Properties

Label 592.2.bc.g.49.4
Level $592$
Weight $2$
Character 592.49
Analytic conductor $4.727$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,2,Mod(33,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.bc (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) \(=\) 592.49
Dual form 592.2.bc.g.145.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.714590 + 0.599612i) q^{3} +(-2.46699 + 0.897912i) q^{5} +(-3.18160 + 1.15801i) q^{7} +(-0.369841 - 2.09747i) q^{9} +(0.622664 + 1.07848i) q^{11} +(0.564386 - 3.20079i) q^{13} +(-2.30129 - 0.837600i) q^{15} +(-1.30849 - 7.42080i) q^{17} +(-0.803967 - 0.674609i) q^{19} +(-2.96789 - 1.08022i) q^{21} +(0.113710 - 0.196952i) q^{23} +(1.44959 - 1.21635i) q^{25} +(2.39263 - 4.14416i) q^{27} +(-2.96136 - 5.12922i) q^{29} -7.32779 q^{31} +(-0.201724 + 1.14403i) q^{33} +(6.80919 - 5.71359i) q^{35} +(-1.52734 + 5.88789i) q^{37} +(2.32254 - 1.94884i) q^{39} +(-1.30197 + 7.38387i) q^{41} -3.93777 q^{43} +(2.79574 + 4.84236i) q^{45} +(-3.87141 + 6.70548i) q^{47} +(3.41928 - 2.86912i) q^{49} +(3.51457 - 6.08742i) q^{51} +(7.65285 + 2.78541i) q^{53} +(-2.50449 - 2.10152i) q^{55} +(-0.170003 - 0.964137i) q^{57} +(8.89397 + 3.23714i) q^{59} +(0.453786 - 2.57355i) q^{61} +(3.60557 + 6.24503i) q^{63} +(1.48169 + 8.40310i) q^{65} +(-6.57694 + 2.39381i) q^{67} +(0.199351 - 0.0725578i) q^{69} +(-10.6575 - 8.94266i) q^{71} -12.7621 q^{73} +1.76520 q^{75} +(-3.22996 - 2.71026i) q^{77} +(6.77570 - 2.46615i) q^{79} +(-1.80951 + 0.658608i) q^{81} +(-2.24007 - 12.7041i) q^{83} +(9.89126 + 17.1322i) q^{85} +(0.959387 - 5.44095i) q^{87} +(-2.47099 - 0.899365i) q^{89} +(1.91089 + 10.8372i) q^{91} +(-5.23636 - 4.39383i) q^{93} +(2.58912 + 0.942363i) q^{95} +(-1.63655 + 2.83459i) q^{97} +(2.03180 - 1.70489i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 6 q^{5} + 3 q^{7} + 3 q^{11} + 9 q^{13} - 3 q^{15} - 27 q^{17} - 9 q^{19} + 15 q^{21} + 3 q^{23} - 12 q^{25} + 3 q^{27} + 9 q^{29} + 6 q^{31} - 6 q^{33} - 9 q^{35} + 9 q^{37} + 12 q^{39} + 48 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.714590 + 0.599612i 0.412569 + 0.346186i 0.825328 0.564654i \(-0.190990\pi\)
−0.412759 + 0.910840i \(0.635435\pi\)
\(4\) 0 0
\(5\) −2.46699 + 0.897912i −1.10327 + 0.401558i −0.828522 0.559957i \(-0.810818\pi\)
−0.274751 + 0.961515i \(0.588595\pi\)
\(6\) 0 0
\(7\) −3.18160 + 1.15801i −1.20253 + 0.437686i −0.864107 0.503308i \(-0.832116\pi\)
−0.338424 + 0.940994i \(0.609894\pi\)
\(8\) 0 0
\(9\) −0.369841 2.09747i −0.123280 0.699157i
\(10\) 0 0
\(11\) 0.622664 + 1.07848i 0.187740 + 0.325175i 0.944496 0.328522i \(-0.106550\pi\)
−0.756756 + 0.653697i \(0.773217\pi\)
\(12\) 0 0
\(13\) 0.564386 3.20079i 0.156532 0.887740i −0.800839 0.598880i \(-0.795613\pi\)
0.957371 0.288860i \(-0.0932762\pi\)
\(14\) 0 0
\(15\) −2.30129 0.837600i −0.594190 0.216267i
\(16\) 0 0
\(17\) −1.30849 7.42080i −0.317355 1.79981i −0.558700 0.829370i \(-0.688700\pi\)
0.241345 0.970439i \(-0.422411\pi\)
\(18\) 0 0
\(19\) −0.803967 0.674609i −0.184443 0.154766i 0.545891 0.837856i \(-0.316191\pi\)
−0.730334 + 0.683090i \(0.760636\pi\)
\(20\) 0 0
\(21\) −2.96789 1.08022i −0.647647 0.235724i
\(22\) 0 0
\(23\) 0.113710 0.196952i 0.0237102 0.0410673i −0.853927 0.520393i \(-0.825785\pi\)
0.877637 + 0.479326i \(0.159119\pi\)
\(24\) 0 0
\(25\) 1.44959 1.21635i 0.289917 0.243269i
\(26\) 0 0
\(27\) 2.39263 4.14416i 0.460462 0.797543i
\(28\) 0 0
\(29\) −2.96136 5.12922i −0.549910 0.952472i −0.998280 0.0586242i \(-0.981329\pi\)
0.448370 0.893848i \(-0.352005\pi\)
\(30\) 0 0
\(31\) −7.32779 −1.31611 −0.658055 0.752970i \(-0.728620\pi\)
−0.658055 + 0.752970i \(0.728620\pi\)
\(32\) 0 0
\(33\) −0.201724 + 1.14403i −0.0351156 + 0.199150i
\(34\) 0 0
\(35\) 6.80919 5.71359i 1.15096 0.965773i
\(36\) 0 0
\(37\) −1.52734 + 5.88789i −0.251093 + 0.967963i
\(38\) 0 0
\(39\) 2.32254 1.94884i 0.371904 0.312064i
\(40\) 0 0
\(41\) −1.30197 + 7.38387i −0.203334 + 1.15317i 0.696705 + 0.717358i \(0.254649\pi\)
−0.900039 + 0.435809i \(0.856462\pi\)
\(42\) 0 0
\(43\) −3.93777 −0.600505 −0.300253 0.953860i \(-0.597071\pi\)
−0.300253 + 0.953860i \(0.597071\pi\)
\(44\) 0 0
\(45\) 2.79574 + 4.84236i 0.416764 + 0.721856i
\(46\) 0 0
\(47\) −3.87141 + 6.70548i −0.564703 + 0.978095i 0.432374 + 0.901694i \(0.357676\pi\)
−0.997077 + 0.0764005i \(0.975657\pi\)
\(48\) 0 0
\(49\) 3.41928 2.86912i 0.488468 0.409874i
\(50\) 0 0
\(51\) 3.51457 6.08742i 0.492138 0.852409i
\(52\) 0 0
\(53\) 7.65285 + 2.78541i 1.05120 + 0.382606i 0.809116 0.587650i \(-0.199947\pi\)
0.242085 + 0.970255i \(0.422169\pi\)
\(54\) 0 0
\(55\) −2.50449 2.10152i −0.337706 0.283369i
\(56\) 0 0
\(57\) −0.170003 0.964137i −0.0225175 0.127703i
\(58\) 0 0
\(59\) 8.89397 + 3.23714i 1.15790 + 0.421440i 0.848345 0.529443i \(-0.177599\pi\)
0.309551 + 0.950883i \(0.399821\pi\)
\(60\) 0 0
\(61\) 0.453786 2.57355i 0.0581014 0.329509i −0.941878 0.335955i \(-0.890941\pi\)
0.999979 + 0.00644632i \(0.00205194\pi\)
\(62\) 0 0
\(63\) 3.60557 + 6.24503i 0.454259 + 0.786800i
\(64\) 0 0
\(65\) 1.48169 + 8.40310i 0.183781 + 1.04228i
\(66\) 0 0
\(67\) −6.57694 + 2.39381i −0.803501 + 0.292450i −0.710936 0.703256i \(-0.751729\pi\)
−0.0925645 + 0.995707i \(0.529506\pi\)
\(68\) 0 0
\(69\) 0.199351 0.0725578i 0.0239990 0.00873493i
\(70\) 0 0
\(71\) −10.6575 8.94266i −1.26481 1.06130i −0.995153 0.0983415i \(-0.968646\pi\)
−0.269654 0.962957i \(-0.586909\pi\)
\(72\) 0 0
\(73\) −12.7621 −1.49369 −0.746843 0.665000i \(-0.768431\pi\)
−0.746843 + 0.665000i \(0.768431\pi\)
\(74\) 0 0
\(75\) 1.76520 0.203827
\(76\) 0 0
\(77\) −3.22996 2.71026i −0.368088 0.308863i
\(78\) 0 0
\(79\) 6.77570 2.46615i 0.762326 0.277464i 0.0685433 0.997648i \(-0.478165\pi\)
0.693783 + 0.720184i \(0.255943\pi\)
\(80\) 0 0
\(81\) −1.80951 + 0.658608i −0.201057 + 0.0731787i
\(82\) 0 0
\(83\) −2.24007 12.7041i −0.245880 1.39445i −0.818441 0.574591i \(-0.805161\pi\)
0.572561 0.819862i \(-0.305950\pi\)
\(84\) 0 0
\(85\) 9.89126 + 17.1322i 1.07286 + 1.85824i
\(86\) 0 0
\(87\) 0.959387 5.44095i 0.102857 0.583332i
\(88\) 0 0
\(89\) −2.47099 0.899365i −0.261924 0.0953325i 0.207720 0.978188i \(-0.433396\pi\)
−0.469644 + 0.882856i \(0.655618\pi\)
\(90\) 0 0
\(91\) 1.91089 + 10.8372i 0.200316 + 1.13605i
\(92\) 0 0
\(93\) −5.23636 4.39383i −0.542985 0.455619i
\(94\) 0 0
\(95\) 2.58912 + 0.942363i 0.265638 + 0.0966844i
\(96\) 0 0
\(97\) −1.63655 + 2.83459i −0.166167 + 0.287809i −0.937069 0.349144i \(-0.886472\pi\)
0.770902 + 0.636953i \(0.219806\pi\)
\(98\) 0 0
\(99\) 2.03180 1.70489i 0.204204 0.171347i
\(100\) 0 0
\(101\) 2.31341 4.00694i 0.230193 0.398706i −0.727672 0.685925i \(-0.759398\pi\)
0.957865 + 0.287220i \(0.0927310\pi\)
\(102\) 0 0
\(103\) 5.85346 + 10.1385i 0.576759 + 0.998976i 0.995848 + 0.0910308i \(0.0290162\pi\)
−0.419089 + 0.907945i \(0.637651\pi\)
\(104\) 0 0
\(105\) 8.29172 0.809189
\(106\) 0 0
\(107\) 2.25971 12.8155i 0.218455 1.23892i −0.656355 0.754452i \(-0.727903\pi\)
0.874810 0.484467i \(-0.160986\pi\)
\(108\) 0 0
\(109\) −0.104826 + 0.0879597i −0.0100405 + 0.00842501i −0.647794 0.761815i \(-0.724308\pi\)
0.637754 + 0.770240i \(0.279864\pi\)
\(110\) 0 0
\(111\) −4.62187 + 3.29162i −0.438688 + 0.312426i
\(112\) 0 0
\(113\) 5.70275 4.78518i 0.536470 0.450152i −0.333859 0.942623i \(-0.608351\pi\)
0.870329 + 0.492471i \(0.163906\pi\)
\(114\) 0 0
\(115\) −0.103677 + 0.587981i −0.00966792 + 0.0548295i
\(116\) 0 0
\(117\) −6.92230 −0.639966
\(118\) 0 0
\(119\) 12.7564 + 22.0948i 1.16938 + 2.02543i
\(120\) 0 0
\(121\) 4.72458 8.18321i 0.429507 0.743928i
\(122\) 0 0
\(123\) −5.35783 + 4.49576i −0.483100 + 0.405369i
\(124\) 0 0
\(125\) 4.07935 7.06564i 0.364868 0.631970i
\(126\) 0 0
\(127\) −19.1828 6.98197i −1.70220 0.619550i −0.706127 0.708085i \(-0.749559\pi\)
−0.996073 + 0.0885354i \(0.971781\pi\)
\(128\) 0 0
\(129\) −2.81389 2.36114i −0.247750 0.207887i
\(130\) 0 0
\(131\) 1.65466 + 9.38404i 0.144568 + 0.819887i 0.967713 + 0.252055i \(0.0811065\pi\)
−0.823145 + 0.567832i \(0.807782\pi\)
\(132\) 0 0
\(133\) 3.33910 + 1.21533i 0.289537 + 0.105383i
\(134\) 0 0
\(135\) −2.18151 + 12.3720i −0.187755 + 1.06481i
\(136\) 0 0
\(137\) 4.74114 + 8.21190i 0.405063 + 0.701590i 0.994329 0.106349i \(-0.0339162\pi\)
−0.589266 + 0.807939i \(0.700583\pi\)
\(138\) 0 0
\(139\) 3.23003 + 18.3184i 0.273968 + 1.55375i 0.742222 + 0.670154i \(0.233772\pi\)
−0.468255 + 0.883593i \(0.655117\pi\)
\(140\) 0 0
\(141\) −6.78716 + 2.47032i −0.571582 + 0.208039i
\(142\) 0 0
\(143\) 3.80343 1.38433i 0.318059 0.115764i
\(144\) 0 0
\(145\) 11.9112 + 9.99471i 0.989174 + 0.830016i
\(146\) 0 0
\(147\) 4.16374 0.343419
\(148\) 0 0
\(149\) 8.02290 0.657261 0.328631 0.944458i \(-0.393413\pi\)
0.328631 + 0.944458i \(0.393413\pi\)
\(150\) 0 0
\(151\) 2.04800 + 1.71848i 0.166664 + 0.139848i 0.722305 0.691575i \(-0.243083\pi\)
−0.555641 + 0.831422i \(0.687527\pi\)
\(152\) 0 0
\(153\) −15.0810 + 5.48903i −1.21922 + 0.443762i
\(154\) 0 0
\(155\) 18.0776 6.57971i 1.45203 0.528495i
\(156\) 0 0
\(157\) −1.40926 7.99229i −0.112471 0.637854i −0.987971 0.154637i \(-0.950579\pi\)
0.875501 0.483217i \(-0.160532\pi\)
\(158\) 0 0
\(159\) 3.79848 + 6.57917i 0.301239 + 0.521762i
\(160\) 0 0
\(161\) −0.133709 + 0.758299i −0.0105377 + 0.0597623i
\(162\) 0 0
\(163\) −8.54919 3.11165i −0.669624 0.243723i −0.0152382 0.999884i \(-0.504851\pi\)
−0.654386 + 0.756161i \(0.727073\pi\)
\(164\) 0 0
\(165\) −0.529589 3.00345i −0.0412284 0.233818i
\(166\) 0 0
\(167\) −15.5178 13.0210i −1.20081 1.00760i −0.999607 0.0280460i \(-0.991071\pi\)
−0.201200 0.979550i \(-0.564484\pi\)
\(168\) 0 0
\(169\) 2.28947 + 0.833299i 0.176113 + 0.0640999i
\(170\) 0 0
\(171\) −1.11763 + 1.93579i −0.0854674 + 0.148034i
\(172\) 0 0
\(173\) 14.4874 12.1563i 1.10145 0.924229i 0.103931 0.994584i \(-0.466858\pi\)
0.997522 + 0.0703555i \(0.0224134\pi\)
\(174\) 0 0
\(175\) −3.20346 + 5.54856i −0.242159 + 0.419432i
\(176\) 0 0
\(177\) 4.41451 + 7.64616i 0.331815 + 0.574721i
\(178\) 0 0
\(179\) 13.4598 1.00604 0.503018 0.864276i \(-0.332223\pi\)
0.503018 + 0.864276i \(0.332223\pi\)
\(180\) 0 0
\(181\) −2.34928 + 13.3234i −0.174621 + 0.990323i 0.763960 + 0.645263i \(0.223252\pi\)
−0.938581 + 0.345060i \(0.887859\pi\)
\(182\) 0 0
\(183\) 1.86740 1.56694i 0.138042 0.115831i
\(184\) 0 0
\(185\) −1.51888 15.8968i −0.111670 1.16876i
\(186\) 0 0
\(187\) 7.18848 6.03185i 0.525673 0.441092i
\(188\) 0 0
\(189\) −2.81343 + 15.9557i −0.204647 + 1.16061i
\(190\) 0 0
\(191\) 2.36093 0.170831 0.0854155 0.996345i \(-0.472778\pi\)
0.0854155 + 0.996345i \(0.472778\pi\)
\(192\) 0 0
\(193\) 4.63768 + 8.03270i 0.333827 + 0.578206i 0.983259 0.182214i \(-0.0583264\pi\)
−0.649431 + 0.760420i \(0.724993\pi\)
\(194\) 0 0
\(195\) −3.97980 + 6.89321i −0.284999 + 0.493633i
\(196\) 0 0
\(197\) −1.05645 + 0.886469i −0.0752691 + 0.0631583i −0.679646 0.733540i \(-0.737867\pi\)
0.604377 + 0.796699i \(0.293422\pi\)
\(198\) 0 0
\(199\) −1.97499 + 3.42079i −0.140003 + 0.242493i −0.927498 0.373829i \(-0.878045\pi\)
0.787494 + 0.616322i \(0.211378\pi\)
\(200\) 0 0
\(201\) −6.13517 2.23302i −0.432742 0.157505i
\(202\) 0 0
\(203\) 15.3615 + 12.8898i 1.07817 + 0.904690i
\(204\) 0 0
\(205\) −3.41810 19.3850i −0.238730 1.35391i
\(206\) 0 0
\(207\) −0.455155 0.165663i −0.0316355 0.0115144i
\(208\) 0 0
\(209\) 0.226954 1.28712i 0.0156987 0.0890320i
\(210\) 0 0
\(211\) 10.4164 + 18.0417i 0.717095 + 1.24204i 0.962146 + 0.272534i \(0.0878619\pi\)
−0.245051 + 0.969510i \(0.578805\pi\)
\(212\) 0 0
\(213\) −2.25358 12.7807i −0.154413 0.875717i
\(214\) 0 0
\(215\) 9.71446 3.53578i 0.662521 0.241138i
\(216\) 0 0
\(217\) 23.3141 8.48563i 1.58266 0.576042i
\(218\) 0 0
\(219\) −9.11964 7.65229i −0.616248 0.517094i
\(220\) 0 0
\(221\) −24.4909 −1.64744
\(222\) 0 0
\(223\) −24.9633 −1.67166 −0.835832 0.548985i \(-0.815014\pi\)
−0.835832 + 0.548985i \(0.815014\pi\)
\(224\) 0 0
\(225\) −3.08737 2.59061i −0.205824 0.172707i
\(226\) 0 0
\(227\) −0.996856 + 0.362826i −0.0661637 + 0.0240816i −0.374890 0.927069i \(-0.622320\pi\)
0.308726 + 0.951151i \(0.400097\pi\)
\(228\) 0 0
\(229\) 5.99574 2.18227i 0.396210 0.144209i −0.136228 0.990677i \(-0.543498\pi\)
0.532438 + 0.846469i \(0.321276\pi\)
\(230\) 0 0
\(231\) −0.682993 3.87345i −0.0449376 0.254854i
\(232\) 0 0
\(233\) 4.79443 + 8.30419i 0.314093 + 0.544026i 0.979244 0.202683i \(-0.0649662\pi\)
−0.665151 + 0.746709i \(0.731633\pi\)
\(234\) 0 0
\(235\) 3.52981 20.0186i 0.230260 1.30587i
\(236\) 0 0
\(237\) 6.32059 + 2.30051i 0.410566 + 0.149434i
\(238\) 0 0
\(239\) −2.28199 12.9418i −0.147610 0.837138i −0.965234 0.261386i \(-0.915821\pi\)
0.817624 0.575752i \(-0.195291\pi\)
\(240\) 0 0
\(241\) −3.56189 2.98878i −0.229441 0.192524i 0.520818 0.853668i \(-0.325627\pi\)
−0.750259 + 0.661143i \(0.770071\pi\)
\(242\) 0 0
\(243\) −15.1780 5.52434i −0.973668 0.354386i
\(244\) 0 0
\(245\) −5.85912 + 10.1483i −0.374326 + 0.648351i
\(246\) 0 0
\(247\) −2.61303 + 2.19259i −0.166263 + 0.139511i
\(248\) 0 0
\(249\) 6.01678 10.4214i 0.381298 0.660427i
\(250\) 0 0
\(251\) −8.89316 15.4034i −0.561331 0.972254i −0.997381 0.0723317i \(-0.976956\pi\)
0.436049 0.899923i \(-0.356377\pi\)
\(252\) 0 0
\(253\) 0.283213 0.0178054
\(254\) 0 0
\(255\) −3.20446 + 18.1734i −0.200671 + 1.13806i
\(256\) 0 0
\(257\) −13.3966 + 11.2411i −0.835660 + 0.701202i −0.956583 0.291460i \(-0.905859\pi\)
0.120923 + 0.992662i \(0.461414\pi\)
\(258\) 0 0
\(259\) −1.95885 20.5016i −0.121717 1.27391i
\(260\) 0 0
\(261\) −9.66316 + 8.10835i −0.598134 + 0.501894i
\(262\) 0 0
\(263\) 1.37219 7.78206i 0.0846127 0.479862i −0.912827 0.408347i \(-0.866105\pi\)
0.997439 0.0715154i \(-0.0227835\pi\)
\(264\) 0 0
\(265\) −21.3806 −1.31340
\(266\) 0 0
\(267\) −1.22647 2.12431i −0.0750588 0.130006i
\(268\) 0 0
\(269\) 3.22251 5.58155i 0.196480 0.340313i −0.750905 0.660410i \(-0.770382\pi\)
0.947385 + 0.320097i \(0.103716\pi\)
\(270\) 0 0
\(271\) 13.8349 11.6089i 0.840410 0.705187i −0.117246 0.993103i \(-0.537407\pi\)
0.957656 + 0.287915i \(0.0929622\pi\)
\(272\) 0 0
\(273\) −5.13261 + 8.88994i −0.310640 + 0.538044i
\(274\) 0 0
\(275\) 2.21442 + 0.805982i 0.133534 + 0.0486025i
\(276\) 0 0
\(277\) 20.4091 + 17.1252i 1.22626 + 1.02896i 0.998473 + 0.0552461i \(0.0175943\pi\)
0.227790 + 0.973710i \(0.426850\pi\)
\(278\) 0 0
\(279\) 2.71011 + 15.3698i 0.162250 + 0.920166i
\(280\) 0 0
\(281\) 3.47714 + 1.26558i 0.207429 + 0.0754979i 0.443645 0.896203i \(-0.353685\pi\)
−0.236216 + 0.971701i \(0.575907\pi\)
\(282\) 0 0
\(283\) 3.63239 20.6003i 0.215923 1.22456i −0.663375 0.748287i \(-0.730876\pi\)
0.879298 0.476272i \(-0.158012\pi\)
\(284\) 0 0
\(285\) 1.28511 + 2.22587i 0.0761232 + 0.131849i
\(286\) 0 0
\(287\) −4.40821 25.0002i −0.260208 1.47572i
\(288\) 0 0
\(289\) −37.3814 + 13.6057i −2.19891 + 0.800336i
\(290\) 0 0
\(291\) −2.86912 + 1.04427i −0.168191 + 0.0612164i
\(292\) 0 0
\(293\) −19.2124 16.1211i −1.12240 0.941805i −0.123676 0.992323i \(-0.539468\pi\)
−0.998723 + 0.0505175i \(0.983913\pi\)
\(294\) 0 0
\(295\) −24.8480 −1.44671
\(296\) 0 0
\(297\) 5.95921 0.345789
\(298\) 0 0
\(299\) −0.566225 0.475120i −0.0327457 0.0274769i
\(300\) 0 0
\(301\) 12.5284 4.55997i 0.722126 0.262832i
\(302\) 0 0
\(303\) 4.05575 1.47617i 0.232997 0.0848039i
\(304\) 0 0
\(305\) 1.19133 + 6.75639i 0.0682155 + 0.386870i
\(306\) 0 0
\(307\) −10.9498 18.9656i −0.624939 1.08243i −0.988553 0.150876i \(-0.951791\pi\)
0.363614 0.931550i \(-0.381543\pi\)
\(308\) 0 0
\(309\) −1.89634 + 10.7547i −0.107879 + 0.611812i
\(310\) 0 0
\(311\) −0.490564 0.178551i −0.0278173 0.0101247i 0.328074 0.944652i \(-0.393600\pi\)
−0.355891 + 0.934527i \(0.615823\pi\)
\(312\) 0 0
\(313\) −4.67797 26.5301i −0.264415 1.49957i −0.770696 0.637202i \(-0.780092\pi\)
0.506282 0.862368i \(-0.331020\pi\)
\(314\) 0 0
\(315\) −14.5024 12.1690i −0.817118 0.685643i
\(316\) 0 0
\(317\) 12.9323 + 4.70698i 0.726352 + 0.264370i 0.678620 0.734490i \(-0.262578\pi\)
0.0477320 + 0.998860i \(0.484801\pi\)
\(318\) 0 0
\(319\) 3.68786 6.38756i 0.206480 0.357635i
\(320\) 0 0
\(321\) 9.29909 7.80286i 0.519024 0.435513i
\(322\) 0 0
\(323\) −3.95416 + 6.84880i −0.220015 + 0.381077i
\(324\) 0 0
\(325\) −3.07515 5.32631i −0.170578 0.295451i
\(326\) 0 0
\(327\) −0.127649 −0.00705903
\(328\) 0 0
\(329\) 4.55228 25.8173i 0.250975 1.42335i
\(330\) 0 0
\(331\) −15.5503 + 13.0482i −0.854719 + 0.717194i −0.960824 0.277161i \(-0.910607\pi\)
0.106105 + 0.994355i \(0.466162\pi\)
\(332\) 0 0
\(333\) 12.9145 + 1.02596i 0.707713 + 0.0562224i
\(334\) 0 0
\(335\) 14.0758 11.8110i 0.769045 0.645305i
\(336\) 0 0
\(337\) −5.77178 + 32.7334i −0.314409 + 1.78310i 0.261107 + 0.965310i \(0.415913\pi\)
−0.575516 + 0.817791i \(0.695199\pi\)
\(338\) 0 0
\(339\) 6.94438 0.377167
\(340\) 0 0
\(341\) −4.56275 7.90291i −0.247087 0.427966i
\(342\) 0 0
\(343\) 4.29394 7.43732i 0.231851 0.401577i
\(344\) 0 0
\(345\) −0.426647 + 0.357999i −0.0229699 + 0.0192740i
\(346\) 0 0
\(347\) −11.2032 + 19.4045i −0.601418 + 1.04169i 0.391188 + 0.920311i \(0.372064\pi\)
−0.992607 + 0.121377i \(0.961269\pi\)
\(348\) 0 0
\(349\) −28.6222 10.4176i −1.53211 0.557644i −0.567975 0.823046i \(-0.692273\pi\)
−0.964138 + 0.265402i \(0.914495\pi\)
\(350\) 0 0
\(351\) −11.9142 9.99721i −0.635934 0.533612i
\(352\) 0 0
\(353\) −3.47525 19.7091i −0.184969 1.04901i −0.925995 0.377536i \(-0.876772\pi\)
0.741026 0.671476i \(-0.234340\pi\)
\(354\) 0 0
\(355\) 34.3216 + 12.4920i 1.82160 + 0.663008i
\(356\) 0 0
\(357\) −4.13268 + 23.4376i −0.218725 + 1.24045i
\(358\) 0 0
\(359\) 12.6779 + 21.9587i 0.669113 + 1.15894i 0.978152 + 0.207889i \(0.0666592\pi\)
−0.309039 + 0.951049i \(0.600007\pi\)
\(360\) 0 0
\(361\) −3.10805 17.6266i −0.163582 0.927717i
\(362\) 0 0
\(363\) 8.28289 3.01473i 0.434739 0.158232i
\(364\) 0 0
\(365\) 31.4839 11.4592i 1.64794 0.599802i
\(366\) 0 0
\(367\) 3.13156 + 2.62769i 0.163466 + 0.137164i 0.720852 0.693090i \(-0.243751\pi\)
−0.557385 + 0.830254i \(0.688195\pi\)
\(368\) 0 0
\(369\) 15.9690 0.831311
\(370\) 0 0
\(371\) −27.5738 −1.43156
\(372\) 0 0
\(373\) −7.03559 5.90356i −0.364289 0.305675i 0.442208 0.896912i \(-0.354195\pi\)
−0.806498 + 0.591237i \(0.798640\pi\)
\(374\) 0 0
\(375\) 7.15171 2.60301i 0.369313 0.134419i
\(376\) 0 0
\(377\) −18.0889 + 6.58383i −0.931626 + 0.339084i
\(378\) 0 0
\(379\) 0.949204 + 5.38320i 0.0487573 + 0.276516i 0.999433 0.0336702i \(-0.0107196\pi\)
−0.950676 + 0.310187i \(0.899608\pi\)
\(380\) 0 0
\(381\) −9.52137 16.4915i −0.487795 0.844885i
\(382\) 0 0
\(383\) 5.04396 28.6057i 0.257734 1.46168i −0.531222 0.847233i \(-0.678267\pi\)
0.788956 0.614450i \(-0.210622\pi\)
\(384\) 0 0
\(385\) 10.4019 + 3.78597i 0.530128 + 0.192951i
\(386\) 0 0
\(387\) 1.45635 + 8.25936i 0.0740304 + 0.419847i
\(388\) 0 0
\(389\) 15.6096 + 13.0980i 0.791438 + 0.664095i 0.946101 0.323872i \(-0.104985\pi\)
−0.154663 + 0.987967i \(0.549429\pi\)
\(390\) 0 0
\(391\) −1.61033 0.586112i −0.0814379 0.0296410i
\(392\) 0 0
\(393\) −4.44438 + 7.69789i −0.224189 + 0.388307i
\(394\) 0 0
\(395\) −14.5012 + 12.1680i −0.729636 + 0.612237i
\(396\) 0 0
\(397\) −3.84463 + 6.65910i −0.192957 + 0.334211i −0.946229 0.323498i \(-0.895141\pi\)
0.753272 + 0.657709i \(0.228474\pi\)
\(398\) 0 0
\(399\) 1.65736 + 2.87063i 0.0829718 + 0.143711i
\(400\) 0 0
\(401\) 14.7251 0.735338 0.367669 0.929957i \(-0.380156\pi\)
0.367669 + 0.929957i \(0.380156\pi\)
\(402\) 0 0
\(403\) −4.13570 + 23.4547i −0.206014 + 1.16836i
\(404\) 0 0
\(405\) 3.87268 3.24956i 0.192435 0.161472i
\(406\) 0 0
\(407\) −7.30102 + 2.01896i −0.361898 + 0.100076i
\(408\) 0 0
\(409\) 2.63421 2.21037i 0.130253 0.109296i −0.575334 0.817919i \(-0.695128\pi\)
0.705587 + 0.708623i \(0.250683\pi\)
\(410\) 0 0
\(411\) −1.53598 + 8.71099i −0.0757644 + 0.429681i
\(412\) 0 0
\(413\) −32.0457 −1.57686
\(414\) 0 0
\(415\) 16.9334 + 29.3295i 0.831226 + 1.43973i
\(416\) 0 0
\(417\) −8.67579 + 15.0269i −0.424855 + 0.735871i
\(418\) 0 0
\(419\) −23.9931 + 20.1326i −1.17214 + 0.983541i −0.999999 0.00153152i \(-0.999513\pi\)
−0.172140 + 0.985073i \(0.555068\pi\)
\(420\) 0 0
\(421\) −0.199850 + 0.346151i −0.00974011 + 0.0168704i −0.870854 0.491541i \(-0.836434\pi\)
0.861114 + 0.508411i \(0.169767\pi\)
\(422\) 0 0
\(423\) 15.4963 + 5.64021i 0.753458 + 0.274236i
\(424\) 0 0
\(425\) −10.9230 9.16552i −0.529845 0.444593i
\(426\) 0 0
\(427\) 1.53642 + 8.71349i 0.0743527 + 0.421675i
\(428\) 0 0
\(429\) 3.54795 + 1.29135i 0.171297 + 0.0623470i
\(430\) 0 0
\(431\) 0.839936 4.76352i 0.0404583 0.229450i −0.957873 0.287191i \(-0.907279\pi\)
0.998332 + 0.0577406i \(0.0183896\pi\)
\(432\) 0 0
\(433\) −4.89095 8.47137i −0.235044 0.407108i 0.724241 0.689546i \(-0.242190\pi\)
−0.959285 + 0.282438i \(0.908857\pi\)
\(434\) 0 0
\(435\) 2.51870 + 14.2842i 0.120762 + 0.684877i
\(436\) 0 0
\(437\) −0.224285 + 0.0816330i −0.0107290 + 0.00390504i
\(438\) 0 0
\(439\) 37.0174 13.4732i 1.76674 0.643042i 0.766744 0.641952i \(-0.221875\pi\)
0.999999 0.00108969i \(-0.000346859\pi\)
\(440\) 0 0
\(441\) −7.28247 6.11072i −0.346784 0.290987i
\(442\) 0 0
\(443\) 15.2550 0.724788 0.362394 0.932025i \(-0.381960\pi\)
0.362394 + 0.932025i \(0.381960\pi\)
\(444\) 0 0
\(445\) 6.90345 0.327255
\(446\) 0 0
\(447\) 5.73308 + 4.81063i 0.271165 + 0.227535i
\(448\) 0 0
\(449\) 30.8222 11.2184i 1.45459 0.529428i 0.510721 0.859746i \(-0.329378\pi\)
0.943869 + 0.330319i \(0.107156\pi\)
\(450\) 0 0
\(451\) −8.77408 + 3.19350i −0.413155 + 0.150376i
\(452\) 0 0
\(453\) 0.433062 + 2.45601i 0.0203470 + 0.115394i
\(454\) 0 0
\(455\) −14.4450 25.0195i −0.677192 1.17293i
\(456\) 0 0
\(457\) 6.46679 36.6750i 0.302504 1.71558i −0.332525 0.943095i \(-0.607900\pi\)
0.635028 0.772489i \(-0.280988\pi\)
\(458\) 0 0
\(459\) −33.8837 12.3327i −1.58156 0.575639i
\(460\) 0 0
\(461\) 4.75723 + 26.9796i 0.221566 + 1.25657i 0.869141 + 0.494564i \(0.164672\pi\)
−0.647575 + 0.762002i \(0.724217\pi\)
\(462\) 0 0
\(463\) −0.676688 0.567808i −0.0314483 0.0263883i 0.626928 0.779077i \(-0.284312\pi\)
−0.658376 + 0.752689i \(0.728756\pi\)
\(464\) 0 0
\(465\) 16.8633 + 6.13775i 0.782019 + 0.284632i
\(466\) 0 0
\(467\) 1.83634 3.18064i 0.0849758 0.147182i −0.820405 0.571783i \(-0.806252\pi\)
0.905381 + 0.424600i \(0.139585\pi\)
\(468\) 0 0
\(469\) 18.1531 15.2323i 0.838234 0.703362i
\(470\) 0 0
\(471\) 3.78523 6.55621i 0.174414 0.302094i
\(472\) 0 0
\(473\) −2.45191 4.24683i −0.112739 0.195269i
\(474\) 0 0
\(475\) −1.98598 −0.0911229
\(476\) 0 0
\(477\) 3.01198 17.0818i 0.137909 0.782121i
\(478\) 0 0
\(479\) 18.2228 15.2908i 0.832623 0.698654i −0.123268 0.992373i \(-0.539338\pi\)
0.955892 + 0.293720i \(0.0948932\pi\)
\(480\) 0 0
\(481\) 17.9839 + 8.21173i 0.819995 + 0.374423i
\(482\) 0 0
\(483\) −0.550232 + 0.461700i −0.0250364 + 0.0210081i
\(484\) 0 0
\(485\) 1.49215 8.46240i 0.0677550 0.384258i
\(486\) 0 0
\(487\) 15.7470 0.713565 0.356782 0.934188i \(-0.383874\pi\)
0.356782 + 0.934188i \(0.383874\pi\)
\(488\) 0 0
\(489\) −4.24338 7.34975i −0.191892 0.332367i
\(490\) 0 0
\(491\) −0.943381 + 1.63398i −0.0425742 + 0.0737406i −0.886527 0.462676i \(-0.846889\pi\)
0.843953 + 0.536417i \(0.180223\pi\)
\(492\) 0 0
\(493\) −34.1880 + 28.6872i −1.53975 + 1.29200i
\(494\) 0 0
\(495\) −3.48161 + 6.03032i −0.156487 + 0.271043i
\(496\) 0 0
\(497\) 44.2634 + 16.1106i 1.98548 + 0.722657i
\(498\) 0 0
\(499\) 27.1748 + 22.8023i 1.21651 + 1.02077i 0.999000 + 0.0447151i \(0.0142380\pi\)
0.217510 + 0.976058i \(0.430206\pi\)
\(500\) 0 0
\(501\) −3.28133 18.6094i −0.146599 0.831405i
\(502\) 0 0
\(503\) −30.7970 11.2092i −1.37317 0.499793i −0.453070 0.891475i \(-0.649671\pi\)
−0.920101 + 0.391682i \(0.871893\pi\)
\(504\) 0 0
\(505\) −2.10928 + 11.9623i −0.0938618 + 0.532317i
\(506\) 0 0
\(507\) 1.13638 + 1.96826i 0.0504682 + 0.0874136i
\(508\) 0 0
\(509\) −4.56507 25.8898i −0.202343 1.14755i −0.901566 0.432642i \(-0.857581\pi\)
0.699222 0.714904i \(-0.253530\pi\)
\(510\) 0 0
\(511\) 40.6038 14.7786i 1.79620 0.653765i
\(512\) 0 0
\(513\) −4.71928 + 1.71768i −0.208361 + 0.0758373i
\(514\) 0 0
\(515\) −23.5439 19.7557i −1.03747 0.870540i
\(516\) 0 0
\(517\) −9.64235 −0.424070
\(518\) 0 0
\(519\) 17.6416 0.774380
\(520\) 0 0
\(521\) −20.9631 17.5902i −0.918412 0.770639i 0.0552886 0.998470i \(-0.482392\pi\)
−0.973701 + 0.227831i \(0.926837\pi\)
\(522\) 0 0
\(523\) −37.7012 + 13.7221i −1.64856 + 0.600026i −0.988505 0.151191i \(-0.951689\pi\)
−0.660054 + 0.751218i \(0.729467\pi\)
\(524\) 0 0
\(525\) −5.61615 + 2.04411i −0.245109 + 0.0892123i
\(526\) 0 0
\(527\) 9.58832 + 54.3781i 0.417674 + 2.36875i
\(528\) 0 0
\(529\) 11.4741 + 19.8738i 0.498876 + 0.864078i
\(530\) 0 0
\(531\) 3.50045 19.8521i 0.151907 0.861506i
\(532\) 0 0
\(533\) 22.8994 + 8.33470i 0.991883 + 0.361016i
\(534\) 0 0
\(535\) 5.93247 + 33.6447i 0.256483 + 1.45459i
\(536\) 0 0
\(537\) 9.61827 + 8.07069i 0.415059 + 0.348276i
\(538\) 0 0
\(539\) 5.22336 + 1.90115i 0.224986 + 0.0818882i
\(540\) 0 0
\(541\) −13.2494 + 22.9486i −0.569635 + 0.986636i 0.426967 + 0.904267i \(0.359582\pi\)
−0.996602 + 0.0823693i \(0.973751\pi\)
\(542\) 0 0
\(543\) −9.66766 + 8.11213i −0.414879 + 0.348125i
\(544\) 0 0
\(545\) 0.179626 0.311121i 0.00769431 0.0133269i
\(546\) 0 0
\(547\) −14.8012 25.6364i −0.632853 1.09613i −0.986966 0.160931i \(-0.948550\pi\)
0.354113 0.935203i \(-0.384783\pi\)
\(548\) 0 0
\(549\) −5.56577 −0.237541
\(550\) 0 0
\(551\) −1.07938 + 6.12148i −0.0459832 + 0.260784i
\(552\) 0 0
\(553\) −18.7017 + 15.6926i −0.795279 + 0.667319i
\(554\) 0 0
\(555\) 8.44654 12.2704i 0.358535 0.520851i
\(556\) 0 0
\(557\) 1.56151 1.31026i 0.0661633 0.0555176i −0.609106 0.793089i \(-0.708472\pi\)
0.675270 + 0.737571i \(0.264027\pi\)
\(558\) 0 0
\(559\) −2.22242 + 12.6040i −0.0939985 + 0.533092i
\(560\) 0 0
\(561\) 8.75358 0.369576
\(562\) 0 0
\(563\) 21.5625 + 37.3473i 0.908751 + 1.57400i 0.815802 + 0.578332i \(0.196296\pi\)
0.0929493 + 0.995671i \(0.470371\pi\)
\(564\) 0 0
\(565\) −9.77198 + 16.9256i −0.411110 + 0.712064i
\(566\) 0 0
\(567\) 4.99446 4.19085i 0.209748 0.175999i
\(568\) 0 0
\(569\) 2.16570 3.75110i 0.0907908 0.157254i −0.817053 0.576562i \(-0.804394\pi\)
0.907844 + 0.419308i \(0.137727\pi\)
\(570\) 0 0
\(571\) −25.9464 9.44371i −1.08582 0.395207i −0.263751 0.964591i \(-0.584960\pi\)
−0.822072 + 0.569384i \(0.807182\pi\)
\(572\) 0 0
\(573\) 1.68710 + 1.41564i 0.0704795 + 0.0591393i
\(574\) 0 0
\(575\) −0.0747291 0.423810i −0.00311642 0.0176741i
\(576\) 0 0
\(577\) −28.6487 10.4273i −1.19266 0.434093i −0.332004 0.943278i \(-0.607725\pi\)
−0.860657 + 0.509185i \(0.829947\pi\)
\(578\) 0 0
\(579\) −1.50246 + 8.52089i −0.0624402 + 0.354116i
\(580\) 0 0
\(581\) 21.8384 + 37.8252i 0.906010 + 1.56925i
\(582\) 0 0
\(583\) 1.76113 + 9.98786i 0.0729385 + 0.413655i
\(584\) 0 0
\(585\) 17.0773 6.21561i 0.706058 0.256984i
\(586\) 0 0
\(587\) −3.46775 + 1.26216i −0.143129 + 0.0520948i −0.412591 0.910916i \(-0.635376\pi\)
0.269462 + 0.963011i \(0.413154\pi\)
\(588\) 0 0
\(589\) 5.89130 + 4.94339i 0.242747 + 0.203689i
\(590\) 0 0
\(591\) −1.28647 −0.0529182
\(592\) 0 0
\(593\) −0.261315 −0.0107309 −0.00536546 0.999986i \(-0.501708\pi\)
−0.00536546 + 0.999986i \(0.501708\pi\)
\(594\) 0 0
\(595\) −51.3092 43.0535i −2.10347 1.76502i
\(596\) 0 0
\(597\) −3.46245 + 1.26023i −0.141709 + 0.0515778i
\(598\) 0 0
\(599\) 8.61184 3.13445i 0.351870 0.128070i −0.160037 0.987111i \(-0.551161\pi\)
0.511907 + 0.859041i \(0.328939\pi\)
\(600\) 0 0
\(601\) 1.02400 + 5.80742i 0.0417700 + 0.236890i 0.998544 0.0539429i \(-0.0171789\pi\)
−0.956774 + 0.290832i \(0.906068\pi\)
\(602\) 0 0
\(603\) 7.45336 + 12.9096i 0.303524 + 0.525720i
\(604\) 0 0
\(605\) −4.30770 + 24.4302i −0.175133 + 0.993228i
\(606\) 0 0
\(607\) 28.7256 + 10.4552i 1.16593 + 0.424365i 0.851214 0.524819i \(-0.175867\pi\)
0.314721 + 0.949184i \(0.398089\pi\)
\(608\) 0 0
\(609\) 3.24828 + 18.4219i 0.131627 + 0.746494i
\(610\) 0 0
\(611\) 19.2779 + 16.1761i 0.779899 + 0.654413i
\(612\) 0 0
\(613\) −1.91751 0.697915i −0.0774473 0.0281885i 0.303006 0.952989i \(-0.402010\pi\)
−0.380453 + 0.924800i \(0.624232\pi\)
\(614\) 0 0
\(615\) 9.18095 15.9019i 0.370211 0.641225i
\(616\) 0 0
\(617\) 6.14266 5.15431i 0.247294 0.207505i −0.510712 0.859752i \(-0.670618\pi\)
0.758006 + 0.652247i \(0.226174\pi\)
\(618\) 0 0
\(619\) −5.81923 + 10.0792i −0.233895 + 0.405118i −0.958951 0.283572i \(-0.908480\pi\)
0.725056 + 0.688690i \(0.241814\pi\)
\(620\) 0 0
\(621\) −0.544133 0.942466i −0.0218353 0.0378199i
\(622\) 0 0
\(623\) 8.90316 0.356697
\(624\) 0 0
\(625\) −5.36238 + 30.4116i −0.214495 + 1.21646i
\(626\) 0 0
\(627\) 0.933953 0.783679i 0.0372985 0.0312971i
\(628\) 0 0
\(629\) 45.6914 + 3.62983i 1.82183 + 0.144731i
\(630\) 0 0
\(631\) 23.8402 20.0043i 0.949063 0.796358i −0.0300766 0.999548i \(-0.509575\pi\)
0.979139 + 0.203189i \(0.0651307\pi\)
\(632\) 0 0
\(633\) −3.37459 + 19.1382i −0.134128 + 0.760677i
\(634\) 0 0
\(635\) 53.5931 2.12678
\(636\) 0 0
\(637\) −7.25365 12.5637i −0.287400 0.497791i
\(638\) 0 0
\(639\) −14.8154 + 25.6610i −0.586088 + 1.01514i
\(640\) 0 0
\(641\) −25.2141 + 21.1571i −0.995897 + 0.835657i −0.986411 0.164298i \(-0.947464\pi\)
−0.00948626 + 0.999955i \(0.503020\pi\)
\(642\) 0 0
\(643\) 5.30025 9.18031i 0.209022 0.362036i −0.742385 0.669974i \(-0.766305\pi\)
0.951407 + 0.307937i \(0.0996388\pi\)
\(644\) 0 0
\(645\) 9.06195 + 3.29828i 0.356814 + 0.129870i
\(646\) 0 0
\(647\) −31.5917 26.5086i −1.24200 1.04216i −0.997365 0.0725450i \(-0.976888\pi\)
−0.244634 0.969616i \(-0.578668\pi\)
\(648\) 0 0
\(649\) 2.04674 + 11.6077i 0.0803417 + 0.455641i
\(650\) 0 0
\(651\) 21.7481 + 7.91566i 0.852375 + 0.310239i
\(652\) 0 0
\(653\) 7.29955 41.3978i 0.285653 1.62002i −0.417289 0.908774i \(-0.637020\pi\)
0.702943 0.711247i \(-0.251869\pi\)
\(654\) 0 0
\(655\) −12.5081 21.6646i −0.488731 0.846506i
\(656\) 0 0
\(657\) 4.71993 + 26.7680i 0.184142 + 1.04432i
\(658\) 0 0
\(659\) 19.7147 7.17557i 0.767977 0.279521i 0.0718269 0.997417i \(-0.477117\pi\)
0.696150 + 0.717896i \(0.254895\pi\)
\(660\) 0 0
\(661\) 11.7123 4.26293i 0.455556 0.165809i −0.104042 0.994573i \(-0.533178\pi\)
0.559598 + 0.828764i \(0.310955\pi\)
\(662\) 0 0
\(663\) −17.5010 14.6851i −0.679681 0.570320i
\(664\) 0 0
\(665\) −9.32881 −0.361756
\(666\) 0 0
\(667\) −1.34695 −0.0521540
\(668\) 0 0
\(669\) −17.8385 14.9683i −0.689676 0.578707i
\(670\) 0 0
\(671\) 3.05809 1.11305i 0.118056 0.0429690i
\(672\) 0 0
\(673\) −44.2357 + 16.1005i −1.70516 + 0.620628i −0.996397 0.0848166i \(-0.972970\pi\)
−0.708765 + 0.705445i \(0.750747\pi\)
\(674\) 0 0
\(675\) −1.57241 8.91758i −0.0605221 0.343238i
\(676\) 0 0
\(677\) 16.6746 + 28.8812i 0.640856 + 1.10999i 0.985242 + 0.171166i \(0.0547536\pi\)
−0.344387 + 0.938828i \(0.611913\pi\)
\(678\) 0 0
\(679\) 1.92437 10.9137i 0.0738507 0.418828i
\(680\) 0 0
\(681\) −0.929898 0.338455i −0.0356338 0.0129696i
\(682\) 0 0
\(683\) 1.03627 + 5.87697i 0.0396517 + 0.224876i 0.998194 0.0600747i \(-0.0191339\pi\)
−0.958542 + 0.284951i \(0.908023\pi\)
\(684\) 0 0
\(685\) −19.0699 16.0016i −0.728625 0.611389i
\(686\) 0 0
\(687\) 5.59301 + 2.03569i 0.213387 + 0.0776664i
\(688\) 0 0
\(689\) 13.2347 22.9231i 0.504201 0.873302i
\(690\) 0 0
\(691\) −7.73164 + 6.48761i −0.294125 + 0.246800i −0.777894 0.628395i \(-0.783712\pi\)
0.483769 + 0.875196i \(0.339268\pi\)
\(692\) 0 0
\(693\) −4.49011 + 7.77710i −0.170565 + 0.295428i
\(694\) 0 0
\(695\) −24.4168 42.2911i −0.926181 1.60419i
\(696\) 0 0
\(697\) 56.4978 2.14001
\(698\) 0 0
\(699\) −1.55324 + 8.80889i −0.0587491 + 0.333183i
\(700\) 0 0
\(701\) −18.3592 + 15.4052i −0.693416 + 0.581845i −0.919892 0.392172i \(-0.871724\pi\)
0.226476 + 0.974017i \(0.427279\pi\)
\(702\) 0 0
\(703\) 5.19995 3.70332i 0.196120 0.139673i
\(704\) 0 0
\(705\) 14.5257 12.1885i 0.547071 0.459047i
\(706\) 0 0
\(707\) −2.72027 + 15.4274i −0.102306 + 0.580208i
\(708\) 0 0
\(709\) 3.33993 0.125434 0.0627168 0.998031i \(-0.480024\pi\)
0.0627168 + 0.998031i \(0.480024\pi\)
\(710\) 0 0
\(711\) −7.67862 13.2998i −0.287971 0.498780i
\(712\) 0 0
\(713\) −0.833244 + 1.44322i −0.0312052 + 0.0540491i
\(714\) 0 0
\(715\) −8.14002 + 6.83029i −0.304419 + 0.255438i
\(716\) 0 0
\(717\) 6.12939 10.6164i 0.228906 0.396477i
\(718\) 0 0
\(719\) −29.0244 10.5640i −1.08243 0.393972i −0.261617 0.965172i \(-0.584256\pi\)
−0.820811 + 0.571200i \(0.806478\pi\)
\(720\) 0 0
\(721\) −30.3638 25.4783i −1.13081 0.948861i
\(722\) 0 0
\(723\) −0.753181 4.27150i −0.0280111 0.158859i
\(724\) 0 0
\(725\) −10.5317 3.83321i −0.391136 0.142362i
\(726\) 0 0
\(727\) −0.0553353 + 0.313822i −0.00205227 + 0.0116390i −0.985817 0.167826i \(-0.946325\pi\)
0.983764 + 0.179465i \(0.0574365\pi\)
\(728\) 0 0
\(729\) −4.64512 8.04558i −0.172041 0.297984i
\(730\) 0 0
\(731\) 5.15253 + 29.2214i 0.190573 + 1.08079i
\(732\) 0 0
\(733\) 30.2544 11.0117i 1.11747 0.406726i 0.283742 0.958901i \(-0.408424\pi\)
0.833728 + 0.552175i \(0.186202\pi\)
\(734\) 0 0
\(735\) −10.2719 + 3.73867i −0.378885 + 0.137903i
\(736\) 0 0
\(737\) −6.67691 5.60259i −0.245947 0.206374i
\(738\) 0 0
\(739\) 31.0155 1.14092 0.570461 0.821325i \(-0.306765\pi\)
0.570461 + 0.821325i \(0.306765\pi\)
\(740\) 0 0
\(741\) −3.18195 −0.116892
\(742\) 0 0
\(743\) −2.11789 1.77712i −0.0776980 0.0651964i 0.603111 0.797657i \(-0.293927\pi\)
−0.680809 + 0.732461i \(0.738372\pi\)
\(744\) 0 0
\(745\) −19.7924 + 7.20386i −0.725139 + 0.263929i
\(746\) 0 0
\(747\) −25.8179 + 9.39696i −0.944629 + 0.343817i
\(748\) 0 0
\(749\) 7.65091 + 43.3905i 0.279558 + 1.58545i
\(750\) 0 0
\(751\) −14.0482 24.3323i −0.512628 0.887897i −0.999893 0.0146429i \(-0.995339\pi\)
0.487265 0.873254i \(-0.337994\pi\)
\(752\) 0 0
\(753\) 2.88111 16.3396i 0.104993 0.595447i
\(754\) 0 0
\(755\) −6.59545 2.40055i −0.240033 0.0873649i
\(756\) 0 0
\(757\) −5.72565 32.4718i −0.208102 1.18021i −0.892483 0.451082i \(-0.851038\pi\)
0.684380 0.729125i \(-0.260073\pi\)
\(758\) 0 0
\(759\) 0.202381 + 0.169818i 0.00734597 + 0.00616400i
\(760\) 0 0
\(761\) 5.00448 + 1.82148i 0.181412 + 0.0660286i 0.431129 0.902290i \(-0.358115\pi\)
−0.249717 + 0.968319i \(0.580338\pi\)
\(762\) 0 0
\(763\) 0.231657 0.401242i 0.00838655 0.0145259i
\(764\) 0 0
\(765\) 32.2760 27.0828i 1.16694 0.979180i
\(766\) 0 0
\(767\) 15.3810 26.6407i 0.555377 0.961942i
\(768\) 0 0
\(769\) −17.9353 31.0648i −0.646762 1.12022i −0.983892 0.178766i \(-0.942789\pi\)
0.337130 0.941458i \(-0.390544\pi\)
\(770\) 0 0
\(771\) −16.3134 −0.587513
\(772\) 0 0
\(773\) 0.584521 3.31498i 0.0210238 0.119232i −0.972490 0.232946i \(-0.925164\pi\)
0.993514 + 0.113714i \(0.0362747\pi\)
\(774\) 0 0
\(775\) −10.6223 + 8.91313i −0.381563 + 0.320169i
\(776\) 0 0
\(777\) 10.8932 15.8248i 0.390792 0.567710i
\(778\) 0 0
\(779\) 6.02797 5.05806i 0.215974 0.181224i
\(780\) 0 0
\(781\) 3.00852 17.0622i 0.107653 0.610532i
\(782\) 0 0
\(783\) −28.3417 −1.01285
\(784\) 0 0
\(785\) 10.6530 + 18.4515i 0.380222 + 0.658563i
\(786\) 0 0
\(787\) 20.2776 35.1219i 0.722820 1.25196i −0.237045 0.971499i \(-0.576179\pi\)
0.959865 0.280462i \(-0.0904878\pi\)
\(788\) 0 0
\(789\) 5.64677 4.73820i 0.201030 0.168684i
\(790\) 0 0
\(791\) −12.6026 + 21.8283i −0.448097 + 0.776127i
\(792\) 0 0
\(793\) −7.98128 2.90495i −0.283424 0.103158i
\(794\) 0 0
\(795\) −15.2783 12.8201i −0.541867 0.454681i
\(796\) 0 0
\(797\) −7.10571 40.2985i −0.251697 1.42745i −0.804410 0.594075i \(-0.797518\pi\)
0.552713 0.833372i \(-0.313593\pi\)
\(798\) 0 0
\(799\) 54.8257 + 19.9549i 1.93960 + 0.705955i
\(800\) 0 0
\(801\) −0.972521 + 5.51544i −0.0343623 + 0.194878i
\(802\) 0 0
\(803\) −7.94647 13.7637i −0.280425 0.485710i
\(804\) 0 0
\(805\) −0.351028 1.99078i −0.0123721 0.0701657i
\(806\) 0 0
\(807\) 5.64954 2.05626i 0.198873 0.0723839i
\(808\) 0 0
\(809\) −43.8247 + 15.9509i −1.54079 + 0.560803i −0.966235 0.257661i \(-0.917048\pi\)
−0.574558 + 0.818464i \(0.694826\pi\)
\(810\) 0 0
\(811\) −19.0963 16.0237i −0.670562 0.562668i 0.242670 0.970109i \(-0.421977\pi\)
−0.913232 + 0.407441i \(0.866421\pi\)
\(812\) 0 0
\(813\) 16.8471 0.590853
\(814\) 0 0
\(815\) 23.8848 0.836647
\(816\) 0 0
\(817\) 3.16584 + 2.65646i 0.110759 + 0.0929377i
\(818\) 0 0
\(819\) 22.0240 8.01607i 0.769580 0.280104i
\(820\) 0 0
\(821\) −32.2949 + 11.7544i −1.12710 + 0.410231i −0.837238 0.546838i \(-0.815831\pi\)
−0.289861 + 0.957069i \(0.593609\pi\)
\(822\) 0 0
\(823\) 3.74718 + 21.2513i 0.130619 + 0.740774i 0.977811 + 0.209488i \(0.0671799\pi\)
−0.847193 + 0.531286i \(0.821709\pi\)
\(824\) 0 0
\(825\) 1.09912 + 1.90374i 0.0382666 + 0.0662796i
\(826\) 0 0
\(827\) 4.05290 22.9852i 0.140933 0.799272i −0.829610 0.558344i \(-0.811437\pi\)
0.970543 0.240928i \(-0.0774519\pi\)
\(828\) 0 0
\(829\) 17.5307 + 6.38067i 0.608868 + 0.221610i 0.628008 0.778207i \(-0.283871\pi\)
−0.0191401 + 0.999817i \(0.506093\pi\)
\(830\) 0 0
\(831\) 4.31561 + 24.4751i 0.149707 + 0.849030i
\(832\) 0 0
\(833\) −25.7652 21.6196i −0.892712 0.749074i
\(834\) 0 0
\(835\) 49.9741 + 18.1891i 1.72943 + 0.629460i
\(836\) 0 0
\(837\) −17.5327 + 30.3675i −0.606018 + 1.04965i
\(838\) 0 0
\(839\) −19.0280 + 15.9664i −0.656919 + 0.551220i −0.909161 0.416444i \(-0.863276\pi\)
0.252243 + 0.967664i \(0.418832\pi\)
\(840\) 0 0
\(841\) −3.03927 + 5.26417i −0.104802 + 0.181523i
\(842\) 0 0
\(843\) 1.72587 + 2.98930i 0.0594423 + 0.102957i
\(844\) 0 0
\(845\) −6.39634 −0.220041
\(846\) 0 0
\(847\) −5.55550 + 31.5068i −0.190889 + 1.08259i
\(848\) 0 0
\(849\) 14.9478 12.5427i 0.513009 0.430465i
\(850\) 0 0
\(851\) 0.985957 + 0.970325i 0.0337982 + 0.0332623i
\(852\) 0 0
\(853\) −27.6465 + 23.1982i −0.946599 + 0.794291i −0.978722 0.205193i \(-0.934218\pi\)
0.0321226 + 0.999484i \(0.489773\pi\)
\(854\) 0 0
\(855\) 1.01902 5.77913i 0.0348496 0.197642i
\(856\) 0 0
\(857\) −23.1215 −0.789814 −0.394907 0.918721i \(-0.629223\pi\)
−0.394907 + 0.918721i \(0.629223\pi\)
\(858\) 0 0
\(859\) −17.2312 29.8454i −0.587922 1.01831i −0.994504 0.104697i \(-0.966613\pi\)
0.406582 0.913614i \(-0.366721\pi\)
\(860\) 0 0
\(861\) 11.8404 20.5081i 0.403518 0.698914i
\(862\) 0 0
\(863\) −28.1125 + 23.5892i −0.956960 + 0.802985i −0.980456 0.196739i \(-0.936965\pi\)
0.0234960 + 0.999724i \(0.492520\pi\)
\(864\) 0 0
\(865\) −24.8249 + 42.9980i −0.844071 + 1.46197i
\(866\) 0 0
\(867\) −34.8705 12.6918i −1.18426 0.431037i
\(868\) 0 0
\(869\) 6.87870 + 5.77191i 0.233344 + 0.195799i
\(870\) 0 0
\(871\) 3.95015 + 22.4024i 0.133846 + 0.759078i
\(872\) 0 0
\(873\) 6.55073 + 2.38427i 0.221709 + 0.0806954i
\(874\) 0 0
\(875\) −4.79679 + 27.2040i −0.162161 + 0.919662i
\(876\) 0 0
\(877\) −7.04975 12.2105i −0.238053 0.412320i 0.722102 0.691786i \(-0.243176\pi\)
−0.960156 + 0.279466i \(0.909843\pi\)
\(878\) 0 0
\(879\) −4.06257 23.0400i −0.137027 0.777119i
\(880\) 0 0
\(881\) 34.2171 12.4540i 1.15280 0.419587i 0.306283 0.951940i \(-0.400915\pi\)
0.846522 + 0.532354i \(0.178692\pi\)
\(882\) 0 0
\(883\) −3.95749 + 1.44041i −0.133180 + 0.0484736i −0.407750 0.913093i \(-0.633687\pi\)
0.274570 + 0.961567i \(0.411464\pi\)
\(884\) 0 0
\(885\) −17.7562 14.8992i −0.596867 0.500830i
\(886\) 0 0
\(887\) 10.5188 0.353188 0.176594 0.984284i \(-0.443492\pi\)
0.176594 + 0.984284i \(0.443492\pi\)
\(888\) 0 0
\(889\) 69.1172 2.31812
\(890\) 0 0
\(891\) −1.83702 1.54144i −0.0615423 0.0516402i
\(892\) 0 0
\(893\) 7.63606 2.77930i 0.255531 0.0930057i
\(894\) 0 0
\(895\) −33.2054 + 12.0858i −1.10993 + 0.403982i
\(896\) 0 0
\(897\) −0.119732 0.679031i −0.00399772 0.0226722i
\(898\) 0 0
\(899\) 21.7002 + 37.5858i 0.723742 + 1.25356i
\(900\) 0 0
\(901\) 10.6563 60.4350i 0.355013 2.01338i
\(902\) 0 0
\(903\) 11.6869 + 4.25368i 0.388916 + 0.141554i
\(904\) 0 0
\(905\) −6.16761 34.9783i −0.205018 1.16272i
\(906\) 0 0
\(907\) 23.4994 + 19.7184i 0.780286 + 0.654738i 0.943321 0.331883i \(-0.107684\pi\)
−0.163035 + 0.986620i \(0.552128\pi\)
\(908\) 0 0
\(909\) −9.26003 3.37038i −0.307136 0.111788i
\(910\) 0 0
\(911\) −6.03455 + 10.4521i −0.199934 + 0.346295i −0.948507 0.316757i \(-0.897406\pi\)
0.748573 + 0.663052i \(0.230739\pi\)
\(912\) 0 0
\(913\) 12.3063 10.3262i 0.407280 0.341749i
\(914\) 0 0
\(915\) −3.19990 + 5.54238i −0.105785 + 0.183226i
\(916\) 0 0
\(917\) −16.1312 27.9401i −0.532701 0.922664i
\(918\) 0 0
\(919\) 3.94293 0.130065 0.0650327 0.997883i \(-0.479285\pi\)
0.0650327 + 0.997883i \(0.479285\pi\)
\(920\) 0 0
\(921\) 3.54740 20.1183i 0.116891 0.662920i
\(922\) 0 0
\(923\) −34.6385 + 29.0652i −1.14014 + 0.956691i
\(924\) 0 0
\(925\) 4.94771 + 10.3928i 0.162680 + 0.341712i
\(926\) 0 0
\(927\) 19.1003 16.0271i 0.627338 0.526399i
\(928\) 0 0
\(929\) −7.19718 + 40.8172i −0.236132 + 1.33917i 0.604085 + 0.796920i \(0.293539\pi\)
−0.840217 + 0.542250i \(0.817573\pi\)
\(930\) 0 0
\(931\) −4.68452 −0.153529
\(932\) 0 0
\(933\) −0.243491 0.421738i −0.00797153 0.0138071i
\(934\) 0 0
\(935\) −12.3179 + 21.3351i −0.402837 + 0.697734i
\(936\) 0 0
\(937\) −2.45023 + 2.05599i −0.0800455 + 0.0671662i −0.681932 0.731415i \(-0.738860\pi\)
0.601887 + 0.798581i \(0.294416\pi\)
\(938\) 0 0
\(939\) 12.5649 21.7631i 0.410041 0.710213i
\(940\) 0 0
\(941\) −4.69883 1.71023i −0.153177 0.0557520i 0.264294 0.964442i \(-0.414861\pi\)
−0.417471 + 0.908690i \(0.637083\pi\)
\(942\) 0 0
\(943\) 1.30622 + 1.09605i 0.0425363 + 0.0356922i
\(944\) 0 0
\(945\) −7.38614 41.8889i −0.240271 1.36265i
\(946\) 0 0
\(947\) −19.3880 7.05667i −0.630026 0.229311i 0.00721636 0.999974i \(-0.497703\pi\)
−0.637243 + 0.770663i \(0.719925\pi\)
\(948\) 0 0
\(949\) −7.20273 + 40.8487i −0.233810 + 1.32600i
\(950\) 0 0
\(951\) 6.41895 + 11.1179i 0.208149 + 0.360524i
\(952\) 0 0
\(953\) 0.215365 + 1.22139i 0.00697635 + 0.0395648i 0.988097 0.153831i \(-0.0491610\pi\)
−0.981121 + 0.193396i \(0.938050\pi\)
\(954\) 0 0
\(955\) −5.82440 + 2.11991i −0.188473 + 0.0685986i
\(956\) 0 0
\(957\) 6.46536 2.35320i 0.208996 0.0760681i
\(958\) 0 0
\(959\) −24.5939 20.6367i −0.794177 0.666394i
\(960\) 0 0
\(961\) 22.6964 0.732143
\(962\) 0 0
\(963\) −27.7158 −0.893130
\(964\) 0 0
\(965\) −18.6538 15.6524i −0.600486 0.503868i
\(966\) 0 0
\(967\) 30.3246 11.0373i 0.975173 0.354934i 0.195212 0.980761i \(-0.437461\pi\)
0.779962 + 0.625827i \(0.215238\pi\)
\(968\) 0 0
\(969\) −6.93222 + 2.52312i −0.222695 + 0.0810544i
\(970\) 0 0
\(971\) 3.97330 + 22.5337i 0.127509 + 0.723141i 0.979786 + 0.200050i \(0.0641103\pi\)
−0.852276 + 0.523092i \(0.824779\pi\)
\(972\) 0 0
\(973\) −31.4895 54.5414i −1.00951 1.74852i
\(974\) 0 0
\(975\) 0.996252 5.65002i 0.0319056 0.180946i
\(976\) 0 0
\(977\) −45.0795 16.4076i −1.44222 0.524926i −0.501815 0.864975i \(-0.667334\pi\)
−0.940408 + 0.340049i \(0.889556\pi\)
\(978\) 0 0
\(979\) −0.568641 3.22492i −0.0181738 0.103069i
\(980\) 0 0
\(981\) 0.223262 + 0.187339i 0.00712820 + 0.00598127i
\(982\) 0 0
\(983\) −23.6561 8.61011i −0.754512 0.274620i −0.0640089 0.997949i \(-0.520389\pi\)
−0.690503 + 0.723329i \(0.742611\pi\)
\(984\) 0 0
\(985\) 1.81029 3.13551i 0.0576806 0.0999058i
\(986\) 0 0
\(987\) 18.7334 15.7192i 0.596290 0.500346i
\(988\) 0 0
\(989\) −0.447765 + 0.775552i −0.0142381 + 0.0246611i
\(990\) 0 0
\(991\) −5.92932 10.2699i −0.188351 0.326234i 0.756350 0.654168i \(-0.226981\pi\)
−0.944701 + 0.327934i \(0.893648\pi\)
\(992\) 0 0
\(993\) −18.9359 −0.600913
\(994\) 0 0
\(995\) 1.80073 10.2124i 0.0570868 0.323756i
\(996\) 0 0
\(997\) −9.84239 + 8.25875i −0.311712 + 0.261557i −0.785199 0.619243i \(-0.787439\pi\)
0.473487 + 0.880801i \(0.342995\pi\)
\(998\) 0 0
\(999\) 20.7460 + 20.4171i 0.656374 + 0.645967i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.bc.g.49.4 30
4.3 odd 2 296.2.u.b.49.2 30
37.34 even 9 inner 592.2.bc.g.145.4 30
148.71 odd 18 296.2.u.b.145.2 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.u.b.49.2 30 4.3 odd 2
296.2.u.b.145.2 yes 30 148.71 odd 18
592.2.bc.g.49.4 30 1.1 even 1 trivial
592.2.bc.g.145.4 30 37.34 even 9 inner