Properties

Label 588.4.f.a.293.2
Level $588$
Weight $4$
Character 588.293
Analytic conductor $34.693$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(293,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.293");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 293.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.293
Dual form 588.4.f.a.293.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.19615i q^{3} -27.0000 q^{9} +91.7987i q^{13} -126.440i q^{19} -125.000 q^{25} -140.296i q^{27} +188.794i q^{31} -323.000 q^{37} -477.000 q^{39} -71.0000 q^{43} +657.000 q^{57} -935.307i q^{61} -127.000 q^{67} -1217.63i q^{73} -649.519i q^{75} -1387.00 q^{79} +729.000 q^{81} -981.000 q^{93} -1371.78i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{9} - 250 q^{25} - 646 q^{37} - 954 q^{39} - 142 q^{43} + 1314 q^{57} - 254 q^{67} - 2774 q^{79} + 1458 q^{81} - 1962 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19615i 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 91.7987i 1.95849i 0.202679 + 0.979245i \(0.435035\pi\)
−0.202679 + 0.979245i \(0.564965\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) − 126.440i − 1.52670i −0.645986 0.763349i \(-0.723554\pi\)
0.645986 0.763349i \(-0.276446\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −125.000 −1.00000
\(26\) 0 0
\(27\) − 140.296i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 188.794i 1.09382i 0.837192 + 0.546908i \(0.184195\pi\)
−0.837192 + 0.546908i \(0.815805\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −323.000 −1.43516 −0.717579 0.696477i \(-0.754750\pi\)
−0.717579 + 0.696477i \(0.754750\pi\)
\(38\) 0 0
\(39\) −477.000 −1.95849
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −71.0000 −0.251800 −0.125900 0.992043i \(-0.540182\pi\)
−0.125900 + 0.992043i \(0.540182\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 657.000 1.52670
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) − 935.307i − 1.96318i −0.191006 0.981589i \(-0.561175\pi\)
0.191006 0.981589i \(-0.438825\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −127.000 −0.231575 −0.115787 0.993274i \(-0.536939\pi\)
−0.115787 + 0.993274i \(0.536939\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) − 1217.63i − 1.95223i −0.217248 0.976117i \(-0.569708\pi\)
0.217248 0.976117i \(-0.430292\pi\)
\(74\) 0 0
\(75\) − 649.519i − 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1387.00 −1.97531 −0.987656 0.156637i \(-0.949935\pi\)
−0.987656 + 0.156637i \(0.949935\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −981.000 −1.09382
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1371.78i − 1.43591i −0.696088 0.717957i \(-0.745078\pi\)
0.696088 0.717957i \(-0.254922\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 1061.75i 1.01570i 0.861446 + 0.507850i \(0.169560\pi\)
−0.861446 + 0.507850i \(0.830440\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −2213.00 −1.94465 −0.972325 0.233630i \(-0.924939\pi\)
−0.972325 + 0.233630i \(0.924939\pi\)
\(110\) 0 0
\(111\) − 1678.36i − 1.43516i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2478.56i − 1.95849i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2267.00 1.58397 0.791983 0.610543i \(-0.209049\pi\)
0.791983 + 0.610543i \(0.209049\pi\)
\(128\) 0 0
\(129\) − 368.927i − 0.251800i
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 3244.13i 1.97959i 0.142484 + 0.989797i \(0.454491\pi\)
−0.142484 + 0.989797i \(0.545509\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −1748.00 −0.942054 −0.471027 0.882119i \(-0.656117\pi\)
−0.471027 + 0.882119i \(0.656117\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 810.600i 0.412057i 0.978546 + 0.206028i \(0.0660539\pi\)
−0.978546 + 0.206028i \(0.933946\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3400.00 −1.63379 −0.816897 0.576783i \(-0.804308\pi\)
−0.816897 + 0.576783i \(0.804308\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −6230.00 −2.83569
\(170\) 0 0
\(171\) 3413.87i 1.52670i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 1279.99i 0.525639i 0.964845 + 0.262819i \(0.0846523\pi\)
−0.964845 + 0.262819i \(0.915348\pi\)
\(182\) 0 0
\(183\) 4860.00 1.96318
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 3961.00 1.47730 0.738650 0.674089i \(-0.235464\pi\)
0.738650 + 0.674089i \(0.235464\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) − 2026.50i − 0.721883i −0.932588 0.360942i \(-0.882455\pi\)
0.932588 0.360942i \(-0.117545\pi\)
\(200\) 0 0
\(201\) − 659.911i − 0.231575i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6032.00 −1.96806 −0.984028 0.178011i \(-0.943034\pi\)
−0.984028 + 0.178011i \(0.943034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6327.00 1.95223
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5830.08i 1.75072i 0.483469 + 0.875362i \(0.339377\pi\)
−0.483469 + 0.875362i \(0.660623\pi\)
\(224\) 0 0
\(225\) 3375.00 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 6517.71i 1.88080i 0.340076 + 0.940398i \(0.389547\pi\)
−0.340076 + 0.940398i \(0.610453\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 7207.06i − 1.97531i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 1247.08i 0.333325i 0.986014 + 0.166662i \(0.0532990\pi\)
−0.986014 + 0.166662i \(0.946701\pi\)
\(242\) 0 0
\(243\) 3788.00i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11607.0 2.99002
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 8885.42i 1.99170i 0.0910064 + 0.995850i \(0.470992\pi\)
−0.0910064 + 0.995850i \(0.529008\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9197.00 1.99492 0.997462 0.0711951i \(-0.0226813\pi\)
0.997462 + 0.0711951i \(0.0226813\pi\)
\(278\) 0 0
\(279\) − 5097.43i − 1.09382i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 999.393i − 0.209921i −0.994476 0.104961i \(-0.966528\pi\)
0.994476 0.104961i \(-0.0334717\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) 7128.00 1.43591
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10009.5i 1.86083i 0.366513 + 0.930413i \(0.380552\pi\)
−0.366513 + 0.930413i \(0.619448\pi\)
\(308\) 0 0
\(309\) −5517.00 −1.01570
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 6299.47i 1.13759i 0.822478 + 0.568797i \(0.192591\pi\)
−0.822478 + 0.568797i \(0.807409\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 11474.8i − 1.95849i
\(326\) 0 0
\(327\) − 11499.1i − 1.94465i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10891.0 1.80853 0.904265 0.426971i \(-0.140420\pi\)
0.904265 + 0.426971i \(0.140420\pi\)
\(332\) 0 0
\(333\) 8721.00 1.43516
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12293.0 −1.98707 −0.993535 0.113529i \(-0.963785\pi\)
−0.993535 + 0.113529i \(0.963785\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) − 5300.08i − 0.812913i −0.913670 0.406456i \(-0.866764\pi\)
0.913670 0.406456i \(-0.133236\pi\)
\(350\) 0 0
\(351\) 12879.0 1.95849
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −9128.00 −1.33081
\(362\) 0 0
\(363\) 6916.08i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10446.0i 1.48577i 0.669420 + 0.742884i \(0.266543\pi\)
−0.669420 + 0.742884i \(0.733457\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −12601.0 −1.74921 −0.874605 0.484837i \(-0.838879\pi\)
−0.874605 + 0.484837i \(0.838879\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6103.00 0.827151 0.413575 0.910470i \(-0.364280\pi\)
0.413575 + 0.910470i \(0.364280\pi\)
\(380\) 0 0
\(381\) 11779.7i 1.58397i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1917.00 0.251800
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6857.19i 0.866883i 0.901182 + 0.433441i \(0.142701\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −17331.0 −2.14223
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 29.4449i − 0.00355979i −0.999998 0.00177990i \(-0.999433\pi\)
0.999998 0.00177990i \(-0.000566559\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16857.0 −1.97959
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −6679.00 −0.773194 −0.386597 0.922249i \(-0.626350\pi\)
−0.386597 + 0.922249i \(0.626350\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) − 6673.59i − 0.740675i −0.928897 0.370338i \(-0.879242\pi\)
0.928897 0.370338i \(-0.120758\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 10756.0i − 1.16938i −0.811257 0.584690i \(-0.801216\pi\)
0.811257 0.584690i \(-0.198784\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 9082.87i − 0.942054i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6497.00 −0.665026 −0.332513 0.943099i \(-0.607897\pi\)
−0.332513 + 0.943099i \(0.607897\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 11969.0 1.20140 0.600698 0.799476i \(-0.294889\pi\)
0.600698 + 0.799476i \(0.294889\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4212.00 −0.412057
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 15805.0i 1.52670i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) − 29651.0i − 2.81074i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6103.00 0.567871 0.283936 0.958843i \(-0.408360\pi\)
0.283936 + 0.958843i \(0.408360\pi\)
\(488\) 0 0
\(489\) − 17666.9i − 1.63379i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −21743.0 −1.95060 −0.975301 0.220880i \(-0.929107\pi\)
−0.975301 + 0.220880i \(0.929107\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 32372.0i − 2.83569i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −17739.0 −1.52670
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 91.7987i 0.00767510i 0.999993 + 0.00383755i \(0.00122153\pi\)
−0.999993 + 0.00383755i \(0.998778\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12167.0 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1889.00 0.150119 0.0750596 0.997179i \(-0.476085\pi\)
0.0750596 + 0.997179i \(0.476085\pi\)
\(542\) 0 0
\(543\) −6651.00 −0.525639
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1640.00 0.128193 0.0640963 0.997944i \(-0.479584\pi\)
0.0640963 + 0.997944i \(0.479584\pi\)
\(548\) 0 0
\(549\) 25253.3i 1.96318i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) − 6517.71i − 0.493148i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −23941.0 −1.75464 −0.877320 0.479905i \(-0.840671\pi\)
−0.877320 + 0.479905i \(0.840671\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 25999.8i − 1.87589i −0.346789 0.937943i \(-0.612728\pi\)
0.346789 0.937943i \(-0.387272\pi\)
\(578\) 0 0
\(579\) 20582.0i 1.47730i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 23871.0 1.66993
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10530.0 0.721883
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) − 23817.4i − 1.61653i −0.588820 0.808264i \(-0.700407\pi\)
0.588820 0.808264i \(-0.299593\pi\)
\(602\) 0 0
\(603\) 3429.00 0.231575
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 29273.4i − 1.95745i −0.205184 0.978723i \(-0.565779\pi\)
0.205184 0.978723i \(-0.434221\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17390.0 1.14580 0.572900 0.819625i \(-0.305818\pi\)
0.572900 + 0.819625i \(0.305818\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 15368.5i 0.997919i 0.866625 + 0.498959i \(0.166284\pi\)
−0.866625 + 0.498959i \(0.833716\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1892.00 0.119365 0.0596825 0.998217i \(-0.480991\pi\)
0.0596825 + 0.998217i \(0.480991\pi\)
\(632\) 0 0
\(633\) − 31343.2i − 1.96806i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 26315.0i − 1.61394i −0.590592 0.806971i \(-0.701106\pi\)
0.590592 0.806971i \(-0.298894\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32876.1i 1.95223i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 4175.97i − 0.245729i −0.992423 0.122864i \(-0.960792\pi\)
0.992423 0.122864i \(-0.0392080\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −30294.0 −1.75072
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −9899.00 −0.566981 −0.283491 0.958975i \(-0.591492\pi\)
−0.283491 + 0.958975i \(0.591492\pi\)
\(674\) 0 0
\(675\) 17537.0i 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −33867.0 −1.88080
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 30208.7i 1.66309i 0.555460 + 0.831543i \(0.312542\pi\)
−0.555460 + 0.831543i \(0.687458\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 40840.0i 2.19105i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −36146.0 −1.91466 −0.957328 0.289003i \(-0.906676\pi\)
−0.957328 + 0.289003i \(0.906676\pi\)
\(710\) 0 0
\(711\) 37449.0 1.97531
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −6480.00 −0.333325
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 9510.69i − 0.485188i −0.970128 0.242594i \(-0.922002\pi\)
0.970128 0.242594i \(-0.0779984\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5329.52i 0.268554i 0.990944 + 0.134277i \(0.0428712\pi\)
−0.990944 + 0.134277i \(0.957129\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 6047.00 0.301005 0.150502 0.988610i \(-0.451911\pi\)
0.150502 + 0.988610i \(0.451911\pi\)
\(740\) 0 0
\(741\) 60311.7i 2.99002i
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17569.0 0.853664 0.426832 0.904331i \(-0.359630\pi\)
0.426832 + 0.904331i \(0.359630\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 41470.0 1.99109 0.995543 0.0943039i \(-0.0300625\pi\)
0.995543 + 0.0943039i \(0.0300625\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 25189.2i 1.18120i 0.806963 + 0.590602i \(0.201110\pi\)
−0.806963 + 0.590602i \(0.798890\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) − 23599.2i − 1.09382i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 8137.17i − 0.368563i −0.982874 0.184281i \(-0.941004\pi\)
0.982874 0.184281i \(-0.0589958\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 85860.0 3.84487
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 24162.1i 1.04617i 0.852280 + 0.523087i \(0.175220\pi\)
−0.852280 + 0.523087i \(0.824780\pi\)
\(812\) 0 0
\(813\) −46170.0 −1.99170
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8977.22i 0.384422i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −12220.0 −0.517573 −0.258786 0.965935i \(-0.583323\pi\)
−0.258786 + 0.965935i \(0.583323\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 37071.1i 1.55311i 0.630047 + 0.776557i \(0.283036\pi\)
−0.630047 + 0.776557i \(0.716964\pi\)
\(830\) 0 0
\(831\) 47789.0i 1.99492i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 26487.0 1.09382
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 24389.0 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 5193.00 0.209921
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 49133.1i − 1.97220i −0.166159 0.986099i \(-0.553137\pi\)
0.166159 0.986099i \(-0.446863\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 39438.8i 1.56651i 0.621699 + 0.783256i \(0.286443\pi\)
−0.621699 + 0.783256i \(0.713557\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 25528.7i − 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 11658.4i − 0.453537i
\(872\) 0 0
\(873\) 37038.2i 1.43591i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 50150.0 1.93095 0.965476 0.260491i \(-0.0838846\pi\)
0.965476 + 0.260491i \(0.0838846\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −52109.0 −1.98597 −0.992983 0.118260i \(-0.962269\pi\)
−0.992983 + 0.118260i \(0.962269\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 49447.0 1.81021 0.905105 0.425188i \(-0.139792\pi\)
0.905105 + 0.425188i \(0.139792\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −46817.0 −1.68047 −0.840234 0.542224i \(-0.817583\pi\)
−0.840234 + 0.542224i \(0.817583\pi\)
\(920\) 0 0
\(921\) −52011.0 −1.86083
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 40375.0 1.43516
\(926\) 0 0
\(927\) − 28667.2i − 1.01570i
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 40840.0i − 1.42389i −0.702235 0.711945i \(-0.747814\pi\)
0.702235 0.711945i \(-0.252186\pi\)
\(938\) 0 0
\(939\) −32733.0 −1.13759
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 111777. 3.82343
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5852.00 −0.196435
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −3907.00 −0.129928 −0.0649641 0.997888i \(-0.520693\pi\)
−0.0649641 + 0.997888i \(0.520693\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 59625.0 1.95849
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 59751.0 1.94465
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 14041.0 0.450078 0.225039 0.974350i \(-0.427749\pi\)
0.225039 + 0.974350i \(0.427749\pi\)
\(992\) 0 0
\(993\) 56591.3i 1.80853i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2928.90i 0.0930382i 0.998917 + 0.0465191i \(0.0148128\pi\)
−0.998917 + 0.0465191i \(0.985187\pi\)
\(998\) 0 0
\(999\) 45315.6i 1.43516i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.4.f.a.293.2 2
3.2 odd 2 CM 588.4.f.a.293.2 2
7.2 even 3 84.4.k.a.17.1 yes 2
7.3 odd 6 84.4.k.a.5.1 2
7.4 even 3 588.4.k.b.509.1 2
7.5 odd 6 588.4.k.b.521.1 2
7.6 odd 2 inner 588.4.f.a.293.1 2
21.2 odd 6 84.4.k.a.17.1 yes 2
21.5 even 6 588.4.k.b.521.1 2
21.11 odd 6 588.4.k.b.509.1 2
21.17 even 6 84.4.k.a.5.1 2
21.20 even 2 inner 588.4.f.a.293.1 2
28.3 even 6 336.4.bc.b.257.1 2
28.23 odd 6 336.4.bc.b.17.1 2
84.23 even 6 336.4.bc.b.17.1 2
84.59 odd 6 336.4.bc.b.257.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.k.a.5.1 2 7.3 odd 6
84.4.k.a.5.1 2 21.17 even 6
84.4.k.a.17.1 yes 2 7.2 even 3
84.4.k.a.17.1 yes 2 21.2 odd 6
336.4.bc.b.17.1 2 28.23 odd 6
336.4.bc.b.17.1 2 84.23 even 6
336.4.bc.b.257.1 2 28.3 even 6
336.4.bc.b.257.1 2 84.59 odd 6
588.4.f.a.293.1 2 7.6 odd 2 inner
588.4.f.a.293.1 2 21.20 even 2 inner
588.4.f.a.293.2 2 1.1 even 1 trivial
588.4.f.a.293.2 2 3.2 odd 2 CM
588.4.k.b.509.1 2 7.4 even 3
588.4.k.b.509.1 2 21.11 odd 6
588.4.k.b.521.1 2 7.5 odd 6
588.4.k.b.521.1 2 21.5 even 6