Properties

Label 592.2.i.c.417.1
Level $592$
Weight $2$
Character 592.417
Analytic conductor $4.727$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,2,Mod(417,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.417");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 37)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 417.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 592.417
Dual form 592.2.i.c.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(1.00000 + 1.73205i) q^{7} +(1.50000 - 2.59808i) q^{9} +2.00000 q^{11} +(1.00000 + 1.73205i) q^{13} +(-1.50000 + 2.59808i) q^{17} +(-3.00000 - 5.19615i) q^{19} +4.00000 q^{23} +(2.00000 - 3.46410i) q^{25} +9.00000 q^{29} +10.0000 q^{31} +(1.00000 - 1.73205i) q^{35} +(-5.50000 - 2.59808i) q^{37} +(4.50000 + 7.79423i) q^{41} -2.00000 q^{43} -3.00000 q^{45} -6.00000 q^{47} +(1.50000 - 2.59808i) q^{49} +(1.00000 - 1.73205i) q^{53} +(-1.00000 - 1.73205i) q^{55} +(-2.00000 + 3.46410i) q^{59} +(-0.500000 - 0.866025i) q^{61} +6.00000 q^{63} +(1.00000 - 1.73205i) q^{65} +(-5.00000 - 8.66025i) q^{67} +(3.00000 + 5.19615i) q^{71} -10.0000 q^{73} +(2.00000 + 3.46410i) q^{77} +(5.00000 + 8.66025i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(-6.00000 + 10.3923i) q^{83} +3.00000 q^{85} +(-3.50000 + 6.06218i) q^{89} +(-2.00000 + 3.46410i) q^{91} +(-3.00000 + 5.19615i) q^{95} +7.00000 q^{97} +(3.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} + 2 q^{7} + 3 q^{9} + 4 q^{11} + 2 q^{13} - 3 q^{17} - 6 q^{19} + 8 q^{23} + 4 q^{25} + 18 q^{29} + 20 q^{31} + 2 q^{35} - 11 q^{37} + 9 q^{41} - 4 q^{43} - 6 q^{45} - 12 q^{47} + 3 q^{49}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) 1.00000 + 1.73205i 0.377964 + 0.654654i 0.990766 0.135583i \(-0.0432908\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) −3.00000 5.19615i −0.688247 1.19208i −0.972404 0.233301i \(-0.925047\pi\)
0.284157 0.958778i \(-0.408286\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 1.73205i 0.169031 0.292770i
\(36\) 0 0
\(37\) −5.50000 2.59808i −0.904194 0.427121i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 + 7.79423i 0.702782 + 1.21725i 0.967486 + 0.252924i \(0.0813924\pi\)
−0.264704 + 0.964330i \(0.585274\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00000 1.73205i 0.137361 0.237915i −0.789136 0.614218i \(-0.789471\pi\)
0.926497 + 0.376303i \(0.122805\pi\)
\(54\) 0 0
\(55\) −1.00000 1.73205i −0.134840 0.233550i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 + 3.46410i 0.227921 + 0.394771i
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) −6.00000 + 10.3923i −0.658586 + 1.14070i 0.322396 + 0.946605i \(0.395512\pi\)
−0.980982 + 0.194099i \(0.937822\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.50000 + 6.06218i −0.370999 + 0.642590i −0.989720 0.143022i \(-0.954318\pi\)
0.618720 + 0.785611i \(0.287651\pi\)
\(90\) 0 0
\(91\) −2.00000 + 3.46410i −0.209657 + 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 3.00000 5.19615i 0.301511 0.522233i
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 15.5885i −0.870063 1.50699i −0.861931 0.507026i \(-0.830745\pi\)
−0.00813215 0.999967i \(-0.502589\pi\)
\(108\) 0 0
\(109\) −2.50000 + 4.33013i −0.239457 + 0.414751i −0.960558 0.278078i \(-0.910303\pi\)
0.721102 + 0.692829i \(0.243636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) 0 0
\(117\) 6.00000 0.554700
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −4.00000 + 6.92820i −0.354943 + 0.614779i −0.987108 0.160055i \(-0.948833\pi\)
0.632166 + 0.774833i \(0.282166\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 6.00000 10.3923i 0.520266 0.901127i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000 + 3.46410i 0.167248 + 0.289683i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.0000 −0.901155 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(150\) 0 0
\(151\) 2.00000 + 3.46410i 0.162758 + 0.281905i 0.935857 0.352381i \(-0.114628\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) 0 0
\(153\) 4.50000 + 7.79423i 0.363803 + 0.630126i
\(154\) 0 0
\(155\) −5.00000 8.66025i −0.401610 0.695608i
\(156\) 0 0
\(157\) −8.50000 + 14.7224i −0.678374 + 1.17498i 0.297097 + 0.954847i \(0.403982\pi\)
−0.975470 + 0.220131i \(0.929352\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 + 6.92820i 0.315244 + 0.546019i
\(162\) 0 0
\(163\) −3.00000 + 5.19615i −0.234978 + 0.406994i −0.959266 0.282503i \(-0.908835\pi\)
0.724288 + 0.689497i \(0.242169\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i \(-0.0129748\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) −18.0000 −1.37649
\(172\) 0 0
\(173\) −10.5000 + 18.1865i −0.798300 + 1.38270i 0.122422 + 0.992478i \(0.460934\pi\)
−0.920722 + 0.390218i \(0.872399\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −2.50000 4.33013i −0.185824 0.321856i 0.758030 0.652219i \(-0.226162\pi\)
−0.943854 + 0.330364i \(0.892829\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.500000 + 6.06218i 0.0367607 + 0.445700i
\(186\) 0 0
\(187\) −3.00000 + 5.19615i −0.219382 + 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 19.0000 1.36765 0.683825 0.729646i \(-0.260315\pi\)
0.683825 + 0.729646i \(0.260315\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.50000 12.9904i 0.534353 0.925526i −0.464841 0.885394i \(-0.653889\pi\)
0.999194 0.0401324i \(-0.0127780\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.00000 + 15.5885i 0.631676 + 1.09410i
\(204\) 0 0
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) 0 0
\(207\) 6.00000 10.3923i 0.417029 0.722315i
\(208\) 0 0
\(209\) −6.00000 10.3923i −0.415029 0.718851i
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.00000 + 1.73205i 0.0681994 + 0.118125i
\(216\) 0 0
\(217\) 10.0000 + 17.3205i 0.678844 + 1.17579i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −28.0000 −1.87502 −0.937509 0.347960i \(-0.886874\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 0 0
\(225\) −6.00000 10.3923i −0.400000 0.692820i
\(226\) 0 0
\(227\) 7.00000 + 12.1244i 0.464606 + 0.804722i 0.999184 0.0403978i \(-0.0128625\pi\)
−0.534577 + 0.845120i \(0.679529\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 0.196537 0.0982683 0.995160i \(-0.468670\pi\)
0.0982683 + 0.995160i \(0.468670\pi\)
\(234\) 0 0
\(235\) 3.00000 + 5.19615i 0.195698 + 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.00000 5.19615i 0.194054 0.336111i −0.752536 0.658551i \(-0.771170\pi\)
0.946590 + 0.322440i \(0.104503\pi\)
\(240\) 0 0
\(241\) −7.00000 12.1244i −0.450910 0.780998i 0.547533 0.836784i \(-0.315567\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 6.00000 10.3923i 0.381771 0.661247i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.5000 18.1865i 0.654972 1.13444i −0.326929 0.945049i \(-0.606014\pi\)
0.981901 0.189396i \(-0.0606529\pi\)
\(258\) 0 0
\(259\) −1.00000 12.1244i −0.0621370 0.753371i
\(260\) 0 0
\(261\) 13.5000 23.3827i 0.835629 1.44735i
\(262\) 0 0
\(263\) 2.00000 + 3.46410i 0.123325 + 0.213606i 0.921077 0.389380i \(-0.127311\pi\)
−0.797752 + 0.602986i \(0.793977\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 7.00000 12.1244i 0.425220 0.736502i −0.571221 0.820796i \(-0.693530\pi\)
0.996441 + 0.0842940i \(0.0268635\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00000 6.92820i 0.241209 0.417786i
\(276\) 0 0
\(277\) 1.50000 + 2.59808i 0.0901263 + 0.156103i 0.907564 0.419914i \(-0.137940\pi\)
−0.817438 + 0.576017i \(0.804606\pi\)
\(278\) 0 0
\(279\) 15.0000 25.9808i 0.898027 1.55543i
\(280\) 0 0
\(281\) −13.5000 + 23.3827i −0.805342 + 1.39489i 0.110717 + 0.993852i \(0.464685\pi\)
−0.916060 + 0.401042i \(0.868648\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 + 15.5885i −0.531253 + 0.920158i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.5000 + 19.9186i 0.671837 + 1.16366i 0.977383 + 0.211479i \(0.0678279\pi\)
−0.305545 + 0.952177i \(0.598839\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000 + 6.92820i 0.231326 + 0.400668i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.500000 + 0.866025i −0.0286299 + 0.0495885i
\(306\) 0 0
\(307\) 14.0000 0.799022 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 0 0
\(313\) −3.50000 + 6.06218i −0.197832 + 0.342655i −0.947825 0.318791i \(-0.896723\pi\)
0.749993 + 0.661445i \(0.230057\pi\)
\(314\) 0 0
\(315\) −3.00000 5.19615i −0.169031 0.292770i
\(316\) 0 0
\(317\) −0.500000 + 0.866025i −0.0280828 + 0.0486408i −0.879725 0.475482i \(-0.842274\pi\)
0.851642 + 0.524123i \(0.175607\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.0000 1.00155
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) −15.0000 + 10.3923i −0.821995 + 0.569495i
\(334\) 0 0
\(335\) −5.00000 + 8.66025i −0.273179 + 0.473160i
\(336\) 0 0
\(337\) 0.500000 + 0.866025i 0.0272367 + 0.0471754i 0.879322 0.476227i \(-0.157996\pi\)
−0.852086 + 0.523402i \(0.824663\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.0000 0.858925 0.429463 0.903085i \(-0.358703\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(348\) 0 0
\(349\) −4.50000 + 7.79423i −0.240879 + 0.417215i −0.960965 0.276670i \(-0.910769\pi\)
0.720086 + 0.693885i \(0.244103\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.5000 21.6506i 0.665308 1.15235i −0.313894 0.949458i \(-0.601634\pi\)
0.979202 0.202889i \(-0.0650330\pi\)
\(354\) 0 0
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −8.50000 + 14.7224i −0.447368 + 0.774865i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.00000 + 8.66025i 0.261712 + 0.453298i
\(366\) 0 0
\(367\) −14.0000 24.2487i −0.730794 1.26577i −0.956544 0.291587i \(-0.905817\pi\)
0.225750 0.974185i \(-0.427517\pi\)
\(368\) 0 0
\(369\) 27.0000 1.40556
\(370\) 0 0
\(371\) 4.00000 0.207670
\(372\) 0 0
\(373\) −8.50000 14.7224i −0.440113 0.762299i 0.557584 0.830120i \(-0.311728\pi\)
−0.997697 + 0.0678218i \(0.978395\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000 + 15.5885i 0.463524 + 0.802846i
\(378\) 0 0
\(379\) 3.00000 5.19615i 0.154100 0.266908i −0.778631 0.627482i \(-0.784086\pi\)
0.932731 + 0.360573i \(0.117419\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.0000 29.4449i −0.868659 1.50456i −0.863367 0.504576i \(-0.831649\pi\)
−0.00529229 0.999986i \(-0.501685\pi\)
\(384\) 0 0
\(385\) 2.00000 3.46410i 0.101929 0.176547i
\(386\) 0 0
\(387\) −3.00000 + 5.19615i −0.152499 + 0.264135i
\(388\) 0 0
\(389\) −12.5000 21.6506i −0.633775 1.09773i −0.986773 0.162107i \(-0.948171\pi\)
0.352998 0.935624i \(-0.385162\pi\)
\(390\) 0 0
\(391\) −6.00000 + 10.3923i −0.303433 + 0.525561i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.00000 8.66025i 0.251577 0.435745i
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 10.0000 + 17.3205i 0.498135 + 0.862796i
\(404\) 0 0
\(405\) −4.50000 + 7.79423i −0.223607 + 0.387298i
\(406\) 0 0
\(407\) −11.0000 5.19615i −0.545250 0.257564i
\(408\) 0 0
\(409\) 12.5000 21.6506i 0.618085 1.07056i −0.371750 0.928333i \(-0.621242\pi\)
0.989835 0.142222i \(-0.0454247\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.0000 + 22.5167i −0.635092 + 1.10001i 0.351404 + 0.936224i \(0.385704\pi\)
−0.986496 + 0.163787i \(0.947629\pi\)
\(420\) 0 0
\(421\) 9.00000 0.438633 0.219317 0.975654i \(-0.429617\pi\)
0.219317 + 0.975654i \(0.429617\pi\)
\(422\) 0 0
\(423\) −9.00000 + 15.5885i −0.437595 + 0.757937i
\(424\) 0 0
\(425\) 6.00000 + 10.3923i 0.291043 + 0.504101i
\(426\) 0 0
\(427\) 1.00000 1.73205i 0.0483934 0.0838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 0 0
\(433\) −21.0000 −1.00920 −0.504598 0.863355i \(-0.668359\pi\)
−0.504598 + 0.863355i \(0.668359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.0000 20.7846i −0.574038 0.994263i
\(438\) 0 0
\(439\) −10.0000 17.3205i −0.477274 0.826663i 0.522387 0.852709i \(-0.325042\pi\)
−0.999661 + 0.0260459i \(0.991708\pi\)
\(440\) 0 0
\(441\) −4.50000 7.79423i −0.214286 0.371154i
\(442\) 0 0
\(443\) 32.0000 1.52037 0.760183 0.649709i \(-0.225109\pi\)
0.760183 + 0.649709i \(0.225109\pi\)
\(444\) 0 0
\(445\) 7.00000 0.331832
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.00000 5.19615i −0.141579 0.245222i 0.786513 0.617574i \(-0.211885\pi\)
−0.928091 + 0.372353i \(0.878551\pi\)
\(450\) 0 0
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −1.50000 2.59808i −0.0701670 0.121533i 0.828807 0.559534i \(-0.189020\pi\)
−0.898974 + 0.438001i \(0.855687\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.0000 + 25.9808i −0.698620 + 1.21004i 0.270326 + 0.962769i \(0.412869\pi\)
−0.968945 + 0.247276i \(0.920465\pi\)
\(462\) 0 0
\(463\) −11.0000 19.0526i −0.511213 0.885448i −0.999916 0.0129968i \(-0.995863\pi\)
0.488702 0.872451i \(-0.337470\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 10.0000 17.3205i 0.461757 0.799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 0 0
\(477\) −3.00000 5.19615i −0.137361 0.237915i
\(478\) 0 0
\(479\) −2.00000 + 3.46410i −0.0913823 + 0.158279i −0.908093 0.418769i \(-0.862462\pi\)
0.816711 + 0.577047i \(0.195795\pi\)
\(480\) 0 0
\(481\) −1.00000 12.1244i −0.0455961 0.552823i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.50000 6.06218i −0.158927 0.275269i
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) −13.5000 + 23.3827i −0.608009 + 1.05310i
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) −6.00000 + 10.3923i −0.269137 + 0.466159i
\(498\) 0 0
\(499\) −9.00000 15.5885i −0.402895 0.697835i 0.591179 0.806541i \(-0.298663\pi\)
−0.994074 + 0.108705i \(0.965329\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −13.0000 + 22.5167i −0.579641 + 1.00397i 0.415879 + 0.909420i \(0.363474\pi\)
−0.995520 + 0.0945483i \(0.969859\pi\)
\(504\) 0 0
\(505\) 1.50000 + 2.59808i 0.0667491 + 0.115613i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.50000 6.06218i 0.155135 0.268701i −0.777973 0.628297i \(-0.783752\pi\)
0.933108 + 0.359596i \(0.117085\pi\)
\(510\) 0 0
\(511\) −10.0000 17.3205i −0.442374 0.766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.00000 + 5.19615i 0.132196 + 0.228970i
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0000 + 36.3731i 0.920027 + 1.59353i 0.799370 + 0.600839i \(0.205167\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(522\) 0 0
\(523\) 4.00000 + 6.92820i 0.174908 + 0.302949i 0.940129 0.340818i \(-0.110704\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.0000 + 25.9808i −0.653410 + 1.13174i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 6.00000 + 10.3923i 0.260378 + 0.450988i
\(532\) 0 0
\(533\) −9.00000 + 15.5885i −0.389833 + 0.675211i
\(534\) 0 0
\(535\) −9.00000 + 15.5885i −0.389104 + 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 5.19615i 0.129219 0.223814i
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.00000 0.214176
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 0 0
\(549\) −3.00000 −0.128037
\(550\) 0 0
\(551\) −27.0000 46.7654i −1.15024 1.99227i
\(552\) 0 0
\(553\) −10.0000 + 17.3205i −0.425243 + 0.736543i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.5000 + 28.5788i −0.699127 + 1.21092i 0.269642 + 0.962961i \(0.413095\pi\)
−0.968769 + 0.247964i \(0.920239\pi\)
\(558\) 0 0
\(559\) −2.00000 3.46410i −0.0845910 0.146516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) 9.00000 15.5885i 0.377964 0.654654i
\(568\) 0 0
\(569\) 3.00000 0.125767 0.0628833 0.998021i \(-0.479970\pi\)
0.0628833 + 0.998021i \(0.479970\pi\)
\(570\) 0 0
\(571\) −22.0000 + 38.1051i −0.920671 + 1.59465i −0.122292 + 0.992494i \(0.539025\pi\)
−0.798379 + 0.602155i \(0.794309\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 13.8564i 0.333623 0.577852i
\(576\) 0 0
\(577\) 9.00000 15.5885i 0.374675 0.648956i −0.615603 0.788056i \(-0.711088\pi\)
0.990278 + 0.139100i \(0.0444210\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) 2.00000 3.46410i 0.0828315 0.143468i
\(584\) 0 0
\(585\) −3.00000 5.19615i −0.124035 0.214834i
\(586\) 0 0
\(587\) 20.0000 + 34.6410i 0.825488 + 1.42979i 0.901546 + 0.432684i \(0.142434\pi\)
−0.0760572 + 0.997103i \(0.524233\pi\)
\(588\) 0 0
\(589\) −30.0000 51.9615i −1.23613 2.14104i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −29.0000 −1.19089 −0.595444 0.803397i \(-0.703024\pi\)
−0.595444 + 0.803397i \(0.703024\pi\)
\(594\) 0 0
\(595\) 3.00000 + 5.19615i 0.122988 + 0.213021i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.0000 32.9090i −0.776319 1.34462i −0.934050 0.357142i \(-0.883751\pi\)
0.157731 0.987482i \(-0.449582\pi\)
\(600\) 0 0
\(601\) −11.5000 + 19.9186i −0.469095 + 0.812496i −0.999376 0.0353259i \(-0.988753\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) −30.0000 −1.22169
\(604\) 0 0
\(605\) 3.50000 + 6.06218i 0.142295 + 0.246463i
\(606\) 0 0
\(607\) −7.00000 + 12.1244i −0.284121 + 0.492112i −0.972396 0.233338i \(-0.925035\pi\)
0.688274 + 0.725450i \(0.258368\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 10.3923i −0.242734 0.420428i
\(612\) 0 0
\(613\) −16.5000 + 28.5788i −0.666429 + 1.15429i 0.312467 + 0.949929i \(0.398845\pi\)
−0.978896 + 0.204360i \(0.934489\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.0000 19.0526i 0.442843 0.767027i −0.555056 0.831813i \(-0.687303\pi\)
0.997899 + 0.0647859i \(0.0206365\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.0000 −0.560898
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.0000 10.3923i 0.598089 0.414368i
\(630\) 0 0
\(631\) 10.0000 17.3205i 0.398094 0.689519i −0.595397 0.803432i \(-0.703005\pi\)
0.993491 + 0.113913i \(0.0363385\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 18.0000 0.712069
\(640\) 0 0
\(641\) 18.5000 32.0429i 0.730706 1.26562i −0.225876 0.974156i \(-0.572524\pi\)
0.956582 0.291464i \(-0.0941423\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.00000 12.1244i −0.275198 0.476658i 0.694987 0.719023i \(-0.255410\pi\)
−0.970185 + 0.242365i \(0.922077\pi\)
\(648\) 0 0
\(649\) −4.00000 + 6.92820i −0.157014 + 0.271956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.5000 + 33.7750i 0.763094 + 1.32172i 0.941248 + 0.337715i \(0.109654\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −15.0000 + 25.9808i −0.585206 + 1.01361i
\(658\) 0 0
\(659\) −18.0000 31.1769i −0.701180 1.21448i −0.968052 0.250748i \(-0.919323\pi\)
0.266872 0.963732i \(-0.414010\pi\)
\(660\) 0 0
\(661\) 3.50000 + 6.06218i 0.136134 + 0.235791i 0.926030 0.377450i \(-0.123199\pi\)
−0.789896 + 0.613241i \(0.789865\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.00000 1.73205i −0.0386046 0.0668651i
\(672\) 0 0
\(673\) −3.00000 5.19615i −0.115642 0.200297i 0.802395 0.596794i \(-0.203559\pi\)
−0.918036 + 0.396497i \(0.870226\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.0000 0.499631 0.249815 0.968294i \(-0.419630\pi\)
0.249815 + 0.968294i \(0.419630\pi\)
\(678\) 0 0
\(679\) 7.00000 + 12.1244i 0.268635 + 0.465290i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.0000 + 25.9808i −0.573959 + 0.994126i 0.422195 + 0.906505i \(0.361260\pi\)
−0.996154 + 0.0876211i \(0.972074\pi\)
\(684\) 0 0
\(685\) 4.50000 + 7.79423i 0.171936 + 0.297802i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) −7.00000 + 12.1244i −0.266293 + 0.461232i −0.967901 0.251330i \(-0.919132\pi\)
0.701609 + 0.712562i \(0.252465\pi\)
\(692\) 0 0
\(693\) 12.0000 0.455842
\(694\) 0 0
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3.00000 + 5.19615i −0.113308 + 0.196256i −0.917102 0.398652i \(-0.869478\pi\)
0.803794 + 0.594908i \(0.202811\pi\)
\(702\) 0 0
\(703\) 3.00000 + 36.3731i 0.113147 + 1.37184i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.00000 5.19615i −0.112827 0.195421i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 30.0000 1.12509
\(712\) 0 0
\(713\) 40.0000 1.49801
\(714\) 0 0
\(715\) 2.00000 3.46410i 0.0747958 0.129550i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) −6.00000 10.3923i −0.223452 0.387030i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.0000 31.1769i 0.668503 1.15788i
\(726\) 0 0
\(727\) 20.0000 + 34.6410i 0.741759 + 1.28476i 0.951694 + 0.307049i \(0.0993415\pi\)
−0.209935 + 0.977715i \(0.567325\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 3.00000 5.19615i 0.110959 0.192187i
\(732\) 0 0
\(733\) −11.0000 19.0526i −0.406294 0.703722i 0.588177 0.808732i \(-0.299846\pi\)
−0.994471 + 0.105010i \(0.966513\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.0000 17.3205i −0.368355 0.638009i
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i \(-0.131563\pi\)
−0.805735 + 0.592277i \(0.798229\pi\)
\(744\) 0 0
\(745\) 5.50000 + 9.52628i 0.201504 + 0.349016i
\(746\) 0 0
\(747\) 18.0000 + 31.1769i 0.658586 + 1.14070i
\(748\) 0 0
\(749\) 18.0000 31.1769i 0.657706 1.13918i
\(750\) 0 0
\(751\) −10.0000 −0.364905 −0.182453 0.983215i \(-0.558404\pi\)
−0.182453 + 0.983215i \(0.558404\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.00000 3.46410i 0.0727875 0.126072i
\(756\) 0 0
\(757\) −6.50000 + 11.2583i −0.236247 + 0.409191i −0.959634 0.281251i \(-0.909251\pi\)
0.723388 + 0.690442i \(0.242584\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.50000 + 6.06218i −0.126875 + 0.219754i −0.922464 0.386082i \(-0.873828\pi\)
0.795589 + 0.605836i \(0.207161\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 4.50000 7.79423i 0.162698 0.281801i
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.5000 18.1865i −0.377659 0.654124i 0.613062 0.790034i \(-0.289937\pi\)
−0.990721 + 0.135910i \(0.956604\pi\)
\(774\) 0 0
\(775\) 20.0000 34.6410i 0.718421 1.24434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.0000 46.7654i 0.967375 1.67554i
\(780\) 0 0
\(781\) 6.00000 + 10.3923i 0.214697 + 0.371866i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.0000 0.606756
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 1.00000 1.73205i 0.0355110 0.0615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.0000 22.5167i 0.460484 0.797581i −0.538501 0.842625i \(-0.681009\pi\)
0.998985 + 0.0450436i \(0.0143427\pi\)
\(798\) 0 0
\(799\) 9.00000 15.5885i 0.318397 0.551480i
\(800\) 0 0
\(801\) 10.5000 + 18.1865i 0.370999 + 0.642590i
\(802\) 0 0
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) 4.00000 6.92820i 0.140981 0.244187i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.00000 + 8.66025i 0.175791 + 0.304478i 0.940435 0.339975i \(-0.110418\pi\)
−0.764644 + 0.644453i \(0.777085\pi\)
\(810\) 0 0
\(811\) −8.00000 13.8564i −0.280918 0.486564i 0.690693 0.723148i \(-0.257306\pi\)
−0.971611 + 0.236584i \(0.923972\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.00000 0.210171
\(816\) 0 0
\(817\) 6.00000 + 10.3923i 0.209913 + 0.363581i
\(818\) 0 0
\(819\) 6.00000 + 10.3923i 0.209657 + 0.363137i
\(820\) 0 0
\(821\) −5.00000 8.66025i −0.174501 0.302245i 0.765487 0.643451i \(-0.222498\pi\)
−0.939989 + 0.341206i \(0.889165\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.00000 6.92820i −0.139094 0.240917i 0.788060 0.615598i \(-0.211086\pi\)
−0.927154 + 0.374681i \(0.877752\pi\)
\(828\) 0 0
\(829\) −19.0000 + 32.9090i −0.659897 + 1.14298i 0.320745 + 0.947166i \(0.396067\pi\)
−0.980642 + 0.195810i \(0.937266\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.50000 + 7.79423i 0.155916 + 0.270054i
\(834\) 0 0
\(835\) 6.00000 10.3923i 0.207639 0.359641i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.0000 + 34.6410i −0.690477 + 1.19594i 0.281205 + 0.959648i \(0.409266\pi\)
−0.971682 + 0.236293i \(0.924067\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) −7.00000 12.1244i −0.240523 0.416598i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −22.0000 10.3923i −0.754150 0.356244i
\(852\) 0 0
\(853\) 9.50000 16.4545i 0.325274 0.563391i −0.656294 0.754505i \(-0.727877\pi\)
0.981568 + 0.191115i \(0.0612102\pi\)
\(854\) 0 0
\(855\) 9.00000 + 15.5885i 0.307794 + 0.533114i
\(856\) 0 0
\(857\) −45.0000 −1.53717 −0.768585 0.639747i \(-0.779039\pi\)
−0.768585 + 0.639747i \(0.779039\pi\)
\(858\) 0 0
\(859\) 50.0000 1.70598 0.852989 0.521929i \(-0.174787\pi\)
0.852989 + 0.521929i \(0.174787\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.0000 31.1769i 0.612727 1.06127i −0.378052 0.925785i \(-0.623406\pi\)
0.990779 0.135490i \(-0.0432609\pi\)
\(864\) 0 0
\(865\) 21.0000 0.714021
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.0000 + 17.3205i 0.339227 + 0.587558i
\(870\) 0 0
\(871\) 10.0000 17.3205i 0.338837 0.586883i
\(872\) 0 0
\(873\) 10.5000 18.1865i 0.355371 0.615521i
\(874\) 0 0
\(875\) −9.00000 15.5885i −0.304256 0.526986i
\(876\) 0 0
\(877\) 17.0000 0.574049 0.287025 0.957923i \(-0.407334\pi\)
0.287025 + 0.957923i \(0.407334\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.50000 16.4545i −0.320063 0.554366i 0.660438 0.750881i \(-0.270371\pi\)
−0.980501 + 0.196515i \(0.937037\pi\)
\(882\) 0 0
\(883\) 24.0000 + 41.5692i 0.807664 + 1.39892i 0.914478 + 0.404637i \(0.132602\pi\)
−0.106813 + 0.994279i \(0.534065\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) −9.00000 15.5885i −0.301511 0.522233i
\(892\) 0 0
\(893\) 18.0000 + 31.1769i 0.602347 + 1.04330i
\(894\) 0 0
\(895\) 6.00000 + 10.3923i 0.200558 + 0.347376i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 90.0000 3.00167
\(900\) 0 0
\(901\) 3.00000 + 5.19615i 0.0999445 + 0.173109i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.50000 + 4.33013i −0.0831028 + 0.143938i
\(906\) 0 0
\(907\) −19.0000 32.9090i −0.630885 1.09272i −0.987371 0.158424i \(-0.949359\pi\)
0.356487 0.934300i \(-0.383975\pi\)
\(908\) 0 0
\(909\) −4.50000 + 7.79423i −0.149256 + 0.258518i
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −12.0000 + 20.7846i −0.397142 + 0.687870i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.00000 + 10.3923i −0.197492 + 0.342067i
\(924\) 0 0
\(925\) −20.0000 + 13.8564i −0.657596 + 0.455596i
\(926\) 0 0
\(927\) −9.00000 + 15.5885i −0.295599 + 0.511992i
\(928\) 0 0
\(929\) −7.50000 12.9904i −0.246067 0.426201i 0.716364 0.697727i \(-0.245805\pi\)
−0.962431 + 0.271526i \(0.912472\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) 2.50000 4.33013i 0.0816714 0.141459i −0.822297 0.569059i \(-0.807308\pi\)
0.903968 + 0.427600i \(0.140641\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.50000 + 14.7224i −0.277092 + 0.479938i −0.970661 0.240453i \(-0.922704\pi\)
0.693569 + 0.720390i \(0.256037\pi\)
\(942\) 0 0
\(943\) 18.0000 + 31.1769i 0.586161 + 1.01526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.0000 31.1769i 0.584921 1.01311i −0.409964 0.912102i \(-0.634459\pi\)
0.994885 0.101012i \(-0.0322080\pi\)
\(948\) 0 0
\(949\) −10.0000 17.3205i −0.324614 0.562247i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.0000 43.3013i 0.809829 1.40267i −0.103152 0.994666i \(-0.532893\pi\)
0.912982 0.408000i \(-0.133774\pi\)
\(954\) 0 0
\(955\) −2.00000 3.46410i −0.0647185 0.112096i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.00000 15.5885i −0.290625 0.503378i
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) −54.0000 −1.74013
\(964\) 0 0
\(965\) −9.50000 16.4545i −0.305816 0.529689i
\(966\) 0 0
\(967\) −4.00000 6.92820i −0.128631 0.222796i 0.794515 0.607244i \(-0.207725\pi\)
−0.923147 + 0.384448i \(0.874392\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.0000 24.2487i 0.449281 0.778178i −0.549058 0.835784i \(-0.685013\pi\)
0.998339 + 0.0576061i \(0.0183467\pi\)
\(972\) 0 0
\(973\) 32.0000 1.02587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.00000 1.73205i 0.0319928 0.0554132i −0.849586 0.527451i \(-0.823148\pi\)
0.881579 + 0.472037i \(0.156481\pi\)
\(978\) 0 0
\(979\) −7.00000 + 12.1244i −0.223721 + 0.387496i
\(980\) 0 0
\(981\) 7.50000 + 12.9904i 0.239457 + 0.414751i
\(982\) 0 0
\(983\) −9.00000 + 15.5885i −0.287055 + 0.497195i −0.973106 0.230360i \(-0.926010\pi\)
0.686050 + 0.727554i \(0.259343\pi\)
\(984\) 0 0
\(985\) −15.0000 −0.477940
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 30.0000 0.952981 0.476491 0.879180i \(-0.341909\pi\)
0.476491 + 0.879180i \(0.341909\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.00000 8.66025i −0.158511 0.274549i
\(996\) 0 0
\(997\) 9.00000 15.5885i 0.285033 0.493691i −0.687584 0.726105i \(-0.741329\pi\)
0.972617 + 0.232413i \(0.0746622\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.i.c.417.1 2
4.3 odd 2 37.2.c.a.10.1 2
12.11 even 2 333.2.f.a.10.1 2
20.3 even 4 925.2.o.a.824.2 4
20.7 even 4 925.2.o.a.824.1 4
20.19 odd 2 925.2.e.a.676.1 2
37.26 even 3 inner 592.2.i.c.433.1 2
148.23 even 12 1369.2.b.b.1368.1 2
148.27 odd 6 1369.2.a.b.1.1 1
148.47 odd 6 1369.2.a.d.1.1 1
148.51 even 12 1369.2.b.b.1368.2 2
148.63 odd 6 37.2.c.a.26.1 yes 2
444.359 even 6 333.2.f.a.100.1 2
740.63 even 12 925.2.o.a.174.1 4
740.359 odd 6 925.2.e.a.26.1 2
740.507 even 12 925.2.o.a.174.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
37.2.c.a.10.1 2 4.3 odd 2
37.2.c.a.26.1 yes 2 148.63 odd 6
333.2.f.a.10.1 2 12.11 even 2
333.2.f.a.100.1 2 444.359 even 6
592.2.i.c.417.1 2 1.1 even 1 trivial
592.2.i.c.433.1 2 37.26 even 3 inner
925.2.e.a.26.1 2 740.359 odd 6
925.2.e.a.676.1 2 20.19 odd 2
925.2.o.a.174.1 4 740.63 even 12
925.2.o.a.174.2 4 740.507 even 12
925.2.o.a.824.1 4 20.7 even 4
925.2.o.a.824.2 4 20.3 even 4
1369.2.a.b.1.1 1 148.27 odd 6
1369.2.a.d.1.1 1 148.47 odd 6
1369.2.b.b.1368.1 2 148.23 even 12
1369.2.b.b.1368.2 2 148.51 even 12