Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [592,2,Mod(33,592)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(592, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("592.33");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 592 = 2^{4} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 592.bc (of order \(9\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.72714379966\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{9})\) |
Twist minimal: | no (minimal twist has level 296) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
33.1 | 0 | −0.550728 | − | 3.12333i | 0 | −1.88866 | + | 1.58478i | 0 | −1.02296 | + | 0.858367i | 0 | −6.63284 | + | 2.41415i | 0 | ||||||||||
33.2 | 0 | −0.183544 | − | 1.04093i | 0 | 2.29685 | − | 1.92729i | 0 | 2.00963 | − | 1.68628i | 0 | 1.76923 | − | 0.643948i | 0 | ||||||||||
33.3 | 0 | −0.152613 | − | 0.865514i | 0 | 0.753113 | − | 0.631937i | 0 | −2.17602 | + | 1.82590i | 0 | 2.09325 | − | 0.761882i | 0 | ||||||||||
33.4 | 0 | 0.260200 | + | 1.47567i | 0 | −1.75197 | + | 1.47008i | 0 | 3.54112 | − | 2.97135i | 0 | 0.709192 | − | 0.258125i | 0 | ||||||||||
33.5 | 0 | 0.453038 | + | 2.56930i | 0 | 0.356716 | − | 0.299320i | 0 | −1.67812 | + | 1.40811i | 0 | −3.57700 | + | 1.30192i | 0 | ||||||||||
49.1 | 0 | −2.29049 | − | 1.92195i | 0 | 1.16457 | − | 0.423869i | 0 | −1.37884 | + | 0.501855i | 0 | 1.03151 | + | 5.84999i | 0 | ||||||||||
49.2 | 0 | −1.26432 | − | 1.06089i | 0 | −3.29954 | + | 1.20094i | 0 | 2.65716 | − | 0.967128i | 0 | −0.0479306 | − | 0.271828i | 0 | ||||||||||
49.3 | 0 | −0.149659 | − | 0.125579i | 0 | 2.90613 | − | 1.05775i | 0 | 0.434234 | − | 0.158048i | 0 | −0.514317 | − | 2.91684i | 0 | ||||||||||
49.4 | 0 | 0.714590 | + | 0.599612i | 0 | −2.46699 | + | 0.897912i | 0 | −3.18160 | + | 1.15801i | 0 | −0.369841 | − | 2.09747i | 0 | ||||||||||
49.5 | 0 | 2.22383 | + | 1.86602i | 0 | −0.243860 | + | 0.0887576i | 0 | 2.73508 | − | 0.995489i | 0 | 0.942466 | + | 5.34499i | 0 | ||||||||||
81.1 | 0 | −2.77384 | − | 1.00960i | 0 | −0.559739 | − | 3.17444i | 0 | −0.344404 | − | 1.95321i | 0 | 4.37680 | + | 3.67257i | 0 | ||||||||||
81.2 | 0 | −0.675801 | − | 0.245972i | 0 | −0.280258 | − | 1.58942i | 0 | 0.580938 | + | 3.29466i | 0 | −1.90193 | − | 1.59591i | 0 | ||||||||||
81.3 | 0 | −0.160935 | − | 0.0585756i | 0 | 0.269863 | + | 1.53047i | 0 | −0.837999 | − | 4.75253i | 0 | −2.27566 | − | 1.90951i | 0 | ||||||||||
81.4 | 0 | 2.19103 | + | 0.797470i | 0 | 0.401866 | + | 2.27909i | 0 | 0.354126 | + | 2.00835i | 0 | 1.86652 | + | 1.56620i | 0 | ||||||||||
81.5 | 0 | 2.35924 | + | 0.858695i | 0 | −0.658084 | − | 3.73218i | 0 | −0.192353 | − | 1.09089i | 0 | 2.53054 | + | 2.12338i | 0 | ||||||||||
145.1 | 0 | −2.29049 | + | 1.92195i | 0 | 1.16457 | + | 0.423869i | 0 | −1.37884 | − | 0.501855i | 0 | 1.03151 | − | 5.84999i | 0 | ||||||||||
145.2 | 0 | −1.26432 | + | 1.06089i | 0 | −3.29954 | − | 1.20094i | 0 | 2.65716 | + | 0.967128i | 0 | −0.0479306 | + | 0.271828i | 0 | ||||||||||
145.3 | 0 | −0.149659 | + | 0.125579i | 0 | 2.90613 | + | 1.05775i | 0 | 0.434234 | + | 0.158048i | 0 | −0.514317 | + | 2.91684i | 0 | ||||||||||
145.4 | 0 | 0.714590 | − | 0.599612i | 0 | −2.46699 | − | 0.897912i | 0 | −3.18160 | − | 1.15801i | 0 | −0.369841 | + | 2.09747i | 0 | ||||||||||
145.5 | 0 | 2.22383 | − | 1.86602i | 0 | −0.243860 | − | 0.0887576i | 0 | 2.73508 | + | 0.995489i | 0 | 0.942466 | − | 5.34499i | 0 | ||||||||||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.f | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 592.2.bc.g | 30 | |
4.b | odd | 2 | 1 | 296.2.u.b | ✓ | 30 | |
37.f | even | 9 | 1 | inner | 592.2.bc.g | 30 | |
148.p | odd | 18 | 1 | 296.2.u.b | ✓ | 30 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
296.2.u.b | ✓ | 30 | 4.b | odd | 2 | 1 | |
296.2.u.b | ✓ | 30 | 148.p | odd | 18 | 1 | |
592.2.bc.g | 30 | 1.a | even | 1 | 1 | trivial | |
592.2.bc.g | 30 | 37.f | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{30} - 7 T_{3}^{27} + 3 T_{3}^{26} + 39 T_{3}^{25} + 650 T_{3}^{24} - 849 T_{3}^{23} - 1077 T_{3}^{22} + \cdots + 4096 \) acting on \(S_{2}^{\mathrm{new}}(592, [\chi])\).