.7846 1.66946
\(156\) −17.7857 + 6.60831i −1.42399 + 0.529088i
\(157\) 2.73861 4.74342i 0.218565 0.378566i −0.735804 0.677194i \(-0.763196\pi\)
0.954370 + 0.298628i \(0.0965291\pi\)
\(158\) −20.2792 + 8.29180i −1.61333 + 0.659660i
\(159\) −7.70486 + 0.796921i −0.611035 + 0.0632000i
\(160\) 13.6931 + 2.12132i 1.08253 + 0.167705i
\(161\) 0 0
\(162\) 9.13397 + 8.86400i 0.717633 + 0.696422i
\(163\) −6.70820 + 3.87298i −0.525427 + 0.303355i −0.739152 0.673538i \(-0.764774\pi\)
0.213725 + 0.976894i \(0.431440\pi\)
\(164\) 0 0
\(165\) −8.61895 11.9044i −0.670984 0.926753i
\(166\) −13.2935 1.81182i −1.03178 0.140625i
\(167\) −18.9737 −1.46823 −0.734113 0.679027i \(-0.762402\pi\)
−0.734113 + 0.679027i \(0.762402\pi\)
\(168\) 0 0
\(169\) 17.0000 1.30769
\(170\) 16.8151 + 2.29180i 1.28966 + 0.175773i
\(171\) 2.60505 + 12.4585i 0.199213 + 0.952724i
\(172\) −4.14590 + 14.9269i −0.316122 + 1.13816i
\(173\) −2.12132 + 1.22474i −0.161281 + 0.0931156i −0.578468 0.815705i \(-0.696349\pi\)
0.417187 + 0.908821i \(0.363016\pi\)
\(174\) 5.16708 + 9.65926i 0.391715 + 0.732266i
\(175\) 0 0
\(176\) 12.1244 6.70820i 0.913908 0.505650i
\(177\) −1.69052 16.3445i −0.127068 1.22853i
\(178\) −12.8257 + 5.24419i −0.961326 + 0.393069i
\(179\) −5.19615 + 9.00000i −0.388379 + 0.672692i −0.992232 0.124404i \(-0.960298\pi\)
0.603853 + 0.797096i \(0.293631\pi\)
\(180\) −0.951543 + 14.6661i −0.0709239 + 1.09315i
\(181\) −16.4317 −1.22136 −0.610678 0.791879i \(-0.709103\pi\)
−0.610678 + 0.791879i \(0.709103\pi\)
\(182\) 0 0
\(183\) −8.66025 3.87298i −0.640184 0.286299i
\(184\) 0 0
\(185\) −4.24264 2.44949i −0.311925 0.180090i
\(186\) −20.7737 0.673196i −1.52320 0.0493611i
\(187\) 14.6969 8.48528i 1.07475 0.620505i
\(188\) 0 0
\(189\) 0 0
\(190\) −9.00000 + 11.6190i −0.652929 + 0.842927i
\(191\) 1.73205 + 3.00000i 0.125327 + 0.217072i 0.921861 0.387522i \(-0.126669\pi\)
−0.796534 + 0.604594i \(0.793335\pi\)
\(192\) −13.6172 2.56371i −0.982735 0.185020i
\(193\) 8.00000 13.8564i 0.575853 0.997406i −0.420096 0.907480i \(-0.638004\pi\)
0.995948 0.0899262i \(-0.0286631\pi\)
\(194\) 0 0
\(195\) 9.48683 21.2132i 0.679366 1.51911i
\(196\) 0 0
\(197\) 22.3607i 1.59313i 0.604551 + 0.796566i \(0.293352\pi\)
−0.604551 + 0.796566i \(0.706648\pi\)
\(198\) 8.22886 + 12.1773i 0.584799 + 0.865401i
\(199\) 14.6969 + 8.48528i 1.04184 + 0.601506i 0.920353 0.391088i \(-0.127901\pi\)
0.121485 + 0.992593i \(0.461234\pi\)
\(200\) −2.26728 + 1.69098i −0.160321 + 0.119571i
\(201\) −13.3452 + 1.38031i −0.941299 + 0.0973594i
\(202\) 8.21584 + 6.36396i 0.578064 + 0.447767i
\(203\) 0 0
\(204\) −16.7321 2.83522i −1.17148 0.198505i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 18.7707 + 11.2987i 1.30152 + 0.783421i
\(209\) 14.6969i 1.01661i
\(210\) 0 0
\(211\) 7.74597i 0.533254i −0.963800 0.266627i \(-0.914091\pi\)
0.963800 0.266627i \(-0.0859092\pi\)
\(212\) 6.26662 + 6.38197i 0.430393 + 0.438315i
\(213\) 4.85993 3.51867i 0.332997 0.241095i
\(214\) −9.27051 22.6728i −0.633719 1.54988i
\(215\) −9.48683 16.4317i −0.646997 1.12063i
\(216\) 1.42607 14.6276i 0.0970316 0.995281i
\(217\) 0 0
\(218\) 8.66025 11.1803i 0.586546 0.757228i
\(219\) −1.95205 18.8730i −0.131907 1.27532i
\(220\) −4.54160 + 16.3516i −0.306195 + 1.10242i
\(221\) 23.2379 + 13.4164i 1.56315 + 0.902485i
\(222\) 4.16108 + 2.58562i 0.279273 + 0.173535i
\(223\) 8.48528i 0.568216i −0.958792 0.284108i \(-0.908302\pi\)
0.958792 0.284108i \(-0.0916975\pi\)
\(224\) 0 0
\(225\) −2.00000 2.23607i −0.133333 0.149071i
\(226\) −0.854102 + 6.26662i −0.0568140 + 0.416849i
\(227\) −4.74342 + 8.21584i −0.314832 + 0.545304i −0.979402 0.201922i \(-0.935281\pi\)
0.664570 + 0.747226i \(0.268615\pi\)
\(228\) 9.37161 11.3214i 0.620650 0.749775i
\(229\) 2.73861 + 4.74342i 0.180973 + 0.313454i 0.942212 0.335017i \(-0.108742\pi\)
−0.761239 + 0.648471i \(0.775409\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.00000 11.6190i 0.328266 0.762821i
\(233\) −7.74597 + 4.47214i −0.507455 + 0.292979i −0.731787 0.681533i \(-0.761313\pi\)
0.224332 + 0.974513i \(0.427980\pi\)
\(234\) −10.1689 + 20.8948i −0.664764 + 1.36594i
\(235\) 0 0
\(236\) −13.5382 + 13.2935i −0.881261 + 0.865334i
\(237\) −10.9545 + 24.4949i −0.711568 + 1.59111i
\(238\) 0 0
\(239\) 6.92820 0.448148 0.224074 0.974572i \(-0.428064\pi\)
0.224074 + 0.974572i \(0.428064\pi\)
\(240\) 13.9252 9.69996i 0.898867 0.626130i
\(241\) 10.9545 18.9737i 0.705638 1.22220i −0.260822 0.965387i \(-0.583994\pi\)
0.966461 0.256814i \(-0.0826729\pi\)
\(242\) 0.535233 + 1.30902i 0.0344061 + 0.0841468i
\(243\) 15.5879 + 0.129018i 0.999966 + 0.00827648i
\(244\) 2.73861 + 10.6066i 0.175322 + 0.679018i
\(245\) 0 0
\(246\) 0 0
\(247\) −20.1246 + 11.6190i −1.28050 + 0.739296i
\(248\) 14.3485 + 19.2385i 0.911129 + 1.22165i
\(249\) −13.3095 + 9.63628i −0.843454 + 0.610674i
\(250\) −1.87124 + 13.7295i −0.118348 + 0.868328i
\(251\) 9.48683 0.598804 0.299402 0.954127i \(-0.403213\pi\)
0.299402 + 0.954127i \(0.403213\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.47935 10.8541i 0.0928225 0.681047i
\(255\) 16.8353 12.1890i 1.05427 0.763307i
\(256\) 7.48936 + 14.1389i 0.468085 + 0.883684i
\(257\) −4.24264 + 2.44949i −0.264649 + 0.152795i −0.626453 0.779459i \(-0.715494\pi\)
0.361805 + 0.932254i \(0.382161\pi\)
\(258\) 8.94965 + 16.7303i 0.557181 + 1.04158i
\(259\) 0 0
\(260\) −25.9808 + 6.70820i −1.61126 + 0.416025i
\(261\) 12.7460 + 4.18812i 0.788956 + 0.259238i
\(262\) −5.07767 12.4184i −0.313699 0.767213i
\(263\) 1.73205 3.00000i 0.106803 0.184988i −0.807671 0.589634i \(-0.799272\pi\)
0.914473 + 0.404646i \(0.132605\pi\)
\(264\) 5.06883 16.1959i 0.311965 0.996788i
\(265\) −10.9545 −0.672927
\(266\) 0 0
\(267\) −6.92820 + 15.4919i −0.423999 + 0.948091i
\(268\) 10.8541 + 11.0539i 0.663020 + 0.675224i
\(269\) 2.12132 + 1.22474i 0.129339 + 0.0746740i 0.563274 0.826270i \(-0.309542\pi\)
−0.433934 + 0.900944i \(0.642875\pi\)
\(270\) 11.5592 + 13.7980i 0.703468 + 0.839722i
\(271\) −7.34847 + 4.24264i −0.446388 + 0.257722i −0.706303 0.707909i \(-0.749639\pi\)
0.259916 + 0.965631i \(0.416305\pi\)
\(272\) 9.48683 + 17.1464i 0.575224 + 1.03965i
\(273\) 0 0
\(274\) −10.0000 7.74597i −0.604122 0.467951i
\(275\) −1.73205 3.00000i −0.104447 0.180907i
\(276\) 0 0
\(277\) −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i \(-0.852470\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(278\) −0.810272 + 5.94504i −0.0485969 + 0.356560i
\(279\) −18.9737 + 16.9706i −1.13592 + 1.01600i
\(280\) 0 0
\(281\) 8.94427i 0.533571i −0.963756 0.266785i \(-0.914039\pi\)
0.963756 0.266785i \(-0.0859614\pi\)
\(282\) 0 0
\(283\) 25.7196 + 14.8492i 1.52887 + 0.882696i 0.999409 + 0.0343638i \(0.0109405\pi\)
0.529465 + 0.848332i \(0.322393\pi\)
\(284\) −6.67550 1.85410i −0.396118 0.110021i
\(285\) 1.85188 + 17.9045i 0.109696 + 1.06057i
\(286\) −16.4317 + 21.2132i −0.971625 + 1.25436i
\(287\) 0 0
\(288\) −14.2321 + 9.24385i −0.838632 + 0.544699i
\(289\) 3.50000 + 6.06218i 0.205882 + 0.356599i
\(290\) 5.86319 + 14.3396i 0.344298 + 0.842048i
\(291\) 0 0
\(292\) −15.6326 + 15.3500i −0.914826 + 0.898292i
\(293\) 2.44949i 0.143101i 0.997437 + 0.0715504i \(0.0227947\pi\)
−0.997437 + 0.0715504i \(0.977205\pi\)
\(294\) 0 0
\(295\) 23.2379i 1.35296i
\(296\) −0.661585 5.61803i −0.0384538 0.326542i
\(297\) 17.5879 + 3.82980i 1.02055 + 0.222227i
\(298\) 5.85410 2.39364i 0.339119 0.138660i
\(299\) 0 0
\(300\) −0.578737 + 3.41542i −0.0334134 + 0.197189i
\(301\) 0 0
\(302\) 8.66025 + 6.70820i 0.498342 + 0.386014i
\(303\) 12.6604 1.30948i 0.727320 0.0752274i
\(304\) −16.9677 0.309496i −0.973167 0.0177508i
\(305\) −11.6190 6.70820i −0.665299 0.384111i
\(306\) −17.2213 + 11.6374i −0.984474 + 0.665264i
\(307\) 21.2132i 1.21070i −0.795959 0.605351i \(-0.793033\pi\)
0.795959 0.605351i \(-0.206967\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −29.1246 3.96951i −1.65417 0.225453i
\(311\) 9.48683 16.4317i 0.537949 0.931755i −0.461065 0.887366i \(-0.652533\pi\)
0.999014 0.0443887i \(-0.0141340\pi\)
\(312\) 26.1844 5.86319i 1.48240 0.331938i
\(313\) 5.47723 + 9.48683i 0.309591 + 0.536228i 0.978273 0.207321i \(-0.0664745\pi\)
−0.668682 + 0.743549i \(0.733141\pi\)
\(314\) −4.74342 + 6.12372i −0.267686 + 0.345582i
\(315\) 0 0
\(316\) 30.0000 7.74597i 1.68763 0.435745i
\(317\) −3.87298 + 2.23607i −0.217528 + 0.125590i −0.604805 0.796373i \(-0.706749\pi\)
0.387277 + 0.921963i \(0.373416\pi\)
\(318\) 10.9487 + 0.354805i 0.613973 + 0.0198965i
\(319\) 13.4164 + 7.74597i 0.751175 + 0.433691i
\(320\) −18.7824 5.58766i −1.04997 0.312360i
\(321\) −27.3861 12.2474i −1.52854 0.683586i
\(322\) 0 0
\(323\) −20.7846 −1.15649
\(324\) −11.1062 14.1652i −0.617010 0.786955i
\(325\) 2.73861 4.74342i 0.151911 0.263117i
\(326\) 10.1396 4.14590i 0.561581 0.229620i
\(327\) −1.78197 17.2286i −0.0985432 0.952744i
\(328\) 0 0
\(329\) 0 0
\(330\) 9.80385 + 18.3272i 0.539684 + 1.00888i
\(331\) 20.1246 11.6190i 1.10615 0.638635i 0.168320 0.985732i \(-0.446166\pi\)
0.937829 + 0.347097i \(0.112833\pi\)
\(332\) 18.2816 + 5.07767i 1.00333 + 0.278673i
\(333\) 5.87298 1.22803i 0.321838 0.0672958i
\(334\) 26.5870 + 3.62365i 1.45478 + 0.198277i
\(335\) −18.9737 −1.03664
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) −23.8214 3.24671i −1.29571 0.176598i
\(339\) 4.54259 + 6.27415i 0.246719 + 0.340765i
\(340\) −23.1246 6.42280i −1.25411 0.348325i
\(341\) −25.4558 + 14.6969i −1.37851 + 0.795884i
\(342\) −1.27099 17.9551i −0.0687275 0.970899i
\(343\) 0 0
\(344\) 8.66025 20.1246i 0.466930 1.08505i
\(345\) 0 0
\(346\) 3.20642 1.31105i 0.172378 0.0704824i
\(347\) 12.1244 21.0000i 0.650870 1.12734i −0.332043 0.943264i \(-0.607738\pi\)
0.982912 0.184075i \(-0.0589288\pi\)
\(348\) −5.39566 14.5219i −0.289238 0.778458i
\(349\) 16.4317 0.879567 0.439784 0.898104i \(-0.355055\pi\)
0.439784 + 0.898104i \(0.355055\pi\)
\(350\) 0 0
\(351\) 8.66025 + 27.1109i 0.462250 + 1.44707i
\(352\) −18.2705 + 7.08438i −0.973821 + 0.377599i
\(353\) 12.7279 + 7.34847i 0.677439 + 0.391120i 0.798889 0.601478i \(-0.205421\pi\)
−0.121450 + 0.992597i \(0.538755\pi\)
\(354\) −0.752656 + 23.2257i −0.0400032 + 1.23443i
\(355\) 7.34847 4.24264i 0.390016 0.225176i
\(356\) 18.9737 4.89898i 1.00560 0.259645i
\(357\) 0 0
\(358\) 9.00000 11.6190i 0.475665 0.614081i
\(359\) 13.8564 + 24.0000i 0.731313 + 1.26667i 0.956322 + 0.292315i \(0.0944255\pi\)
−0.225009 + 0.974357i \(0.572241\pi\)
\(360\) 4.13433 20.3693i 0.217899 1.07355i
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 23.0250 + 3.13817i 1.21017 + 0.164939i
\(363\) 1.58114 + 0.707107i 0.0829883 + 0.0371135i
\(364\) 0 0
\(365\) 26.8328i 1.40449i
\(366\) 11.3956 + 7.08101i 0.595657 + 0.370130i
\(367\) −22.0454 12.7279i −1.15076 0.664392i −0.201688 0.979450i \(-0.564643\pi\)
−0.949073 + 0.315058i \(0.897976\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 5.47723 + 4.24264i 0.284747 + 0.220564i
\(371\) 0 0
\(372\) 28.9808 + 4.91075i 1.50258 + 0.254610i
\(373\) −13.0000 22.5167i −0.673114 1.16587i −0.977016 0.213165i \(-0.931623\pi\)
0.303902 0.952703i \(-0.401711\pi\)
\(374\) −22.2148 + 9.08321i −1.14870 + 0.469681i
\(375\) 9.95231 + 13.7460i 0.513935 + 0.709839i
\(376\) 0 0
\(377\) 24.4949i 1.26155i
\(378\) 0 0
\(379\) 7.74597i 0.397884i −0.980011 0.198942i \(-0.936250\pi\)
0.980011 0.198942i \(-0.0637505\pi\)
\(380\) 14.8303 14.5623i 0.760781 0.747031i
\(381\) −7.86799 10.8671i −0.403089 0.556740i
\(382\) −1.85410 4.53457i −0.0948641 0.232009i
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 18.5916 + 6.19307i 0.948746 + 0.316039i
\(385\) 0 0
\(386\) −13.8564 + 17.8885i −0.705273 + 0.910503i
\(387\) 22.0767 + 7.25403i 1.12222 + 0.368743i
\(388\) 0 0
\(389\) −27.1109 15.6525i −1.37458 0.793612i −0.383076 0.923717i \(-0.625135\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(390\) −17.3449 + 27.9134i −0.878291 + 1.41345i
\(391\) 0 0
\(392\) 0 0
\(393\) −15.0000 6.70820i −0.756650 0.338384i
\(394\) 4.27051 31.3331i 0.215145 1.57854i
\(395\) −18.9737 + 32.8634i −0.954669 + 1.65353i
\(396\) −9.20510 18.6351i −0.462574 0.936448i
\(397\) −19.1703 33.2039i −0.962129 1.66646i −0.717138 0.696932i \(-0.754548\pi\)
−0.244992 0.969525i \(-0.578785\pi\)
\(398\) −18.9737 14.6969i −0.951064 0.736691i
\(399\) 0 0
\(400\) 3.50000 1.93649i 0.175000 0.0968246i
\(401\) 3.87298 2.23607i 0.193408 0.111664i −0.400169 0.916441i \(-0.631049\pi\)
0.593577 + 0.804777i \(0.297715\pi\)
\(402\) 18.9637 + 0.614541i 0.945824 + 0.0306505i
\(403\) −40.2492 23.2379i −2.00496 1.15756i
\(404\) −10.2971 10.4866i −0.512300 0.521730i
\(405\) 21.9089 + 2.44949i 1.08866 + 0.121716i
\(406\) 0 0
\(407\) 6.92820 0.343418
\(408\) 22.9045 + 7.16841i 1.13394 + 0.354889i
\(409\) 5.47723 9.48683i 0.270831 0.469094i −0.698244 0.715860i \(-0.746035\pi\)
0.969075 + 0.246767i \(0.0793681\pi\)
\(410\) 0 0
\(411\) −15.4097 + 1.59384i −0.760106 + 0.0786184i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.1246 + 11.6190i −0.987878 + 0.570352i
\(416\) −24.1448 19.4172i −1.18380 0.952008i
\(417\) 4.30948 + 5.95218i 0.211036 + 0.291479i
\(418\) 2.80687 20.5942i 0.137288 1.00730i
\(419\) 28.4605 1.39039 0.695193 0.718823i \(-0.255319\pi\)
0.695193 + 0.718823i \(0.255319\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −1.47935 + 10.8541i −0.0720135 + 0.528369i
\(423\) 0 0
\(424\) −7.56231 10.1396i −0.367258 0.492423i
\(425\) 4.24264 2.44949i 0.205798 0.118818i
\(426\) −7.48203 + 4.00240i −0.362506 + 0.193917i
\(427\) 0 0
\(428\) 8.66025 + 33.5410i 0.418609 + 1.62127i
\(429\) 3.38105 + 32.6890i 0.163239 + 1.57824i
\(430\) 10.1553 + 24.8369i 0.489734 + 1.19774i
\(431\) −10.3923 + 18.0000i −0.500580 + 0.867029i 0.499420 + 0.866360i \(0.333546\pi\)
−1.00000 0.000669521i \(0.999787\pi\)
\(432\) −4.79191 + 20.2247i −0.230551 + 0.973060i
\(433\) 21.9089 1.05287 0.526437 0.850214i \(-0.323527\pi\)
0.526437 + 0.850214i \(0.323527\pi\)
\(434\) 0 0
\(435\) 17.3205 + 7.74597i 0.830455 + 0.371391i
\(436\) −14.2705 + 14.0126i −0.683433 + 0.671081i
\(437\) 0 0
\(438\) −0.869092 + 26.8187i −0.0415268 + 1.28145i
\(439\) −14.6969 + 8.48528i −0.701447 + 0.404980i −0.807886 0.589339i \(-0.799388\pi\)
0.106439 + 0.994319i \(0.466055\pi\)
\(440\) 9.48683 22.0454i 0.452267 1.05097i
\(441\) 0 0
\(442\) −30.0000 23.2379i −1.42695 1.10531i
\(443\) −15.5885 27.0000i −0.740630 1.28281i −0.952209 0.305448i \(-0.901194\pi\)
0.211579 0.977361i \(-0.432139\pi\)
\(444\) −5.33694 4.41782i −0.253280 0.209660i
\(445\) −12.0000 + 20.7846i −0.568855 + 0.985285i
\(446\) −1.62054 + 11.8901i −0.0767350 + 0.563011i
\(447\) 3.16228 7.07107i 0.149571 0.334450i
\(448\) 0 0
\(449\) 35.7771i 1.68843i 0.536009 + 0.844213i \(0.319931\pi\)
−0.536009 + 0.844213i \(0.680069\pi\)
\(450\) 2.37547 + 3.51528i 0.111981 + 0.165712i
\(451\) 0 0
\(452\) 2.39364 8.61803i 0.112587 0.405358i
\(453\) 13.3452 1.38031i 0.627013 0.0648525i
\(454\) 8.21584 10.6066i 0.385588 0.497792i
\(455\) 0 0
\(456\) −15.2942 + 14.0743i −0.716218 + 0.659091i
\(457\) 14.0000 + 24.2487i 0.654892 + 1.13431i 0.981921 + 0.189292i \(0.0606194\pi\)
−0.327028 + 0.945015i \(0.606047\pi\)
\(458\) −2.93159 7.16978i −0.136984 0.335022i
\(459\) −5.41615 + 24.8730i −0.252804 + 1.16097i
\(460\) 0 0
\(461\) 36.7423i 1.71126i −0.517587 0.855631i \(-0.673169\pi\)
0.517587 0.855631i \(-0.326831\pi\)
\(462\) 0 0
\(463\) 15.4919i 0.719971i 0.932958 + 0.359986i \(0.117218\pi\)
−0.932958 + 0.359986i \(0.882782\pi\)
\(464\) −9.22531 + 15.3262i −0.428274 + 0.711503i
\(465\) −29.1596 + 21.1120i −1.35224 + 0.979047i
\(466\) 11.7082 4.78727i 0.542372 0.221766i
\(467\) 14.2302 + 24.6475i 0.658497 + 1.14055i 0.981005 + 0.193984i \(0.0621410\pi\)
−0.322507 + 0.946567i \(0.604526\pi\)
\(468\) 18.2399 27.3369i 0.843138 1.26365i
\(469\) 0 0
\(470\) 0 0
\(471\) 0.976025 + 9.43649i 0.0449729 + 0.434811i
\(472\) 21.5093 16.0421i 0.990048 0.738396i
\(473\) 23.2379 + 13.4164i 1.06848 + 0.616887i
\(474\) 20.0281 32.2316i 0.919922 1.48045i
\(475\) 4.24264i 0.194666i
\(476\) 0 0
\(477\) 10.0000 8.94427i 0.457869 0.409530i
\(478\) −9.70820 1.32317i −0.444043 0.0605203i
\(479\) 18.9737 32.8634i 0.866929 1.50156i 0.00180988 0.999998i \(-0.499424\pi\)
0.865119 0.501567i \(-0.167243\pi\)
\(480\) −21.3653 + 10.9327i −0.975189 + 0.499006i
\(481\) 5.47723 + 9.48683i 0.249740 + 0.432562i
\(482\) −18.9737 + 24.4949i −0.864227 + 1.11571i
\(483\) 0 0
\(484\) −0.500000 1.93649i −0.0227273 0.0880223i
\(485\) 0 0
\(486\) −21.8181 3.15782i −0.989688 0.143241i
\(487\) 6.70820 + 3.87298i 0.303978 + 0.175502i 0.644228 0.764833i \(-0.277179\pi\)
−0.340251 + 0.940335i \(0.610512\pi\)
\(488\) −1.81182 15.3856i −0.0820174 0.696474i
\(489\) 5.47723 12.2474i 0.247689 0.553849i
\(490\) 0 0
\(491\) −31.1769 −1.40699 −0.703497 0.710698i \(-0.748379\pi\)
−0.703497 + 0.710698i \(0.748379\pi\)
\(492\) 0 0
\(493\) −10.9545 + 18.9737i −0.493364 + 0.854531i
\(494\) 30.4188 12.4377i 1.36861 0.559598i
\(495\) 24.1838 + 7.94640i 1.08698 + 0.357164i
\(496\) −16.4317 29.6985i −0.737804 1.33350i
\(497\) 0 0
\(498\) 20.4904 10.9610i 0.918196 0.491176i
\(499\) −20.1246 + 11.6190i −0.900901 + 0.520136i −0.877493 0.479590i \(-0.840785\pi\)
−0.0234088 + 0.999726i \(0.507452\pi\)
\(500\) 5.24419 18.8812i 0.234527 0.844391i
\(501\) 26.6190 19.2726i 1.18925 0.861034i
\(502\) −13.2935 1.81182i −0.593318 0.0808657i
\(503\) −18.9737 −0.845994 −0.422997 0.906131i \(-0.639022\pi\)
−0.422997 + 0.906131i \(0.639022\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −23.8500 + 17.2678i −1.05922 + 0.766890i
\(508\) −4.14590 + 14.9269i −0.183944 + 0.662273i
\(509\) 31.8198 18.3712i 1.41039 0.814288i 0.414963 0.909838i \(-0.363794\pi\)
0.995425 + 0.0955502i \(0.0304610\pi\)
\(510\) −25.9185 + 13.8647i −1.14769 + 0.613941i
\(511\) 0 0
\(512\) −7.79423 21.2426i −0.344459 0.938801i
\(513\) −16.3095 14.8324i −0.720081 0.654868i
\(514\) 6.41285 2.62210i 0.282859 0.115656i
\(515\) 0 0
\(516\) −9.34556 25.1527i −0.411415 1.10729i
\(517\) 0 0
\(518\) 0 0
\(519\) 1.73205 3.87298i 0.0760286 0.170005i
\(520\) 37.6869 4.43804i 1.65268 0.194621i
\(521\) −25.4558 14.6969i −1.11524 0.643885i −0.175059 0.984558i \(-0.556012\pi\)
−0.940182 + 0.340673i \(0.889345\pi\)
\(522\) −17.0605 8.30290i −0.746719 0.363408i
\(523\) −18.3712 + 10.6066i −0.803315 + 0.463794i −0.844629 0.535352i \(-0.820179\pi\)
0.0413138 + 0.999146i \(0.486846\pi\)
\(524\) 4.74342 + 18.3712i 0.207217 + 0.802548i
\(525\) 0 0
\(526\) −3.00000 + 3.87298i −0.130806 + 0.168870i
\(527\) −20.7846 36.0000i −0.905392 1.56818i
\(528\) −10.1959 + 21.7266i −0.443719 + 0.945528i
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 15.3500 + 2.09211i 0.666762 + 0.0908756i
\(531\) 18.9737 + 21.2132i 0.823387 + 0.920575i
\(532\) 0 0
\(533\) 0 0
\(534\) 12.6669 20.3850i 0.548150 0.882147i
\(535\) −36.7423 21.2132i −1.58851 0.917127i
\(536\) −13.0983 17.5623i −0.565760 0.758576i
\(537\) −1.85188 17.9045i −0.0799144 0.772636i
\(538\) −2.73861 2.12132i −0.118070 0.0914566i
\(539\) 0 0
\(540\) −13.5622 21.5422i −0.583623 0.927030i
\(541\) −19.0000 32.9090i −0.816874 1.41487i −0.907975 0.419025i \(-0.862372\pi\)
0.0911008 0.995842i \(-0.470961\pi\)
\(542\) 11.1074 4.54160i 0.477103 0.195079i
\(543\) 23.0527 16.6905i 0.989285 0.716259i
\(544\) −10.0188 25.8384i −0.429554 1.10781i
\(545\) 24.4949i 1.04925i
\(546\) 0 0
\(547\) 38.7298i 1.65597i −0.560752 0.827984i \(-0.689488\pi\)
0.560752 0.827984i \(-0.310512\pi\)
\(548\) 12.5332 + 12.7639i 0.535393 + 0.545248i
\(549\) 16.0838 3.36311i 0.686441 0.143534i
\(550\) 1.85410 + 4.53457i 0.0790592 + 0.193355i
\(551\) −9.48683 16.4317i −0.404153 0.700013i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.73205 2.23607i 0.0735878 0.0950014i
\(555\) 8.44025 0.872983i 0.358269 0.0370561i
\(556\) 2.27080 8.17578i 0.0963035 0.346731i
\(557\) −19.3649 11.1803i −0.820518 0.473726i 0.0300772 0.999548i \(-0.490425\pi\)
−0.850595 + 0.525821i \(0.823758\pi\)
\(558\) 29.8281 20.1565i 1.26272 0.853293i
\(559\) 42.4264i 1.79445i
\(560\) 0 0
\(561\) −12.0000 + 26.8328i −0.506640 + 1.13288i
\(562\) −1.70820 + 12.5332i −0.0720562 + 0.528683i
\(563\) −4.74342 + 8.21584i −0.199911 + 0.346256i −0.948499 0.316779i \(-0.897399\pi\)
0.748588 + 0.663035i \(0.230732\pi\)
\(564\) 0 0
\(565\) 5.47723 + 9.48683i 0.230429 + 0.399114i
\(566\) −33.2039 25.7196i −1.39566 1.08108i
\(567\) 0 0
\(568\) 9.00000 + 3.87298i 0.377632 + 0.162507i
\(569\) 27.1109 15.6525i 1.13655 0.656186i 0.190974 0.981595i \(-0.438835\pi\)
0.945573 + 0.325409i \(0.105502\pi\)
\(570\) 0.824493 25.4425i 0.0345342 1.06567i
\(571\) 20.1246 + 11.6190i 0.842189 + 0.486238i 0.858008 0.513637i \(-0.171702\pi\)
−0.0158188 + 0.999875i \(0.505036\pi\)
\(572\) 27.0764 26.5870i 1.13212 1.11166i
\(573\) −5.47723 2.44949i −0.228814 0.102329i
\(574\) 0 0
\(575\) 0 0
\(576\) 21.7082 10.2349i 0.904508 0.426456i
\(577\) −21.9089 + 37.9473i −0.912080 + 1.57977i −0.100958 + 0.994891i \(0.532191\pi\)
−0.811122 + 0.584877i \(0.801143\pi\)
\(578\) −3.74663 9.16312i −0.155839 0.381136i
\(579\) 2.85115 + 27.5658i 0.118490 + 1.14559i
\(580\) −5.47723 21.2132i −0.227429 0.880830i
\(581\) 0 0
\(582\) 0 0
\(583\) 13.4164 7.74597i 0.555651 0.320805i
\(584\) 24.8369 18.5238i 1.02776 0.766520i
\(585\) 8.23790 + 39.3972i 0.340595 + 1.62887i
\(586\) 0.467811 3.43237i 0.0193251 0.141790i
\(587\) 9.48683 0.391564 0.195782 0.980647i \(-0.437276\pi\)
0.195782 + 0.980647i \(0.437276\pi\)
\(588\) 0 0
\(589\) 36.0000 1.48335
\(590\) −4.43804 + 32.5623i −0.182711 + 1.34057i
\(591\) −22.7129 31.3707i −0.934285 1.29042i
\(592\) −0.145898 + 7.99867i −0.00599637 + 0.328743i
\(593\) 29.6985 17.1464i 1.21957 0.704119i 0.254745 0.967008i \(-0.418009\pi\)
0.964826 + 0.262889i \(0.0846753\pi\)
\(594\) −23.9137 8.72552i −0.981191 0.358012i
\(595\) 0 0
\(596\) −8.66025 + 2.23607i −0.354738 + 0.0915929i
\(597\) −29.2379 + 3.02410i −1.19663 + 0.123768i
\(598\) 0 0
\(599\) 12.1244 21.0000i 0.495388 0.858037i −0.504598 0.863354i \(-0.668359\pi\)
0.999986 + 0.00531761i \(0.00169266\pi\)
\(600\) 1.46325 4.67535i 0.0597368 0.190870i
\(601\) −10.9545 −0.446841 −0.223421 0.974722i \(-0.571722\pi\)
−0.223421 + 0.974722i \(0.571722\pi\)
\(602\) 0 0
\(603\) 17.3205 15.4919i 0.705346 0.630880i
\(604\) −10.8541 11.0539i −0.441647 0.449776i
\(605\) 2.12132 + 1.22474i 0.0862439 + 0.0497930i
\(606\) −17.9906 0.583005i −0.730816 0.0236830i
\(607\) 22.0454 12.7279i 0.894795 0.516610i 0.0192875 0.999814i \(-0.493860\pi\)
0.875508 + 0.483204i \(0.160527\pi\)
\(608\) 23.7171 + 3.67423i 0.961855 + 0.149010i
\(609\) 0 0
\(610\) 15.0000 + 11.6190i 0.607332 + 0.470438i
\(611\) 0 0
\(612\) 26.3540 13.0180i 1.06530 0.526221i
\(613\) 7.00000 12.1244i 0.282727 0.489698i −0.689328 0.724449i \(-0.742094\pi\)
0.972056 + 0.234751i \(0.0754275\pi\)
\(614\) −4.05136 + 29.7252i −0.163500 + 1.19961i
\(615\) 0 0
\(616\) 0 0
\(617\) 22.3607i 0.900207i −0.892976 0.450104i \(-0.851387\pi\)
0.892976 0.450104i \(-0.148613\pi\)
\(618\) 0 0
\(619\) 3.67423 + 2.12132i 0.147680 + 0.0852631i 0.572019 0.820240i \(-0.306160\pi\)
−0.424339 + 0.905503i \(0.639494\pi\)
\(620\) 40.0530 + 11.1246i 1.60857 + 0.446775i
\(621\) 0 0
\(622\) −16.4317 + 21.2132i −0.658850 + 0.850572i
\(623\) 0 0
\(624\) −37.8109 + 3.21507i −1.51365 + 0.128706i
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) −5.86319 14.3396i −0.234340 0.573124i
\(627\) −14.9285 20.6190i −0.596185 0.823442i
\(628\) 7.81628 7.67501i 0.311904 0.306266i
\(629\) 9.79796i 0.390670i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) −43.5171 + 5.12461i −1.73102 + 0.203846i
\(633\) 7.86799 + 10.8671i 0.312724 + 0.431930i
\(634\) 5.85410 2.39364i 0.232496 0.0950634i
\(635\) −9.48683 16.4317i −0.376473 0.652071i
\(636\) −15.2742 2.58819i −0.605662 0.102628i
\(637\) 0 0
\(638\) −17.3205 13.4164i −0.685725 0.531161i
\(639\) −3.24410 + 9.87298i −0.128335 + 0.390569i
\(640\) 25.2518 + 11.4169i 0.998166 + 0.451292i
\(641\) −27.1109 15.6525i −1.07082 0.618236i −0.142411 0.989808i \(-0.545486\pi\)
−0.928404 + 0.371572i \(0.878819\pi\)
\(642\) 36.0360 + 22.3921i 1.42223 + 0.883747i
\(643\) 21.2132i 0.836567i 0.908317 + 0.418284i \(0.137368\pi\)
−0.908317 + 0.418284i \(0.862632\pi\)
\(644\) 0 0
\(645\) 30.0000 + 13.4164i 1.18125 + 0.528271i
\(646\) 29.1246 + 3.96951i 1.14589 + 0.156178i
\(647\) −9.48683 + 16.4317i −0.372966 + 0.645996i −0.990020 0.140925i \(-0.954992\pi\)
0.617054 + 0.786920i \(0.288326\pi\)
\(648\) 12.8573 + 21.9702i 0.505084 + 0.863070i
\(649\) 16.4317 + 28.4605i 0.645000 + 1.11717i
\(650\) −4.74342 + 6.12372i −0.186052 + 0.240192i
\(651\) 0 0
\(652\) −15.0000 + 3.87298i −0.587445 + 0.151678i
\(653\) 27.1109 15.6525i 1.06093 0.612529i 0.135241 0.990813i \(-0.456819\pi\)
0.925690 + 0.378284i \(0.123486\pi\)
\(654\) −0.793369 + 24.4820i −0.0310232 + 0.957324i
\(655\) −20.1246 11.6190i −0.786334 0.453990i
\(656\) 0 0
\(657\) 21.9089 + 24.4949i 0.854748 + 0.955637i
\(658\) 0 0
\(659\) 24.2487 0.944596 0.472298 0.881439i \(-0.343425\pi\)
0.472298 + 0.881439i \(0.343425\pi\)
\(660\) −10.2376 27.5534i −0.398496 1.07252i
\(661\) −19.1703 + 33.2039i −0.745638 + 1.29148i 0.204258 + 0.978917i \(0.434522\pi\)
−0.949896 + 0.312566i \(0.898812\pi\)
\(662\) −30.4188 + 12.4377i −1.18226 + 0.483405i
\(663\) −46.2292 + 4.78153i −1.79539 + 0.185699i
\(664\) −24.6475 10.6066i −0.956509 0.411616i
\(665\) 0 0
\(666\) −8.46410 + 0.599153i −0.327977 + 0.0232167i
\(667\) 0 0
\(668\) −36.5632 10.1553i −1.41467 0.392922i
\(669\) 8.61895 + 11.9044i 0.333228 + 0.460249i
\(670\) 26.5870 + 3.62365i 1.02715 + 0.139994i
\(671\) 18.9737 0.732470
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 11.2101 + 1.52786i 0.431796 + 0.0588511i
\(675\) 5.07718 + 1.10557i 0.195421 + 0.0425533i
\(676\) 32.7599 + 9.09896i 1.25999 + 0.349960i
\(677\) 6.36396 3.67423i 0.244587 0.141212i −0.372696 0.927953i \(-0.621567\pi\)
0.617283 + 0.786741i \(0.288233\pi\)
\(678\) −5.16708 9.65926i −0.198441 0.370962i
\(679\) 0 0
\(680\) 31.1769 + 13.4164i 1.19558 + 0.514496i
\(681\) −1.69052 16.3445i −0.0647811 0.626322i
\(682\) 38.4771 15.7326i 1.47336 0.602432i
\(683\) −19.0526 + 33.0000i −0.729026 + 1.26271i 0.228269 + 0.973598i \(0.426693\pi\)
−0.957295 + 0.289112i \(0.906640\pi\)
\(684\) −1.64812 + 25.4024i −0.0630175 + 0.971286i
\(685\) −21.9089 −0.837096
\(686\) 0 0
\(687\) −8.66025 3.87298i −0.330409 0.147764i
\(688\) −15.9787 + 26.5458i −0.609183 + 1.01205i
\(689\) 21.2132 + 12.2474i 0.808159 + 0.466591i
\(690\) 0 0
\(691\) 11.0227 6.36396i 0.419323 0.242096i −0.275464 0.961311i \(-0.588832\pi\)
0.694788 + 0.719215i \(0.255498\pi\)
\(692\) −4.74342 + 1.22474i −0.180318 + 0.0465578i
\(693\) 0 0
\(694\) −21.0000 + 27.1109i −0.797149 + 1.02912i
\(695\) 5.19615 + 9.00000i 0.197101 + 0.341389i
\(696\) 4.78727 + 21.3795i 0.181461 + 0.810387i
\(697\) 0 0
\(698\) −23.0250 3.13817i −0.871510 0.118782i
\(699\) 6.32456 14.1421i 0.239217 0.534905i
\(700\) 0 0
\(701\) 22.3607i 0.844551i −0.906467 0.422276i \(-0.861231\pi\)
0.906467 0.422276i \(-0.138769\pi\)
\(702\) −6.95754 39.6433i −0.262595 1.49624i
\(703\) −7.34847 4.24264i −0.277153 0.160014i
\(704\) 26.9547 6.43769i 1.01589 0.242630i
\(705\) 0 0
\(706\) −16.4317 12.7279i −0.618414 0.479022i
\(707\) 0 0
\(708\) 5.49038 32.4015i 0.206341 1.21772i
\(709\) −5.00000 8.66025i −0.187779 0.325243i 0.756730 0.653727i \(-0.226796\pi\)
−0.944509 + 0.328484i \(0.893462\pi\)
\(710\) −11.1074 + 4.54160i −0.416852 + 0.170443i
\(711\) −9.51231 45.4919i −0.356739 1.70608i
\(712\) −27.5226 + 3.24109i −1.03145 + 0.121465i
\(713\) 0 0
\(714\) 0 0
\(715\) 46.4758i 1.73810i
\(716\) −14.8303 + 14.5623i −0.554236 + 0.544219i
\(717\) −9.71987 + 7.03734i −0.362995 + 0.262814i
\(718\) −14.8328 36.2765i −0.553556 1.35383i
\(719\) 18.9737 + 32.8634i 0.707598 + 1.22560i 0.965746 + 0.259491i \(0.0835547\pi\)
−0.258147 + 0.966106i \(0.583112\pi\)
\(720\) −9.68346 + 27.7530i −0.360881 + 1.03429i
\(721\) 0 0
\(722\) 0.866025 1.11803i 0.0322301 0.0416089i
\(723\) 3.90410 + 37.7460i 0.145195 + 1.40379i
\(724\) −31.6647 8.79478i −1.17681 0.326855i
\(725\) 3.87298 + 2.23607i 0.143839 + 0.0830455i
\(726\) −2.08054 1.29281i −0.0772160 0.0479807i
\(727\) 16.9706i 0.629403i 0.949191 + 0.314702i \(0.101904\pi\)
−0.949191 + 0.314702i \(0.898096\pi\)
\(728\) 0 0
\(729\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(730\) −5.12461 + 37.5997i −0.189670 + 1.39163i
\(731\) −18.9737 + 32.8634i −0.701766 + 1.21550i
\(732\) −14.6158 12.0987i −0.540216 0.447180i
\(733\) 8.21584 + 14.2302i 0.303459 + 0.525606i 0.976917 0.213619i \(-0.0685252\pi\)
−0.673458 + 0.739225i \(0.735192\pi\)
\(734\) 28.4605 + 22.0454i 1.05050 + 0.813711i
\(735\) 0 0
\(736\) 0 0
\(737\) 23.2379 13.4164i 0.855979 0.494200i
\(738\) 0 0
\(739\) 33.5410 + 19.3649i 1.23383 + 0.712350i 0.967825 0.251623i \(-0.0809642\pi\)
0.266001 + 0.963973i \(0.414298\pi\)
\(740\) −6.86474 6.99109i −0.252353 0.256998i
\(741\) 16.4317 36.7423i 0.603633 1.34976i
\(742\) 0 0
\(743\) −13.8564 −0.508342 −0.254171 0.967159i \(-0.581803\pi\)
−0.254171 + 0.967159i \(0.581803\pi\)
\(744\) −39.6717 12.4161i −1.45443 0.455195i
\(745\) 5.47723 9.48683i 0.200670 0.347571i
\(746\) 13.9161 + 34.0344i 0.509503 + 1.24609i
\(747\) 8.88434 27.0383i 0.325061 0.989279i
\(748\) 32.8634 8.48528i 1.20160 0.310253i
\(749\) 0 0
\(750\) −11.3205 21.1624i −0.413367 0.772741i
\(751\) 6.70820 3.87298i 0.244786 0.141327i −0.372589 0.927997i \(-0.621530\pi\)
0.617374 + 0.786669i \(0.288196\pi\)
\(752\) 0 0
\(753\) −13.3095 + 9.63628i −0.485024 + 0.351166i
\(754\) 4.67811 34.3237i 0.170367 1.24999i
\(755\) 18.9737 0.690522
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) −1.47935 + 10.8541i −0.0537323 + 0.394239i
\(759\) 0 0
\(760\) −23.5623 + 17.5732i −0.854695 + 0.637447i
\(761\) −42.4264 + 24.4949i −1.53796 + 0.887939i −0.538998 + 0.842307i \(0.681197\pi\)
−0.998958 + 0.0456321i \(0.985470\pi\)
\(762\) 8.94965 + 16.7303i 0.324212 + 0.606076i
\(763\) 0 0
\(764\) 1.73205 + 6.70820i 0.0626634 + 0.242694i
\(765\) −11.2379 + 34.2010i −0.406307 + 1.23654i
\(766\) 0 0
\(767\) −25.9808 + 45.0000i −0.938111 + 1.62486i
\(768\) −24.8688 12.2288i −0.897376 0.441268i
\(769\) 21.9089 0.790055 0.395028 0.918669i \(-0.370735\pi\)
0.395028 + 0.918669i \(0.370735\pi\)
\(770\) 0 0
\(771\) 3.46410 7.74597i 0.124757 0.278964i
\(772\) 22.8328 22.4201i 0.821771 0.806918i
\(773\) 2.12132 + 1.22474i 0.0762986 + 0.0440510i 0.537664 0.843159i \(-0.319307\pi\)
−0.461365 + 0.887210i \(0.652640\pi\)
\(774\) −29.5497 14.3810i −1.06214 0.516916i
\(775\) −7.34847 + 4.24264i −0.263965 + 0.152400i
\(776\) 0 0
\(777\) 0 0
\(778\) 35.0000 + 27.1109i 1.25481 + 0.971972i
\(779\) 0 0
\(780\) 29.6356 35.8013i 1.06113 1.28189i
\(781\) −6.00000 + 10.3923i −0.214697 + 0.371866i
\(782\) 0 0
\(783\) −22.1359 + 7.07107i −0.791074 + 0.252699i
\(784\) 0 0
\(785\) 13.4164i 0.478852i
\(786\) 19.7377 + 12.2647i 0.704021 + 0.437466i
\(787\) −18.3712 10.6066i −0.654862 0.378085i 0.135455 0.990784i \(-0.456750\pi\)
−0.790316 + 0.612699i \(0.790084\pi\)
\(788\) −11.9682 + 43.0902i −0.426349 + 1.53502i
\(789\) 0.617292 + 5.96816i 0.0219762 + 0.212472i
\(790\) 32.8634 42.4264i 1.16923 1.50946i
\(791\) 0 0
\(792\) 9.33975 + 27.8706i 0.331873 + 0.990338i
\(793\) 15.0000 + 25.9808i 0.532666 + 0.922604i
\(794\) 20.5211 + 50.1885i 0.728268 + 1.78112i
\(795\) 15.3685 11.1270i 0.545063 0.394635i
\(796\) 23.7801 + 24.2179i 0.842865 + 0.858379i
\(797\) 41.6413i 1.47501i 0.675341 + 0.737506i \(0.263997\pi\)
−0.675341 + 0.737506i \(0.736003\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.27424 + 2.04508i −0.186473 + 0.0723047i
\(801\) −6.01611 28.7716i −0.212569 1.01660i
\(802\) −5.85410 + 2.39364i −0.206716 + 0.0845222i
\(803\) 18.9737 + 32.8634i 0.669566 + 1.15972i
\(804\) −26.4557 4.48288i −0.933020 0.158099i
\(805\) 0 0
\(806\) 51.9615 + 40.2492i 1.83027 + 1.41772i
\(807\) −4.22013 + 0.436492i −0.148556 + 0.0153652i
\(808\) 12.4261 + 16.6611i 0.437150 + 0.586134i
\(809\) −19.3649 11.1803i −0.680834 0.393080i 0.119335 0.992854i \(-0.461924\pi\)
−0.800169 + 0.599774i \(0.795257\pi\)
\(810\) −30.2322 7.61660i −1.06225 0.267620i
\(811\) 12.7279i 0.446938i −0.974711 0.223469i \(-0.928262\pi\)
0.974711 0.223469i \(-0.0717381\pi\)
\(812\) 0 0
\(813\) 6.00000 13.4164i 0.210429 0.470534i
\(814\) −9.70820 1.32317i −0.340272 0.0463771i
\(815\) 9.48683 16.4317i 0.332309 0.575577i
\(816\) −30.7260 14.4192i −1.07563 0.504772i
\(817\) −16.4317 28.4605i −0.574872 0.995707i
\(818\) −9.48683 + 12.2474i −0.331699 + 0.428222i
\(819\) 0 0
\(820\) 0 0
\(821\) −27.1109 + 15.6525i −0.946176 + 0.546275i −0.891891 0.452250i \(-0.850621\pi\)
−0.0542853 + 0.998525i \(0.517288\pi\)
\(822\) 21.8974 + 0.709611i 0.763760 + 0.0247505i
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 5.47723 + 2.44949i 0.190693 + 0.0852803i
\(826\) 0 0
\(827\) 17.3205 0.602293 0.301147 0.953578i \(-0.402631\pi\)
0.301147 + 0.953578i \(0.402631\pi\)
\(828\) 0 0
\(829\) 24.6475 42.6907i 0.856044 1.48271i −0.0196299 0.999807i \(-0.506249\pi\)
0.875673 0.482904i \(-0.160418\pi\)
\(830\) 30.4188 12.4377i 1.05585 0.431719i
\(831\) −0.356394 3.44572i −0.0123632 0.119531i
\(832\) 30.1247 + 31.8198i 1.04439 + 1.10315i
\(833\) 0 0
\(834\) −4.90192 9.16358i −0.169740 0.317309i
\(835\) 40.2492 23.2379i 1.39288 0.804181i
\(836\) −7.86629 + 28.3217i −0.272061 + 0.979528i
\(837\) 9.38105 43.0813i 0.324257 1.48911i
\(838\) −39.8805 5.43547i −1.37765 0.187765i
\(839\) −18.9737 −0.655044 −0.327522 0.944844i \(-0.606214\pi\)
−0.327522 + 0.944844i \(0.606214\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) 14.0126 + 1.90983i 0.482906 + 0.0658171i
\(843\) 9.08517 + 12.5483i 0.312910 + 0.432186i
\(844\) 4.14590 14.9269i 0.142708 0.513804i
\(845\) −36.0624 + 20.8207i −1.24059 + 0.716253i
\(846\) 0 0
\(847\) 0 0
\(848\) 8.66025 + 15.6525i 0.297394 + 0.537508i
\(849\) −51.1663 + 5.29218i −1.75602 + 0.181627i
\(850\) −6.41285 + 2.62210i −0.219959 + 0.0899372i
\(851\) 0 0
\(852\) 11.2486 4.17946i 0.385372 0.143186i
\(853\) 16.4317 0.562610 0.281305 0.959618i \(-0.409233\pi\)
0.281305 + 0.959618i \(0.409233\pi\)
\(854\) 0 0
\(855\) −20.7846 23.2379i −0.710819 0.794719i
\(856\) −5.72949 48.6536i −0.195830 1.66295i
\(857\) 16.9706 + 9.79796i 0.579703 + 0.334692i 0.761015 0.648734i \(-0.224701\pi\)
−0.181312 + 0.983426i \(0.558034\pi\)
\(858\) 1.50531 46.4514i 0.0513905 1.58583i
\(859\) −40.4166 + 23.3345i −1.37900 + 0.796164i −0.992039 0.125934i \(-0.959807\pi\)
−0.386957 + 0.922098i \(0.626474\pi\)
\(860\) −9.48683 36.7423i −0.323498 1.25290i
\(861\) 0 0
\(862\) 18.0000 23.2379i 0.613082 0.791486i
\(863\) −8.66025 15.0000i −0.294798 0.510606i 0.680140 0.733083i \(-0.261919\pi\)
−0.974938 + 0.222477i \(0.928586\pi\)
\(864\) 10.5773 27.4248i 0.359846 0.933012i
\(865\) 3.00000 5.19615i 0.102003 0.176674i
\(866\) −30.7000 4.18423i −1.04323 0.142186i
\(867\) −11.0680 4.94975i −0.375888 0.168102i
\(868\) 0 0
\(869\) 53.6656i 1.82048i
\(870\) −22.7912 14.1620i −0.772693 0.480138i
\(871\) 36.7423 + 21.2132i 1.24497 + 0.718782i
\(872\) 22.6728 16.9098i 0.767799 0.572639i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 6.33975 37.4140i 0.214200 1.26410i
\(877\) −11.0000 19.0526i −0.371444 0.643359i 0.618344 0.785907i \(-0.287804\pi\)
−0.989788 + 0.142548i \(0.954470\pi\)
\(878\) 22.2148 9.08321i 0.749712 0.306543i
\(879\) −2.48808 3.43649i −0.0839207 0.115910i
\(880\) −17.5038 + 29.0795i −0.590053 + 0.980269i
\(881\) 44.0908i 1.48546i −0.669593 0.742729i \(-0.733531\pi\)
0.669593 0.742729i \(-0.266469\pi\)
\(882\) 0 0
\(883\) 54.2218i 1.82471i 0.409403 + 0.912354i \(0.365737\pi\)
−0.409403 + 0.912354i \(0.634263\pi\)
\(884\) 37.5997 + 38.2918i 1.26462 + 1.28789i
\(885\) 23.6040 + 32.6014i 0.793439 + 1.09588i
\(886\) 16.6869 + 40.8111i 0.560608 + 1.37108i
\(887\) −28.4605 49.2950i −0.955610 1.65517i −0.732966 0.680265i \(-0.761865\pi\)
−0.222644 0.974900i \(-0.571469\pi\)
\(888\) 6.63470 + 7.20977i 0.222646 + 0.241944i
\(889\) 0 0
\(890\) 20.7846 26.8328i 0.696702 0.899438i
\(891\) −28.5649 + 12.4919i −0.956959 + 0.418496i
\(892\) 4.54160 16.3516i 0.152064 0.547491i
\(893\) 0 0
\(894\) −5.78162 + 9.30445i −0.193366 + 0.311187i
\(895\) 25.4558i 0.850895i
\(896\) 0 0
\(897\) 0 0
\(898\) 6.83282 50.1329i 0.228014 1.67296i
\(899\) 18.9737 32.8634i 0.632807 1.09605i
\(900\) −2.65728 5.37948i −0.0885761 0.179316i
\(901\) 10.9545 + 18.9737i 0.364946 + 0.632104i
\(902\) 0 0
\(903\) 0 0
\(904\) −5.00000 + 11.6190i −0.166298 + 0.386441i
\(905\) 34.8569 20.1246i 1.15868 0.668965i
\(906\) −18.9637 0.614541i −0.630027 0.0204168i
\(907\) −6.70820 3.87298i −0.222742 0.128600i 0.384477 0.923135i \(-0.374382\pi\)
−0.607219 + 0.794534i \(0.707715\pi\)
\(908\) −13.5382 + 13.2935i −0.449281 + 0.441160i
\(909\) −16.4317 + 14.6969i −0.545004 + 0.487467i
\(910\) 0 0
\(911\) −20.7846 −0.688625 −0.344312 0.938855i \(-0.611888\pi\)
−0.344312 + 0.938855i \(0.611888\pi\)
\(912\) 24.1191 16.8008i 0.798664 0.556331i
\(913\) 16.4317 28.4605i 0.543809 0.941905i
\(914\) −14.9865 36.6525i −0.495710 1.21236i
\(915\) 23.1146 2.39076i 0.764145 0.0790362i
\(916\) 2.73861 + 10.6066i 0.0904863 + 0.350452i
\(917\) 0 0
\(918\) 12.3397 33.8191i 0.407272 1.11620i
\(919\) 26.8328 15.4919i 0.885133 0.511032i 0.0127855 0.999918i \(-0.495930\pi\)
0.872347 + 0.488887i \(0.162597\pi\)
\(920\) 0 0
\(921\) 21.5474 + 29.7609i 0.710010 + 0.980655i
\(922\) −7.01716 + 51.4855i −0.231098 + 1.69559i
\(923\) −18.9737 −0.624526
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 2.95870 21.7082i 0.0972288 0.713376i
\(927\) 0 0
\(928\) 15.8541 19.7141i 0.520436 0.647148i
\(929\) −21.2132 + 12.2474i −0.695983 + 0.401826i −0.805849 0.592121i \(-0.798291\pi\)
0.109867 + 0.993946i \(0.464958\pi\)
\(930\) 44.8922 24.0144i 1.47207 0.787464i
\(931\) 0 0
\(932\) −17.3205 + 4.47214i −0.567352 + 0.146490i
\(933\) 3.38105 + 32.6890i 0.110691 + 1.07019i
\(934\) −15.2330 37.2553i −0.498439 1.21903i
\(935\) −20.7846 + 36.0000i −0.679729 + 1.17733i
\(936\) −30.7796 + 34.8226i −1.00606 + 1.13821i
\(937\) 10.9545 0.357866 0.178933 0.983861i \(-0.442735\pi\)
0.178933 + 0.983861i \(0.442735\pi\)
\(938\) 0 0
\(939\) −17.3205 7.74597i −0.565233 0.252780i
\(940\) 0 0
\(941\) 10.6066 + 6.12372i 0.345765 + 0.199628i 0.662819 0.748780i \(-0.269360\pi\)
−0.317053 + 0.948408i \(0.602693\pi\)
\(942\) 0.434546 13.4094i 0.0141583 0.436901i
\(943\) 0 0
\(944\) −33.2039 + 18.3712i −1.08070 + 0.597931i
\(945\) 0 0
\(946\) −30.0000 23.2379i −0.975384 0.755529i
\(947\) −5.19615 9.00000i −0.168852 0.292461i 0.769164 0.639051i \(-0.220673\pi\)
−0.938017 + 0.346590i \(0.887339\pi\)
\(948\) −34.2203 + 41.3397i −1.11142 + 1.34265i
\(949\) −30.0000 + 51.9615i −0.973841 + 1.68674i
\(950\) 0.810272 5.94504i 0.0262887 0.192882i
\(951\) 3.16228 7.07107i 0.102544 0.229295i
\(952\) 0 0
\(953\) 8.94427i 0.289733i 0.989451 + 0.144867i \(0.0462753\pi\)
−0.989451 + 0.144867i \(0.953725\pi\)
\(954\) −15.7208 + 10.6234i −0.508979 + 0.343946i
\(955\) −7.34847 4.24264i −0.237791 0.137289i
\(956\) 13.3510 + 3.70820i 0.431802 + 0.119932i
\(957\) −26.6904 + 2.76062i −0.862779 + 0.0892380i
\(958\) −32.8634 + 42.4264i −1.06177 + 1.37073i
\(959\) 0 0
\(960\) 32.0263 11.2391i 1.03364 0.362740i
\(961\) 20.5000 + 35.5070i 0.661290 + 1.14539i
\(962\) −5.86319 14.3396i −0.189037 0.462326i
\(963\) 50.8615 10.6351i 1.63899 0.342711i
\(964\) 31.2651 30.7000i 1.00698 0.988782i
\(965\) 39.1918i 1.26163i
\(966\) 0 0
\(967\) 23.2379i 0.747280i 0.927574 + 0.373640i \(0.121891\pi\)
−0.927574 + 0.373640i \(0.878109\pi\)
\(968\) 0.330792 + 2.80902i 0.0106321 + 0.0902852i
\(969\) 29.1596 21.1120i 0.936741 0.678216i
\(970\) 0 0
\(971\) −23.7171 41.0792i −0.761117 1.31829i −0.942275 0.334840i \(-0.891318\pi\)
0.181158 0.983454i \(-0.442016\pi\)
\(972\) 29.9697 + 8.59180i 0.961278 + 0.275582i
\(973\) 0 0
\(974\) −8.66025 6.70820i −0.277492 0.214945i
\(975\) 0.976025 + 9.43649i 0.0312578 + 0.302210i
\(976\) −0.399558 + 21.9053i −0.0127895 + 0.701170i
\(977\) 30.9839 + 17.8885i 0.991262 + 0.572305i 0.905651 0.424023i \(-0.139383\pi\)
0.0856105 + 0.996329i \(0.472716\pi\)
\(978\) −10.0141 + 16.1158i −0.320214 + 0.515326i
\(979\) 33.9411i 1.08476i
\(980\) 0 0
\(981\) 20.0000 + 22.3607i 0.638551 + 0.713922i
\(982\) 43.6869 + 5.95426i 1.39411 + 0.190008i
\(983\) −9.48683 + 16.4317i −0.302583 + 0.524089i −0.976720 0.214517i \(-0.931182\pi\)
0.674137 + 0.738606i \(0.264516\pi\)
\(984\) 0 0
\(985\) −27.3861 47.4342i −0.872595 1.51138i
\(986\) 18.9737 24.4949i 0.604245 0.780076i
\(987\) 0 0
\(988\) −45.0000 + 11.6190i −1.43164 + 0.369648i
\(989\) 0 0
\(990\) −32.3701 15.7536i −1.02879 0.500684i
\(991\) 13.4164 + 7.74597i 0.426186 + 0.246059i 0.697721 0.716370i \(-0.254198\pi\)
−0.271534 + 0.962429i \(0.587531\pi\)
\(992\) 17.3531 + 44.7534i 0.550962 + 1.42092i
\(993\) −16.4317 + 36.7423i −0.521443 + 1.16598i
\(994\) 0 0
\(995\) −41.5692 −1.31783
\(996\) −30.8057 + 11.4459i −0.976116 + 0.362678i
\(997\) 2.73861 4.74342i 0.0867327 0.150226i −0.819396 0.573229i \(-0.805691\pi\)
0.906128 + 0.423003i \(0.139024\pi\)
\(998\) 30.4188 12.4377i 0.962890 0.393708i
\(999\) −6.99208 + 7.68836i −0.221219 + 0.243249i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.c.263.1 16
3.2 odd 2 inner 588.2.n.c.263.8 16
4.3 odd 2 inner 588.2.n.c.263.4 16
7.2 even 3 inner 588.2.n.c.275.5 16
7.3 odd 6 588.2.e.b.491.5 yes 8
7.4 even 3 588.2.e.b.491.6 yes 8
7.5 odd 6 inner 588.2.n.c.275.6 16
7.6 odd 2 inner 588.2.n.c.263.2 16
12.11 even 2 inner 588.2.n.c.263.5 16
21.2 odd 6 inner 588.2.n.c.275.4 16
21.5 even 6 inner 588.2.n.c.275.3 16
21.11 odd 6 588.2.e.b.491.3 yes 8
21.17 even 6 588.2.e.b.491.4 yes 8
21.20 even 2 inner 588.2.n.c.263.7 16
28.3 even 6 588.2.e.b.491.2 yes 8
28.11 odd 6 588.2.e.b.491.1 8
28.19 even 6 inner 588.2.n.c.275.7 16
28.23 odd 6 inner 588.2.n.c.275.8 16
28.27 even 2 inner 588.2.n.c.263.3 16
84.11 even 6 588.2.e.b.491.8 yes 8
84.23 even 6 inner 588.2.n.c.275.1 16
84.47 odd 6 inner 588.2.n.c.275.2 16
84.59 odd 6 588.2.e.b.491.7 yes 8
84.83 odd 2 inner 588.2.n.c.263.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.b.491.1 8 28.11 odd 6
588.2.e.b.491.2 yes 8 28.3 even 6
588.2.e.b.491.3 yes 8 21.11 odd 6
588.2.e.b.491.4 yes 8 21.17 even 6
588.2.e.b.491.5 yes 8 7.3 odd 6
588.2.e.b.491.6 yes 8 7.4 even 3
588.2.e.b.491.7 yes 8 84.59 odd 6
588.2.e.b.491.8 yes 8 84.11 even 6
588.2.n.c.263.1 16 1.1 even 1 trivial
588.2.n.c.263.2 16 7.6 odd 2 inner
588.2.n.c.263.3 16 28.27 even 2 inner
588.2.n.c.263.4 16 4.3 odd 2 inner
588.2.n.c.263.5 16 12.11 even 2 inner
588.2.n.c.263.6 16 84.83 odd 2 inner
588.2.n.c.263.7 16 21.20 even 2 inner
588.2.n.c.263.8 16 3.2 odd 2 inner
588.2.n.c.275.1 16 84.23 even 6 inner
588.2.n.c.275.2 16 84.47 odd 6 inner
588.2.n.c.275.3 16 21.5 even 6 inner
588.2.n.c.275.4 16 21.2 odd 6 inner
588.2.n.c.275.5 16 7.2 even 3 inner
588.2.n.c.275.6 16 7.5 odd 6 inner
588.2.n.c.275.7 16 28.19 even 6 inner
588.2.n.c.275.8 16 28.23 odd 6 inner