Properties

Label 588.2.n.c.275.6
Level $588$
Weight $2$
Character 588.275
Analytic conductor $4.695$
Analytic rank $0$
Dimension $16$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.11007531417600000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 275.6
Root \(-0.418778 + 1.56290i\) of defining polynomial
Character \(\chi\) \(=\) 588.275
Dual form 588.2.n.c.263.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.535233 + 1.30902i) q^{2} +(0.178197 + 1.72286i) q^{3} +(-1.42705 + 1.40126i) q^{4} +(-2.12132 - 1.22474i) q^{5} +(-2.15988 + 1.15539i) q^{6} +(-2.59808 - 1.11803i) q^{8} +(-2.93649 + 0.614017i) q^{9} +(0.467811 - 3.43237i) q^{10} +(1.73205 + 3.00000i) q^{11} +(-2.66847 - 2.20891i) q^{12} -5.47723 q^{13} +(1.73205 - 3.87298i) q^{15} +(0.0729490 - 3.99933i) q^{16} +(4.24264 - 2.44949i) q^{17} +(-2.37547 - 3.51528i) q^{18} +(-3.67423 - 2.12132i) q^{19} +(4.74342 - 1.22474i) q^{20} +(-3.00000 + 3.87298i) q^{22} +(1.46325 - 4.67535i) q^{24} +(0.500000 + 0.866025i) q^{25} +(-2.93159 - 7.16978i) q^{26} +(-1.58114 - 4.94975i) q^{27} +4.47214i q^{29} +(5.99685 + 0.194335i) q^{30} +(-7.34847 + 4.24264i) q^{31} +(5.27424 - 2.04508i) q^{32} +(-4.85993 + 3.51867i) q^{33} +(5.47723 + 4.24264i) q^{34} +(3.33013 - 4.99102i) q^{36} +(1.00000 - 1.73205i) q^{37} +(0.810272 - 5.94504i) q^{38} +(-0.976025 - 9.43649i) q^{39} +(4.14205 + 5.55369i) q^{40} +7.74597i q^{43} +(-6.67550 - 1.85410i) q^{44} +(6.98125 + 2.29393i) q^{45} +(6.90329 - 0.586988i) q^{48} +(-0.866025 + 1.11803i) q^{50} +(4.97615 + 6.87298i) q^{51} +(7.81628 - 7.67501i) q^{52} +(-3.87298 + 2.23607i) q^{53} +(5.63303 - 4.71901i) q^{54} -8.48528i q^{55} +(3.00000 - 6.70820i) q^{57} +(-5.85410 + 2.39364i) q^{58} +(4.74342 + 8.21584i) q^{59} +(2.95533 + 7.95400i) q^{60} +(-2.73861 + 4.74342i) q^{61} +(-9.48683 - 7.34847i) q^{62} +(5.50000 + 5.80948i) q^{64} +(11.6190 + 6.70820i) q^{65} +(-7.20720 - 4.47843i) q^{66} +(-6.70820 + 3.87298i) q^{67} +(-2.62210 + 9.44058i) q^{68} -3.46410 q^{71} +(8.31572 + 1.68784i) q^{72} +(5.47723 + 9.48683i) q^{73} +(2.80252 + 0.381966i) q^{74} +(-1.40294 + 1.01575i) q^{75} +(8.21584 - 2.12132i) q^{76} +(11.8301 - 6.32836i) q^{78} +(-13.4164 - 7.74597i) q^{79} +(-5.05291 + 8.39453i) q^{80} +(8.24597 - 3.60611i) q^{81} -9.48683 q^{83} -12.0000 q^{85} +(-10.1396 + 4.14590i) q^{86} +(-7.70486 + 0.796921i) q^{87} +(-1.14590 - 9.73072i) q^{88} +(8.48528 + 4.89898i) q^{89} +(0.733809 + 10.3664i) q^{90} +(-8.61895 - 11.9044i) q^{93} +(5.19615 + 9.00000i) q^{95} +(4.46325 + 8.72235i) q^{96} +(-6.92820 - 7.74597i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 16 q^{9} + 28 q^{16} - 20 q^{18} - 48 q^{22} + 8 q^{25} - 12 q^{30} - 16 q^{36} + 16 q^{37} + 48 q^{57} - 40 q^{58} + 60 q^{60} + 88 q^{64} - 20 q^{72} + 120 q^{78} + 8 q^{81} - 192 q^{85}+ \cdots + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.535233 + 1.30902i 0.378467 + 0.925615i
\(3\) 0.178197 + 1.72286i 0.102882 + 0.994694i
\(4\) −1.42705 + 1.40126i −0.713525 + 0.700629i
\(5\) −2.12132 1.22474i −0.948683 0.547723i −0.0560116 0.998430i \(-0.517838\pi\)
−0.892672 + 0.450708i \(0.851172\pi\)
\(6\) −2.15988 + 1.15539i −0.881766 + 0.471688i
\(7\) 0 0
\(8\) −2.59808 1.11803i −0.918559 0.395285i
\(9\) −2.93649 + 0.614017i −0.978831 + 0.204672i
\(10\) 0.467811 3.43237i 0.147935 1.08541i
\(11\) 1.73205 + 3.00000i 0.522233 + 0.904534i 0.999665 + 0.0258656i \(0.00823419\pi\)
−0.477432 + 0.878668i \(0.658432\pi\)
\(12\) −2.66847 2.20891i −0.770320 0.637657i
\(13\) −5.47723 −1.51911 −0.759555 0.650444i \(-0.774583\pi\)
−0.759555 + 0.650444i \(0.774583\pi\)
\(14\) 0 0
\(15\) 1.73205 3.87298i 0.447214 1.00000i
\(16\) 0.0729490 3.99933i 0.0182373 0.999834i
\(17\) 4.24264 2.44949i 1.02899 0.594089i 0.112296 0.993675i \(-0.464180\pi\)
0.916696 + 0.399586i \(0.130846\pi\)
\(18\) −2.37547 3.51528i −0.559903 0.828558i
\(19\) −3.67423 2.12132i −0.842927 0.486664i 0.0153309 0.999882i \(-0.495120\pi\)
−0.858258 + 0.513218i \(0.828453\pi\)
\(20\) 4.74342 1.22474i 1.06066 0.273861i
\(21\) 0 0
\(22\) −3.00000 + 3.87298i −0.639602 + 0.825723i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 1.46325 4.67535i 0.298684 0.954352i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −2.93159 7.16978i −0.574933 1.40611i
\(27\) −1.58114 4.94975i −0.304290 0.952579i
\(28\) 0 0
\(29\) 4.47214i 0.830455i 0.909718 + 0.415227i \(0.136298\pi\)
−0.909718 + 0.415227i \(0.863702\pi\)
\(30\) 5.99685 + 0.194335i 1.09487 + 0.0354805i
\(31\) −7.34847 + 4.24264i −1.31982 + 0.762001i −0.983700 0.179817i \(-0.942449\pi\)
−0.336124 + 0.941818i \(0.609116\pi\)
\(32\) 5.27424 2.04508i 0.932363 0.361523i
\(33\) −4.85993 + 3.51867i −0.846006 + 0.612522i
\(34\) 5.47723 + 4.24264i 0.939336 + 0.727607i
\(35\) 0 0
\(36\) 3.33013 4.99102i 0.555021 0.831836i
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 0.810272 5.94504i 0.131444 0.964412i
\(39\) −0.976025 9.43649i −0.156289 1.51105i
\(40\) 4.14205 + 5.55369i 0.654915 + 0.878115i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 7.74597i 1.18125i 0.806947 + 0.590624i \(0.201119\pi\)
−0.806947 + 0.590624i \(0.798881\pi\)
\(44\) −6.67550 1.85410i −1.00637 0.279516i
\(45\) 6.98125 + 2.29393i 1.04070 + 0.341958i
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 6.90329 0.586988i 0.996404 0.0847245i
\(49\) 0 0
\(50\) −0.866025 + 1.11803i −0.122474 + 0.158114i
\(51\) 4.97615 + 6.87298i 0.696801 + 0.962410i
\(52\) 7.81628 7.67501i 1.08392 1.06433i
\(53\) −3.87298 + 2.23607i −0.531995 + 0.307148i −0.741829 0.670590i \(-0.766041\pi\)
0.209833 + 0.977737i \(0.432708\pi\)
\(54\) 5.63303 4.71901i 0.766558 0.642175i
\(55\) 8.48528i 1.14416i
\(56\) 0 0
\(57\) 3.00000 6.70820i 0.397360 0.888523i
\(58\) −5.85410 + 2.39364i −0.768681 + 0.314300i
\(59\) 4.74342 + 8.21584i 0.617540 + 1.06961i 0.989933 + 0.141536i \(0.0452041\pi\)
−0.372393 + 0.928075i \(0.621463\pi\)
\(60\) 2.95533 + 7.95400i 0.381531 + 1.02686i
\(61\) −2.73861 + 4.74342i −0.350643 + 0.607332i −0.986362 0.164588i \(-0.947370\pi\)
0.635719 + 0.771921i \(0.280704\pi\)
\(62\) −9.48683 7.34847i −1.20483 0.933257i
\(63\) 0 0
\(64\) 5.50000 + 5.80948i 0.687500 + 0.726184i
\(65\) 11.6190 + 6.70820i 1.44115 + 0.832050i
\(66\) −7.20720 4.47843i −0.887145 0.551256i
\(67\) −6.70820 + 3.87298i −0.819538 + 0.473160i −0.850257 0.526368i \(-0.823553\pi\)
0.0307194 + 0.999528i \(0.490220\pi\)
\(68\) −2.62210 + 9.44058i −0.317976 + 1.14484i
\(69\) 0 0
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 8.31572 + 1.68784i 0.980017 + 0.198913i
\(73\) 5.47723 + 9.48683i 0.641061 + 1.11035i 0.985196 + 0.171430i \(0.0548387\pi\)
−0.344136 + 0.938920i \(0.611828\pi\)
\(74\) 2.80252 + 0.381966i 0.325786 + 0.0444026i
\(75\) −1.40294 + 1.01575i −0.161998 + 0.117289i
\(76\) 8.21584 2.12132i 0.942421 0.243332i
\(77\) 0 0
\(78\) 11.8301 6.32836i 1.33950 0.716545i
\(79\) −13.4164 7.74597i −1.50946 0.871489i −0.999939 0.0110333i \(-0.996488\pi\)
−0.509525 0.860456i \(-0.670179\pi\)
\(80\) −5.05291 + 8.39453i −0.564933 + 0.938537i
\(81\) 8.24597 3.60611i 0.916219 0.400679i
\(82\) 0 0
\(83\) −9.48683 −1.04132 −0.520658 0.853766i \(-0.674313\pi\)
−0.520658 + 0.853766i \(0.674313\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) −10.1396 + 4.14590i −1.09338 + 0.447064i
\(87\) −7.70486 + 0.796921i −0.826048 + 0.0854389i
\(88\) −1.14590 9.73072i −0.122153 1.03730i
\(89\) 8.48528 + 4.89898i 0.899438 + 0.519291i 0.877018 0.480458i \(-0.159529\pi\)
0.0224202 + 0.999749i \(0.492863\pi\)
\(90\) 0.733809 + 10.3664i 0.0773503 + 1.09271i
\(91\) 0 0
\(92\) 0 0
\(93\) −8.61895 11.9044i −0.893743 1.23442i
\(94\) 0 0
\(95\) 5.19615 + 9.00000i 0.533114 + 0.923381i
\(96\) 4.46325 + 8.72235i 0.455528 + 0.890221i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) −6.92820 7.74597i −0.696311 0.778499i
\(100\) −1.92705 0.535233i −0.192705 0.0535233i
\(101\) −6.36396 + 3.67423i −0.633238 + 0.365600i −0.782005 0.623272i \(-0.785803\pi\)
0.148767 + 0.988872i \(0.452470\pi\)
\(102\) −6.33345 + 10.1925i −0.627105 + 1.00921i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 14.2302 + 6.12372i 1.39539 + 0.600481i
\(105\) 0 0
\(106\) −5.00000 3.87298i −0.485643 0.376177i
\(107\) 8.66025 15.0000i 0.837218 1.45010i −0.0549930 0.998487i \(-0.517514\pi\)
0.892211 0.451618i \(-0.149153\pi\)
\(108\) 9.19224 + 4.84796i 0.884524 + 0.466495i
\(109\) −5.00000 8.66025i −0.478913 0.829502i 0.520794 0.853682i \(-0.325636\pi\)
−0.999708 + 0.0241802i \(0.992302\pi\)
\(110\) 11.1074 4.54160i 1.05905 0.433025i
\(111\) 3.16228 + 1.41421i 0.300150 + 0.134231i
\(112\) 0 0
\(113\) 4.47214i 0.420703i −0.977626 0.210352i \(-0.932539\pi\)
0.977626 0.210352i \(-0.0674609\pi\)
\(114\) 10.3869 + 0.336598i 0.972818 + 0.0315253i
\(115\) 0 0
\(116\) −6.26662 6.38197i −0.581841 0.592551i
\(117\) 16.0838 3.36311i 1.48695 0.310920i
\(118\) −8.21584 + 10.6066i −0.756329 + 0.976417i
\(119\) 0 0
\(120\) −8.83013 + 8.12581i −0.806077 + 0.741782i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −7.67501 1.04606i −0.694863 0.0947056i
\(123\) 0 0
\(124\) 4.54160 16.3516i 0.407848 1.46841i
\(125\) 9.79796i 0.876356i
\(126\) 0 0
\(127\) 7.74597i 0.687343i 0.939090 + 0.343672i \(0.111671\pi\)
−0.939090 + 0.343672i \(0.888329\pi\)
\(128\) −4.66092 + 10.3090i −0.411971 + 0.911197i
\(129\) −13.3452 + 1.38031i −1.17498 + 0.121529i
\(130\) −2.56231 + 18.7999i −0.224729 + 1.64886i
\(131\) −4.74342 + 8.21584i −0.414434 + 0.717821i −0.995369 0.0961291i \(-0.969354\pi\)
0.580935 + 0.813950i \(0.302687\pi\)
\(132\) 2.00480 11.8313i 0.174496 1.02979i
\(133\) 0 0
\(134\) −8.66025 6.70820i −0.748132 0.579501i
\(135\) −2.70808 + 12.4365i −0.233074 + 1.07036i
\(136\) −13.7613 + 1.62054i −1.18002 + 0.138961i
\(137\) −7.74597 + 4.47214i −0.661783 + 0.382080i −0.792956 0.609279i \(-0.791459\pi\)
0.131173 + 0.991359i \(0.458126\pi\)
\(138\) 0 0
\(139\) 4.24264i 0.359856i 0.983680 + 0.179928i \(0.0575865\pi\)
−0.983680 + 0.179928i \(0.942414\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.85410 4.53457i −0.155593 0.380532i
\(143\) −9.48683 16.4317i −0.793329 1.37409i
\(144\) 2.24144 + 11.7888i 0.186787 + 0.982400i
\(145\) 5.47723 9.48683i 0.454859 0.787839i
\(146\) −9.48683 + 12.2474i −0.785136 + 1.01361i
\(147\) 0 0
\(148\) 1.00000 + 3.87298i 0.0821995 + 0.318357i
\(149\) 3.87298 + 2.23607i 0.317287 + 0.183186i 0.650183 0.759778i \(-0.274692\pi\)
−0.332896 + 0.942964i \(0.608026\pi\)
\(150\) −2.08054 1.29281i −0.169875 0.105557i
\(151\) 6.70820 3.87298i 0.545906 0.315179i −0.201563 0.979476i \(-0.564602\pi\)
0.747469 + 0.664297i \(0.231269\pi\)
\(152\) 7.17423 + 9.61927i 0.581907 + 0.780226i
\(153\) −10.9545 + 9.79796i −0.885615 + 0.792118i
\(154\) 0 0
\(155\) 20.7846 1.66946
\(156\) 14.6158 + 12.0987i 1.17020 + 0.968671i
\(157\) −2.73861 4.74342i −0.218565 0.378566i 0.735804 0.677194i \(-0.236804\pi\)
−0.954370 + 0.298628i \(0.903471\pi\)
\(158\) 2.95870 21.7082i 0.235381 1.72701i
\(159\) −4.54259 6.27415i −0.360250 0.497572i
\(160\) −13.6931 2.12132i −1.08253 0.167705i
\(161\) 0 0
\(162\) 9.13397 + 8.86400i 0.717633 + 0.696422i
\(163\) 6.70820 + 3.87298i 0.525427 + 0.303355i 0.739152 0.673538i \(-0.235226\pi\)
−0.213725 + 0.976894i \(0.568560\pi\)
\(164\) 0 0
\(165\) 14.6190 1.51205i 1.13808 0.117713i
\(166\) −5.07767 12.4184i −0.394103 0.963857i
\(167\) 18.9737 1.46823 0.734113 0.679027i \(-0.237598\pi\)
0.734113 + 0.679027i \(0.237598\pi\)
\(168\) 0 0
\(169\) 17.0000 1.30769
\(170\) −6.42280 15.7082i −0.492606 1.20476i
\(171\) 12.0919 + 3.97320i 0.924690 + 0.303838i
\(172\) −10.8541 11.0539i −0.827618 0.842851i
\(173\) −2.12132 1.22474i −0.161281 0.0931156i 0.417187 0.908821i \(-0.363016\pi\)
−0.578468 + 0.815705i \(0.696349\pi\)
\(174\) −5.16708 9.65926i −0.391715 0.732266i
\(175\) 0 0
\(176\) 12.1244 6.70820i 0.913908 0.505650i
\(177\) −13.3095 + 9.63628i −1.00040 + 0.724307i
\(178\) −1.87124 + 13.7295i −0.140256 + 1.02907i
\(179\) −5.19615 9.00000i −0.388379 0.672692i 0.603853 0.797096i \(-0.293631\pi\)
−0.992232 + 0.124404i \(0.960298\pi\)
\(180\) −13.1770 + 6.50899i −0.982155 + 0.485152i
\(181\) 16.4317 1.22136 0.610678 0.791879i \(-0.290897\pi\)
0.610678 + 0.791879i \(0.290897\pi\)
\(182\) 0 0
\(183\) −8.66025 3.87298i −0.640184 0.286299i
\(184\) 0 0
\(185\) −4.24264 + 2.44949i −0.311925 + 0.180090i
\(186\) 10.9699 17.6540i 0.804349 1.29445i
\(187\) 14.6969 + 8.48528i 1.07475 + 0.620505i
\(188\) 0 0
\(189\) 0 0
\(190\) −9.00000 + 11.6190i −0.652929 + 0.842927i
\(191\) 1.73205 3.00000i 0.125327 0.217072i −0.796534 0.604594i \(-0.793335\pi\)
0.921861 + 0.387522i \(0.126669\pi\)
\(192\) −9.02883 + 10.5110i −0.651599 + 0.758563i
\(193\) 8.00000 + 13.8564i 0.575853 + 0.997406i 0.995948 + 0.0899262i \(0.0286631\pi\)
−0.420096 + 0.907480i \(0.638004\pi\)
\(194\) 0 0
\(195\) −9.48683 + 21.2132i −0.679366 + 1.51911i
\(196\) 0 0
\(197\) 22.3607i 1.59313i 0.604551 + 0.796566i \(0.293352\pi\)
−0.604551 + 0.796566i \(0.706648\pi\)
\(198\) 6.43140 13.2150i 0.457060 0.939152i
\(199\) 14.6969 8.48528i 1.04184 0.601506i 0.121485 0.992593i \(-0.461234\pi\)
0.920353 + 0.391088i \(0.127901\pi\)
\(200\) −0.330792 2.80902i −0.0233905 0.198627i
\(201\) −7.86799 10.8671i −0.554965 0.766509i
\(202\) −8.21584 6.36396i −0.578064 0.447767i
\(203\) 0 0
\(204\) −16.7321 2.83522i −1.17148 0.198505i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.399558 + 21.9053i −0.0277044 + 1.51886i
\(209\) 14.6969i 1.01661i
\(210\) 0 0
\(211\) 7.74597i 0.533254i −0.963800 0.266627i \(-0.914091\pi\)
0.963800 0.266627i \(-0.0859092\pi\)
\(212\) 2.39364 8.61803i 0.164396 0.591889i
\(213\) −0.617292 5.96816i −0.0422962 0.408932i
\(214\) 24.2705 + 3.30792i 1.65910 + 0.226125i
\(215\) 9.48683 16.4317i 0.646997 1.12063i
\(216\) −1.42607 + 14.6276i −0.0970316 + 0.995281i
\(217\) 0 0
\(218\) 8.66025 11.1803i 0.586546 0.757228i
\(219\) −15.3685 + 11.1270i −1.03850 + 0.751894i
\(220\) 11.8901 + 12.1089i 0.801629 + 0.816384i
\(221\) −23.2379 + 13.4164i −1.56315 + 0.902485i
\(222\) −0.158674 + 4.89641i −0.0106495 + 0.328625i
\(223\) 8.48528i 0.568216i 0.958792 + 0.284108i \(0.0916975\pi\)
−0.958792 + 0.284108i \(0.908302\pi\)
\(224\) 0 0
\(225\) −2.00000 2.23607i −0.133333 0.149071i
\(226\) 5.85410 2.39364i 0.389409 0.159222i
\(227\) 4.74342 + 8.21584i 0.314832 + 0.545304i 0.979402 0.201922i \(-0.0647186\pi\)
−0.664570 + 0.747226i \(0.731385\pi\)
\(228\) 5.11878 + 13.7767i 0.338999 + 0.912386i
\(229\) −2.73861 + 4.74342i −0.180973 + 0.313454i −0.942212 0.335017i \(-0.891258\pi\)
0.761239 + 0.648471i \(0.224591\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.00000 11.6190i 0.328266 0.762821i
\(233\) 7.74597 + 4.47214i 0.507455 + 0.292979i 0.731787 0.681533i \(-0.238687\pi\)
−0.224332 + 0.974513i \(0.572020\pi\)
\(234\) 13.0110 + 19.2540i 0.850553 + 1.25867i
\(235\) 0 0
\(236\) −18.2816 5.07767i −1.19003 0.330528i
\(237\) 10.9545 24.4949i 0.711568 1.59111i
\(238\) 0 0
\(239\) 6.92820 0.448148 0.224074 0.974572i \(-0.428064\pi\)
0.224074 + 0.974572i \(0.428064\pi\)
\(240\) −15.3630 7.20958i −0.991678 0.465376i
\(241\) −10.9545 18.9737i −0.705638 1.22220i −0.966461 0.256814i \(-0.917327\pi\)
0.260822 0.965387i \(-0.416006\pi\)
\(242\) −1.40126 0.190983i −0.0900763 0.0122769i
\(243\) 7.68223 + 13.5640i 0.492815 + 0.870134i
\(244\) −2.73861 10.6066i −0.175322 0.679018i
\(245\) 0 0
\(246\) 0 0
\(247\) 20.1246 + 11.6190i 1.28050 + 0.739296i
\(248\) 23.8353 2.80687i 1.51354 0.178236i
\(249\) −1.69052 16.3445i −0.107133 1.03579i
\(250\) −12.8257 + 5.24419i −0.811168 + 0.331672i
\(251\) −9.48683 −0.598804 −0.299402 0.954127i \(-0.596787\pi\)
−0.299402 + 0.954127i \(0.596787\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −10.1396 + 4.14590i −0.636215 + 0.260137i
\(255\) −2.13836 20.6743i −0.133910 1.29468i
\(256\) −15.9894 0.583495i −0.999335 0.0364684i
\(257\) −4.24264 2.44949i −0.264649 0.152795i 0.361805 0.932254i \(-0.382161\pi\)
−0.626453 + 0.779459i \(0.715494\pi\)
\(258\) −8.94965 16.7303i −0.557181 1.04158i
\(259\) 0 0
\(260\) −25.9808 + 6.70820i −1.61126 + 0.416025i
\(261\) −2.74597 13.1324i −0.169971 0.812875i
\(262\) −13.2935 1.81182i −0.821276 0.111935i
\(263\) 1.73205 + 3.00000i 0.106803 + 0.184988i 0.914473 0.404646i \(-0.132605\pi\)
−0.807671 + 0.589634i \(0.799272\pi\)
\(264\) 16.5605 3.70821i 1.01923 0.228224i
\(265\) 10.9545 0.672927
\(266\) 0 0
\(267\) −6.92820 + 15.4919i −0.423999 + 0.948091i
\(268\) 4.14590 14.9269i 0.253251 0.911804i
\(269\) 2.12132 1.22474i 0.129339 0.0746740i −0.433934 0.900944i \(-0.642875\pi\)
0.563274 + 0.826270i \(0.309542\pi\)
\(270\) −17.7290 + 3.11151i −1.07895 + 0.189360i
\(271\) −7.34847 4.24264i −0.446388 0.257722i 0.259916 0.965631i \(-0.416305\pi\)
−0.706303 + 0.707909i \(0.749639\pi\)
\(272\) −9.48683 17.1464i −0.575224 1.03965i
\(273\) 0 0
\(274\) −10.0000 7.74597i −0.604122 0.467951i
\(275\) −1.73205 + 3.00000i −0.104447 + 0.180907i
\(276\) 0 0
\(277\) −1.00000 1.73205i −0.0600842 0.104069i 0.834419 0.551131i \(-0.185804\pi\)
−0.894503 + 0.447062i \(0.852470\pi\)
\(278\) −5.55369 + 2.27080i −0.333088 + 0.136194i
\(279\) 18.9737 16.9706i 1.13592 1.01600i
\(280\) 0 0
\(281\) 8.94427i 0.533571i −0.963756 0.266785i \(-0.914039\pi\)
0.963756 0.266785i \(-0.0859614\pi\)
\(282\) 0 0
\(283\) 25.7196 14.8492i 1.52887 0.882696i 0.529465 0.848332i \(-0.322393\pi\)
0.999409 0.0343638i \(-0.0109405\pi\)
\(284\) 4.94345 4.85410i 0.293340 0.288038i
\(285\) −14.5798 + 10.5560i −0.863633 + 0.625284i
\(286\) 16.4317 21.2132i 0.971625 1.25436i
\(287\) 0 0
\(288\) −14.2321 + 9.24385i −0.838632 + 0.544699i
\(289\) 3.50000 6.06218i 0.205882 0.356599i
\(290\) 15.3500 + 2.09211i 0.901384 + 0.122853i
\(291\) 0 0
\(292\) −21.1098 5.86319i −1.23536 0.343117i
\(293\) 2.44949i 0.143101i −0.997437 0.0715504i \(-0.977205\pi\)
0.997437 0.0715504i \(-0.0227947\pi\)
\(294\) 0 0
\(295\) 23.2379i 1.35296i
\(296\) −4.53457 + 3.38197i −0.263566 + 0.196573i
\(297\) 12.1106 13.3166i 0.702730 0.772709i
\(298\) −0.854102 + 6.26662i −0.0494768 + 0.363015i
\(299\) 0 0
\(300\) 0.578737 3.41542i 0.0334134 0.197189i
\(301\) 0 0
\(302\) 8.66025 + 6.70820i 0.498342 + 0.386014i
\(303\) −7.46423 10.3095i −0.428809 0.592264i
\(304\) −8.75190 + 14.5397i −0.501956 + 0.833912i
\(305\) 11.6190 6.70820i 0.665299 0.384111i
\(306\) −18.6889 9.09537i −1.06837 0.519948i
\(307\) 21.2132i 1.21070i 0.795959 + 0.605351i \(0.206967\pi\)
−0.795959 + 0.605351i \(0.793033\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 11.1246 + 27.2074i 0.631835 + 1.54528i
\(311\) −9.48683 16.4317i −0.537949 0.931755i −0.999014 0.0443887i \(-0.985866\pi\)
0.461065 0.887366i \(-0.347467\pi\)
\(312\) −8.01453 + 25.6080i −0.453733 + 1.44976i
\(313\) −5.47723 + 9.48683i −0.309591 + 0.536228i −0.978273 0.207321i \(-0.933525\pi\)
0.668682 + 0.743549i \(0.266859\pi\)
\(314\) 4.74342 6.12372i 0.267686 0.345582i
\(315\) 0 0
\(316\) 30.0000 7.74597i 1.68763 0.435745i
\(317\) 3.87298 + 2.23607i 0.217528 + 0.125590i 0.604805 0.796373i \(-0.293251\pi\)
−0.387277 + 0.921963i \(0.626584\pi\)
\(318\) 5.78162 9.30445i 0.324217 0.521768i
\(319\) −13.4164 + 7.74597i −0.751175 + 0.433691i
\(320\) −4.55214 19.0599i −0.254472 1.06548i
\(321\) 27.3861 + 12.2474i 1.52854 + 0.683586i
\(322\) 0 0
\(323\) −20.7846 −1.15649
\(324\) −6.71432 + 16.7008i −0.373018 + 0.927824i
\(325\) −2.73861 4.74342i −0.151911 0.263117i
\(326\) −1.47935 + 10.8541i −0.0819335 + 0.601153i
\(327\) 14.0294 10.1575i 0.775829 0.561713i
\(328\) 0 0
\(329\) 0 0
\(330\) 9.80385 + 18.3272i 0.539684 + 1.00888i
\(331\) −20.1246 11.6190i −1.10615 0.638635i −0.168320 0.985732i \(-0.553834\pi\)
−0.937829 + 0.347097i \(0.887167\pi\)
\(332\) 13.5382 13.2935i 0.743005 0.729576i
\(333\) −1.87298 + 5.70017i −0.102639 + 0.312367i
\(334\) 10.1553 + 24.8369i 0.555675 + 1.35901i
\(335\) 18.9737 1.03664
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 9.09896 + 22.2533i 0.494918 + 1.21042i
\(339\) 7.70486 0.796921i 0.418471 0.0432828i
\(340\) 17.1246 16.8151i 0.928712 0.911927i
\(341\) −25.4558 14.6969i −1.37851 0.795884i
\(342\) 1.27099 + 17.9551i 0.0687275 + 0.970899i
\(343\) 0 0
\(344\) 8.66025 20.1246i 0.466930 1.08505i
\(345\) 0 0
\(346\) 0.467811 3.43237i 0.0251497 0.184525i
\(347\) 12.1244 + 21.0000i 0.650870 + 1.12734i 0.982912 + 0.184075i \(0.0589288\pi\)
−0.332043 + 0.943264i \(0.607738\pi\)
\(348\) 9.87854 11.9338i 0.529545 0.639716i
\(349\) −16.4317 −0.879567 −0.439784 0.898104i \(-0.644945\pi\)
−0.439784 + 0.898104i \(0.644945\pi\)
\(350\) 0 0
\(351\) 8.66025 + 27.1109i 0.462250 + 1.44707i
\(352\) 15.2705 + 12.2805i 0.813921 + 0.654555i
\(353\) 12.7279 7.34847i 0.677439 0.391120i −0.121450 0.992597i \(-0.538755\pi\)
0.798889 + 0.601478i \(0.205421\pi\)
\(354\) −19.7377 12.2647i −1.04905 0.651860i
\(355\) 7.34847 + 4.24264i 0.390016 + 0.225176i
\(356\) −18.9737 + 4.89898i −1.00560 + 0.259645i
\(357\) 0 0
\(358\) 9.00000 11.6190i 0.475665 0.614081i
\(359\) 13.8564 24.0000i 0.731313 1.26667i −0.225009 0.974357i \(-0.572241\pi\)
0.956322 0.292315i \(-0.0944255\pi\)
\(360\) −15.5731 13.7651i −0.820777 0.725483i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 8.79478 + 21.5093i 0.462243 + 1.13051i
\(363\) −1.58114 0.707107i −0.0829883 0.0371135i
\(364\) 0 0
\(365\) 26.8328i 1.40449i
\(366\) 0.434546 13.4094i 0.0227141 0.700919i
\(367\) −22.0454 + 12.7279i −1.15076 + 0.664392i −0.949073 0.315058i \(-0.897976\pi\)
−0.201688 + 0.979450i \(0.564643\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −5.47723 4.24264i −0.284747 0.220564i
\(371\) 0 0
\(372\) 28.9808 + 4.91075i 1.50258 + 0.254610i
\(373\) −13.0000 + 22.5167i −0.673114 + 1.16587i 0.303902 + 0.952703i \(0.401711\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(374\) −3.24109 + 23.7801i −0.167593 + 1.22964i
\(375\) −16.8805 + 1.74597i −0.871706 + 0.0901613i
\(376\) 0 0
\(377\) 24.4949i 1.26155i
\(378\) 0 0
\(379\) 7.74597i 0.397884i −0.980011 0.198942i \(-0.936250\pi\)
0.980011 0.198942i \(-0.0637505\pi\)
\(380\) −20.0265 5.56231i −1.02734 0.285340i
\(381\) −13.3452 + 1.38031i −0.683696 + 0.0707153i
\(382\) 4.85410 + 0.661585i 0.248357 + 0.0338496i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) −18.5916 6.19307i −0.948746 0.316039i
\(385\) 0 0
\(386\) −13.8564 + 17.8885i −0.705273 + 0.910503i
\(387\) −4.75615 22.7460i −0.241769 1.15624i
\(388\) 0 0
\(389\) 27.1109 15.6525i 1.37458 0.793612i 0.383076 0.923717i \(-0.374865\pi\)
0.991500 + 0.130105i \(0.0415314\pi\)
\(390\) −32.8461 1.06442i −1.66323 0.0538988i
\(391\) 0 0
\(392\) 0 0
\(393\) −15.0000 6.70820i −0.756650 0.338384i
\(394\) −29.2705 + 11.9682i −1.47463 + 0.602948i
\(395\) 18.9737 + 32.8634i 0.954669 + 1.65353i
\(396\) 20.7410 + 1.34569i 1.04227 + 0.0676232i
\(397\) 19.1703 33.2039i 0.962129 1.66646i 0.244992 0.969525i \(-0.421215\pi\)
0.717138 0.696932i \(-0.245452\pi\)
\(398\) 18.9737 + 14.6969i 0.951064 + 0.736691i
\(399\) 0 0
\(400\) 3.50000 1.93649i 0.175000 0.0968246i
\(401\) −3.87298 2.23607i −0.193408 0.111664i 0.400169 0.916441i \(-0.368951\pi\)
−0.593577 + 0.804777i \(0.702285\pi\)
\(402\) 10.0141 16.1158i 0.499456 0.803782i
\(403\) 40.2492 23.2379i 2.00496 1.15756i
\(404\) 3.93314 14.1609i 0.195681 0.704530i
\(405\) −21.9089 2.44949i −1.08866 0.121716i
\(406\) 0 0
\(407\) 6.92820 0.343418
\(408\) −5.24420 23.4200i −0.259626 1.15946i
\(409\) −5.47723 9.48683i −0.270831 0.469094i 0.698244 0.715860i \(-0.253965\pi\)
−0.969075 + 0.246767i \(0.920632\pi\)
\(410\) 0 0
\(411\) −9.08517 12.5483i −0.448138 0.618962i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 20.1246 + 11.6190i 0.987878 + 0.570352i
\(416\) −28.8882 + 11.2014i −1.41636 + 0.549193i
\(417\) −7.30948 + 0.756026i −0.357947 + 0.0370227i
\(418\) 19.2385 7.86629i 0.940988 0.384753i
\(419\) −28.4605 −1.39039 −0.695193 0.718823i \(-0.744681\pi\)
−0.695193 + 0.718823i \(0.744681\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 10.1396 4.14590i 0.493588 0.201819i
\(423\) 0 0
\(424\) 12.5623 1.47935i 0.610080 0.0718435i
\(425\) 4.24264 + 2.44949i 0.205798 + 0.118818i
\(426\) 7.48203 4.00240i 0.362506 0.193917i
\(427\) 0 0
\(428\) 8.66025 + 33.5410i 0.418609 + 1.62127i
\(429\) 26.6190 19.2726i 1.28518 0.930488i
\(430\) 26.5870 + 3.62365i 1.28214 + 0.174748i
\(431\) −10.3923 18.0000i −0.500580 0.867029i −1.00000 0.000669521i \(-0.999787\pi\)
0.499420 0.866360i \(-0.333546\pi\)
\(432\) −19.9110 + 5.96242i −0.957970 + 0.286867i
\(433\) −21.9089 −1.05287 −0.526437 0.850214i \(-0.676473\pi\)
−0.526437 + 0.850214i \(0.676473\pi\)
\(434\) 0 0
\(435\) 17.3205 + 7.74597i 0.830455 + 0.371391i
\(436\) 19.2705 + 5.35233i 0.922890 + 0.256330i
\(437\) 0 0
\(438\) −22.7912 14.1620i −1.08900 0.676688i
\(439\) −14.6969 8.48528i −0.701447 0.404980i 0.106439 0.994319i \(-0.466055\pi\)
−0.807886 + 0.589339i \(0.799388\pi\)
\(440\) −9.48683 + 22.0454i −0.452267 + 1.05097i
\(441\) 0 0
\(442\) −30.0000 23.2379i −1.42695 1.10531i
\(443\) −15.5885 + 27.0000i −0.740630 + 1.28281i 0.211579 + 0.977361i \(0.432139\pi\)
−0.952209 + 0.305448i \(0.901194\pi\)
\(444\) −6.49441 + 2.41301i −0.308211 + 0.114517i
\(445\) −12.0000 20.7846i −0.568855 0.985285i
\(446\) −11.1074 + 4.54160i −0.525950 + 0.215051i
\(447\) −3.16228 + 7.07107i −0.149571 + 0.334450i
\(448\) 0 0
\(449\) 35.7771i 1.68843i 0.536009 + 0.844213i \(0.319931\pi\)
−0.536009 + 0.844213i \(0.680069\pi\)
\(450\) 1.85658 3.81485i 0.0875202 0.179834i
\(451\) 0 0
\(452\) 6.26662 + 6.38197i 0.294757 + 0.300182i
\(453\) 7.86799 + 10.8671i 0.369670 + 0.510583i
\(454\) −8.21584 + 10.6066i −0.385588 + 0.497792i
\(455\) 0 0
\(456\) −15.2942 + 14.0743i −0.716218 + 0.659091i
\(457\) 14.0000 24.2487i 0.654892 1.13431i −0.327028 0.945015i \(-0.606047\pi\)
0.981921 0.189292i \(-0.0606194\pi\)
\(458\) −7.67501 1.04606i −0.358630 0.0488790i
\(459\) −18.8326 17.1270i −0.879029 0.799421i
\(460\) 0 0
\(461\) 36.7423i 1.71126i 0.517587 + 0.855631i \(0.326831\pi\)
−0.517587 + 0.855631i \(0.673169\pi\)
\(462\) 0 0
\(463\) 15.4919i 0.719971i 0.932958 + 0.359986i \(0.117218\pi\)
−0.932958 + 0.359986i \(0.882782\pi\)
\(464\) 17.8856 + 0.326238i 0.830317 + 0.0151452i
\(465\) 3.70375 + 35.8090i 0.171758 + 1.66060i
\(466\) −1.70820 + 12.5332i −0.0791310 + 0.580591i
\(467\) −14.2302 + 24.6475i −0.658497 + 1.14055i 0.322507 + 0.946567i \(0.395474\pi\)
−0.981005 + 0.193984i \(0.937859\pi\)
\(468\) −18.2399 + 27.3369i −0.843138 + 1.26365i
\(469\) 0 0
\(470\) 0 0
\(471\) 7.68423 5.56351i 0.354071 0.256353i
\(472\) −3.13817 26.6487i −0.144446 1.22660i
\(473\) −23.2379 + 13.4164i −1.06848 + 0.616887i
\(474\) 37.9274 + 1.22908i 1.74206 + 0.0564536i
\(475\) 4.24264i 0.194666i
\(476\) 0 0
\(477\) 10.0000 8.94427i 0.457869 0.409530i
\(478\) 3.70820 + 9.06914i 0.169609 + 0.414813i
\(479\) −18.9737 32.8634i −0.866929 1.50156i −0.865119 0.501567i \(-0.832757\pi\)
−0.00180988 0.999998i \(-0.500576\pi\)
\(480\) 1.21467 23.9692i 0.0554421 1.09404i
\(481\) −5.47723 + 9.48683i −0.249740 + 0.432562i
\(482\) 18.9737 24.4949i 0.864227 1.11571i
\(483\) 0 0
\(484\) −0.500000 1.93649i −0.0227273 0.0880223i
\(485\) 0 0
\(486\) −13.6438 + 17.3161i −0.618895 + 0.785474i
\(487\) −6.70820 + 3.87298i −0.303978 + 0.175502i −0.644228 0.764833i \(-0.722821\pi\)
0.340251 + 0.940335i \(0.389488\pi\)
\(488\) 12.4184 9.26190i 0.562156 0.419266i
\(489\) −5.47723 + 12.2474i −0.247689 + 0.553849i
\(490\) 0 0
\(491\) −31.1769 −1.40699 −0.703497 0.710698i \(-0.748379\pi\)
−0.703497 + 0.710698i \(0.748379\pi\)
\(492\) 0 0
\(493\) 10.9545 + 18.9737i 0.493364 + 0.854531i
\(494\) −4.43804 + 32.5623i −0.199677 + 1.46505i
\(495\) 5.21011 + 24.9170i 0.234177 + 1.11993i
\(496\) 16.4317 + 29.6985i 0.737804 + 1.33350i
\(497\) 0 0
\(498\) 20.4904 10.9610i 0.918196 0.491176i
\(499\) 20.1246 + 11.6190i 0.900901 + 0.520136i 0.877493 0.479590i \(-0.159215\pi\)
0.0234088 + 0.999726i \(0.492548\pi\)
\(500\) −13.7295 13.9822i −0.614001 0.625302i
\(501\) 3.38105 + 32.6890i 0.151054 + 1.46044i
\(502\) −5.07767 12.4184i −0.226627 0.554261i
\(503\) 18.9737 0.845994 0.422997 0.906131i \(-0.360978\pi\)
0.422997 + 0.906131i \(0.360978\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 3.02935 + 29.2886i 0.134538 + 1.30075i
\(508\) −10.8541 11.0539i −0.481573 0.490437i
\(509\) 31.8198 + 18.3712i 1.41039 + 0.814288i 0.995425 0.0955502i \(-0.0304610\pi\)
0.414963 + 0.909838i \(0.363794\pi\)
\(510\) 25.9185 13.8647i 1.14769 0.613941i
\(511\) 0 0
\(512\) −7.79423 21.2426i −0.344459 0.938801i
\(513\) −4.69052 + 21.5406i −0.207092 + 0.951042i
\(514\) 0.935622 6.86474i 0.0412685 0.302791i
\(515\) 0 0
\(516\) 17.1101 20.6699i 0.753232 0.909940i
\(517\) 0 0
\(518\) 0 0
\(519\) 1.73205 3.87298i 0.0760286 0.170005i
\(520\) −22.6869 30.4188i −0.994887 1.33395i
\(521\) −25.4558 + 14.6969i −1.11524 + 0.643885i −0.940182 0.340673i \(-0.889345\pi\)
−0.175059 + 0.984558i \(0.556012\pi\)
\(522\) 15.7208 10.6234i 0.688080 0.464974i
\(523\) −18.3712 10.6066i −0.803315 0.463794i 0.0413138 0.999146i \(-0.486846\pi\)
−0.844629 + 0.535352i \(0.820179\pi\)
\(524\) −4.74342 18.3712i −0.207217 0.802548i
\(525\) 0 0
\(526\) −3.00000 + 3.87298i −0.130806 + 0.168870i
\(527\) −20.7846 + 36.0000i −0.905392 + 1.56818i
\(528\) 13.7178 + 19.6932i 0.596991 + 0.857036i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 5.86319 + 14.3396i 0.254680 + 0.622871i
\(531\) −18.9737 21.2132i −0.823387 0.920575i
\(532\) 0 0
\(533\) 0 0
\(534\) −23.9874 0.777340i −1.03804 0.0336388i
\(535\) −36.7423 + 21.2132i −1.58851 + 0.917127i
\(536\) 21.7586 2.56231i 0.939826 0.110675i
\(537\) 14.5798 10.5560i 0.629165 0.455526i
\(538\) 2.73861 + 2.12132i 0.118070 + 0.0914566i
\(539\) 0 0
\(540\) −13.5622 21.5422i −0.583623 0.927030i
\(541\) −19.0000 + 32.9090i −0.816874 + 1.41487i 0.0911008 + 0.995842i \(0.470961\pi\)
−0.907975 + 0.419025i \(0.862372\pi\)
\(542\) 1.62054 11.8901i 0.0696083 0.510722i
\(543\) 2.92808 + 28.3095i 0.125656 + 1.21488i
\(544\) 17.3673 21.5958i 0.744617 0.925911i
\(545\) 24.4949i 1.04925i
\(546\) 0 0
\(547\) 38.7298i 1.65597i −0.560752 0.827984i \(-0.689488\pi\)
0.560752 0.827984i \(-0.310512\pi\)
\(548\) 4.78727 17.2361i 0.204502 0.736288i
\(549\) 5.12938 15.6106i 0.218916 0.666242i
\(550\) −4.85410 0.661585i −0.206980 0.0282101i
\(551\) 9.48683 16.4317i 0.404153 0.700013i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.73205 2.23607i 0.0735878 0.0950014i
\(555\) −4.97615 6.87298i −0.211226 0.291742i
\(556\) −5.94504 6.05446i −0.252126 0.256766i
\(557\) 19.3649 11.1803i 0.820518 0.473726i −0.0300772 0.999548i \(-0.509575\pi\)
0.850595 + 0.525821i \(0.176242\pi\)
\(558\) 32.3701 + 15.7536i 1.37034 + 0.666905i
\(559\) 42.4264i 1.79445i
\(560\) 0 0
\(561\) −12.0000 + 26.8328i −0.506640 + 1.13288i
\(562\) 11.7082 4.78727i 0.493881 0.201939i
\(563\) 4.74342 + 8.21584i 0.199911 + 0.346256i 0.948499 0.316779i \(-0.102601\pi\)
−0.748588 + 0.663035i \(0.769268\pi\)
\(564\) 0 0
\(565\) −5.47723 + 9.48683i −0.230429 + 0.399114i
\(566\) 33.2039 + 25.7196i 1.39566 + 1.08108i
\(567\) 0 0
\(568\) 9.00000 + 3.87298i 0.377632 + 0.162507i
\(569\) −27.1109 15.6525i −1.13655 0.656186i −0.190974 0.981595i \(-0.561165\pi\)
−0.945573 + 0.325409i \(0.894498\pi\)
\(570\) −21.6216 13.4353i −0.905629 0.562742i
\(571\) −20.1246 + 11.6190i −0.842189 + 0.486238i −0.858008 0.513637i \(-0.828298\pi\)
0.0158188 + 0.999875i \(0.494964\pi\)
\(572\) 36.5632 + 10.1553i 1.52879 + 0.424616i
\(573\) 5.47723 + 2.44949i 0.228814 + 0.102329i
\(574\) 0 0
\(575\) 0 0
\(576\) −19.7178 13.6824i −0.821576 0.570099i
\(577\) 21.9089 + 37.9473i 0.912080 + 1.57977i 0.811122 + 0.584877i \(0.198857\pi\)
0.100958 + 0.994891i \(0.467809\pi\)
\(578\) 9.80881 + 1.33688i 0.407993 + 0.0556069i
\(579\) −22.4471 + 16.2520i −0.932868 + 0.675412i
\(580\) 5.47723 + 21.2132i 0.227429 + 0.880830i
\(581\) 0 0
\(582\) 0 0
\(583\) −13.4164 7.74597i −0.555651 0.320805i
\(584\) −3.62365 30.7712i −0.149948 1.27332i
\(585\) −38.2379 12.5644i −1.58094 0.519472i
\(586\) 3.20642 1.31105i 0.132456 0.0541589i
\(587\) −9.48683 −0.391564 −0.195782 0.980647i \(-0.562724\pi\)
−0.195782 + 0.980647i \(0.562724\pi\)
\(588\) 0 0
\(589\) 36.0000 1.48335
\(590\) 30.4188 12.4377i 1.25232 0.512052i
\(591\) −38.5243 + 3.98461i −1.58468 + 0.163905i
\(592\) −6.85410 4.12569i −0.281702 0.169565i
\(593\) 29.6985 + 17.1464i 1.21957 + 0.704119i 0.964826 0.262889i \(-0.0846753\pi\)
0.254745 + 0.967008i \(0.418009\pi\)
\(594\) 23.9137 + 8.72552i 0.981191 + 0.358012i
\(595\) 0 0
\(596\) −8.66025 + 2.23607i −0.354738 + 0.0915929i
\(597\) 17.2379 + 23.8087i 0.705500 + 0.974426i
\(598\) 0 0
\(599\) 12.1244 + 21.0000i 0.495388 + 0.858037i 0.999986 0.00531761i \(-0.00169266\pi\)
−0.504598 + 0.863354i \(0.668359\pi\)
\(600\) 4.78060 1.07047i 0.195167 0.0437016i
\(601\) 10.9545 0.446841 0.223421 0.974722i \(-0.428278\pi\)
0.223421 + 0.974722i \(0.428278\pi\)
\(602\) 0 0
\(603\) 17.3205 15.4919i 0.705346 0.630880i
\(604\) −4.14590 + 14.9269i −0.168694 + 0.607366i
\(605\) 2.12132 1.22474i 0.0862439 0.0497930i
\(606\) 9.50017 15.2888i 0.385918 0.621064i
\(607\) 22.0454 + 12.7279i 0.894795 + 0.516610i 0.875508 0.483204i \(-0.160527\pi\)
0.0192875 + 0.999814i \(0.493860\pi\)
\(608\) −23.7171 3.67423i −0.961855 0.149010i
\(609\) 0 0
\(610\) 15.0000 + 11.6190i 0.607332 + 0.470438i
\(611\) 0 0
\(612\) 1.90309 29.3322i 0.0769277 1.18568i
\(613\) 7.00000 + 12.1244i 0.282727 + 0.489698i 0.972056 0.234751i \(-0.0754275\pi\)
−0.689328 + 0.724449i \(0.742094\pi\)
\(614\) −27.7684 + 11.3540i −1.12064 + 0.458211i
\(615\) 0 0
\(616\) 0 0
\(617\) 22.3607i 0.900207i −0.892976 0.450104i \(-0.851387\pi\)
0.892976 0.450104i \(-0.148613\pi\)
\(618\) 0 0
\(619\) 3.67423 2.12132i 0.147680 0.0852631i −0.424339 0.905503i \(-0.639494\pi\)
0.572019 + 0.820240i \(0.306160\pi\)
\(620\) −29.6607 + 29.1246i −1.19120 + 1.16967i
\(621\) 0 0
\(622\) 16.4317 21.2132i 0.658850 0.850572i
\(623\) 0 0
\(624\) −37.8109 + 3.21507i −1.51365 + 0.128706i
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) −15.3500 2.09211i −0.613510 0.0836177i
\(627\) 25.3208 2.61895i 1.01121 0.104591i
\(628\) 10.5549 + 2.93159i 0.421186 + 0.116983i
\(629\) 9.79796i 0.390670i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 26.1966 + 35.1246i 1.04204 + 1.39718i
\(633\) 13.3452 1.38031i 0.530425 0.0548623i
\(634\) −0.854102 + 6.26662i −0.0339207 + 0.248879i
\(635\) 9.48683 16.4317i 0.376473 0.652071i
\(636\) 15.2742 + 2.58819i 0.605662 + 0.102628i
\(637\) 0 0
\(638\) −17.3205 13.4164i −0.685725 0.531161i
\(639\) 10.1723 2.12702i 0.402410 0.0841435i
\(640\) 22.5132 16.1603i 0.889913 0.638792i
\(641\) 27.1109 15.6525i 1.07082 0.618236i 0.142411 0.989808i \(-0.454514\pi\)
0.928404 + 0.371572i \(0.121181\pi\)
\(642\) −1.37416 + 42.4041i −0.0542336 + 1.67356i
\(643\) 21.2132i 0.836567i −0.908317 0.418284i \(-0.862632\pi\)
0.908317 0.418284i \(-0.137368\pi\)
\(644\) 0 0
\(645\) 30.0000 + 13.4164i 1.18125 + 0.528271i
\(646\) −11.1246 27.2074i −0.437692 1.07046i
\(647\) 9.48683 + 16.4317i 0.372966 + 0.645996i 0.990020 0.140925i \(-0.0450075\pi\)
−0.617054 + 0.786920i \(0.711674\pi\)
\(648\) −25.4554 + 0.149679i −0.999983 + 0.00587995i
\(649\) −16.4317 + 28.4605i −0.645000 + 1.11717i
\(650\) 4.74342 6.12372i 0.186052 0.240192i
\(651\) 0 0
\(652\) −15.0000 + 3.87298i −0.587445 + 0.151678i
\(653\) −27.1109 15.6525i −1.06093 0.612529i −0.135241 0.990813i \(-0.543181\pi\)
−0.925690 + 0.378284i \(0.876514\pi\)
\(654\) 20.8054 + 12.9281i 0.813555 + 0.505529i
\(655\) 20.1246 11.6190i 0.786334 0.453990i
\(656\) 0 0
\(657\) −21.9089 24.4949i −0.854748 0.955637i
\(658\) 0 0
\(659\) 24.2487 0.944596 0.472298 0.881439i \(-0.343425\pi\)
0.472298 + 0.881439i \(0.343425\pi\)
\(660\) −18.7432 + 22.6427i −0.729579 + 0.881366i
\(661\) 19.1703 + 33.2039i 0.745638 + 1.29148i 0.949896 + 0.312566i \(0.101188\pi\)
−0.204258 + 0.978917i \(0.565478\pi\)
\(662\) 4.43804 32.5623i 0.172489 1.26557i
\(663\) −27.2555 37.6449i −1.05852 1.46201i
\(664\) 24.6475 + 10.6066i 0.956509 + 0.411616i
\(665\) 0 0
\(666\) −8.46410 + 0.599153i −0.327977 + 0.0232167i
\(667\) 0 0
\(668\) −27.0764 + 26.5870i −1.04762 + 1.02868i
\(669\) −14.6190 + 1.51205i −0.565201 + 0.0584593i
\(670\) 10.1553 + 24.8369i 0.392335 + 0.959531i
\(671\) −18.9737 −0.732470
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) −4.28187 10.4721i −0.164931 0.403372i
\(675\) 3.49604 3.84418i 0.134563 0.147963i
\(676\) −24.2599 + 23.8214i −0.933072 + 0.916208i
\(677\) 6.36396 + 3.67423i 0.244587 + 0.141212i 0.617283 0.786741i \(-0.288233\pi\)
−0.372696 + 0.927953i \(0.621567\pi\)
\(678\) 5.16708 + 9.65926i 0.198441 + 0.370962i
\(679\) 0 0
\(680\) 31.1769 + 13.4164i 1.19558 + 0.514496i
\(681\) −13.3095 + 9.63628i −0.510020 + 0.369263i
\(682\) 5.61373 41.1884i 0.214961 1.57719i
\(683\) −19.0526 33.0000i −0.729026 1.26271i −0.957295 0.289112i \(-0.906640\pi\)
0.228269 0.973598i \(-0.426693\pi\)
\(684\) −22.8232 + 11.2739i −0.872667 + 0.431068i
\(685\) 21.9089 0.837096
\(686\) 0 0
\(687\) −8.66025 3.87298i −0.330409 0.147764i
\(688\) 30.9787 + 0.565061i 1.18105 + 0.0215427i
\(689\) 21.2132 12.2474i 0.808159 0.466591i
\(690\) 0 0
\(691\) 11.0227 + 6.36396i 0.419323 + 0.242096i 0.694788 0.719215i \(-0.255498\pi\)
−0.275464 + 0.961311i \(0.588832\pi\)
\(692\) 4.74342 1.22474i 0.180318 0.0465578i
\(693\) 0 0
\(694\) −21.0000 + 27.1109i −0.797149 + 1.02912i
\(695\) 5.19615 9.00000i 0.197101 0.341389i
\(696\) 20.9088 + 6.54384i 0.792546 + 0.248044i
\(697\) 0 0
\(698\) −8.79478 21.5093i −0.332887 0.814141i
\(699\) −6.32456 + 14.1421i −0.239217 + 0.534905i
\(700\) 0 0
\(701\) 22.3607i 0.844551i −0.906467 0.422276i \(-0.861231\pi\)
0.906467 0.422276i \(-0.138769\pi\)
\(702\) −30.8534 + 25.8471i −1.16448 + 0.975535i
\(703\) −7.34847 + 4.24264i −0.277153 + 0.160014i
\(704\) −7.90215 + 26.5623i −0.297823 + 1.00110i
\(705\) 0 0
\(706\) 16.4317 + 12.7279i 0.618414 + 0.479022i
\(707\) 0 0
\(708\) 5.49038 32.4015i 0.206341 1.21772i
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) −1.62054 + 11.8901i −0.0608180 + 0.446226i
\(711\) 44.1533 + 14.5081i 1.65588 + 0.544095i
\(712\) −16.5682 22.2148i −0.620919 0.832533i
\(713\) 0 0
\(714\) 0 0
\(715\) 46.4758i 1.73810i
\(716\) 20.0265 + 5.56231i 0.748425 + 0.207873i
\(717\) 1.23458 + 11.9363i 0.0461064 + 0.445770i
\(718\) 38.8328 + 5.29268i 1.44923 + 0.197521i
\(719\) −18.9737 + 32.8634i −0.707598 + 1.22560i 0.258147 + 0.966106i \(0.416888\pi\)
−0.965746 + 0.259491i \(0.916445\pi\)
\(720\) 9.68346 27.7530i 0.360881 1.03429i
\(721\) 0 0
\(722\) 0.866025 1.11803i 0.0322301 0.0416089i
\(723\) 30.7369 22.2540i 1.14312 0.827636i
\(724\) −23.4488 + 23.0250i −0.871469 + 0.855718i
\(725\) −3.87298 + 2.23607i −0.143839 + 0.0830455i
\(726\) 0.0793369 2.44820i 0.00294447 0.0908614i
\(727\) 16.9706i 0.629403i −0.949191 0.314702i \(-0.898096\pi\)
0.949191 0.314702i \(-0.101904\pi\)
\(728\) 0 0
\(729\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(730\) 35.1246 14.3618i 1.30002 0.531555i
\(731\) 18.9737 + 32.8634i 0.701766 + 1.21550i
\(732\) 17.7857 6.60831i 0.657377 0.244250i
\(733\) −8.21584 + 14.2302i −0.303459 + 0.525606i −0.976917 0.213619i \(-0.931475\pi\)
0.673458 + 0.739225i \(0.264808\pi\)
\(734\) −28.4605 22.0454i −1.05050 0.813711i
\(735\) 0 0
\(736\) 0 0
\(737\) −23.2379 13.4164i −0.855979 0.494200i
\(738\) 0 0
\(739\) −33.5410 + 19.3649i −1.23383 + 0.712350i −0.967825 0.251623i \(-0.919036\pi\)
−0.266001 + 0.963973i \(0.585702\pi\)
\(740\) 2.62210 9.44058i 0.0963902 0.347043i
\(741\) −16.4317 + 36.7423i −0.603633 + 1.34976i
\(742\) 0 0
\(743\) −13.8564 −0.508342 −0.254171 0.967159i \(-0.581803\pi\)
−0.254171 + 0.967159i \(0.581803\pi\)
\(744\) 9.08321 + 40.5647i 0.333007 + 1.48717i
\(745\) −5.47723 9.48683i −0.200670 0.347571i
\(746\) −36.4327 4.96556i −1.33390 0.181802i
\(747\) 27.8580 5.82508i 1.01927 0.213128i
\(748\) −32.8634 + 8.48528i −1.20160 + 0.310253i
\(749\) 0 0
\(750\) −11.3205 21.1624i −0.413367 0.772741i
\(751\) −6.70820 3.87298i −0.244786 0.141327i 0.372589 0.927997i \(-0.378470\pi\)
−0.617374 + 0.786669i \(0.711804\pi\)
\(752\) 0 0
\(753\) −1.69052 16.3445i −0.0616062 0.595626i
\(754\) 32.0642 13.1105i 1.16771 0.477456i
\(755\) −18.9737 −0.690522
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 10.1396 4.14590i 0.368287 0.150586i
\(759\) 0 0
\(760\) −3.43769 29.1922i −0.124698 1.05891i
\(761\) −42.4264 24.4949i −1.53796 0.887939i −0.998958 0.0456321i \(-0.985470\pi\)
−0.538998 0.842307i \(-0.681197\pi\)
\(762\) −8.94965 16.7303i −0.324212 0.606076i
\(763\) 0 0
\(764\) 1.73205 + 6.70820i 0.0626634 + 0.242694i
\(765\) 35.2379 7.36820i 1.27403 0.266398i
\(766\) 0 0
\(767\) −25.9808 45.0000i −0.938111 1.62486i
\(768\) −1.84397 27.6514i −0.0665387 0.997784i
\(769\) −21.9089 −0.790055 −0.395028 0.918669i \(-0.629265\pi\)
−0.395028 + 0.918669i \(0.629265\pi\)
\(770\) 0 0
\(771\) 3.46410 7.74597i 0.124757 0.278964i
\(772\) −30.8328 8.56373i −1.10970 0.308215i
\(773\) 2.12132 1.22474i 0.0762986 0.0440510i −0.461365 0.887210i \(-0.652640\pi\)
0.537664 + 0.843159i \(0.319307\pi\)
\(774\) 27.2292 18.4003i 0.978734 0.661384i
\(775\) −7.34847 4.24264i −0.263965 0.152400i
\(776\) 0 0
\(777\) 0 0
\(778\) 35.0000 + 27.1109i 1.25481 + 0.971972i
\(779\) 0 0
\(780\) −16.1870 43.5658i −0.579587 1.55991i
\(781\) −6.00000 10.3923i −0.214697 0.371866i
\(782\) 0 0
\(783\) 22.1359 7.07107i 0.791074 0.252699i
\(784\) 0 0
\(785\) 13.4164i 0.478852i
\(786\) 0.752656 23.2257i 0.0268463 0.828434i
\(787\) −18.3712 + 10.6066i −0.654862 + 0.378085i −0.790316 0.612699i \(-0.790084\pi\)
0.135455 + 0.990784i \(0.456750\pi\)
\(788\) −31.3331 31.9098i −1.11620 1.13674i
\(789\) −4.85993 + 3.51867i −0.173018 + 0.125268i
\(790\) −32.8634 + 42.4264i −1.16923 + 1.50946i
\(791\) 0 0
\(792\) 9.33975 + 27.8706i 0.331873 + 0.990338i
\(793\) 15.0000 25.9808i 0.532666 0.922604i
\(794\) 53.7251 + 7.32240i 1.90663 + 0.259862i
\(795\) 1.95205 + 18.8730i 0.0692321 + 0.669356i
\(796\) −9.08321 + 32.7031i −0.321946 + 1.15913i
\(797\) 41.6413i 1.47501i −0.675341 0.737506i \(-0.736003\pi\)
0.675341 0.737506i \(-0.263997\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.40822 + 3.54508i 0.155854 + 0.125338i
\(801\) −27.9250 9.17571i −0.986682 0.324208i
\(802\) 0.854102 6.26662i 0.0301594 0.221282i
\(803\) −18.9737 + 32.8634i −0.669566 + 1.15972i
\(804\) 26.4557 + 4.48288i 0.933020 + 0.158099i
\(805\) 0 0
\(806\) 51.9615 + 40.2492i 1.83027 + 1.41772i
\(807\) 2.48808 + 3.43649i 0.0875844 + 0.120970i
\(808\) 20.6420 2.43082i 0.726182 0.0855158i
\(809\) 19.3649 11.1803i 0.680834 0.393080i −0.119335 0.992854i \(-0.538076\pi\)
0.800169 + 0.599774i \(0.204743\pi\)
\(810\) −8.51995 29.9902i −0.299360 1.05375i
\(811\) 12.7279i 0.446938i 0.974711 + 0.223469i \(0.0717381\pi\)
−0.974711 + 0.223469i \(0.928262\pi\)
\(812\) 0 0
\(813\) 6.00000 13.4164i 0.210429 0.470534i
\(814\) 3.70820 + 9.06914i 0.129972 + 0.317873i
\(815\) −9.48683 16.4317i −0.332309 0.575577i
\(816\) 27.8504 19.3999i 0.974958 0.679133i
\(817\) 16.4317 28.4605i 0.574872 0.995707i
\(818\) 9.48683 12.2474i 0.331699 0.428222i
\(819\) 0 0
\(820\) 0 0
\(821\) 27.1109 + 15.6525i 0.946176 + 0.546275i 0.891891 0.452250i \(-0.149379\pi\)
0.0542853 + 0.998525i \(0.482712\pi\)
\(822\) 11.5632 18.6089i 0.403314 0.649060i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) −5.47723 2.44949i −0.190693 0.0852803i
\(826\) 0 0
\(827\) 17.3205 0.602293 0.301147 0.953578i \(-0.402631\pi\)
0.301147 + 0.953578i \(0.402631\pi\)
\(828\) 0 0
\(829\) −24.6475 42.6907i −0.856044 1.48271i −0.875673 0.482904i \(-0.839582\pi\)
0.0196299 0.999807i \(-0.493751\pi\)
\(830\) −4.43804 + 32.5623i −0.154047 + 1.13025i
\(831\) 2.80588 2.03151i 0.0973350 0.0704722i
\(832\) −30.1247 31.8198i −1.04439 1.10315i
\(833\) 0 0
\(834\) −4.90192 9.16358i −0.169740 0.317309i
\(835\) −40.2492 23.2379i −1.39288 0.804181i
\(836\) 20.5942 + 20.9733i 0.712266 + 0.725376i
\(837\) 32.6190 + 29.6649i 1.12748 + 1.02537i
\(838\) −15.2330 37.2553i −0.526215 1.28696i
\(839\) 18.9737 0.655044 0.327522 0.944844i \(-0.393786\pi\)
0.327522 + 0.944844i \(0.393786\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) −5.35233 13.0902i −0.184454 0.451117i
\(843\) 15.4097 1.59384i 0.530739 0.0548948i
\(844\) 10.8541 + 11.0539i 0.373614 + 0.380491i
\(845\) −36.0624 20.8207i −1.24059 0.716253i
\(846\) 0 0
\(847\) 0 0
\(848\) 8.66025 + 15.6525i 0.297394 + 0.537508i
\(849\) 30.1663 + 41.6652i 1.03531 + 1.42995i
\(850\) −0.935622 + 6.86474i −0.0320916 + 0.235459i
\(851\) 0 0
\(852\) 9.24384 + 7.65188i 0.316689 + 0.262149i
\(853\) −16.4317 −0.562610 −0.281305 0.959618i \(-0.590767\pi\)
−0.281305 + 0.959618i \(0.590767\pi\)
\(854\) 0 0
\(855\) −20.7846 23.2379i −0.710819 0.794719i
\(856\) −39.2705 + 29.2887i −1.34224 + 1.00107i
\(857\) 16.9706 9.79796i 0.579703 0.334692i −0.181312 0.983426i \(-0.558034\pi\)
0.761015 + 0.648734i \(0.224701\pi\)
\(858\) 39.4755 + 24.5293i 1.34767 + 0.837418i
\(859\) −40.4166 23.3345i −1.37900 0.796164i −0.386957 0.922098i \(-0.626474\pi\)
−0.992039 + 0.125934i \(0.959807\pi\)
\(860\) 9.48683 + 36.7423i 0.323498 + 1.25290i
\(861\) 0 0
\(862\) 18.0000 23.2379i 0.613082 0.791486i
\(863\) −8.66025 + 15.0000i −0.294798 + 0.510606i −0.974938 0.222477i \(-0.928586\pi\)
0.680140 + 0.733083i \(0.261919\pi\)
\(864\) −18.4620 22.8726i −0.628089 0.778142i
\(865\) 3.00000 + 5.19615i 0.102003 + 0.176674i
\(866\) −11.7264 28.6791i −0.398478 0.974556i
\(867\) 11.0680 + 4.94975i 0.375888 + 0.168102i
\(868\) 0 0
\(869\) 53.6656i 1.82048i
\(870\) −0.869092 + 26.8187i −0.0294650 + 0.909240i
\(871\) 36.7423 21.2132i 1.24497 0.718782i
\(872\) 3.30792 + 28.0902i 0.112020 + 0.951253i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 6.33975 37.4140i 0.214200 1.26410i
\(877\) −11.0000 + 19.0526i −0.371444 + 0.643359i −0.989788 0.142548i \(-0.954470\pi\)
0.618344 + 0.785907i \(0.287804\pi\)
\(878\) 3.24109 23.7801i 0.109381 0.802541i
\(879\) 4.22013 0.436492i 0.142341 0.0147225i
\(880\) −33.9355 0.618993i −1.14396 0.0208662i
\(881\) 44.0908i 1.48546i 0.669593 + 0.742729i \(0.266469\pi\)
−0.669593 + 0.742729i \(0.733531\pi\)
\(882\) 0 0
\(883\) 54.2218i 1.82471i 0.409403 + 0.912354i \(0.365737\pi\)
−0.409403 + 0.912354i \(0.634263\pi\)
\(884\) 14.3618 51.7082i 0.483040 1.73914i
\(885\) 40.0356 4.14092i 1.34578 0.139196i
\(886\) −43.6869 5.95426i −1.46769 0.200037i
\(887\) 28.4605 49.2950i 0.955610 1.65517i 0.222644 0.974900i \(-0.428531\pi\)
0.732966 0.680265i \(-0.238135\pi\)
\(888\) −6.63470 7.20977i −0.222646 0.241944i
\(889\) 0 0
\(890\) 20.7846 26.8328i 0.696702 0.899438i
\(891\) 25.1008 + 18.4919i 0.840907 + 0.619503i
\(892\) −11.8901 12.1089i −0.398109 0.405437i
\(893\) 0 0
\(894\) −10.9487 0.354805i −0.366179 0.0118665i
\(895\) 25.4558i 0.850895i
\(896\) 0 0
\(897\) 0 0
\(898\) −46.8328 + 19.1491i −1.56283 + 0.639013i
\(899\) −18.9737 32.8634i −0.632807 1.09605i
\(900\) 5.98741 + 0.388466i 0.199580 + 0.0129489i
\(901\) −10.9545 + 18.9737i −0.364946 + 0.632104i
\(902\) 0 0
\(903\) 0 0
\(904\) −5.00000 + 11.6190i −0.166298 + 0.386441i
\(905\) −34.8569 20.1246i −1.15868 0.668965i
\(906\) −10.0141 + 16.1158i −0.332695 + 0.535411i
\(907\) 6.70820 3.87298i 0.222742 0.128600i −0.384477 0.923135i \(-0.625618\pi\)
0.607219 + 0.794534i \(0.292285\pi\)
\(908\) −18.2816 5.07767i −0.606697 0.168508i
\(909\) 16.4317 14.6969i 0.545004 0.487467i
\(910\) 0 0
\(911\) −20.7846 −0.688625 −0.344312 0.938855i \(-0.611888\pi\)
−0.344312 + 0.938855i \(0.611888\pi\)
\(912\) −26.6095 12.4874i −0.881129 0.413498i
\(913\) −16.4317 28.4605i −0.543809 0.941905i
\(914\) 39.2352 + 5.34752i 1.29779 + 0.176880i
\(915\) 13.6278 + 18.8224i 0.450520 + 0.622251i
\(916\) −2.73861 10.6066i −0.0904863 0.350452i
\(917\) 0 0
\(918\) 12.3397 33.8191i 0.407272 1.11620i
\(919\) −26.8328 15.4919i −0.885133 0.511032i −0.0127855 0.999918i \(-0.504070\pi\)
−0.872347 + 0.488887i \(0.837403\pi\)
\(920\) 0 0
\(921\) −36.5474 + 3.78013i −1.20428 + 0.124559i
\(922\) −48.0964 + 19.6657i −1.58397 + 0.647656i
\(923\) 18.9737 0.624526
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) −20.2792 + 8.29180i −0.666416 + 0.272485i
\(927\) 0 0
\(928\) 9.14590 + 23.5871i 0.300229 + 0.774285i
\(929\) −21.2132 12.2474i −0.695983 0.401826i 0.109867 0.993946i \(-0.464958\pi\)
−0.805849 + 0.592121i \(0.798291\pi\)
\(930\) −44.8922 + 24.0144i −1.47207 + 0.787464i
\(931\) 0 0
\(932\) −17.3205 + 4.47214i −0.567352 + 0.146490i
\(933\) 26.6190 19.2726i 0.871465 0.630955i
\(934\) −39.8805 5.43547i −1.30493 0.177854i
\(935\) −20.7846 36.0000i −0.679729 1.17733i
\(936\) −45.5471 9.24465i −1.48875 0.302171i
\(937\) −10.9545 −0.357866 −0.178933 0.983861i \(-0.557265\pi\)
−0.178933 + 0.983861i \(0.557265\pi\)
\(938\) 0 0
\(939\) −17.3205 7.74597i −0.565233 0.252780i
\(940\) 0 0
\(941\) 10.6066 6.12372i 0.345765 0.199628i −0.317053 0.948408i \(-0.602693\pi\)
0.662819 + 0.748780i \(0.269360\pi\)
\(942\) 11.3956 + 7.08101i 0.371288 + 0.230712i
\(943\) 0 0
\(944\) 33.2039 18.3712i 1.08070 0.597931i
\(945\) 0 0
\(946\) −30.0000 23.2379i −0.975384 0.755529i
\(947\) −5.19615 + 9.00000i −0.168852 + 0.292461i −0.938017 0.346590i \(-0.887339\pi\)
0.769164 + 0.639051i \(0.220673\pi\)
\(948\) 18.6911 + 50.3055i 0.607059 + 1.63385i
\(949\) −30.0000 51.9615i −0.973841 1.68674i
\(950\) 5.55369 2.27080i 0.180185 0.0736745i
\(951\) −3.16228 + 7.07107i −0.102544 + 0.229295i
\(952\) 0 0
\(953\) 8.94427i 0.289733i 0.989451 + 0.144867i \(0.0462753\pi\)
−0.989451 + 0.144867i \(0.953725\pi\)
\(954\) 17.0605 + 8.30290i 0.552355 + 0.268816i
\(955\) −7.34847 + 4.24264i −0.237791 + 0.137289i
\(956\) −9.88690 + 9.70820i −0.319765 + 0.313986i
\(957\) −15.7360 21.7343i −0.508672 0.702570i
\(958\) 32.8634 42.4264i 1.06177 1.37073i
\(959\) 0 0
\(960\) 32.0263 11.2391i 1.03364 0.362740i
\(961\) 20.5000 35.5070i 0.661290 1.14539i
\(962\) −15.3500 2.09211i −0.494904 0.0674525i
\(963\) −16.2205 + 49.3649i −0.522699 + 1.59076i
\(964\) 42.2196 + 11.7264i 1.35980 + 0.377681i
\(965\) 39.1918i 1.26163i
\(966\) 0 0
\(967\) 23.2379i 0.747280i 0.927574 + 0.373640i \(0.121891\pi\)
−0.927574 + 0.373640i \(0.878109\pi\)
\(968\) 2.26728 1.69098i 0.0728733 0.0543503i
\(969\) −3.70375 35.8090i −0.118982 1.15035i
\(970\) 0 0
\(971\) 23.7171 41.0792i 0.761117 1.31829i −0.181158 0.983454i \(-0.557984\pi\)
0.942275 0.334840i \(-0.108682\pi\)
\(972\) −29.9697 8.59180i −0.961278 0.275582i
\(973\) 0 0
\(974\) −8.66025 6.70820i −0.277492 0.214945i
\(975\) 7.68423 5.56351i 0.246092 0.178175i
\(976\) 18.7707 + 11.2987i 0.600836 + 0.361661i
\(977\) −30.9839 + 17.8885i −0.991262 + 0.572305i −0.905651 0.424023i \(-0.860617\pi\)
−0.0856105 + 0.996329i \(0.527284\pi\)
\(978\) −18.9637 0.614541i −0.606393 0.0196509i
\(979\) 33.9411i 1.08476i
\(980\) 0 0
\(981\) 20.0000 + 22.3607i 0.638551 + 0.713922i
\(982\) −16.6869 40.8111i −0.532501 1.30233i
\(983\) 9.48683 + 16.4317i 0.302583 + 0.524089i 0.976720 0.214517i \(-0.0688177\pi\)
−0.674137 + 0.738606i \(0.735484\pi\)
\(984\) 0 0
\(985\) 27.3861 47.4342i 0.872595 1.51138i
\(986\) −18.9737 + 24.4949i −0.604245 + 0.780076i
\(987\) 0 0
\(988\) −45.0000 + 11.6190i −1.43164 + 0.369648i
\(989\) 0 0
\(990\) −29.8281 + 20.1565i −0.947999 + 0.640616i
\(991\) −13.4164 + 7.74597i −0.426186 + 0.246059i −0.697721 0.716370i \(-0.745802\pi\)
0.271534 + 0.962429i \(0.412469\pi\)
\(992\) −30.0810 + 37.4050i −0.955074 + 1.18761i
\(993\) 16.4317 36.7423i 0.521443 1.16598i
\(994\) 0 0
\(995\) −41.5692 −1.31783
\(996\) 25.3153 + 20.9555i 0.802146 + 0.664002i
\(997\) −2.73861 4.74342i −0.0867327 0.150226i 0.819396 0.573229i \(-0.194309\pi\)
−0.906128 + 0.423003i \(0.860976\pi\)
\(998\) −4.43804 + 32.5623i −0.140484 + 1.03074i
\(999\) −10.1544 2.21113i −0.321270 0.0699572i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.c.275.6 16
3.2 odd 2 inner 588.2.n.c.275.3 16
4.3 odd 2 inner 588.2.n.c.275.7 16
7.2 even 3 588.2.e.b.491.5 yes 8
7.3 odd 6 inner 588.2.n.c.263.1 16
7.4 even 3 inner 588.2.n.c.263.2 16
7.5 odd 6 588.2.e.b.491.6 yes 8
7.6 odd 2 inner 588.2.n.c.275.5 16
12.11 even 2 inner 588.2.n.c.275.2 16
21.2 odd 6 588.2.e.b.491.4 yes 8
21.5 even 6 588.2.e.b.491.3 yes 8
21.11 odd 6 inner 588.2.n.c.263.7 16
21.17 even 6 inner 588.2.n.c.263.8 16
21.20 even 2 inner 588.2.n.c.275.4 16
28.3 even 6 inner 588.2.n.c.263.4 16
28.11 odd 6 inner 588.2.n.c.263.3 16
28.19 even 6 588.2.e.b.491.1 8
28.23 odd 6 588.2.e.b.491.2 yes 8
28.27 even 2 inner 588.2.n.c.275.8 16
84.11 even 6 inner 588.2.n.c.263.6 16
84.23 even 6 588.2.e.b.491.7 yes 8
84.47 odd 6 588.2.e.b.491.8 yes 8
84.59 odd 6 inner 588.2.n.c.263.5 16
84.83 odd 2 inner 588.2.n.c.275.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.b.491.1 8 28.19 even 6
588.2.e.b.491.2 yes 8 28.23 odd 6
588.2.e.b.491.3 yes 8 21.5 even 6
588.2.e.b.491.4 yes 8 21.2 odd 6
588.2.e.b.491.5 yes 8 7.2 even 3
588.2.e.b.491.6 yes 8 7.5 odd 6
588.2.e.b.491.7 yes 8 84.23 even 6
588.2.e.b.491.8 yes 8 84.47 odd 6
588.2.n.c.263.1 16 7.3 odd 6 inner
588.2.n.c.263.2 16 7.4 even 3 inner
588.2.n.c.263.3 16 28.11 odd 6 inner
588.2.n.c.263.4 16 28.3 even 6 inner
588.2.n.c.263.5 16 84.59 odd 6 inner
588.2.n.c.263.6 16 84.11 even 6 inner
588.2.n.c.263.7 16 21.11 odd 6 inner
588.2.n.c.263.8 16 21.17 even 6 inner
588.2.n.c.275.1 16 84.83 odd 2 inner
588.2.n.c.275.2 16 12.11 even 2 inner
588.2.n.c.275.3 16 3.2 odd 2 inner
588.2.n.c.275.4 16 21.20 even 2 inner
588.2.n.c.275.5 16 7.6 odd 2 inner
588.2.n.c.275.6 16 1.1 even 1 trivial
588.2.n.c.275.7 16 4.3 odd 2 inner
588.2.n.c.275.8 16 28.27 even 2 inner