Properties

Label 588.6.a.h
Level $588$
Weight $6$
Character orbit 588.a
Self dual yes
Analytic conductor $94.306$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7081}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1770 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{7081})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} + ( - \beta - 23) q^{5} + 81 q^{9} + ( - \beta - 203) q^{11} + ( - 5 \beta - 222) q^{13} + (9 \beta + 207) q^{15} + (4 \beta + 932) q^{17} + (51 \beta + 706) q^{19} + ( - 100 \beta + 28) q^{23}+ \cdots + ( - 81 \beta - 16443) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{3} - 47 q^{5} + 162 q^{9} - 407 q^{11} - 449 q^{13} + 423 q^{15} + 1868 q^{17} + 1463 q^{19} - 44 q^{23} - 1605 q^{25} - 1458 q^{27} + 767 q^{29} + 11170 q^{31} + 3663 q^{33} - 3113 q^{37} + 4041 q^{39}+ \cdots - 32967 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
42.5743
−41.5743
0 −9.00000 0 −65.5743 0 0 0 81.0000 0
1.2 0 −9.00000 0 18.5743 0 0 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.6.a.h 2
7.b odd 2 1 588.6.a.l 2
7.c even 3 2 588.6.i.m 4
7.d odd 6 2 84.6.i.b 4
21.g even 6 2 252.6.k.e 4
28.f even 6 2 336.6.q.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.6.i.b 4 7.d odd 6 2
252.6.k.e 4 21.g even 6 2
336.6.q.g 4 28.f even 6 2
588.6.a.h 2 1.a even 1 1 trivial
588.6.a.l 2 7.b odd 2 1
588.6.i.m 4 7.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 47T_{5} - 1218 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(588))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 47T - 1218 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 407T + 39642 \) Copy content Toggle raw display
$13$ \( T^{2} + 449T + 6144 \) Copy content Toggle raw display
$17$ \( T^{2} - 1868 T + 844032 \) Copy content Toggle raw display
$19$ \( T^{2} - 1463 T - 4069328 \) Copy content Toggle raw display
$23$ \( T^{2} + 44 T - 17702016 \) Copy content Toggle raw display
$29$ \( T^{2} - 767 T - 20885268 \) Copy content Toggle raw display
$31$ \( T^{2} - 11170 T + 20967261 \) Copy content Toggle raw display
$37$ \( T^{2} + 3113 T + 1642012 \) Copy content Toggle raw display
$41$ \( T^{2} - 7842 T + 15310512 \) Copy content Toggle raw display
$43$ \( T^{2} + 12629 T + 39092230 \) Copy content Toggle raw display
$47$ \( T^{2} + 9576 T + 20630700 \) Copy content Toggle raw display
$53$ \( T^{2} - 13395 T - 49605804 \) Copy content Toggle raw display
$59$ \( T^{2} - 47521 T - 204224580 \) Copy content Toggle raw display
$61$ \( T^{2} - 63652 T + 670173876 \) Copy content Toggle raw display
$67$ \( T^{2} - 44541 T + 421580414 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 3516363900 \) Copy content Toggle raw display
$73$ \( T^{2} + 6039 T - 989305390 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 4649155173 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 6214225254 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1725081120 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 6255893750 \) Copy content Toggle raw display
show more
show less