Properties

Label 592.2.bc.g.81.1
Level $592$
Weight $2$
Character 592.81
Analytic conductor $4.727$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,2,Mod(33,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.bc (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 81.1
Character \(\chi\) \(=\) 592.81
Dual form 592.2.bc.g.497.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.77384 - 1.00960i) q^{3} +(-0.559739 - 3.17444i) q^{5} +(-0.344404 - 1.95321i) q^{7} +(4.37680 + 3.67257i) q^{9} +(2.07341 - 3.59126i) q^{11} +(3.83038 - 3.21407i) q^{13} +(-1.65227 + 9.37051i) q^{15} +(-4.21619 - 3.53781i) q^{17} +(-3.27814 - 1.19315i) q^{19} +(-1.01663 + 5.76562i) q^{21} +(1.93561 + 3.35258i) q^{23} +(-5.06529 + 1.84361i) q^{25} +(-4.00494 - 6.93676i) q^{27} +(-4.98749 + 8.63859i) q^{29} +2.40270 q^{31} +(-9.37705 + 7.86828i) q^{33} +(-6.00758 + 2.18658i) q^{35} +(-0.0640620 - 6.08243i) q^{37} +(-13.8698 + 5.04819i) q^{39} +(-5.90914 + 4.95836i) q^{41} +7.73423 q^{43} +(9.20847 - 15.9495i) q^{45} +(0.226280 + 0.391929i) q^{47} +(2.88142 - 1.04875i) q^{49} +(8.12331 + 14.0700i) q^{51} +(0.390820 - 2.21645i) q^{53} +(-12.5608 - 4.57176i) q^{55} +(7.88846 + 6.61920i) q^{57} +(0.968242 - 5.49118i) q^{59} +(-4.96752 + 4.16824i) q^{61} +(5.66592 - 9.81367i) q^{63} +(-12.3469 - 10.3603i) q^{65} +(-0.136928 - 0.776559i) q^{67} +(-1.98433 - 11.2537i) q^{69} +(-1.52963 - 0.556739i) q^{71} +7.19429 q^{73} +15.9116 q^{75} +(-7.72859 - 2.81298i) q^{77} +(2.11586 + 11.9997i) q^{79} +(1.12934 + 6.40478i) q^{81} +(-0.306457 - 0.257148i) q^{83} +(-8.87058 + 15.3643i) q^{85} +(22.5560 - 18.9268i) q^{87} +(1.44886 - 8.21691i) q^{89} +(-7.59697 - 6.37461i) q^{91} +(-6.66472 - 2.42576i) q^{93} +(-1.95266 + 11.0741i) q^{95} +(6.06712 + 10.5086i) q^{97} +(22.2640 - 8.10345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 6 q^{5} + 3 q^{7} + 3 q^{11} + 9 q^{13} - 3 q^{15} - 27 q^{17} - 9 q^{19} + 15 q^{21} + 3 q^{23} - 12 q^{25} + 3 q^{27} + 9 q^{29} + 6 q^{31} - 6 q^{33} - 9 q^{35} + 9 q^{37} + 12 q^{39} + 48 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.77384 1.00960i −1.60148 0.582891i −0.621750 0.783215i \(-0.713578\pi\)
−0.979730 + 0.200324i \(0.935800\pi\)
\(4\) 0 0
\(5\) −0.559739 3.17444i −0.250323 1.41965i −0.807799 0.589459i \(-0.799341\pi\)
0.557476 0.830193i \(-0.311770\pi\)
\(6\) 0 0
\(7\) −0.344404 1.95321i −0.130173 0.738246i −0.978100 0.208134i \(-0.933261\pi\)
0.847928 0.530112i \(-0.177850\pi\)
\(8\) 0 0
\(9\) 4.37680 + 3.67257i 1.45893 + 1.22419i
\(10\) 0 0
\(11\) 2.07341 3.59126i 0.625158 1.08280i −0.363353 0.931652i \(-0.618368\pi\)
0.988510 0.151153i \(-0.0482987\pi\)
\(12\) 0 0
\(13\) 3.83038 3.21407i 1.06236 0.891423i 0.0680183 0.997684i \(-0.478332\pi\)
0.994338 + 0.106261i \(0.0338879\pi\)
\(14\) 0 0
\(15\) −1.65227 + 9.37051i −0.426615 + 2.41946i
\(16\) 0 0
\(17\) −4.21619 3.53781i −1.02258 0.858044i −0.0326280 0.999468i \(-0.510388\pi\)
−0.989949 + 0.141423i \(0.954832\pi\)
\(18\) 0 0
\(19\) −3.27814 1.19315i −0.752057 0.273726i −0.0625861 0.998040i \(-0.519935\pi\)
−0.689471 + 0.724313i \(0.742157\pi\)
\(20\) 0 0
\(21\) −1.01663 + 5.76562i −0.221848 + 1.25816i
\(22\) 0 0
\(23\) 1.93561 + 3.35258i 0.403603 + 0.699060i 0.994158 0.107937i \(-0.0344245\pi\)
−0.590555 + 0.806997i \(0.701091\pi\)
\(24\) 0 0
\(25\) −5.06529 + 1.84361i −1.01306 + 0.368723i
\(26\) 0 0
\(27\) −4.00494 6.93676i −0.770751 1.33498i
\(28\) 0 0
\(29\) −4.98749 + 8.63859i −0.926154 + 1.60415i −0.136461 + 0.990645i \(0.543573\pi\)
−0.789694 + 0.613501i \(0.789761\pi\)
\(30\) 0 0
\(31\) 2.40270 0.431538 0.215769 0.976444i \(-0.430774\pi\)
0.215769 + 0.976444i \(0.430774\pi\)
\(32\) 0 0
\(33\) −9.37705 + 7.86828i −1.63233 + 1.36969i
\(34\) 0 0
\(35\) −6.00758 + 2.18658i −1.01547 + 0.369600i
\(36\) 0 0
\(37\) −0.0640620 6.08243i −0.0105317 0.999945i
\(38\) 0 0
\(39\) −13.8698 + 5.04819i −2.22095 + 0.808358i
\(40\) 0 0
\(41\) −5.90914 + 4.95836i −0.922853 + 0.774365i −0.974520 0.224299i \(-0.927991\pi\)
0.0516678 + 0.998664i \(0.483546\pi\)
\(42\) 0 0
\(43\) 7.73423 1.17946 0.589729 0.807601i \(-0.299235\pi\)
0.589729 + 0.807601i \(0.299235\pi\)
\(44\) 0 0
\(45\) 9.20847 15.9495i 1.37272 2.37762i
\(46\) 0 0
\(47\) 0.226280 + 0.391929i 0.0330064 + 0.0571687i 0.882057 0.471143i \(-0.156159\pi\)
−0.849050 + 0.528312i \(0.822825\pi\)
\(48\) 0 0
\(49\) 2.88142 1.04875i 0.411631 0.149821i
\(50\) 0 0
\(51\) 8.12331 + 14.0700i 1.13749 + 1.97019i
\(52\) 0 0
\(53\) 0.390820 2.21645i 0.0536832 0.304453i −0.946130 0.323787i \(-0.895044\pi\)
0.999813 + 0.0193348i \(0.00615484\pi\)
\(54\) 0 0
\(55\) −12.5608 4.57176i −1.69370 0.616455i
\(56\) 0 0
\(57\) 7.88846 + 6.61920i 1.04485 + 0.876735i
\(58\) 0 0
\(59\) 0.968242 5.49118i 0.126054 0.714890i −0.854622 0.519251i \(-0.826211\pi\)
0.980676 0.195639i \(-0.0626780\pi\)
\(60\) 0 0
\(61\) −4.96752 + 4.16824i −0.636025 + 0.533688i −0.902795 0.430072i \(-0.858488\pi\)
0.266770 + 0.963760i \(0.414044\pi\)
\(62\) 0 0
\(63\) 5.66592 9.81367i 0.713839 1.23641i
\(64\) 0 0
\(65\) −12.3469 10.3603i −1.53144 1.28503i
\(66\) 0 0
\(67\) −0.136928 0.776559i −0.0167284 0.0948717i 0.975300 0.220882i \(-0.0708937\pi\)
−0.992029 + 0.126011i \(0.959783\pi\)
\(68\) 0 0
\(69\) −1.98433 11.2537i −0.238886 1.35479i
\(70\) 0 0
\(71\) −1.52963 0.556739i −0.181533 0.0660727i 0.249654 0.968335i \(-0.419683\pi\)
−0.431188 + 0.902262i \(0.641905\pi\)
\(72\) 0 0
\(73\) 7.19429 0.842028 0.421014 0.907054i \(-0.361674\pi\)
0.421014 + 0.907054i \(0.361674\pi\)
\(74\) 0 0
\(75\) 15.9116 1.83732
\(76\) 0 0
\(77\) −7.72859 2.81298i −0.880754 0.320568i
\(78\) 0 0
\(79\) 2.11586 + 11.9997i 0.238053 + 1.35007i 0.836087 + 0.548597i \(0.184838\pi\)
−0.598034 + 0.801471i \(0.704051\pi\)
\(80\) 0 0
\(81\) 1.12934 + 6.40478i 0.125482 + 0.711642i
\(82\) 0 0
\(83\) −0.306457 0.257148i −0.0336380 0.0282257i 0.625814 0.779973i \(-0.284767\pi\)
−0.659452 + 0.751747i \(0.729211\pi\)
\(84\) 0 0
\(85\) −8.87058 + 15.3643i −0.962150 + 1.66649i
\(86\) 0 0
\(87\) 22.5560 18.9268i 2.41826 2.02916i
\(88\) 0 0
\(89\) 1.44886 8.21691i 0.153579 0.870991i −0.806494 0.591242i \(-0.798638\pi\)
0.960073 0.279749i \(-0.0902511\pi\)
\(90\) 0 0
\(91\) −7.59697 6.37461i −0.796379 0.668241i
\(92\) 0 0
\(93\) −6.66472 2.42576i −0.691100 0.251540i
\(94\) 0 0
\(95\) −1.95266 + 11.0741i −0.200339 + 1.13618i
\(96\) 0 0
\(97\) 6.06712 + 10.5086i 0.616023 + 1.06698i 0.990204 + 0.139627i \(0.0445904\pi\)
−0.374181 + 0.927355i \(0.622076\pi\)
\(98\) 0 0
\(99\) 22.2640 8.10345i 2.23762 0.814427i
\(100\) 0 0
\(101\) 2.91435 + 5.04780i 0.289989 + 0.502275i 0.973807 0.227377i \(-0.0730151\pi\)
−0.683818 + 0.729653i \(0.739682\pi\)
\(102\) 0 0
\(103\) 6.62187 11.4694i 0.652472 1.13012i −0.330049 0.943964i \(-0.607065\pi\)
0.982521 0.186152i \(-0.0596015\pi\)
\(104\) 0 0
\(105\) 18.8717 1.84169
\(106\) 0 0
\(107\) −13.4607 + 11.2949i −1.30130 + 1.09192i −0.311379 + 0.950286i \(0.600791\pi\)
−0.989919 + 0.141633i \(0.954765\pi\)
\(108\) 0 0
\(109\) 2.26506 0.824416i 0.216954 0.0789647i −0.231257 0.972893i \(-0.574284\pi\)
0.448210 + 0.893928i \(0.352062\pi\)
\(110\) 0 0
\(111\) −5.96310 + 16.9364i −0.565992 + 1.60753i
\(112\) 0 0
\(113\) 10.5843 3.85237i 0.995688 0.362401i 0.207768 0.978178i \(-0.433380\pi\)
0.787920 + 0.615777i \(0.211158\pi\)
\(114\) 0 0
\(115\) 9.55911 8.02104i 0.891391 0.747966i
\(116\) 0 0
\(117\) 28.5687 2.64118
\(118\) 0 0
\(119\) −5.45802 + 9.45357i −0.500336 + 0.866607i
\(120\) 0 0
\(121\) −3.09809 5.36604i −0.281644 0.487822i
\(122\) 0 0
\(123\) 21.3970 7.78786i 1.92930 0.702208i
\(124\) 0 0
\(125\) 0.629153 + 1.08972i 0.0562731 + 0.0974679i
\(126\) 0 0
\(127\) −1.51567 + 8.59579i −0.134494 + 0.762753i 0.840717 + 0.541475i \(0.182134\pi\)
−0.975211 + 0.221278i \(0.928977\pi\)
\(128\) 0 0
\(129\) −21.4535 7.80845i −1.88888 0.687496i
\(130\) 0 0
\(131\) 5.85026 + 4.90895i 0.511139 + 0.428897i 0.861530 0.507707i \(-0.169507\pi\)
−0.350390 + 0.936604i \(0.613951\pi\)
\(132\) 0 0
\(133\) −1.20146 + 6.81384i −0.104180 + 0.590835i
\(134\) 0 0
\(135\) −19.7786 + 16.5962i −1.70227 + 1.42838i
\(136\) 0 0
\(137\) 7.79340 13.4986i 0.665835 1.15326i −0.313224 0.949679i \(-0.601409\pi\)
0.979058 0.203580i \(-0.0652578\pi\)
\(138\) 0 0
\(139\) −14.6137 12.2624i −1.23952 1.04008i −0.997562 0.0697926i \(-0.977766\pi\)
−0.241957 0.970287i \(-0.577789\pi\)
\(140\) 0 0
\(141\) −0.231976 1.31560i −0.0195359 0.110794i
\(142\) 0 0
\(143\) −3.60059 20.4200i −0.301097 1.70760i
\(144\) 0 0
\(145\) 30.2144 + 10.9971i 2.50917 + 0.913262i
\(146\) 0 0
\(147\) −9.05142 −0.746548
\(148\) 0 0
\(149\) 12.5414 1.02743 0.513716 0.857960i \(-0.328268\pi\)
0.513716 + 0.857960i \(0.328268\pi\)
\(150\) 0 0
\(151\) −3.03053 1.10302i −0.246621 0.0897626i 0.215752 0.976448i \(-0.430780\pi\)
−0.462373 + 0.886686i \(0.653002\pi\)
\(152\) 0 0
\(153\) −5.46058 30.9685i −0.441462 2.50366i
\(154\) 0 0
\(155\) −1.34489 7.62723i −0.108024 0.612634i
\(156\) 0 0
\(157\) −5.22035 4.38039i −0.416629 0.349593i 0.410250 0.911973i \(-0.365441\pi\)
−0.826879 + 0.562380i \(0.809886\pi\)
\(158\) 0 0
\(159\) −3.32179 + 5.75351i −0.263435 + 0.456283i
\(160\) 0 0
\(161\) 5.88167 4.93530i 0.463540 0.388956i
\(162\) 0 0
\(163\) 2.79912 15.8746i 0.219244 1.24340i −0.654144 0.756370i \(-0.726971\pi\)
0.873388 0.487025i \(-0.161918\pi\)
\(164\) 0 0
\(165\) 30.2261 + 25.3627i 2.35310 + 1.97448i
\(166\) 0 0
\(167\) −18.3985 6.69650i −1.42372 0.518191i −0.488593 0.872512i \(-0.662490\pi\)
−0.935124 + 0.354321i \(0.884712\pi\)
\(168\) 0 0
\(169\) 2.08414 11.8197i 0.160318 0.909210i
\(170\) 0 0
\(171\) −9.96585 17.2614i −0.762107 1.32001i
\(172\) 0 0
\(173\) −13.1192 + 4.77500i −0.997434 + 0.363036i −0.788594 0.614914i \(-0.789191\pi\)
−0.208839 + 0.977950i \(0.566969\pi\)
\(174\) 0 0
\(175\) 5.34548 + 9.25864i 0.404080 + 0.699887i
\(176\) 0 0
\(177\) −8.22963 + 14.2541i −0.618577 + 1.07141i
\(178\) 0 0
\(179\) 4.36255 0.326072 0.163036 0.986620i \(-0.447871\pi\)
0.163036 + 0.986620i \(0.447871\pi\)
\(180\) 0 0
\(181\) −0.320019 + 0.268528i −0.0237868 + 0.0199595i −0.654604 0.755972i \(-0.727164\pi\)
0.630817 + 0.775932i \(0.282720\pi\)
\(182\) 0 0
\(183\) 17.9874 6.54686i 1.32966 0.483958i
\(184\) 0 0
\(185\) −19.2724 + 3.60793i −1.41694 + 0.265260i
\(186\) 0 0
\(187\) −21.4471 + 7.80610i −1.56837 + 0.570839i
\(188\) 0 0
\(189\) −12.1697 + 10.2116i −0.885213 + 0.742782i
\(190\) 0 0
\(191\) −14.9184 −1.07946 −0.539728 0.841839i \(-0.681473\pi\)
−0.539728 + 0.841839i \(0.681473\pi\)
\(192\) 0 0
\(193\) −4.16789 + 7.21900i −0.300012 + 0.519635i −0.976138 0.217150i \(-0.930324\pi\)
0.676127 + 0.736785i \(0.263657\pi\)
\(194\) 0 0
\(195\) 23.7886 + 41.2031i 1.70354 + 2.95062i
\(196\) 0 0
\(197\) −21.0015 + 7.64393i −1.49630 + 0.544607i −0.955099 0.296288i \(-0.904251\pi\)
−0.541198 + 0.840895i \(0.682029\pi\)
\(198\) 0 0
\(199\) 7.87668 + 13.6428i 0.558363 + 0.967114i 0.997633 + 0.0687586i \(0.0219038\pi\)
−0.439270 + 0.898355i \(0.644763\pi\)
\(200\) 0 0
\(201\) −0.404194 + 2.29230i −0.0285096 + 0.161686i
\(202\) 0 0
\(203\) 18.5907 + 6.76648i 1.30481 + 0.474913i
\(204\) 0 0
\(205\) 19.0476 + 15.9828i 1.33034 + 1.11629i
\(206\) 0 0
\(207\) −3.84079 + 21.7822i −0.266953 + 1.51397i
\(208\) 0 0
\(209\) −11.0818 + 9.29877i −0.766547 + 0.643209i
\(210\) 0 0
\(211\) −1.35270 + 2.34294i −0.0931235 + 0.161295i −0.908824 0.417180i \(-0.863018\pi\)
0.815700 + 0.578475i \(0.196352\pi\)
\(212\) 0 0
\(213\) 3.68087 + 3.08861i 0.252209 + 0.211628i
\(214\) 0 0
\(215\) −4.32915 24.5518i −0.295245 1.67442i
\(216\) 0 0
\(217\) −0.827501 4.69299i −0.0561744 0.318581i
\(218\) 0 0
\(219\) −19.9558 7.26333i −1.34849 0.490811i
\(220\) 0 0
\(221\) −27.5204 −1.85122
\(222\) 0 0
\(223\) 5.04066 0.337547 0.168774 0.985655i \(-0.446019\pi\)
0.168774 + 0.985655i \(0.446019\pi\)
\(224\) 0 0
\(225\) −28.9405 10.5335i −1.92937 0.702232i
\(226\) 0 0
\(227\) −4.18743 23.7481i −0.277930 1.57622i −0.729499 0.683982i \(-0.760247\pi\)
0.451570 0.892236i \(-0.350864\pi\)
\(228\) 0 0
\(229\) −0.374896 2.12614i −0.0247738 0.140499i 0.969912 0.243455i \(-0.0782810\pi\)
−0.994686 + 0.102956i \(0.967170\pi\)
\(230\) 0 0
\(231\) 18.5979 + 15.6055i 1.22365 + 1.02677i
\(232\) 0 0
\(233\) 13.4442 23.2861i 0.880761 1.52552i 0.0302643 0.999542i \(-0.490365\pi\)
0.850497 0.525981i \(-0.176302\pi\)
\(234\) 0 0
\(235\) 1.11750 0.937691i 0.0728974 0.0611682i
\(236\) 0 0
\(237\) 6.24574 35.4214i 0.405705 2.30086i
\(238\) 0 0
\(239\) −8.60609 7.22137i −0.556682 0.467111i 0.320514 0.947244i \(-0.396144\pi\)
−0.877196 + 0.480132i \(0.840589\pi\)
\(240\) 0 0
\(241\) 13.9330 + 5.07120i 0.897504 + 0.326665i 0.749252 0.662285i \(-0.230413\pi\)
0.148252 + 0.988950i \(0.452635\pi\)
\(242\) 0 0
\(243\) −0.839059 + 4.75854i −0.0538257 + 0.305261i
\(244\) 0 0
\(245\) −4.94203 8.55985i −0.315735 0.546869i
\(246\) 0 0
\(247\) −16.3914 + 5.96598i −1.04296 + 0.379606i
\(248\) 0 0
\(249\) 0.590449 + 1.02269i 0.0374182 + 0.0648102i
\(250\) 0 0
\(251\) 0.541269 0.937505i 0.0341646 0.0591748i −0.848438 0.529296i \(-0.822456\pi\)
0.882602 + 0.470121i \(0.155790\pi\)
\(252\) 0 0
\(253\) 16.0533 1.00926
\(254\) 0 0
\(255\) 40.1174 33.6625i 2.51225 2.10802i
\(256\) 0 0
\(257\) 19.5965 7.13255i 1.22240 0.444916i 0.351410 0.936222i \(-0.385702\pi\)
0.870987 + 0.491305i \(0.163480\pi\)
\(258\) 0 0
\(259\) −11.8582 + 2.21994i −0.736834 + 0.137940i
\(260\) 0 0
\(261\) −53.5551 + 19.4924i −3.31498 + 1.20655i
\(262\) 0 0
\(263\) 8.87559 7.44751i 0.547293 0.459233i −0.326730 0.945118i \(-0.605947\pi\)
0.874023 + 0.485885i \(0.161502\pi\)
\(264\) 0 0
\(265\) −7.25474 −0.445655
\(266\) 0 0
\(267\) −12.3147 + 21.3297i −0.753647 + 1.30535i
\(268\) 0 0
\(269\) 0.362310 + 0.627539i 0.0220904 + 0.0382617i 0.876859 0.480747i \(-0.159634\pi\)
−0.854769 + 0.519009i \(0.826301\pi\)
\(270\) 0 0
\(271\) 5.86671 2.13531i 0.356377 0.129711i −0.157626 0.987499i \(-0.550384\pi\)
0.514003 + 0.857788i \(0.328162\pi\)
\(272\) 0 0
\(273\) 14.6370 + 25.3521i 0.885873 + 1.53438i
\(274\) 0 0
\(275\) −3.88154 + 22.0133i −0.234066 + 1.32745i
\(276\) 0 0
\(277\) −2.84973 1.03722i −0.171223 0.0623203i 0.254986 0.966945i \(-0.417929\pi\)
−0.426209 + 0.904624i \(0.640151\pi\)
\(278\) 0 0
\(279\) 10.5161 + 8.82409i 0.629585 + 0.528284i
\(280\) 0 0
\(281\) −2.09296 + 11.8697i −0.124855 + 0.708089i 0.856539 + 0.516083i \(0.172610\pi\)
−0.981394 + 0.192006i \(0.938501\pi\)
\(282\) 0 0
\(283\) 12.3858 10.3929i 0.736261 0.617796i −0.195570 0.980690i \(-0.562656\pi\)
0.931831 + 0.362893i \(0.118211\pi\)
\(284\) 0 0
\(285\) 16.5968 28.7465i 0.983108 1.70279i
\(286\) 0 0
\(287\) 11.7199 + 9.83413i 0.691802 + 0.580491i
\(288\) 0 0
\(289\) 2.30820 + 13.0904i 0.135776 + 0.770025i
\(290\) 0 0
\(291\) −6.21984 35.2745i −0.364613 2.06783i
\(292\) 0 0
\(293\) 14.1521 + 5.15095i 0.826775 + 0.300921i 0.720535 0.693419i \(-0.243896\pi\)
0.106240 + 0.994340i \(0.466119\pi\)
\(294\) 0 0
\(295\) −17.9734 −1.04645
\(296\) 0 0
\(297\) −33.2156 −1.92736
\(298\) 0 0
\(299\) 18.1895 + 6.62045i 1.05193 + 0.382871i
\(300\) 0 0
\(301\) −2.66370 15.1066i −0.153533 0.870730i
\(302\) 0 0
\(303\) −2.98771 16.9441i −0.171639 0.973416i
\(304\) 0 0
\(305\) 16.0123 + 13.4359i 0.916863 + 0.769340i
\(306\) 0 0
\(307\) −9.49960 + 16.4538i −0.542171 + 0.939067i 0.456608 + 0.889668i \(0.349064\pi\)
−0.998779 + 0.0493994i \(0.984269\pi\)
\(308\) 0 0
\(309\) −29.9475 + 25.1290i −1.70366 + 1.42954i
\(310\) 0 0
\(311\) −2.36240 + 13.3978i −0.133959 + 0.759721i 0.841619 + 0.540071i \(0.181603\pi\)
−0.975579 + 0.219650i \(0.929508\pi\)
\(312\) 0 0
\(313\) −15.0943 12.6657i −0.853183 0.715905i 0.107305 0.994226i \(-0.465778\pi\)
−0.960488 + 0.278321i \(0.910222\pi\)
\(314\) 0 0
\(315\) −34.3243 12.4930i −1.93396 0.703902i
\(316\) 0 0
\(317\) −0.833503 + 4.72703i −0.0468142 + 0.265497i −0.999227 0.0393151i \(-0.987482\pi\)
0.952413 + 0.304812i \(0.0985935\pi\)
\(318\) 0 0
\(319\) 20.6823 + 35.8228i 1.15799 + 2.00569i
\(320\) 0 0
\(321\) 48.7413 17.7404i 2.72047 0.990171i
\(322\) 0 0
\(323\) 9.60016 + 16.6280i 0.534167 + 0.925205i
\(324\) 0 0
\(325\) −13.4765 + 23.3419i −0.747540 + 1.29478i
\(326\) 0 0
\(327\) −7.11526 −0.393475
\(328\) 0 0
\(329\) 0.687589 0.576956i 0.0379080 0.0318086i
\(330\) 0 0
\(331\) 30.9736 11.2735i 1.70246 0.619645i 0.706359 0.707853i \(-0.250336\pi\)
0.996102 + 0.0882081i \(0.0281140\pi\)
\(332\) 0 0
\(333\) 22.0577 26.8568i 1.20876 1.47174i
\(334\) 0 0
\(335\) −2.38849 + 0.869340i −0.130497 + 0.0474971i
\(336\) 0 0
\(337\) −1.97404 + 1.65642i −0.107533 + 0.0902307i −0.694969 0.719040i \(-0.744582\pi\)
0.587436 + 0.809271i \(0.300137\pi\)
\(338\) 0 0
\(339\) −33.2486 −1.80582
\(340\) 0 0
\(341\) 4.98180 8.62872i 0.269779 0.467272i
\(342\) 0 0
\(343\) −9.98252 17.2902i −0.539005 0.933584i
\(344\) 0 0
\(345\) −34.6135 + 12.5983i −1.86353 + 0.678269i
\(346\) 0 0
\(347\) −13.9203 24.1107i −0.747282 1.29433i −0.949121 0.314912i \(-0.898025\pi\)
0.201839 0.979419i \(-0.435308\pi\)
\(348\) 0 0
\(349\) 0.0446079 0.252984i 0.00238781 0.0135419i −0.983591 0.180415i \(-0.942256\pi\)
0.985978 + 0.166873i \(0.0533670\pi\)
\(350\) 0 0
\(351\) −37.6357 13.6983i −2.00885 0.731160i
\(352\) 0 0
\(353\) −25.7778 21.6301i −1.37201 1.15126i −0.972063 0.234718i \(-0.924583\pi\)
−0.399949 0.916537i \(-0.630972\pi\)
\(354\) 0 0
\(355\) −0.911140 + 5.16733i −0.0483583 + 0.274254i
\(356\) 0 0
\(357\) 24.6840 20.7123i 1.30642 1.09621i
\(358\) 0 0
\(359\) 11.6309 20.1453i 0.613855 1.06323i −0.376730 0.926323i \(-0.622951\pi\)
0.990584 0.136904i \(-0.0437153\pi\)
\(360\) 0 0
\(361\) −5.23223 4.39036i −0.275380 0.231072i
\(362\) 0 0
\(363\) 3.17607 + 18.0124i 0.166700 + 0.945405i
\(364\) 0 0
\(365\) −4.02693 22.8378i −0.210779 1.19539i
\(366\) 0 0
\(367\) 23.9674 + 8.72343i 1.25109 + 0.455359i 0.880770 0.473545i \(-0.157026\pi\)
0.370320 + 0.928904i \(0.379248\pi\)
\(368\) 0 0
\(369\) −44.0730 −2.29435
\(370\) 0 0
\(371\) −4.46380 −0.231749
\(372\) 0 0
\(373\) −14.3915 5.23808i −0.745164 0.271218i −0.0585949 0.998282i \(-0.518662\pi\)
−0.686570 + 0.727064i \(0.740884\pi\)
\(374\) 0 0
\(375\) −0.644990 3.65792i −0.0333071 0.188894i
\(376\) 0 0
\(377\) 8.66105 + 49.1193i 0.446067 + 2.52977i
\(378\) 0 0
\(379\) 2.34419 + 1.96701i 0.120413 + 0.101038i 0.701006 0.713156i \(-0.252735\pi\)
−0.580593 + 0.814194i \(0.697179\pi\)
\(380\) 0 0
\(381\) 12.8825 22.3132i 0.659991 1.14314i
\(382\) 0 0
\(383\) −27.0787 + 22.7217i −1.38366 + 1.16103i −0.415821 + 0.909446i \(0.636506\pi\)
−0.967837 + 0.251580i \(0.919050\pi\)
\(384\) 0 0
\(385\) −4.60363 + 26.1085i −0.234622 + 1.33061i
\(386\) 0 0
\(387\) 33.8511 + 28.4045i 1.72075 + 1.44388i
\(388\) 0 0
\(389\) −3.43601 1.25061i −0.174213 0.0634083i 0.253441 0.967351i \(-0.418438\pi\)
−0.427654 + 0.903943i \(0.640660\pi\)
\(390\) 0 0
\(391\) 3.69986 20.9829i 0.187110 1.06115i
\(392\) 0 0
\(393\) −11.2716 19.5231i −0.568579 0.984809i
\(394\) 0 0
\(395\) 36.9078 13.4334i 1.85704 0.675906i
\(396\) 0 0
\(397\) 11.1654 + 19.3390i 0.560376 + 0.970599i 0.997463 + 0.0711801i \(0.0226765\pi\)
−0.437088 + 0.899419i \(0.643990\pi\)
\(398\) 0 0
\(399\) 10.2119 17.6875i 0.511235 0.885484i
\(400\) 0 0
\(401\) −12.8094 −0.639673 −0.319836 0.947473i \(-0.603628\pi\)
−0.319836 + 0.947473i \(0.603628\pi\)
\(402\) 0 0
\(403\) 9.20326 7.72246i 0.458447 0.384683i
\(404\) 0 0
\(405\) 19.6995 7.17001i 0.978874 0.356281i
\(406\) 0 0
\(407\) −21.9764 12.3813i −1.08933 0.613719i
\(408\) 0 0
\(409\) 8.34233 3.03636i 0.412502 0.150138i −0.127429 0.991848i \(-0.540673\pi\)
0.539931 + 0.841709i \(0.318450\pi\)
\(410\) 0 0
\(411\) −35.2458 + 29.5747i −1.73855 + 1.45881i
\(412\) 0 0
\(413\) −11.0589 −0.544173
\(414\) 0 0
\(415\) −0.644765 + 1.11677i −0.0316503 + 0.0548198i
\(416\) 0 0
\(417\) 28.1561 + 48.7678i 1.37881 + 2.38817i
\(418\) 0 0
\(419\) 17.3058 6.29878i 0.845442 0.307716i 0.117261 0.993101i \(-0.462588\pi\)
0.728181 + 0.685385i \(0.240366\pi\)
\(420\) 0 0
\(421\) −12.9174 22.3736i −0.629555 1.09042i −0.987641 0.156733i \(-0.949904\pi\)
0.358086 0.933689i \(-0.383429\pi\)
\(422\) 0 0
\(423\) −0.449003 + 2.54642i −0.0218313 + 0.123811i
\(424\) 0 0
\(425\) 27.8786 + 10.1470i 1.35231 + 0.492200i
\(426\) 0 0
\(427\) 9.85230 + 8.26706i 0.476786 + 0.400071i
\(428\) 0 0
\(429\) −10.6285 + 60.2770i −0.513147 + 2.91020i
\(430\) 0 0
\(431\) 5.11647 4.29322i 0.246451 0.206797i −0.511191 0.859467i \(-0.670796\pi\)
0.757643 + 0.652670i \(0.226351\pi\)
\(432\) 0 0
\(433\) 15.1072 26.1664i 0.726004 1.25748i −0.232556 0.972583i \(-0.574709\pi\)
0.958560 0.284892i \(-0.0919578\pi\)
\(434\) 0 0
\(435\) −72.7073 61.0087i −3.48605 2.92514i
\(436\) 0 0
\(437\) −2.34509 13.2997i −0.112181 0.636210i
\(438\) 0 0
\(439\) 0.483373 + 2.74134i 0.0230701 + 0.130837i 0.994168 0.107846i \(-0.0343954\pi\)
−0.971097 + 0.238683i \(0.923284\pi\)
\(440\) 0 0
\(441\) 16.4630 + 5.99203i 0.783951 + 0.285335i
\(442\) 0 0
\(443\) −23.4084 −1.11217 −0.556083 0.831127i \(-0.687696\pi\)
−0.556083 + 0.831127i \(0.687696\pi\)
\(444\) 0 0
\(445\) −26.8951 −1.27495
\(446\) 0 0
\(447\) −34.7879 12.6618i −1.64541 0.598881i
\(448\) 0 0
\(449\) 1.68858 + 9.57640i 0.0796889 + 0.451938i 0.998377 + 0.0569539i \(0.0181388\pi\)
−0.918688 + 0.394984i \(0.870750\pi\)
\(450\) 0 0
\(451\) 5.55465 + 31.5020i 0.261558 + 1.48337i
\(452\) 0 0
\(453\) 7.29260 + 6.11922i 0.342636 + 0.287506i
\(454\) 0 0
\(455\) −15.9835 + 27.6842i −0.749318 + 1.29786i
\(456\) 0 0
\(457\) 3.74396 3.14156i 0.175135 0.146956i −0.551007 0.834501i \(-0.685756\pi\)
0.726142 + 0.687545i \(0.241312\pi\)
\(458\) 0 0
\(459\) −7.65532 + 43.4155i −0.357320 + 2.02646i
\(460\) 0 0
\(461\) 0.0983711 + 0.0825432i 0.00458160 + 0.00384442i 0.645076 0.764119i \(-0.276826\pi\)
−0.640494 + 0.767963i \(0.721270\pi\)
\(462\) 0 0
\(463\) 0.233551 + 0.0850057i 0.0108540 + 0.00395055i 0.347441 0.937702i \(-0.387051\pi\)
−0.336587 + 0.941652i \(0.609273\pi\)
\(464\) 0 0
\(465\) −3.96992 + 22.5145i −0.184101 + 1.04409i
\(466\) 0 0
\(467\) 12.3962 + 21.4709i 0.573628 + 0.993553i 0.996189 + 0.0872187i \(0.0277979\pi\)
−0.422561 + 0.906335i \(0.638869\pi\)
\(468\) 0 0
\(469\) −1.46963 + 0.534900i −0.0678610 + 0.0246994i
\(470\) 0 0
\(471\) 10.0580 + 17.4210i 0.463448 + 0.802716i
\(472\) 0 0
\(473\) 16.0362 27.7756i 0.737347 1.27712i
\(474\) 0 0
\(475\) 18.8044 0.862806
\(476\) 0 0
\(477\) 9.85060 8.26563i 0.451028 0.378457i
\(478\) 0 0
\(479\) 6.09084 2.21689i 0.278298 0.101292i −0.199101 0.979979i \(-0.563802\pi\)
0.477398 + 0.878687i \(0.341580\pi\)
\(480\) 0 0
\(481\) −19.7947 23.0921i −0.902562 1.05291i
\(482\) 0 0
\(483\) −21.2975 + 7.75165i −0.969069 + 0.352712i
\(484\) 0 0
\(485\) 29.9628 25.1417i 1.36054 1.14163i
\(486\) 0 0
\(487\) 36.4698 1.65261 0.826303 0.563226i \(-0.190440\pi\)
0.826303 + 0.563226i \(0.190440\pi\)
\(488\) 0 0
\(489\) −23.7913 + 41.2077i −1.07588 + 1.86348i
\(490\) 0 0
\(491\) 10.6636 + 18.4698i 0.481240 + 0.833532i 0.999768 0.0215284i \(-0.00685323\pi\)
−0.518528 + 0.855060i \(0.673520\pi\)
\(492\) 0 0
\(493\) 51.5899 18.7772i 2.32349 0.845682i
\(494\) 0 0
\(495\) −38.1859 66.1400i −1.71633 2.97277i
\(496\) 0 0
\(497\) −0.560620 + 3.17943i −0.0251472 + 0.142617i
\(498\) 0 0
\(499\) −20.2959 7.38712i −0.908571 0.330693i −0.154889 0.987932i \(-0.549502\pi\)
−0.753682 + 0.657239i \(0.771724\pi\)
\(500\) 0 0
\(501\) 44.2738 + 37.1501i 1.97801 + 1.65974i
\(502\) 0 0
\(503\) 1.11663 6.33272i 0.0497880 0.282362i −0.949741 0.313035i \(-0.898654\pi\)
0.999529 + 0.0306736i \(0.00976525\pi\)
\(504\) 0 0
\(505\) 14.3927 12.0769i 0.640465 0.537414i
\(506\) 0 0
\(507\) −17.7142 + 30.6820i −0.786717 + 1.36263i
\(508\) 0 0
\(509\) −7.28715 6.11465i −0.322997 0.271027i 0.466842 0.884341i \(-0.345392\pi\)
−0.789839 + 0.613314i \(0.789836\pi\)
\(510\) 0 0
\(511\) −2.47775 14.0520i −0.109609 0.621623i
\(512\) 0 0
\(513\) 4.85220 + 27.5182i 0.214230 + 1.21496i
\(514\) 0 0
\(515\) −40.1155 14.6008i −1.76770 0.643390i
\(516\) 0 0
\(517\) 1.87669 0.0825367
\(518\) 0 0
\(519\) 41.2114 1.80898
\(520\) 0 0
\(521\) −14.3083 5.20781i −0.626859 0.228158i 0.00900446 0.999959i \(-0.497134\pi\)
−0.635864 + 0.771801i \(0.719356\pi\)
\(522\) 0 0
\(523\) 5.78150 + 32.7885i 0.252807 + 1.43374i 0.801639 + 0.597808i \(0.203962\pi\)
−0.548832 + 0.835933i \(0.684927\pi\)
\(524\) 0 0
\(525\) −5.48003 31.0788i −0.239168 1.35639i
\(526\) 0 0
\(527\) −10.1303 8.50030i −0.441281 0.370279i
\(528\) 0 0
\(529\) 4.00683 6.94003i 0.174210 0.301740i
\(530\) 0 0
\(531\) 24.4045 20.4778i 1.05907 0.888662i
\(532\) 0 0
\(533\) −6.69774 + 37.9848i −0.290111 + 1.64530i
\(534\) 0 0
\(535\) 43.3894 + 36.4081i 1.87589 + 1.57406i
\(536\) 0 0
\(537\) −12.1010 4.40442i −0.522198 0.190065i
\(538\) 0 0
\(539\) 2.20804 12.5224i 0.0951069 0.539378i
\(540\) 0 0
\(541\) 4.75496 + 8.23584i 0.204432 + 0.354086i 0.949952 0.312397i \(-0.101132\pi\)
−0.745520 + 0.666484i \(0.767799\pi\)
\(542\) 0 0
\(543\) 1.15879 0.421764i 0.0497283 0.0180996i
\(544\) 0 0
\(545\) −3.88490 6.72885i −0.166411 0.288232i
\(546\) 0 0
\(547\) −15.0058 + 25.9908i −0.641601 + 1.11129i 0.343474 + 0.939162i \(0.388396\pi\)
−0.985075 + 0.172124i \(0.944937\pi\)
\(548\) 0 0
\(549\) −37.0499 −1.58125
\(550\) 0 0
\(551\) 26.6568 22.3677i 1.13562 0.952897i
\(552\) 0 0
\(553\) 22.7092 8.26547i 0.965693 0.351484i
\(554\) 0 0
\(555\) 57.1013 + 9.44954i 2.42381 + 0.401110i
\(556\) 0 0
\(557\) 26.3098 9.57600i 1.11478 0.405748i 0.282038 0.959403i \(-0.408990\pi\)
0.832746 + 0.553655i \(0.186767\pi\)
\(558\) 0 0
\(559\) 29.6250 24.8584i 1.25301 1.05140i
\(560\) 0 0
\(561\) 67.3719 2.84444
\(562\) 0 0
\(563\) 1.75906 3.04678i 0.0741355 0.128407i −0.826574 0.562827i \(-0.809714\pi\)
0.900710 + 0.434421i \(0.143047\pi\)
\(564\) 0 0
\(565\) −18.1536 31.4429i −0.763727 1.32281i
\(566\) 0 0
\(567\) 12.1210 4.41167i 0.509033 0.185273i
\(568\) 0 0
\(569\) 0.968401 + 1.67732i 0.0405975 + 0.0703169i 0.885610 0.464429i \(-0.153741\pi\)
−0.845013 + 0.534746i \(0.820407\pi\)
\(570\) 0 0
\(571\) 2.73229 15.4956i 0.114343 0.648470i −0.872731 0.488202i \(-0.837653\pi\)
0.987073 0.160268i \(-0.0512360\pi\)
\(572\) 0 0
\(573\) 41.3813 + 15.0616i 1.72873 + 0.629206i
\(574\) 0 0
\(575\) −15.9853 13.4132i −0.666632 0.559371i
\(576\) 0 0
\(577\) −1.39975 + 7.93837i −0.0582723 + 0.330479i −0.999982 0.00594697i \(-0.998107\pi\)
0.941710 + 0.336426i \(0.109218\pi\)
\(578\) 0 0
\(579\) 18.8494 15.8165i 0.783353 0.657311i
\(580\) 0 0
\(581\) −0.396720 + 0.687139i −0.0164587 + 0.0285073i
\(582\) 0 0
\(583\) −7.14951 5.99915i −0.296102 0.248459i
\(584\) 0 0
\(585\) −15.9910 90.6895i −0.661147 3.74955i
\(586\) 0 0
\(587\) −3.28276 18.6174i −0.135494 0.768424i −0.974515 0.224324i \(-0.927982\pi\)
0.839021 0.544100i \(-0.183129\pi\)
\(588\) 0 0
\(589\) −7.87640 2.86677i −0.324541 0.118123i
\(590\) 0 0
\(591\) 65.9722 2.71374
\(592\) 0 0
\(593\) −0.0459905 −0.00188860 −0.000944302 1.00000i \(-0.500301\pi\)
−0.000944302 1.00000i \(0.500301\pi\)
\(594\) 0 0
\(595\) 33.0648 + 12.0346i 1.35553 + 0.493371i
\(596\) 0 0
\(597\) −8.07495 45.7953i −0.330486 1.87428i
\(598\) 0 0
\(599\) 2.73704 + 15.5225i 0.111832 + 0.634232i 0.988270 + 0.152717i \(0.0488023\pi\)
−0.876438 + 0.481515i \(0.840087\pi\)
\(600\) 0 0
\(601\) −19.3900 16.2701i −0.790934 0.663673i 0.155042 0.987908i \(-0.450449\pi\)
−0.945976 + 0.324235i \(0.894893\pi\)
\(602\) 0 0
\(603\) 2.25266 3.90172i 0.0917353 0.158890i
\(604\) 0 0
\(605\) −15.3001 + 12.8383i −0.622036 + 0.521950i
\(606\) 0 0
\(607\) 3.83181 21.7313i 0.155528 0.882046i −0.802773 0.596285i \(-0.796643\pi\)
0.958301 0.285760i \(-0.0922462\pi\)
\(608\) 0 0
\(609\) −44.7364 37.5383i −1.81281 1.52113i
\(610\) 0 0
\(611\) 2.12643 + 0.773956i 0.0860260 + 0.0313109i
\(612\) 0 0
\(613\) −3.72973 + 21.1523i −0.150642 + 0.854335i 0.812020 + 0.583630i \(0.198368\pi\)
−0.962662 + 0.270705i \(0.912743\pi\)
\(614\) 0 0
\(615\) −36.6988 63.5642i −1.47984 2.56316i
\(616\) 0 0
\(617\) 9.86174 3.58938i 0.397019 0.144503i −0.135792 0.990737i \(-0.543358\pi\)
0.532811 + 0.846234i \(0.321136\pi\)
\(618\) 0 0
\(619\) −3.03524 5.25718i −0.121996 0.211304i 0.798558 0.601917i \(-0.205596\pi\)
−0.920555 + 0.390613i \(0.872263\pi\)
\(620\) 0 0
\(621\) 15.5040 26.8537i 0.622155 1.07760i
\(622\) 0 0
\(623\) −16.5484 −0.662997
\(624\) 0 0
\(625\) −17.5392 + 14.7171i −0.701568 + 0.588685i
\(626\) 0 0
\(627\) 40.1273 14.6051i 1.60253 0.583273i
\(628\) 0 0
\(629\) −21.2483 + 25.8713i −0.847227 + 1.03156i
\(630\) 0 0
\(631\) 12.5478 4.56701i 0.499519 0.181810i −0.0799588 0.996798i \(-0.525479\pi\)
0.579478 + 0.814988i \(0.303257\pi\)
\(632\) 0 0
\(633\) 6.11760 5.13327i 0.243153 0.204029i
\(634\) 0 0
\(635\) 28.1352 1.11651
\(636\) 0 0
\(637\) 7.66617 13.2782i 0.303745 0.526101i
\(638\) 0 0
\(639\) −4.65020 8.05439i −0.183959 0.318627i
\(640\) 0 0
\(641\) 0.500557 0.182188i 0.0197708 0.00719598i −0.332116 0.943239i \(-0.607762\pi\)
0.351887 + 0.936043i \(0.385540\pi\)
\(642\) 0 0
\(643\) −17.1027 29.6228i −0.674466 1.16821i −0.976625 0.214952i \(-0.931040\pi\)
0.302158 0.953258i \(-0.402293\pi\)
\(644\) 0 0
\(645\) −12.7791 + 72.4736i −0.503175 + 2.85365i
\(646\) 0 0
\(647\) −1.57022 0.571513i −0.0617317 0.0224685i 0.310970 0.950420i \(-0.399346\pi\)
−0.372701 + 0.927951i \(0.621568\pi\)
\(648\) 0 0
\(649\) −17.7127 14.8627i −0.695283 0.583411i
\(650\) 0 0
\(651\) −2.44267 + 13.8531i −0.0957358 + 0.542945i
\(652\) 0 0
\(653\) −6.36187 + 5.33824i −0.248959 + 0.208901i −0.758724 0.651412i \(-0.774177\pi\)
0.509765 + 0.860314i \(0.329732\pi\)
\(654\) 0 0
\(655\) 12.3085 21.3190i 0.480934 0.833003i
\(656\) 0 0
\(657\) 31.4879 + 26.4215i 1.22846 + 1.03080i
\(658\) 0 0
\(659\) −0.288229 1.63463i −0.0112278 0.0636760i 0.978679 0.205395i \(-0.0658480\pi\)
−0.989907 + 0.141719i \(0.954737\pi\)
\(660\) 0 0
\(661\) 4.98168 + 28.2525i 0.193765 + 1.09889i 0.914167 + 0.405338i \(0.132846\pi\)
−0.720402 + 0.693557i \(0.756043\pi\)
\(662\) 0 0
\(663\) 76.3373 + 27.7845i 2.96469 + 1.07906i
\(664\) 0 0
\(665\) 22.3026 0.864858
\(666\) 0 0
\(667\) −38.6154 −1.49519
\(668\) 0 0
\(669\) −13.9820 5.08903i −0.540575 0.196753i
\(670\) 0 0
\(671\) 4.66951 + 26.4821i 0.180264 + 1.02233i
\(672\) 0 0
\(673\) 0.144573 + 0.819914i 0.00557288 + 0.0316054i 0.987467 0.157823i \(-0.0504476\pi\)
−0.981895 + 0.189429i \(0.939336\pi\)
\(674\) 0 0
\(675\) 33.0749 + 27.7531i 1.27305 + 1.06822i
\(676\) 0 0
\(677\) −17.9783 + 31.1393i −0.690962 + 1.19678i 0.280561 + 0.959836i \(0.409480\pi\)
−0.971523 + 0.236946i \(0.923854\pi\)
\(678\) 0 0
\(679\) 18.4359 15.4696i 0.707506 0.593668i
\(680\) 0 0
\(681\) −12.3607 + 70.1012i −0.473664 + 2.68628i
\(682\) 0 0
\(683\) 19.1706 + 16.0860i 0.733542 + 0.615514i 0.931095 0.364778i \(-0.118855\pi\)
−0.197553 + 0.980292i \(0.563299\pi\)
\(684\) 0 0
\(685\) −47.2126 17.1840i −1.80390 0.656566i
\(686\) 0 0
\(687\) −1.10664 + 6.27607i −0.0422210 + 0.239447i
\(688\) 0 0
\(689\) −5.62684 9.74597i −0.214365 0.371292i
\(690\) 0 0
\(691\) 3.91150 1.42367i 0.148801 0.0541590i −0.266546 0.963822i \(-0.585882\pi\)
0.415347 + 0.909663i \(0.363660\pi\)
\(692\) 0 0
\(693\) −23.4956 40.6956i −0.892524 1.54590i
\(694\) 0 0
\(695\) −30.7462 + 53.2540i −1.16627 + 2.02004i
\(696\) 0 0
\(697\) 42.4558 1.60813
\(698\) 0 0
\(699\) −60.8018 + 51.0187i −2.29973 + 1.92971i
\(700\) 0 0
\(701\) 18.8486 6.86034i 0.711903 0.259111i 0.0394183 0.999223i \(-0.487450\pi\)
0.672484 + 0.740111i \(0.265227\pi\)
\(702\) 0 0
\(703\) −7.04722 + 20.0155i −0.265791 + 0.754898i
\(704\) 0 0
\(705\) −4.04645 + 1.47279i −0.152398 + 0.0554684i
\(706\) 0 0
\(707\) 8.85573 7.43084i 0.333054 0.279465i
\(708\) 0 0
\(709\) −2.99804 −0.112594 −0.0562969 0.998414i \(-0.517929\pi\)
−0.0562969 + 0.998414i \(0.517929\pi\)
\(710\) 0 0
\(711\) −34.8089 + 60.2907i −1.30543 + 2.26108i
\(712\) 0 0
\(713\) 4.65070 + 8.05524i 0.174170 + 0.301671i
\(714\) 0 0
\(715\) −62.8066 + 22.8597i −2.34883 + 0.854905i
\(716\) 0 0
\(717\) 16.5813 + 28.7196i 0.619240 + 1.07255i
\(718\) 0 0
\(719\) −2.89135 + 16.3977i −0.107829 + 0.611530i 0.882223 + 0.470831i \(0.156046\pi\)
−0.990052 + 0.140698i \(0.955065\pi\)
\(720\) 0 0
\(721\) −24.6828 8.98382i −0.919237 0.334575i
\(722\) 0 0
\(723\) −33.5281 28.1334i −1.24692 1.04629i
\(724\) 0 0
\(725\) 9.33686 52.9520i 0.346762 1.96659i
\(726\) 0 0
\(727\) −1.55136 + 1.30174i −0.0575367 + 0.0482790i −0.671103 0.741365i \(-0.734179\pi\)
0.613566 + 0.789644i \(0.289735\pi\)
\(728\) 0 0
\(729\) 16.8870 29.2492i 0.625445 1.08330i
\(730\) 0 0
\(731\) −32.6090 27.3622i −1.20609 1.01203i
\(732\) 0 0
\(733\) 4.93029 + 27.9611i 0.182105 + 1.03277i 0.929619 + 0.368521i \(0.120136\pi\)
−0.747515 + 0.664245i \(0.768753\pi\)
\(734\) 0 0
\(735\) 5.06643 + 28.7332i 0.186878 + 1.05984i
\(736\) 0 0
\(737\) −3.07273 1.11838i −0.113185 0.0411962i
\(738\) 0 0
\(739\) −9.48954 −0.349078 −0.174539 0.984650i \(-0.555844\pi\)
−0.174539 + 0.984650i \(0.555844\pi\)
\(740\) 0 0
\(741\) 51.4904 1.89155
\(742\) 0 0
\(743\) 33.1885 + 12.0796i 1.21757 + 0.443158i 0.869322 0.494245i \(-0.164556\pi\)
0.348245 + 0.937404i \(0.386778\pi\)
\(744\) 0 0
\(745\) −7.01992 39.8119i −0.257190 1.45860i
\(746\) 0 0
\(747\) −0.396907 2.25097i −0.0145221 0.0823587i
\(748\) 0 0
\(749\) 26.6973 + 22.4017i 0.975498 + 0.818540i
\(750\) 0 0
\(751\) −14.3820 + 24.9103i −0.524806 + 0.908991i 0.474777 + 0.880106i \(0.342529\pi\)
−0.999583 + 0.0288846i \(0.990804\pi\)
\(752\) 0 0
\(753\) −2.44790 + 2.05403i −0.0892064 + 0.0748530i
\(754\) 0 0
\(755\) −1.80517 + 10.2376i −0.0656968 + 0.372585i
\(756\) 0 0
\(757\) −1.63620 1.37294i −0.0594688 0.0499002i 0.612569 0.790417i \(-0.290136\pi\)
−0.672038 + 0.740517i \(0.734581\pi\)
\(758\) 0 0
\(759\) −44.5293 16.2073i −1.61631 0.588289i
\(760\) 0 0
\(761\) −5.54491 + 31.4468i −0.201003 + 1.13994i 0.702604 + 0.711581i \(0.252021\pi\)
−0.903607 + 0.428363i \(0.859090\pi\)
\(762\) 0 0
\(763\) −2.39036 4.14022i −0.0865368 0.149886i
\(764\) 0 0
\(765\) −95.2511 + 34.6686i −3.44381 + 1.25344i
\(766\) 0 0
\(767\) −13.9403 24.1453i −0.503355 0.871836i
\(768\) 0 0
\(769\) 18.8985 32.7331i 0.681497 1.18039i −0.293027 0.956104i \(-0.594663\pi\)
0.974524 0.224283i \(-0.0720040\pi\)
\(770\) 0 0
\(771\) −61.5587 −2.21698
\(772\) 0 0
\(773\) −10.2212 + 8.57661i −0.367631 + 0.308479i −0.807824 0.589424i \(-0.799355\pi\)
0.440192 + 0.897903i \(0.354910\pi\)
\(774\) 0 0
\(775\) −12.1704 + 4.42965i −0.437173 + 0.159118i
\(776\) 0 0
\(777\) 35.1341 + 5.81425i 1.26043 + 0.208585i
\(778\) 0 0
\(779\) 25.2870 9.20373i 0.906002 0.329758i
\(780\) 0 0
\(781\) −5.17094 + 4.33893i −0.185031 + 0.155259i
\(782\) 0 0
\(783\) 79.8985 2.85534
\(784\) 0 0
\(785\) −10.9832 + 19.0235i −0.392009 + 0.678979i
\(786\) 0 0
\(787\) −19.4063 33.6127i −0.691759 1.19816i −0.971261 0.238017i \(-0.923503\pi\)
0.279502 0.960145i \(-0.409831\pi\)
\(788\) 0 0
\(789\) −32.1385 + 11.6975i −1.14416 + 0.416440i
\(790\) 0 0
\(791\) −11.1698 19.3467i −0.397152 0.687888i
\(792\) 0 0
\(793\) −5.63045 + 31.9319i −0.199943 + 1.13393i
\(794\) 0 0
\(795\) 20.1235 + 7.32436i 0.713707 + 0.259768i
\(796\) 0 0
\(797\) 2.00613 + 1.68334i 0.0710609 + 0.0596271i 0.677626 0.735406i \(-0.263009\pi\)
−0.606565 + 0.795034i \(0.707453\pi\)
\(798\) 0 0
\(799\) 0.432527 2.45298i 0.0153017 0.0867803i
\(800\) 0 0
\(801\) 36.5185 30.6427i 1.29032 1.08271i
\(802\) 0 0
\(803\) 14.9167 25.8366i 0.526400 0.911752i
\(804\) 0 0
\(805\) −18.9590 15.9085i −0.668217 0.560701i
\(806\) 0 0
\(807\) −0.371430 2.10648i −0.0130749 0.0741517i
\(808\) 0 0
\(809\) 4.12160 + 23.3748i 0.144908 + 0.821813i 0.967441 + 0.253096i \(0.0814488\pi\)
−0.822533 + 0.568717i \(0.807440\pi\)
\(810\) 0 0
\(811\) 25.8143 + 9.39563i 0.906462 + 0.329925i 0.752839 0.658204i \(-0.228684\pi\)
0.153623 + 0.988130i \(0.450906\pi\)
\(812\) 0 0
\(813\) −18.4291 −0.646338
\(814\) 0 0
\(815\) −51.9597 −1.82007
\(816\) 0 0
\(817\) −25.3539 9.22806i −0.887020 0.322849i
\(818\) 0 0
\(819\) −9.83918 55.8008i −0.343809 1.94984i
\(820\) 0 0
\(821\) 7.13296 + 40.4530i 0.248942 + 1.41182i 0.811157 + 0.584829i \(0.198838\pi\)
−0.562214 + 0.826991i \(0.690050\pi\)
\(822\) 0 0
\(823\) −34.4218 28.8833i −1.19987 1.00681i −0.999634 0.0270603i \(-0.991385\pi\)
−0.200234 0.979748i \(-0.564170\pi\)
\(824\) 0 0
\(825\) 32.9914 57.1427i 1.14861 1.98945i
\(826\) 0 0
\(827\) 9.81220 8.23341i 0.341204 0.286304i −0.456043 0.889958i \(-0.650734\pi\)
0.797246 + 0.603654i \(0.206289\pi\)
\(828\) 0 0
\(829\) −7.16742 + 40.6484i −0.248935 + 1.41178i 0.562240 + 0.826974i \(0.309940\pi\)
−0.811174 + 0.584805i \(0.801171\pi\)
\(830\) 0 0
\(831\) 6.85753 + 5.75415i 0.237885 + 0.199609i
\(832\) 0 0
\(833\) −15.8589 5.77216i −0.549478 0.199994i
\(834\) 0 0
\(835\) −10.9593 + 62.1531i −0.379261 + 2.15090i
\(836\) 0 0
\(837\) −9.62268 16.6670i −0.332609 0.576095i
\(838\) 0 0
\(839\) −27.4460 + 9.98953i −0.947541 + 0.344877i −0.769139 0.639081i \(-0.779315\pi\)
−0.178402 + 0.983958i \(0.557093\pi\)
\(840\) 0 0
\(841\) −35.2502 61.0551i −1.21552 2.10535i
\(842\) 0 0
\(843\) 17.7892 30.8118i 0.612692 1.06121i
\(844\) 0 0
\(845\) −38.6876 −1.33089
\(846\) 0 0
\(847\) −9.41404 + 7.89932i −0.323470 + 0.271424i
\(848\) 0 0
\(849\) −44.8491 + 16.3237i −1.53922 + 0.560229i
\(850\) 0 0
\(851\) 20.2678 11.9880i 0.694771 0.410943i
\(852\) 0 0
\(853\) 45.7675 16.6580i 1.56705 0.570360i 0.594713 0.803938i \(-0.297266\pi\)
0.972338 + 0.233578i \(0.0750435\pi\)
\(854\) 0 0
\(855\) −49.2168 + 41.2978i −1.68318 + 1.41236i
\(856\) 0 0
\(857\) −34.9333 −1.19330 −0.596649 0.802502i \(-0.703502\pi\)
−0.596649 + 0.802502i \(0.703502\pi\)
\(858\) 0 0
\(859\) 15.7999 27.3663i 0.539086 0.933725i −0.459867 0.887988i \(-0.652103\pi\)
0.998954 0.0457372i \(-0.0145637\pi\)
\(860\) 0 0
\(861\) −22.5806 39.1107i −0.769544 1.33289i
\(862\) 0 0
\(863\) 14.2520 5.18730i 0.485144 0.176578i −0.0878564 0.996133i \(-0.528002\pi\)
0.573000 + 0.819555i \(0.305779\pi\)
\(864\) 0 0
\(865\) 22.5013 + 38.9733i 0.765066 + 1.32513i
\(866\) 0 0
\(867\) 6.81348 38.6412i 0.231398 1.31232i
\(868\) 0 0
\(869\) 47.4809 + 17.2816i 1.61068 + 0.586240i
\(870\) 0 0
\(871\) −3.02040 2.53442i −0.102342 0.0858755i
\(872\) 0 0
\(873\) −12.0389 + 68.2757i −0.407453 + 2.31078i
\(874\) 0 0
\(875\) 1.91178 1.60418i 0.0646301 0.0542311i
\(876\) 0 0
\(877\) 6.26878 10.8579i 0.211682 0.366644i −0.740559 0.671991i \(-0.765439\pi\)
0.952241 + 0.305348i \(0.0987726\pi\)
\(878\) 0 0
\(879\) −34.0554 28.5758i −1.14866 0.963839i
\(880\) 0 0
\(881\) 5.08647 + 28.8468i 0.171368 + 0.971874i 0.942253 + 0.334901i \(0.108703\pi\)
−0.770886 + 0.636973i \(0.780186\pi\)
\(882\) 0 0
\(883\) 6.85987 + 38.9043i 0.230853 + 1.30923i 0.851174 + 0.524884i \(0.175891\pi\)
−0.620320 + 0.784348i \(0.712997\pi\)
\(884\) 0 0
\(885\) 49.8553 + 18.1458i 1.67587 + 0.609966i
\(886\) 0 0
\(887\) −6.04928 −0.203115 −0.101557 0.994830i \(-0.532383\pi\)
−0.101557 + 0.994830i \(0.532383\pi\)
\(888\) 0 0
\(889\) 17.3114 0.580607
\(890\) 0 0
\(891\) 25.3428 + 9.22403i 0.849016 + 0.309017i
\(892\) 0 0
\(893\) −0.274150 1.55478i −0.00917409 0.0520289i
\(894\) 0 0
\(895\) −2.44189 13.8486i −0.0816234 0.462909i
\(896\) 0 0
\(897\) −43.7710 36.7282i −1.46147 1.22632i
\(898\) 0 0
\(899\) −11.9835 + 20.7560i −0.399671 + 0.692250i
\(900\) 0 0
\(901\) −9.48914 + 7.96233i −0.316129 + 0.265264i
\(902\) 0 0
\(903\) −7.86288 + 44.5926i −0.261660 + 1.48395i
\(904\) 0 0
\(905\) 1.03155 + 0.865574i 0.0342899 + 0.0287727i
\(906\) 0 0
\(907\) −8.25040 3.00290i −0.273950 0.0997096i 0.201392 0.979511i \(-0.435453\pi\)
−0.475342 + 0.879801i \(0.657676\pi\)
\(908\) 0 0
\(909\) −5.78288 + 32.7964i −0.191806 + 1.08779i
\(910\) 0 0
\(911\) 9.45213 + 16.3716i 0.313163 + 0.542414i 0.979045 0.203643i \(-0.0652780\pi\)
−0.665882 + 0.746057i \(0.731945\pi\)
\(912\) 0 0
\(913\) −1.55890 + 0.567392i −0.0515920 + 0.0187779i
\(914\) 0 0
\(915\) −30.8508 53.4352i −1.01990 1.76651i
\(916\) 0 0
\(917\) 7.57338 13.1175i 0.250095 0.433177i
\(918\) 0 0
\(919\) −20.4702 −0.675248 −0.337624 0.941281i \(-0.609623\pi\)
−0.337624 + 0.941281i \(0.609623\pi\)
\(920\) 0 0
\(921\) 42.9621 36.0495i 1.41565 1.18787i
\(922\) 0 0
\(923\) −7.64845 + 2.78381i −0.251752 + 0.0916302i
\(924\) 0 0
\(925\) 11.5381 + 30.6911i 0.379371 + 1.00912i
\(926\) 0 0
\(927\) 71.1048 25.8800i 2.33539 0.850012i
\(928\) 0 0
\(929\) 31.3579 26.3124i 1.02882 0.863282i 0.0381094 0.999274i \(-0.487866\pi\)
0.990710 + 0.135992i \(0.0434220\pi\)
\(930\) 0 0
\(931\) −10.6970 −0.350580
\(932\) 0 0
\(933\) 20.0793 34.7784i 0.657368 1.13859i
\(934\) 0 0
\(935\) 36.7848 + 63.7131i 1.20299 + 2.08364i
\(936\) 0 0
\(937\) −42.5162 + 15.4746i −1.38894 + 0.505534i −0.924877 0.380266i \(-0.875832\pi\)
−0.464066 + 0.885800i \(0.653610\pi\)
\(938\) 0 0
\(939\) 29.0822 + 50.3718i 0.949060 + 1.64382i
\(940\) 0 0
\(941\) 2.90384 16.4685i 0.0946626 0.536858i −0.900188 0.435502i \(-0.856571\pi\)
0.994850 0.101356i \(-0.0323181\pi\)
\(942\) 0 0
\(943\) −28.0611 10.2134i −0.913794 0.332594i
\(944\) 0 0
\(945\) 39.2278 + 32.9160i 1.27608 + 1.07076i
\(946\) 0 0
\(947\) −6.44292 + 36.5396i −0.209367 + 1.18738i 0.681052 + 0.732235i \(0.261523\pi\)
−0.890419 + 0.455142i \(0.849588\pi\)
\(948\) 0 0
\(949\) 27.5569 23.1230i 0.894534 0.750603i
\(950\) 0 0
\(951\) 7.08441 12.2706i 0.229728 0.397900i
\(952\) 0 0
\(953\) −13.3130 11.1709i −0.431250 0.361862i 0.401173 0.916002i \(-0.368603\pi\)
−0.832423 + 0.554141i \(0.813047\pi\)
\(954\) 0 0
\(955\) 8.35041 + 47.3575i 0.270213 + 1.53245i
\(956\) 0 0
\(957\) −21.2029 120.248i −0.685392 3.88705i
\(958\) 0 0
\(959\) −29.0497 10.5732i −0.938062 0.341427i
\(960\) 0 0
\(961\) −25.2270 −0.813775
\(962\) 0 0
\(963\) −100.396 −3.23522
\(964\) 0 0
\(965\) 25.2492 + 9.18996i 0.812801 + 0.295835i
\(966\) 0 0
\(967\) −2.86578 16.2526i −0.0921572 0.522650i −0.995581 0.0939019i \(-0.970066\pi\)
0.903424 0.428748i \(-0.141045\pi\)
\(968\) 0 0
\(969\) −9.84181 55.8157i −0.316165 1.79306i
\(970\) 0 0
\(971\) −36.9213 30.9806i −1.18486 0.994216i −0.999934 0.0114637i \(-0.996351\pi\)
−0.184926 0.982752i \(-0.559205\pi\)
\(972\) 0 0
\(973\) −18.9180 + 32.7669i −0.606483 + 1.05046i
\(974\) 0 0
\(975\) 60.9476 51.1411i 1.95188 1.63783i
\(976\) 0 0
\(977\) 10.4892 59.4873i 0.335580 1.90317i −0.0858534 0.996308i \(-0.527362\pi\)
0.421433 0.906859i \(-0.361527\pi\)
\(978\) 0 0
\(979\) −26.5050 22.2403i −0.847102 0.710803i
\(980\) 0 0
\(981\) 12.9414 + 4.71030i 0.413188 + 0.150388i
\(982\) 0 0
\(983\) 7.35928 41.7365i 0.234724 1.33119i −0.608469 0.793578i \(-0.708216\pi\)
0.843193 0.537611i \(-0.180673\pi\)
\(984\) 0 0
\(985\) 36.0205 + 62.3894i 1.14771 + 1.98789i
\(986\) 0 0
\(987\) −2.48976 + 0.906198i −0.0792499 + 0.0288446i
\(988\) 0 0
\(989\) 14.9704 + 25.9296i 0.476032 + 0.824512i
\(990\) 0 0
\(991\) 19.3921 33.5881i 0.616010 1.06696i −0.374196 0.927350i \(-0.622081\pi\)
0.990206 0.139612i \(-0.0445854\pi\)
\(992\) 0 0
\(993\) −97.2975 −3.08764
\(994\) 0 0
\(995\) 38.8994 32.6405i 1.23319 1.03477i
\(996\) 0 0
\(997\) −28.2992 + 10.3001i −0.896243 + 0.326206i −0.748746 0.662857i \(-0.769344\pi\)
−0.147497 + 0.989063i \(0.547122\pi\)
\(998\) 0 0
\(999\) −41.9358 + 24.8041i −1.32679 + 0.784768i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.bc.g.81.1 30
4.3 odd 2 296.2.u.b.81.5 30
37.16 even 9 inner 592.2.bc.g.497.1 30
148.127 odd 18 296.2.u.b.201.5 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.u.b.81.5 30 4.3 odd 2
296.2.u.b.201.5 yes 30 148.127 odd 18
592.2.bc.g.81.1 30 1.1 even 1 trivial
592.2.bc.g.497.1 30 37.16 even 9 inner