Properties

Label 588.8.a.e.1.1
Level $588$
Weight $8$
Character 588.1
Self dual yes
Analytic conductor $183.682$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,8,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(183.682394985\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21961}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5490 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(74.5962\) of defining polynomial
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} -344.385 q^{5} +729.000 q^{9} +7108.54 q^{11} +2499.24 q^{13} +9298.39 q^{15} -7854.38 q^{17} +23470.0 q^{19} -7657.02 q^{23} +40475.9 q^{25} -19683.0 q^{27} +246789. q^{29} -24007.8 q^{31} -191931. q^{33} -5112.02 q^{37} -67479.4 q^{39} -199345. q^{41} +440325. q^{43} -251057. q^{45} -697260. q^{47} +212068. q^{51} -488537. q^{53} -2.44807e6 q^{55} -633691. q^{57} -271749. q^{59} -3.29982e6 q^{61} -860700. q^{65} +228888. q^{67} +206740. q^{69} -2.34949e6 q^{71} +6.08175e6 q^{73} -1.09285e6 q^{75} -7.78437e6 q^{79} +531441. q^{81} +2.18086e6 q^{83} +2.70493e6 q^{85} -6.66330e6 q^{87} +4.94045e6 q^{89} +648210. q^{93} -8.08272e6 q^{95} -3.68264e6 q^{97} +5.18213e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} - 96 q^{5} + 1458 q^{9} + 4140 q^{11} - 9228 q^{13} + 2592 q^{15} - 30528 q^{17} + 704 q^{19} + 38628 q^{23} + 24046 q^{25} - 39366 q^{27} + 131988 q^{29} - 165384 q^{31} - 111780 q^{33}+ \cdots + 3018060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) −344.385 −1.23211 −0.616054 0.787704i \(-0.711270\pi\)
−0.616054 + 0.787704i \(0.711270\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 7108.54 1.61030 0.805149 0.593073i \(-0.202085\pi\)
0.805149 + 0.593073i \(0.202085\pi\)
\(12\) 0 0
\(13\) 2499.24 0.315505 0.157752 0.987479i \(-0.449575\pi\)
0.157752 + 0.987479i \(0.449575\pi\)
\(14\) 0 0
\(15\) 9298.39 0.711358
\(16\) 0 0
\(17\) −7854.38 −0.387740 −0.193870 0.981027i \(-0.562104\pi\)
−0.193870 + 0.981027i \(0.562104\pi\)
\(18\) 0 0
\(19\) 23470.0 0.785011 0.392506 0.919750i \(-0.371608\pi\)
0.392506 + 0.919750i \(0.371608\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7657.02 −0.131224 −0.0656119 0.997845i \(-0.520900\pi\)
−0.0656119 + 0.997845i \(0.520900\pi\)
\(24\) 0 0
\(25\) 40475.9 0.518092
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 246789. 1.87902 0.939512 0.342515i \(-0.111279\pi\)
0.939512 + 0.342515i \(0.111279\pi\)
\(30\) 0 0
\(31\) −24007.8 −0.144739 −0.0723696 0.997378i \(-0.523056\pi\)
−0.0723696 + 0.997378i \(0.523056\pi\)
\(32\) 0 0
\(33\) −191931. −0.929706
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5112.02 −0.0165915 −0.00829577 0.999966i \(-0.502641\pi\)
−0.00829577 + 0.999966i \(0.502641\pi\)
\(38\) 0 0
\(39\) −67479.4 −0.182157
\(40\) 0 0
\(41\) −199345. −0.451712 −0.225856 0.974161i \(-0.572518\pi\)
−0.225856 + 0.974161i \(0.572518\pi\)
\(42\) 0 0
\(43\) 440325. 0.844566 0.422283 0.906464i \(-0.361229\pi\)
0.422283 + 0.906464i \(0.361229\pi\)
\(44\) 0 0
\(45\) −251057. −0.410703
\(46\) 0 0
\(47\) −697260. −0.979607 −0.489804 0.871833i \(-0.662932\pi\)
−0.489804 + 0.871833i \(0.662932\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 212068. 0.223862
\(52\) 0 0
\(53\) −488537. −0.450746 −0.225373 0.974273i \(-0.572360\pi\)
−0.225373 + 0.974273i \(0.572360\pi\)
\(54\) 0 0
\(55\) −2.44807e6 −1.98406
\(56\) 0 0
\(57\) −633691. −0.453226
\(58\) 0 0
\(59\) −271749. −0.172261 −0.0861303 0.996284i \(-0.527450\pi\)
−0.0861303 + 0.996284i \(0.527450\pi\)
\(60\) 0 0
\(61\) −3.29982e6 −1.86138 −0.930691 0.365807i \(-0.880793\pi\)
−0.930691 + 0.365807i \(0.880793\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −860700. −0.388736
\(66\) 0 0
\(67\) 228888. 0.0929739 0.0464870 0.998919i \(-0.485197\pi\)
0.0464870 + 0.998919i \(0.485197\pi\)
\(68\) 0 0
\(69\) 206740. 0.0757621
\(70\) 0 0
\(71\) −2.34949e6 −0.779058 −0.389529 0.921014i \(-0.627362\pi\)
−0.389529 + 0.921014i \(0.627362\pi\)
\(72\) 0 0
\(73\) 6.08175e6 1.82978 0.914890 0.403704i \(-0.132277\pi\)
0.914890 + 0.403704i \(0.132277\pi\)
\(74\) 0 0
\(75\) −1.09285e6 −0.299121
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.78437e6 −1.77635 −0.888176 0.459504i \(-0.848027\pi\)
−0.888176 + 0.459504i \(0.848027\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 2.18086e6 0.418653 0.209326 0.977846i \(-0.432873\pi\)
0.209326 + 0.977846i \(0.432873\pi\)
\(84\) 0 0
\(85\) 2.70493e6 0.477738
\(86\) 0 0
\(87\) −6.66330e6 −1.08486
\(88\) 0 0
\(89\) 4.94045e6 0.742851 0.371426 0.928463i \(-0.378869\pi\)
0.371426 + 0.928463i \(0.378869\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 648210. 0.0835652
\(94\) 0 0
\(95\) −8.08272e6 −0.967219
\(96\) 0 0
\(97\) −3.68264e6 −0.409692 −0.204846 0.978794i \(-0.565669\pi\)
−0.204846 + 0.978794i \(0.565669\pi\)
\(98\) 0 0
\(99\) 5.18213e6 0.536766
\(100\) 0 0
\(101\) 1.08159e6 0.104457 0.0522285 0.998635i \(-0.483368\pi\)
0.0522285 + 0.998635i \(0.483368\pi\)
\(102\) 0 0
\(103\) 1.53446e7 1.38364 0.691822 0.722068i \(-0.256808\pi\)
0.691822 + 0.722068i \(0.256808\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.29274e7 −1.02016 −0.510080 0.860127i \(-0.670384\pi\)
−0.510080 + 0.860127i \(0.670384\pi\)
\(108\) 0 0
\(109\) 2.22964e7 1.64908 0.824540 0.565803i \(-0.191434\pi\)
0.824540 + 0.565803i \(0.191434\pi\)
\(110\) 0 0
\(111\) 138025. 0.00957913
\(112\) 0 0
\(113\) −1.84044e7 −1.19991 −0.599954 0.800035i \(-0.704814\pi\)
−0.599954 + 0.800035i \(0.704814\pi\)
\(114\) 0 0
\(115\) 2.63696e6 0.161682
\(116\) 0 0
\(117\) 1.82194e6 0.105168
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.10442e7 1.59306
\(122\) 0 0
\(123\) 5.38231e6 0.260796
\(124\) 0 0
\(125\) 1.29658e7 0.593763
\(126\) 0 0
\(127\) −4.15136e7 −1.79836 −0.899181 0.437576i \(-0.855837\pi\)
−0.899181 + 0.437576i \(0.855837\pi\)
\(128\) 0 0
\(129\) −1.18888e7 −0.487610
\(130\) 0 0
\(131\) 3.67570e7 1.42854 0.714268 0.699873i \(-0.246760\pi\)
0.714268 + 0.699873i \(0.246760\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.77853e6 0.237119
\(136\) 0 0
\(137\) 3.45324e7 1.14737 0.573686 0.819075i \(-0.305513\pi\)
0.573686 + 0.819075i \(0.305513\pi\)
\(138\) 0 0
\(139\) −4.35370e7 −1.37501 −0.687507 0.726178i \(-0.741295\pi\)
−0.687507 + 0.726178i \(0.741295\pi\)
\(140\) 0 0
\(141\) 1.88260e7 0.565577
\(142\) 0 0
\(143\) 1.77659e7 0.508056
\(144\) 0 0
\(145\) −8.49903e7 −2.31516
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.02156e6 0.173893 0.0869464 0.996213i \(-0.472289\pi\)
0.0869464 + 0.996213i \(0.472289\pi\)
\(150\) 0 0
\(151\) 1.55352e7 0.367195 0.183598 0.983001i \(-0.441226\pi\)
0.183598 + 0.983001i \(0.441226\pi\)
\(152\) 0 0
\(153\) −5.72584e6 −0.129247
\(154\) 0 0
\(155\) 8.26792e6 0.178335
\(156\) 0 0
\(157\) −1.96373e7 −0.404979 −0.202489 0.979284i \(-0.564903\pi\)
−0.202489 + 0.979284i \(0.564903\pi\)
\(158\) 0 0
\(159\) 1.31905e7 0.260238
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.09898e7 0.922204 0.461102 0.887347i \(-0.347454\pi\)
0.461102 + 0.887347i \(0.347454\pi\)
\(164\) 0 0
\(165\) 6.60980e7 1.14550
\(166\) 0 0
\(167\) 6.83363e7 1.13539 0.567693 0.823240i \(-0.307836\pi\)
0.567693 + 0.823240i \(0.307836\pi\)
\(168\) 0 0
\(169\) −5.65023e7 −0.900457
\(170\) 0 0
\(171\) 1.71096e7 0.261670
\(172\) 0 0
\(173\) 1.28289e7 0.188376 0.0941882 0.995554i \(-0.469974\pi\)
0.0941882 + 0.995554i \(0.469974\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.33722e6 0.0994547
\(178\) 0 0
\(179\) 6.79517e7 0.885553 0.442776 0.896632i \(-0.353994\pi\)
0.442776 + 0.896632i \(0.353994\pi\)
\(180\) 0 0
\(181\) 6.19724e7 0.776825 0.388413 0.921486i \(-0.373024\pi\)
0.388413 + 0.921486i \(0.373024\pi\)
\(182\) 0 0
\(183\) 8.90950e7 1.07467
\(184\) 0 0
\(185\) 1.76050e6 0.0204426
\(186\) 0 0
\(187\) −5.58332e7 −0.624377
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.29061e8 −1.34023 −0.670113 0.742259i \(-0.733755\pi\)
−0.670113 + 0.742259i \(0.733755\pi\)
\(192\) 0 0
\(193\) −1.03318e8 −1.03449 −0.517243 0.855839i \(-0.673041\pi\)
−0.517243 + 0.855839i \(0.673041\pi\)
\(194\) 0 0
\(195\) 2.32389e7 0.224437
\(196\) 0 0
\(197\) 1.72525e8 1.60776 0.803879 0.594793i \(-0.202766\pi\)
0.803879 + 0.594793i \(0.202766\pi\)
\(198\) 0 0
\(199\) 6.44856e7 0.580065 0.290033 0.957017i \(-0.406334\pi\)
0.290033 + 0.957017i \(0.406334\pi\)
\(200\) 0 0
\(201\) −6.17998e6 −0.0536785
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.86513e7 0.556558
\(206\) 0 0
\(207\) −5.58197e6 −0.0437413
\(208\) 0 0
\(209\) 1.66838e8 1.26410
\(210\) 0 0
\(211\) −2.21550e8 −1.62361 −0.811807 0.583926i \(-0.801516\pi\)
−0.811807 + 0.583926i \(0.801516\pi\)
\(212\) 0 0
\(213\) 6.34363e7 0.449789
\(214\) 0 0
\(215\) −1.51641e8 −1.04060
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.64207e8 −1.05642
\(220\) 0 0
\(221\) −1.96300e7 −0.122334
\(222\) 0 0
\(223\) 1.05439e8 0.636697 0.318349 0.947974i \(-0.396872\pi\)
0.318349 + 0.947974i \(0.396872\pi\)
\(224\) 0 0
\(225\) 2.95070e7 0.172697
\(226\) 0 0
\(227\) 3.44669e8 1.95574 0.977871 0.209207i \(-0.0670882\pi\)
0.977871 + 0.209207i \(0.0670882\pi\)
\(228\) 0 0
\(229\) −3.22018e8 −1.77197 −0.885985 0.463713i \(-0.846517\pi\)
−0.885985 + 0.463713i \(0.846517\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.87923e8 1.49118 0.745592 0.666403i \(-0.232167\pi\)
0.745592 + 0.666403i \(0.232167\pi\)
\(234\) 0 0
\(235\) 2.40126e8 1.20698
\(236\) 0 0
\(237\) 2.10178e8 1.02558
\(238\) 0 0
\(239\) −2.46950e8 −1.17008 −0.585040 0.811004i \(-0.698921\pi\)
−0.585040 + 0.811004i \(0.698921\pi\)
\(240\) 0 0
\(241\) 3.63210e8 1.67147 0.835735 0.549133i \(-0.185042\pi\)
0.835735 + 0.549133i \(0.185042\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.86572e7 0.247675
\(248\) 0 0
\(249\) −5.88831e7 −0.241709
\(250\) 0 0
\(251\) −5.98237e7 −0.238790 −0.119395 0.992847i \(-0.538095\pi\)
−0.119395 + 0.992847i \(0.538095\pi\)
\(252\) 0 0
\(253\) −5.44303e7 −0.211309
\(254\) 0 0
\(255\) −7.30331e7 −0.275822
\(256\) 0 0
\(257\) −1.99156e8 −0.731858 −0.365929 0.930643i \(-0.619249\pi\)
−0.365929 + 0.930643i \(0.619249\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.79909e8 0.626341
\(262\) 0 0
\(263\) 5.42320e8 1.83828 0.919138 0.393936i \(-0.128887\pi\)
0.919138 + 0.393936i \(0.128887\pi\)
\(264\) 0 0
\(265\) 1.68245e8 0.555368
\(266\) 0 0
\(267\) −1.33392e8 −0.428885
\(268\) 0 0
\(269\) −3.89160e8 −1.21898 −0.609488 0.792795i \(-0.708625\pi\)
−0.609488 + 0.792795i \(0.708625\pi\)
\(270\) 0 0
\(271\) 8.73813e7 0.266702 0.133351 0.991069i \(-0.457426\pi\)
0.133351 + 0.991069i \(0.457426\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.87725e8 0.834283
\(276\) 0 0
\(277\) 2.37346e8 0.670969 0.335485 0.942046i \(-0.391100\pi\)
0.335485 + 0.942046i \(0.391100\pi\)
\(278\) 0 0
\(279\) −1.75017e7 −0.0482464
\(280\) 0 0
\(281\) 1.61007e8 0.432884 0.216442 0.976295i \(-0.430555\pi\)
0.216442 + 0.976295i \(0.430555\pi\)
\(282\) 0 0
\(283\) 5.03269e8 1.31992 0.659961 0.751300i \(-0.270573\pi\)
0.659961 + 0.751300i \(0.270573\pi\)
\(284\) 0 0
\(285\) 2.18233e8 0.558424
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.48647e8 −0.849658
\(290\) 0 0
\(291\) 9.94312e7 0.236536
\(292\) 0 0
\(293\) 3.58565e8 0.832781 0.416391 0.909186i \(-0.363295\pi\)
0.416391 + 0.909186i \(0.363295\pi\)
\(294\) 0 0
\(295\) 9.35862e7 0.212244
\(296\) 0 0
\(297\) −1.39917e8 −0.309902
\(298\) 0 0
\(299\) −1.91367e7 −0.0414017
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.92029e7 −0.0603083
\(304\) 0 0
\(305\) 1.13641e9 2.29342
\(306\) 0 0
\(307\) 2.31844e8 0.457311 0.228655 0.973507i \(-0.426567\pi\)
0.228655 + 0.973507i \(0.426567\pi\)
\(308\) 0 0
\(309\) −4.14304e8 −0.798848
\(310\) 0 0
\(311\) −5.96200e8 −1.12391 −0.561954 0.827169i \(-0.689950\pi\)
−0.561954 + 0.827169i \(0.689950\pi\)
\(312\) 0 0
\(313\) 8.70791e7 0.160512 0.0802562 0.996774i \(-0.474426\pi\)
0.0802562 + 0.996774i \(0.474426\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.67049e8 1.35243 0.676217 0.736703i \(-0.263618\pi\)
0.676217 + 0.736703i \(0.263618\pi\)
\(318\) 0 0
\(319\) 1.75431e9 3.02579
\(320\) 0 0
\(321\) 3.49040e8 0.588990
\(322\) 0 0
\(323\) −1.84342e8 −0.304380
\(324\) 0 0
\(325\) 1.01159e8 0.163460
\(326\) 0 0
\(327\) −6.02003e8 −0.952097
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.99231e8 0.605099 0.302550 0.953134i \(-0.402162\pi\)
0.302550 + 0.953134i \(0.402162\pi\)
\(332\) 0 0
\(333\) −3.72667e6 −0.00553052
\(334\) 0 0
\(335\) −7.88256e7 −0.114554
\(336\) 0 0
\(337\) −2.11383e6 −0.00300861 −0.00150431 0.999999i \(-0.500479\pi\)
−0.00150431 + 0.999999i \(0.500479\pi\)
\(338\) 0 0
\(339\) 4.96919e8 0.692767
\(340\) 0 0
\(341\) −1.70660e8 −0.233073
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.11980e7 −0.0933471
\(346\) 0 0
\(347\) 4.05619e8 0.521153 0.260576 0.965453i \(-0.416087\pi\)
0.260576 + 0.965453i \(0.416087\pi\)
\(348\) 0 0
\(349\) 6.06769e8 0.764072 0.382036 0.924147i \(-0.375223\pi\)
0.382036 + 0.924147i \(0.375223\pi\)
\(350\) 0 0
\(351\) −4.91925e7 −0.0607189
\(352\) 0 0
\(353\) 8.47805e8 1.02585 0.512926 0.858433i \(-0.328562\pi\)
0.512926 + 0.858433i \(0.328562\pi\)
\(354\) 0 0
\(355\) 8.09129e8 0.959884
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.43048e8 −0.733522 −0.366761 0.930315i \(-0.619533\pi\)
−0.366761 + 0.930315i \(0.619533\pi\)
\(360\) 0 0
\(361\) −3.43030e8 −0.383757
\(362\) 0 0
\(363\) −8.38194e8 −0.919753
\(364\) 0 0
\(365\) −2.09446e9 −2.25449
\(366\) 0 0
\(367\) −2.58748e8 −0.273241 −0.136621 0.990623i \(-0.543624\pi\)
−0.136621 + 0.990623i \(0.543624\pi\)
\(368\) 0 0
\(369\) −1.45322e8 −0.150571
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.78964e8 −0.278335 −0.139167 0.990269i \(-0.544443\pi\)
−0.139167 + 0.990269i \(0.544443\pi\)
\(374\) 0 0
\(375\) −3.50076e8 −0.342809
\(376\) 0 0
\(377\) 6.16784e8 0.592841
\(378\) 0 0
\(379\) −1.19101e8 −0.112377 −0.0561885 0.998420i \(-0.517895\pi\)
−0.0561885 + 0.998420i \(0.517895\pi\)
\(380\) 0 0
\(381\) 1.12087e9 1.03829
\(382\) 0 0
\(383\) −2.53193e8 −0.230280 −0.115140 0.993349i \(-0.536732\pi\)
−0.115140 + 0.993349i \(0.536732\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.20997e8 0.281522
\(388\) 0 0
\(389\) 7.13924e8 0.614934 0.307467 0.951559i \(-0.400519\pi\)
0.307467 + 0.951559i \(0.400519\pi\)
\(390\) 0 0
\(391\) 6.01412e7 0.0508807
\(392\) 0 0
\(393\) −9.92440e8 −0.824765
\(394\) 0 0
\(395\) 2.68082e9 2.18866
\(396\) 0 0
\(397\) −1.53079e9 −1.22786 −0.613931 0.789360i \(-0.710413\pi\)
−0.613931 + 0.789360i \(0.710413\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.26388e8 −0.485108 −0.242554 0.970138i \(-0.577985\pi\)
−0.242554 + 0.970138i \(0.577985\pi\)
\(402\) 0 0
\(403\) −6.00012e7 −0.0456659
\(404\) 0 0
\(405\) −1.83020e8 −0.136901
\(406\) 0 0
\(407\) −3.63390e7 −0.0267173
\(408\) 0 0
\(409\) −5.70438e8 −0.412266 −0.206133 0.978524i \(-0.566088\pi\)
−0.206133 + 0.978524i \(0.566088\pi\)
\(410\) 0 0
\(411\) −9.32374e8 −0.662436
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −7.51054e8 −0.515826
\(416\) 0 0
\(417\) 1.17550e9 0.793865
\(418\) 0 0
\(419\) −9.98546e8 −0.663161 −0.331581 0.943427i \(-0.607582\pi\)
−0.331581 + 0.943427i \(0.607582\pi\)
\(420\) 0 0
\(421\) 1.03711e9 0.677389 0.338694 0.940896i \(-0.390015\pi\)
0.338694 + 0.940896i \(0.390015\pi\)
\(422\) 0 0
\(423\) −5.08302e8 −0.326536
\(424\) 0 0
\(425\) −3.17913e8 −0.200885
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.79680e8 −0.293327
\(430\) 0 0
\(431\) −1.31918e9 −0.793656 −0.396828 0.917893i \(-0.629889\pi\)
−0.396828 + 0.917893i \(0.629889\pi\)
\(432\) 0 0
\(433\) 1.73484e9 1.02695 0.513477 0.858103i \(-0.328357\pi\)
0.513477 + 0.858103i \(0.328357\pi\)
\(434\) 0 0
\(435\) 2.29474e9 1.33666
\(436\) 0 0
\(437\) −1.79711e8 −0.103012
\(438\) 0 0
\(439\) −1.63687e9 −0.923396 −0.461698 0.887037i \(-0.652760\pi\)
−0.461698 + 0.887037i \(0.652760\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.43477e8 0.406307 0.203154 0.979147i \(-0.434881\pi\)
0.203154 + 0.979147i \(0.434881\pi\)
\(444\) 0 0
\(445\) −1.70142e9 −0.915273
\(446\) 0 0
\(447\) −1.89582e8 −0.100397
\(448\) 0 0
\(449\) −7.27404e8 −0.379240 −0.189620 0.981858i \(-0.560726\pi\)
−0.189620 + 0.981858i \(0.560726\pi\)
\(450\) 0 0
\(451\) −1.41705e9 −0.727390
\(452\) 0 0
\(453\) −4.19450e8 −0.212000
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.06345e9 −0.521206 −0.260603 0.965446i \(-0.583921\pi\)
−0.260603 + 0.965446i \(0.583921\pi\)
\(458\) 0 0
\(459\) 1.54598e8 0.0746206
\(460\) 0 0
\(461\) 1.70184e9 0.809029 0.404515 0.914532i \(-0.367440\pi\)
0.404515 + 0.914532i \(0.367440\pi\)
\(462\) 0 0
\(463\) 3.48810e9 1.63326 0.816630 0.577162i \(-0.195840\pi\)
0.816630 + 0.577162i \(0.195840\pi\)
\(464\) 0 0
\(465\) −2.23234e8 −0.102961
\(466\) 0 0
\(467\) 2.52499e9 1.14723 0.573615 0.819125i \(-0.305540\pi\)
0.573615 + 0.819125i \(0.305540\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.30206e8 0.233815
\(472\) 0 0
\(473\) 3.13007e9 1.36000
\(474\) 0 0
\(475\) 9.49971e8 0.406708
\(476\) 0 0
\(477\) −3.56144e8 −0.150249
\(478\) 0 0
\(479\) 4.34770e8 0.180753 0.0903765 0.995908i \(-0.471193\pi\)
0.0903765 + 0.995908i \(0.471193\pi\)
\(480\) 0 0
\(481\) −1.27762e7 −0.00523471
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.26824e9 0.504786
\(486\) 0 0
\(487\) 4.99726e9 1.96056 0.980280 0.197611i \(-0.0633184\pi\)
0.980280 + 0.197611i \(0.0633184\pi\)
\(488\) 0 0
\(489\) −1.37673e9 −0.532435
\(490\) 0 0
\(491\) −5.79958e8 −0.221111 −0.110556 0.993870i \(-0.535263\pi\)
−0.110556 + 0.993870i \(0.535263\pi\)
\(492\) 0 0
\(493\) −1.93837e9 −0.728573
\(494\) 0 0
\(495\) −1.78465e9 −0.661354
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.97783e9 1.79345 0.896723 0.442591i \(-0.145941\pi\)
0.896723 + 0.442591i \(0.145941\pi\)
\(500\) 0 0
\(501\) −1.84508e9 −0.655516
\(502\) 0 0
\(503\) 4.35283e9 1.52505 0.762524 0.646960i \(-0.223960\pi\)
0.762524 + 0.646960i \(0.223960\pi\)
\(504\) 0 0
\(505\) −3.72483e8 −0.128702
\(506\) 0 0
\(507\) 1.52556e9 0.519879
\(508\) 0 0
\(509\) 2.22837e9 0.748987 0.374493 0.927230i \(-0.377817\pi\)
0.374493 + 0.927230i \(0.377817\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.61960e8 −0.151075
\(514\) 0 0
\(515\) −5.28444e9 −1.70480
\(516\) 0 0
\(517\) −4.95650e9 −1.57746
\(518\) 0 0
\(519\) −3.46379e8 −0.108759
\(520\) 0 0
\(521\) −4.77969e9 −1.48070 −0.740352 0.672220i \(-0.765341\pi\)
−0.740352 + 0.672220i \(0.765341\pi\)
\(522\) 0 0
\(523\) −9.69432e8 −0.296320 −0.148160 0.988963i \(-0.547335\pi\)
−0.148160 + 0.988963i \(0.547335\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.88566e8 0.0561212
\(528\) 0 0
\(529\) −3.34620e9 −0.982780
\(530\) 0 0
\(531\) −1.98105e8 −0.0574202
\(532\) 0 0
\(533\) −4.98210e8 −0.142517
\(534\) 0 0
\(535\) 4.45201e9 1.25695
\(536\) 0 0
\(537\) −1.83470e9 −0.511274
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.04192e9 −0.554431 −0.277216 0.960808i \(-0.589412\pi\)
−0.277216 + 0.960808i \(0.589412\pi\)
\(542\) 0 0
\(543\) −1.67325e9 −0.448500
\(544\) 0 0
\(545\) −7.67854e9 −2.03185
\(546\) 0 0
\(547\) −2.15208e9 −0.562215 −0.281108 0.959676i \(-0.590702\pi\)
−0.281108 + 0.959676i \(0.590702\pi\)
\(548\) 0 0
\(549\) −2.40557e9 −0.620460
\(550\) 0 0
\(551\) 5.79214e9 1.47506
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.75336e7 −0.0118025
\(556\) 0 0
\(557\) 8.55391e8 0.209735 0.104868 0.994486i \(-0.466558\pi\)
0.104868 + 0.994486i \(0.466558\pi\)
\(558\) 0 0
\(559\) 1.10048e9 0.266465
\(560\) 0 0
\(561\) 1.50750e9 0.360484
\(562\) 0 0
\(563\) 1.97565e8 0.0466584 0.0233292 0.999728i \(-0.492573\pi\)
0.0233292 + 0.999728i \(0.492573\pi\)
\(564\) 0 0
\(565\) 6.33820e9 1.47842
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.22011e9 1.41548 0.707742 0.706471i \(-0.249714\pi\)
0.707742 + 0.706471i \(0.249714\pi\)
\(570\) 0 0
\(571\) −5.38583e9 −1.21067 −0.605335 0.795971i \(-0.706961\pi\)
−0.605335 + 0.795971i \(0.706961\pi\)
\(572\) 0 0
\(573\) 3.48465e9 0.773780
\(574\) 0 0
\(575\) −3.09925e8 −0.0679860
\(576\) 0 0
\(577\) 2.97524e9 0.644773 0.322387 0.946608i \(-0.395515\pi\)
0.322387 + 0.946608i \(0.395515\pi\)
\(578\) 0 0
\(579\) 2.78958e9 0.597260
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.47279e9 −0.725836
\(584\) 0 0
\(585\) −6.27450e8 −0.129579
\(586\) 0 0
\(587\) 9.49841e9 1.93828 0.969142 0.246502i \(-0.0792813\pi\)
0.969142 + 0.246502i \(0.0792813\pi\)
\(588\) 0 0
\(589\) −5.63463e8 −0.113622
\(590\) 0 0
\(591\) −4.65818e9 −0.928239
\(592\) 0 0
\(593\) 3.85157e9 0.758483 0.379242 0.925298i \(-0.376185\pi\)
0.379242 + 0.925298i \(0.376185\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.74111e9 −0.334901
\(598\) 0 0
\(599\) 4.36355e9 0.829557 0.414778 0.909922i \(-0.363859\pi\)
0.414778 + 0.909922i \(0.363859\pi\)
\(600\) 0 0
\(601\) −6.33773e9 −1.19089 −0.595447 0.803395i \(-0.703025\pi\)
−0.595447 + 0.803395i \(0.703025\pi\)
\(602\) 0 0
\(603\) 1.66859e8 0.0309913
\(604\) 0 0
\(605\) −1.06912e10 −1.96282
\(606\) 0 0
\(607\) −6.89059e9 −1.25053 −0.625267 0.780411i \(-0.715010\pi\)
−0.625267 + 0.780411i \(0.715010\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.74262e9 −0.309071
\(612\) 0 0
\(613\) −9.32798e9 −1.63560 −0.817798 0.575506i \(-0.804805\pi\)
−0.817798 + 0.575506i \(0.804805\pi\)
\(614\) 0 0
\(615\) −1.85359e9 −0.321329
\(616\) 0 0
\(617\) 2.67877e9 0.459132 0.229566 0.973293i \(-0.426269\pi\)
0.229566 + 0.973293i \(0.426269\pi\)
\(618\) 0 0
\(619\) 9.17841e9 1.55543 0.777715 0.628618i \(-0.216379\pi\)
0.777715 + 0.628618i \(0.216379\pi\)
\(620\) 0 0
\(621\) 1.50713e8 0.0252540
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.62740e9 −1.24967
\(626\) 0 0
\(627\) −4.50462e9 −0.729830
\(628\) 0 0
\(629\) 4.01518e7 0.00643321
\(630\) 0 0
\(631\) 3.35341e9 0.531354 0.265677 0.964062i \(-0.414404\pi\)
0.265677 + 0.964062i \(0.414404\pi\)
\(632\) 0 0
\(633\) 5.98184e9 0.937394
\(634\) 0 0
\(635\) 1.42967e10 2.21578
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.71278e9 −0.259686
\(640\) 0 0
\(641\) −1.55893e9 −0.233788 −0.116894 0.993144i \(-0.537294\pi\)
−0.116894 + 0.993144i \(0.537294\pi\)
\(642\) 0 0
\(643\) −3.52069e9 −0.522263 −0.261131 0.965303i \(-0.584096\pi\)
−0.261131 + 0.965303i \(0.584096\pi\)
\(644\) 0 0
\(645\) 4.09431e9 0.600789
\(646\) 0 0
\(647\) −8.36160e9 −1.21374 −0.606869 0.794802i \(-0.707575\pi\)
−0.606869 + 0.794802i \(0.707575\pi\)
\(648\) 0 0
\(649\) −1.93174e9 −0.277391
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.84949e9 −1.24372 −0.621859 0.783129i \(-0.713622\pi\)
−0.621859 + 0.783129i \(0.713622\pi\)
\(654\) 0 0
\(655\) −1.26586e10 −1.76011
\(656\) 0 0
\(657\) 4.43360e9 0.609927
\(658\) 0 0
\(659\) 3.78573e9 0.515289 0.257644 0.966240i \(-0.417054\pi\)
0.257644 + 0.966240i \(0.417054\pi\)
\(660\) 0 0
\(661\) −1.47274e10 −1.98344 −0.991722 0.128406i \(-0.959014\pi\)
−0.991722 + 0.128406i \(0.959014\pi\)
\(662\) 0 0
\(663\) 5.30009e8 0.0706294
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.88967e9 −0.246573
\(668\) 0 0
\(669\) −2.84684e9 −0.367597
\(670\) 0 0
\(671\) −2.34569e10 −2.99738
\(672\) 0 0
\(673\) −1.79335e9 −0.226783 −0.113392 0.993550i \(-0.536171\pi\)
−0.113392 + 0.993550i \(0.536171\pi\)
\(674\) 0 0
\(675\) −7.96688e8 −0.0997069
\(676\) 0 0
\(677\) −1.05751e10 −1.30985 −0.654926 0.755693i \(-0.727300\pi\)
−0.654926 + 0.755693i \(0.727300\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.30606e9 −1.12915
\(682\) 0 0
\(683\) −5.18773e9 −0.623024 −0.311512 0.950242i \(-0.600835\pi\)
−0.311512 + 0.950242i \(0.600835\pi\)
\(684\) 0 0
\(685\) −1.18924e10 −1.41369
\(686\) 0 0
\(687\) 8.69450e9 1.02305
\(688\) 0 0
\(689\) −1.22097e9 −0.142213
\(690\) 0 0
\(691\) −7.34485e9 −0.846856 −0.423428 0.905930i \(-0.639173\pi\)
−0.423428 + 0.905930i \(0.639173\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.49935e10 1.69417
\(696\) 0 0
\(697\) 1.56573e9 0.175147
\(698\) 0 0
\(699\) −7.77393e9 −0.860935
\(700\) 0 0
\(701\) 7.16925e9 0.786069 0.393034 0.919524i \(-0.371425\pi\)
0.393034 + 0.919524i \(0.371425\pi\)
\(702\) 0 0
\(703\) −1.19979e8 −0.0130246
\(704\) 0 0
\(705\) −6.48339e9 −0.696852
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −2.01023e9 −0.211829 −0.105914 0.994375i \(-0.533777\pi\)
−0.105914 + 0.994375i \(0.533777\pi\)
\(710\) 0 0
\(711\) −5.67481e9 −0.592117
\(712\) 0 0
\(713\) 1.83828e8 0.0189932
\(714\) 0 0
\(715\) −6.11832e9 −0.625981
\(716\) 0 0
\(717\) 6.66764e9 0.675546
\(718\) 0 0
\(719\) 7.55427e9 0.757952 0.378976 0.925407i \(-0.376276\pi\)
0.378976 + 0.925407i \(0.376276\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −9.80668e9 −0.965024
\(724\) 0 0
\(725\) 9.98901e9 0.973508
\(726\) 0 0
\(727\) −1.09036e10 −1.05244 −0.526221 0.850348i \(-0.676392\pi\)
−0.526221 + 0.850348i \(0.676392\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −3.45848e9 −0.327472
\(732\) 0 0
\(733\) −7.10538e9 −0.666382 −0.333191 0.942859i \(-0.608125\pi\)
−0.333191 + 0.942859i \(0.608125\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.62706e9 0.149716
\(738\) 0 0
\(739\) −1.28604e10 −1.17219 −0.586096 0.810241i \(-0.699336\pi\)
−0.586096 + 0.810241i \(0.699336\pi\)
\(740\) 0 0
\(741\) −1.58374e9 −0.142995
\(742\) 0 0
\(743\) −1.03498e10 −0.925701 −0.462850 0.886436i \(-0.653173\pi\)
−0.462850 + 0.886436i \(0.653173\pi\)
\(744\) 0 0
\(745\) −2.41812e9 −0.214255
\(746\) 0 0
\(747\) 1.58985e9 0.139551
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.33169e10 1.14726 0.573630 0.819114i \(-0.305535\pi\)
0.573630 + 0.819114i \(0.305535\pi\)
\(752\) 0 0
\(753\) 1.61524e9 0.137865
\(754\) 0 0
\(755\) −5.35008e9 −0.452425
\(756\) 0 0
\(757\) −9.86095e9 −0.826196 −0.413098 0.910687i \(-0.635553\pi\)
−0.413098 + 0.910687i \(0.635553\pi\)
\(758\) 0 0
\(759\) 1.46962e9 0.122000
\(760\) 0 0
\(761\) 1.97462e10 1.62419 0.812094 0.583527i \(-0.198328\pi\)
0.812094 + 0.583527i \(0.198328\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.97189e9 0.159246
\(766\) 0 0
\(767\) −6.79165e8 −0.0543490
\(768\) 0 0
\(769\) 1.24911e10 0.990509 0.495254 0.868748i \(-0.335075\pi\)
0.495254 + 0.868748i \(0.335075\pi\)
\(770\) 0 0
\(771\) 5.37720e9 0.422538
\(772\) 0 0
\(773\) −6.46836e9 −0.503693 −0.251846 0.967767i \(-0.581038\pi\)
−0.251846 + 0.967767i \(0.581038\pi\)
\(774\) 0 0
\(775\) −9.71738e8 −0.0749883
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.67862e9 −0.354599
\(780\) 0 0
\(781\) −1.67015e10 −1.25452
\(782\) 0 0
\(783\) −4.85754e9 −0.361618
\(784\) 0 0
\(785\) 6.76278e9 0.498978
\(786\) 0 0
\(787\) −4.41920e9 −0.323171 −0.161585 0.986859i \(-0.551661\pi\)
−0.161585 + 0.986859i \(0.551661\pi\)
\(788\) 0 0
\(789\) −1.46426e10 −1.06133
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.24702e9 −0.587274
\(794\) 0 0
\(795\) −4.54261e9 −0.320642
\(796\) 0 0
\(797\) 1.57455e10 1.10167 0.550835 0.834614i \(-0.314309\pi\)
0.550835 + 0.834614i \(0.314309\pi\)
\(798\) 0 0
\(799\) 5.47654e9 0.379833
\(800\) 0 0
\(801\) 3.60159e9 0.247617
\(802\) 0 0
\(803\) 4.32324e10 2.94649
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.05073e10 0.703776
\(808\) 0 0
\(809\) 2.16144e10 1.43523 0.717617 0.696438i \(-0.245233\pi\)
0.717617 + 0.696438i \(0.245233\pi\)
\(810\) 0 0
\(811\) −2.00798e9 −0.132186 −0.0660931 0.997813i \(-0.521053\pi\)
−0.0660931 + 0.997813i \(0.521053\pi\)
\(812\) 0 0
\(813\) −2.35930e9 −0.153980
\(814\) 0 0
\(815\) −1.75601e10 −1.13626
\(816\) 0 0
\(817\) 1.03344e10 0.662994
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.78890e10 1.12820 0.564099 0.825707i \(-0.309224\pi\)
0.564099 + 0.825707i \(0.309224\pi\)
\(822\) 0 0
\(823\) 1.04292e10 0.652158 0.326079 0.945342i \(-0.394272\pi\)
0.326079 + 0.945342i \(0.394272\pi\)
\(824\) 0 0
\(825\) −7.76858e9 −0.481673
\(826\) 0 0
\(827\) −1.17153e10 −0.720252 −0.360126 0.932904i \(-0.617266\pi\)
−0.360126 + 0.932904i \(0.617266\pi\)
\(828\) 0 0
\(829\) −3.75378e9 −0.228838 −0.114419 0.993433i \(-0.536501\pi\)
−0.114419 + 0.993433i \(0.536501\pi\)
\(830\) 0 0
\(831\) −6.40834e9 −0.387384
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.35340e10 −1.39892
\(836\) 0 0
\(837\) 4.72545e8 0.0278551
\(838\) 0 0
\(839\) 1.70900e10 0.999021 0.499510 0.866308i \(-0.333513\pi\)
0.499510 + 0.866308i \(0.333513\pi\)
\(840\) 0 0
\(841\) 4.36548e10 2.53073
\(842\) 0 0
\(843\) −4.34718e9 −0.249926
\(844\) 0 0
\(845\) 1.94585e10 1.10946
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.35883e10 −0.762057
\(850\) 0 0
\(851\) 3.91429e7 0.00217721
\(852\) 0 0
\(853\) 2.48124e10 1.36882 0.684411 0.729097i \(-0.260060\pi\)
0.684411 + 0.729097i \(0.260060\pi\)
\(854\) 0 0
\(855\) −5.89230e9 −0.322406
\(856\) 0 0
\(857\) 3.68069e10 1.99755 0.998773 0.0495262i \(-0.0157711\pi\)
0.998773 + 0.0495262i \(0.0157711\pi\)
\(858\) 0 0
\(859\) −1.50948e10 −0.812554 −0.406277 0.913750i \(-0.633173\pi\)
−0.406277 + 0.913750i \(0.633173\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.13151e10 1.12888 0.564442 0.825473i \(-0.309091\pi\)
0.564442 + 0.825473i \(0.309091\pi\)
\(864\) 0 0
\(865\) −4.41806e9 −0.232100
\(866\) 0 0
\(867\) 9.41348e9 0.490550
\(868\) 0 0
\(869\) −5.53355e10 −2.86045
\(870\) 0 0
\(871\) 5.72045e8 0.0293337
\(872\) 0 0
\(873\) −2.68464e9 −0.136564
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −8.84440e9 −0.442761 −0.221381 0.975187i \(-0.571056\pi\)
−0.221381 + 0.975187i \(0.571056\pi\)
\(878\) 0 0
\(879\) −9.68125e9 −0.480807
\(880\) 0 0
\(881\) 2.69301e10 1.32685 0.663425 0.748243i \(-0.269102\pi\)
0.663425 + 0.748243i \(0.269102\pi\)
\(882\) 0 0
\(883\) 1.67021e10 0.816411 0.408205 0.912890i \(-0.366155\pi\)
0.408205 + 0.912890i \(0.366155\pi\)
\(884\) 0 0
\(885\) −2.52683e9 −0.122539
\(886\) 0 0
\(887\) 1.57597e10 0.758253 0.379127 0.925345i \(-0.376224\pi\)
0.379127 + 0.925345i \(0.376224\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.77777e9 0.178922
\(892\) 0 0
\(893\) −1.63647e10 −0.769003
\(894\) 0 0
\(895\) −2.34015e10 −1.09110
\(896\) 0 0
\(897\) 5.16691e8 0.0239033
\(898\) 0 0
\(899\) −5.92485e9 −0.271969
\(900\) 0 0
\(901\) 3.83716e9 0.174772
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.13424e10 −0.957133
\(906\) 0 0
\(907\) 3.00786e10 1.33854 0.669272 0.743018i \(-0.266606\pi\)
0.669272 + 0.743018i \(0.266606\pi\)
\(908\) 0 0
\(909\) 7.88478e8 0.0348190
\(910\) 0 0
\(911\) −8.21925e9 −0.360179 −0.180089 0.983650i \(-0.557639\pi\)
−0.180089 + 0.983650i \(0.557639\pi\)
\(912\) 0 0
\(913\) 1.55027e10 0.674156
\(914\) 0 0
\(915\) −3.06830e10 −1.32411
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.36844e10 1.43161 0.715805 0.698300i \(-0.246060\pi\)
0.715805 + 0.698300i \(0.246060\pi\)
\(920\) 0 0
\(921\) −6.25979e9 −0.264029
\(922\) 0 0
\(923\) −5.87194e9 −0.245796
\(924\) 0 0
\(925\) −2.06914e8 −0.00859595
\(926\) 0 0
\(927\) 1.11862e10 0.461215
\(928\) 0 0
\(929\) −1.02153e10 −0.418019 −0.209009 0.977914i \(-0.567024\pi\)
−0.209009 + 0.977914i \(0.567024\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.60974e10 0.648888
\(934\) 0 0
\(935\) 1.92281e10 0.769300
\(936\) 0 0
\(937\) 1.16234e10 0.461576 0.230788 0.973004i \(-0.425870\pi\)
0.230788 + 0.973004i \(0.425870\pi\)
\(938\) 0 0
\(939\) −2.35113e9 −0.0926719
\(940\) 0 0
\(941\) −2.82759e10 −1.10625 −0.553123 0.833099i \(-0.686564\pi\)
−0.553123 + 0.833099i \(0.686564\pi\)
\(942\) 0 0
\(943\) 1.52639e9 0.0592753
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.08655e10 1.94625 0.973125 0.230279i \(-0.0739640\pi\)
0.973125 + 0.230279i \(0.0739640\pi\)
\(948\) 0 0
\(949\) 1.51997e10 0.577304
\(950\) 0 0
\(951\) −2.07103e10 −0.780828
\(952\) 0 0
\(953\) −3.76585e10 −1.40941 −0.704705 0.709500i \(-0.748921\pi\)
−0.704705 + 0.709500i \(0.748921\pi\)
\(954\) 0 0
\(955\) 4.44467e10 1.65131
\(956\) 0 0
\(957\) −4.73663e10 −1.74694
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.69362e10 −0.979051
\(962\) 0 0
\(963\) −9.42409e9 −0.340053
\(964\) 0 0
\(965\) 3.55811e10 1.27460
\(966\) 0 0
\(967\) 3.35567e10 1.19340 0.596701 0.802464i \(-0.296478\pi\)
0.596701 + 0.802464i \(0.296478\pi\)
\(968\) 0 0
\(969\) 4.97725e9 0.175734
\(970\) 0 0
\(971\) −4.77955e10 −1.67540 −0.837702 0.546128i \(-0.816101\pi\)
−0.837702 + 0.546128i \(0.816101\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.73129e9 −0.0943739
\(976\) 0 0
\(977\) 4.18966e10 1.43730 0.718651 0.695371i \(-0.244760\pi\)
0.718651 + 0.695371i \(0.244760\pi\)
\(978\) 0 0
\(979\) 3.51194e10 1.19621
\(980\) 0 0
\(981\) 1.62541e10 0.549694
\(982\) 0 0
\(983\) 3.44206e10 1.15580 0.577899 0.816109i \(-0.303873\pi\)
0.577899 + 0.816109i \(0.303873\pi\)
\(984\) 0 0
\(985\) −5.94150e10 −1.98093
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.37158e9 −0.110827
\(990\) 0 0
\(991\) 2.63968e10 0.861576 0.430788 0.902453i \(-0.358236\pi\)
0.430788 + 0.902453i \(0.358236\pi\)
\(992\) 0 0
\(993\) −1.07792e10 −0.349354
\(994\) 0 0
\(995\) −2.22079e10 −0.714704
\(996\) 0 0
\(997\) 2.56904e9 0.0820990 0.0410495 0.999157i \(-0.486930\pi\)
0.0410495 + 0.999157i \(0.486930\pi\)
\(998\) 0 0
\(999\) 1.00620e8 0.00319304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.8.a.e.1.1 2
7.2 even 3 588.8.i.l.361.2 4
7.3 odd 6 588.8.i.i.373.1 4
7.4 even 3 588.8.i.l.373.2 4
7.5 odd 6 588.8.i.i.361.1 4
7.6 odd 2 84.8.a.d.1.2 2
21.20 even 2 252.8.a.d.1.1 2
28.27 even 2 336.8.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.8.a.d.1.2 2 7.6 odd 2
252.8.a.d.1.1 2 21.20 even 2
336.8.a.k.1.2 2 28.27 even 2
588.8.a.e.1.1 2 1.1 even 1 trivial
588.8.i.i.361.1 4 7.5 odd 6
588.8.i.i.373.1 4 7.3 odd 6
588.8.i.l.361.2 4 7.2 even 3
588.8.i.l.373.2 4 7.4 even 3