Properties

Label 5994.2.a.ba.1.2
Level $5994$
Weight $2$
Character 5994.1
Self dual yes
Analytic conductor $47.862$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5994,2,Mod(1,5994)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5994, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5994.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5994 = 2 \cdot 3^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5994.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.8623309716\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 26x^{8} + 49x^{7} + 236x^{6} - 420x^{5} - 860x^{4} + 1461x^{3} + 993x^{2} - 1638x + 99 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 666)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.14737\) of defining polynomial
Character \(\chi\) \(=\) 5994.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.49123 q^{5} +2.86107 q^{7} -1.00000 q^{8} +3.49123 q^{10} +5.43746 q^{11} +3.62848 q^{13} -2.86107 q^{14} +1.00000 q^{16} -4.84071 q^{17} +7.31418 q^{19} -3.49123 q^{20} -5.43746 q^{22} +6.69512 q^{23} +7.18868 q^{25} -3.62848 q^{26} +2.86107 q^{28} +5.81232 q^{29} +8.96928 q^{31} -1.00000 q^{32} +4.84071 q^{34} -9.98865 q^{35} -1.00000 q^{37} -7.31418 q^{38} +3.49123 q^{40} +0.660400 q^{41} -5.76568 q^{43} +5.43746 q^{44} -6.69512 q^{46} +7.40907 q^{47} +1.18572 q^{49} -7.18868 q^{50} +3.62848 q^{52} -3.88952 q^{53} -18.9834 q^{55} -2.86107 q^{56} -5.81232 q^{58} -1.56553 q^{59} +8.49269 q^{61} -8.96928 q^{62} +1.00000 q^{64} -12.6679 q^{65} +0.371075 q^{67} -4.84071 q^{68} +9.98865 q^{70} +0.584961 q^{71} -11.9922 q^{73} +1.00000 q^{74} +7.31418 q^{76} +15.5570 q^{77} -4.13993 q^{79} -3.49123 q^{80} -0.660400 q^{82} -2.85366 q^{83} +16.9000 q^{85} +5.76568 q^{86} -5.43746 q^{88} +3.31264 q^{89} +10.3813 q^{91} +6.69512 q^{92} -7.40907 q^{94} -25.5355 q^{95} +12.8349 q^{97} -1.18572 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{2} + 10 q^{4} - q^{5} + q^{7} - 10 q^{8} + q^{10} - 3 q^{11} + 12 q^{13} - q^{14} + 10 q^{16} - 12 q^{17} + 24 q^{19} - q^{20} + 3 q^{22} - 3 q^{23} + 21 q^{25} - 12 q^{26} + q^{28} - 4 q^{29}+ \cdots - 35 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.49123 −1.56133 −0.780663 0.624953i \(-0.785118\pi\)
−0.780663 + 0.624953i \(0.785118\pi\)
\(6\) 0 0
\(7\) 2.86107 1.08138 0.540691 0.841221i \(-0.318163\pi\)
0.540691 + 0.841221i \(0.318163\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.49123 1.10402
\(11\) 5.43746 1.63946 0.819729 0.572752i \(-0.194124\pi\)
0.819729 + 0.572752i \(0.194124\pi\)
\(12\) 0 0
\(13\) 3.62848 1.00636 0.503180 0.864182i \(-0.332163\pi\)
0.503180 + 0.864182i \(0.332163\pi\)
\(14\) −2.86107 −0.764653
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.84071 −1.17404 −0.587022 0.809571i \(-0.699700\pi\)
−0.587022 + 0.809571i \(0.699700\pi\)
\(18\) 0 0
\(19\) 7.31418 1.67799 0.838994 0.544140i \(-0.183144\pi\)
0.838994 + 0.544140i \(0.183144\pi\)
\(20\) −3.49123 −0.780663
\(21\) 0 0
\(22\) −5.43746 −1.15927
\(23\) 6.69512 1.39603 0.698014 0.716084i \(-0.254067\pi\)
0.698014 + 0.716084i \(0.254067\pi\)
\(24\) 0 0
\(25\) 7.18868 1.43774
\(26\) −3.62848 −0.711604
\(27\) 0 0
\(28\) 2.86107 0.540691
\(29\) 5.81232 1.07932 0.539660 0.841883i \(-0.318553\pi\)
0.539660 + 0.841883i \(0.318553\pi\)
\(30\) 0 0
\(31\) 8.96928 1.61093 0.805465 0.592643i \(-0.201916\pi\)
0.805465 + 0.592643i \(0.201916\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.84071 0.830174
\(35\) −9.98865 −1.68839
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) −7.31418 −1.18652
\(39\) 0 0
\(40\) 3.49123 0.552012
\(41\) 0.660400 0.103137 0.0515686 0.998669i \(-0.483578\pi\)
0.0515686 + 0.998669i \(0.483578\pi\)
\(42\) 0 0
\(43\) −5.76568 −0.879258 −0.439629 0.898179i \(-0.644890\pi\)
−0.439629 + 0.898179i \(0.644890\pi\)
\(44\) 5.43746 0.819729
\(45\) 0 0
\(46\) −6.69512 −0.987141
\(47\) 7.40907 1.08072 0.540362 0.841433i \(-0.318287\pi\)
0.540362 + 0.841433i \(0.318287\pi\)
\(48\) 0 0
\(49\) 1.18572 0.169388
\(50\) −7.18868 −1.01663
\(51\) 0 0
\(52\) 3.62848 0.503180
\(53\) −3.88952 −0.534266 −0.267133 0.963660i \(-0.586076\pi\)
−0.267133 + 0.963660i \(0.586076\pi\)
\(54\) 0 0
\(55\) −18.9834 −2.55973
\(56\) −2.86107 −0.382326
\(57\) 0 0
\(58\) −5.81232 −0.763195
\(59\) −1.56553 −0.203815 −0.101907 0.994794i \(-0.532495\pi\)
−0.101907 + 0.994794i \(0.532495\pi\)
\(60\) 0 0
\(61\) 8.49269 1.08738 0.543689 0.839287i \(-0.317027\pi\)
0.543689 + 0.839287i \(0.317027\pi\)
\(62\) −8.96928 −1.13910
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −12.6679 −1.57125
\(66\) 0 0
\(67\) 0.371075 0.0453340 0.0226670 0.999743i \(-0.492784\pi\)
0.0226670 + 0.999743i \(0.492784\pi\)
\(68\) −4.84071 −0.587022
\(69\) 0 0
\(70\) 9.98865 1.19387
\(71\) 0.584961 0.0694221 0.0347110 0.999397i \(-0.488949\pi\)
0.0347110 + 0.999397i \(0.488949\pi\)
\(72\) 0 0
\(73\) −11.9922 −1.40358 −0.701792 0.712382i \(-0.747616\pi\)
−0.701792 + 0.712382i \(0.747616\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) 7.31418 0.838994
\(77\) 15.5570 1.77288
\(78\) 0 0
\(79\) −4.13993 −0.465778 −0.232889 0.972503i \(-0.574818\pi\)
−0.232889 + 0.972503i \(0.574818\pi\)
\(80\) −3.49123 −0.390331
\(81\) 0 0
\(82\) −0.660400 −0.0729290
\(83\) −2.85366 −0.313230 −0.156615 0.987660i \(-0.550058\pi\)
−0.156615 + 0.987660i \(0.550058\pi\)
\(84\) 0 0
\(85\) 16.9000 1.83306
\(86\) 5.76568 0.621729
\(87\) 0 0
\(88\) −5.43746 −0.579636
\(89\) 3.31264 0.351139 0.175570 0.984467i \(-0.443823\pi\)
0.175570 + 0.984467i \(0.443823\pi\)
\(90\) 0 0
\(91\) 10.3813 1.08826
\(92\) 6.69512 0.698014
\(93\) 0 0
\(94\) −7.40907 −0.764187
\(95\) −25.5355 −2.61989
\(96\) 0 0
\(97\) 12.8349 1.30319 0.651593 0.758569i \(-0.274101\pi\)
0.651593 + 0.758569i \(0.274101\pi\)
\(98\) −1.18572 −0.119776
\(99\) 0 0
\(100\) 7.18868 0.718868
\(101\) −6.80546 −0.677169 −0.338584 0.940936i \(-0.609948\pi\)
−0.338584 + 0.940936i \(0.609948\pi\)
\(102\) 0 0
\(103\) −12.3966 −1.22147 −0.610737 0.791833i \(-0.709127\pi\)
−0.610737 + 0.791833i \(0.709127\pi\)
\(104\) −3.62848 −0.355802
\(105\) 0 0
\(106\) 3.88952 0.377783
\(107\) 0.144488 0.0139682 0.00698411 0.999976i \(-0.497777\pi\)
0.00698411 + 0.999976i \(0.497777\pi\)
\(108\) 0 0
\(109\) 12.4288 1.19046 0.595232 0.803554i \(-0.297060\pi\)
0.595232 + 0.803554i \(0.297060\pi\)
\(110\) 18.9834 1.81000
\(111\) 0 0
\(112\) 2.86107 0.270346
\(113\) 4.15551 0.390917 0.195459 0.980712i \(-0.437380\pi\)
0.195459 + 0.980712i \(0.437380\pi\)
\(114\) 0 0
\(115\) −23.3742 −2.17965
\(116\) 5.81232 0.539660
\(117\) 0 0
\(118\) 1.56553 0.144119
\(119\) −13.8496 −1.26959
\(120\) 0 0
\(121\) 18.5660 1.68782
\(122\) −8.49269 −0.768892
\(123\) 0 0
\(124\) 8.96928 0.805465
\(125\) −7.64119 −0.683449
\(126\) 0 0
\(127\) −19.5394 −1.73384 −0.866922 0.498445i \(-0.833905\pi\)
−0.866922 + 0.498445i \(0.833905\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 12.6679 1.11104
\(131\) −13.7848 −1.20439 −0.602193 0.798351i \(-0.705706\pi\)
−0.602193 + 0.798351i \(0.705706\pi\)
\(132\) 0 0
\(133\) 20.9264 1.81455
\(134\) −0.371075 −0.0320560
\(135\) 0 0
\(136\) 4.84071 0.415087
\(137\) 17.1391 1.46429 0.732146 0.681147i \(-0.238519\pi\)
0.732146 + 0.681147i \(0.238519\pi\)
\(138\) 0 0
\(139\) −1.76011 −0.149290 −0.0746452 0.997210i \(-0.523782\pi\)
−0.0746452 + 0.997210i \(0.523782\pi\)
\(140\) −9.98865 −0.844195
\(141\) 0 0
\(142\) −0.584961 −0.0490888
\(143\) 19.7297 1.64988
\(144\) 0 0
\(145\) −20.2921 −1.68517
\(146\) 11.9922 0.992483
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −16.6486 −1.36391 −0.681954 0.731395i \(-0.738869\pi\)
−0.681954 + 0.731395i \(0.738869\pi\)
\(150\) 0 0
\(151\) 5.70123 0.463960 0.231980 0.972721i \(-0.425480\pi\)
0.231980 + 0.972721i \(0.425480\pi\)
\(152\) −7.31418 −0.593259
\(153\) 0 0
\(154\) −15.5570 −1.25362
\(155\) −31.3138 −2.51519
\(156\) 0 0
\(157\) −21.7894 −1.73898 −0.869491 0.493948i \(-0.835553\pi\)
−0.869491 + 0.493948i \(0.835553\pi\)
\(158\) 4.13993 0.329355
\(159\) 0 0
\(160\) 3.49123 0.276006
\(161\) 19.1552 1.50964
\(162\) 0 0
\(163\) 2.37983 0.186403 0.0932013 0.995647i \(-0.470290\pi\)
0.0932013 + 0.995647i \(0.470290\pi\)
\(164\) 0.660400 0.0515686
\(165\) 0 0
\(166\) 2.85366 0.221487
\(167\) −4.22401 −0.326864 −0.163432 0.986555i \(-0.552256\pi\)
−0.163432 + 0.986555i \(0.552256\pi\)
\(168\) 0 0
\(169\) 0.165868 0.0127591
\(170\) −16.9000 −1.29617
\(171\) 0 0
\(172\) −5.76568 −0.439629
\(173\) 3.83472 0.291548 0.145774 0.989318i \(-0.453433\pi\)
0.145774 + 0.989318i \(0.453433\pi\)
\(174\) 0 0
\(175\) 20.5673 1.55474
\(176\) 5.43746 0.409864
\(177\) 0 0
\(178\) −3.31264 −0.248293
\(179\) 4.36893 0.326549 0.163275 0.986581i \(-0.447794\pi\)
0.163275 + 0.986581i \(0.447794\pi\)
\(180\) 0 0
\(181\) −3.71793 −0.276352 −0.138176 0.990408i \(-0.544124\pi\)
−0.138176 + 0.990408i \(0.544124\pi\)
\(182\) −10.3813 −0.769516
\(183\) 0 0
\(184\) −6.69512 −0.493571
\(185\) 3.49123 0.256680
\(186\) 0 0
\(187\) −26.3212 −1.92479
\(188\) 7.40907 0.540362
\(189\) 0 0
\(190\) 25.5355 1.85254
\(191\) 5.53343 0.400385 0.200193 0.979757i \(-0.435843\pi\)
0.200193 + 0.979757i \(0.435843\pi\)
\(192\) 0 0
\(193\) −23.0916 −1.66217 −0.831084 0.556147i \(-0.812279\pi\)
−0.831084 + 0.556147i \(0.812279\pi\)
\(194\) −12.8349 −0.921492
\(195\) 0 0
\(196\) 1.18572 0.0846941
\(197\) −14.5861 −1.03922 −0.519609 0.854404i \(-0.673922\pi\)
−0.519609 + 0.854404i \(0.673922\pi\)
\(198\) 0 0
\(199\) 19.8939 1.41024 0.705121 0.709087i \(-0.250893\pi\)
0.705121 + 0.709087i \(0.250893\pi\)
\(200\) −7.18868 −0.508317
\(201\) 0 0
\(202\) 6.80546 0.478831
\(203\) 16.6295 1.16716
\(204\) 0 0
\(205\) −2.30561 −0.161031
\(206\) 12.3966 0.863713
\(207\) 0 0
\(208\) 3.62848 0.251590
\(209\) 39.7706 2.75099
\(210\) 0 0
\(211\) −19.4285 −1.33752 −0.668758 0.743481i \(-0.733174\pi\)
−0.668758 + 0.743481i \(0.733174\pi\)
\(212\) −3.88952 −0.267133
\(213\) 0 0
\(214\) −0.144488 −0.00987702
\(215\) 20.1293 1.37281
\(216\) 0 0
\(217\) 25.6617 1.74203
\(218\) −12.4288 −0.841786
\(219\) 0 0
\(220\) −18.9834 −1.27986
\(221\) −17.5644 −1.18151
\(222\) 0 0
\(223\) 13.2705 0.888657 0.444328 0.895864i \(-0.353442\pi\)
0.444328 + 0.895864i \(0.353442\pi\)
\(224\) −2.86107 −0.191163
\(225\) 0 0
\(226\) −4.15551 −0.276420
\(227\) 8.11658 0.538717 0.269358 0.963040i \(-0.413188\pi\)
0.269358 + 0.963040i \(0.413188\pi\)
\(228\) 0 0
\(229\) 17.7272 1.17145 0.585723 0.810511i \(-0.300811\pi\)
0.585723 + 0.810511i \(0.300811\pi\)
\(230\) 23.3742 1.54125
\(231\) 0 0
\(232\) −5.81232 −0.381598
\(233\) −9.99766 −0.654968 −0.327484 0.944857i \(-0.606201\pi\)
−0.327484 + 0.944857i \(0.606201\pi\)
\(234\) 0 0
\(235\) −25.8668 −1.68736
\(236\) −1.56553 −0.101907
\(237\) 0 0
\(238\) 13.8496 0.897736
\(239\) 16.5064 1.06771 0.533856 0.845575i \(-0.320742\pi\)
0.533856 + 0.845575i \(0.320742\pi\)
\(240\) 0 0
\(241\) 16.9919 1.09454 0.547272 0.836955i \(-0.315666\pi\)
0.547272 + 0.836955i \(0.315666\pi\)
\(242\) −18.5660 −1.19347
\(243\) 0 0
\(244\) 8.49269 0.543689
\(245\) −4.13961 −0.264470
\(246\) 0 0
\(247\) 26.5394 1.68866
\(248\) −8.96928 −0.569550
\(249\) 0 0
\(250\) 7.64119 0.483271
\(251\) 22.2583 1.40493 0.702467 0.711716i \(-0.252082\pi\)
0.702467 + 0.711716i \(0.252082\pi\)
\(252\) 0 0
\(253\) 36.4045 2.28873
\(254\) 19.5394 1.22601
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.59811 −0.473957 −0.236979 0.971515i \(-0.576157\pi\)
−0.236979 + 0.971515i \(0.576157\pi\)
\(258\) 0 0
\(259\) −2.86107 −0.177778
\(260\) −12.6679 −0.785627
\(261\) 0 0
\(262\) 13.7848 0.851629
\(263\) −27.5780 −1.70053 −0.850265 0.526355i \(-0.823558\pi\)
−0.850265 + 0.526355i \(0.823558\pi\)
\(264\) 0 0
\(265\) 13.5792 0.834163
\(266\) −20.9264 −1.28308
\(267\) 0 0
\(268\) 0.371075 0.0226670
\(269\) 5.98578 0.364959 0.182480 0.983210i \(-0.441588\pi\)
0.182480 + 0.983210i \(0.441588\pi\)
\(270\) 0 0
\(271\) −17.3044 −1.05117 −0.525583 0.850742i \(-0.676153\pi\)
−0.525583 + 0.850742i \(0.676153\pi\)
\(272\) −4.84071 −0.293511
\(273\) 0 0
\(274\) −17.1391 −1.03541
\(275\) 39.0882 2.35711
\(276\) 0 0
\(277\) −4.11281 −0.247115 −0.123558 0.992337i \(-0.539430\pi\)
−0.123558 + 0.992337i \(0.539430\pi\)
\(278\) 1.76011 0.105564
\(279\) 0 0
\(280\) 9.98865 0.596936
\(281\) −5.24793 −0.313065 −0.156533 0.987673i \(-0.550032\pi\)
−0.156533 + 0.987673i \(0.550032\pi\)
\(282\) 0 0
\(283\) 1.87337 0.111360 0.0556801 0.998449i \(-0.482267\pi\)
0.0556801 + 0.998449i \(0.482267\pi\)
\(284\) 0.584961 0.0347110
\(285\) 0 0
\(286\) −19.7297 −1.16664
\(287\) 1.88945 0.111531
\(288\) 0 0
\(289\) 6.43244 0.378379
\(290\) 20.2921 1.19160
\(291\) 0 0
\(292\) −11.9922 −0.701792
\(293\) 8.40851 0.491231 0.245615 0.969367i \(-0.421010\pi\)
0.245615 + 0.969367i \(0.421010\pi\)
\(294\) 0 0
\(295\) 5.46563 0.318221
\(296\) 1.00000 0.0581238
\(297\) 0 0
\(298\) 16.6486 0.964428
\(299\) 24.2931 1.40491
\(300\) 0 0
\(301\) −16.4960 −0.950814
\(302\) −5.70123 −0.328069
\(303\) 0 0
\(304\) 7.31418 0.419497
\(305\) −29.6499 −1.69775
\(306\) 0 0
\(307\) 0.609988 0.0348138 0.0174069 0.999848i \(-0.494459\pi\)
0.0174069 + 0.999848i \(0.494459\pi\)
\(308\) 15.5570 0.886440
\(309\) 0 0
\(310\) 31.3138 1.77850
\(311\) 2.93104 0.166204 0.0831021 0.996541i \(-0.473517\pi\)
0.0831021 + 0.996541i \(0.473517\pi\)
\(312\) 0 0
\(313\) 13.6998 0.774359 0.387179 0.922004i \(-0.373449\pi\)
0.387179 + 0.922004i \(0.373449\pi\)
\(314\) 21.7894 1.22965
\(315\) 0 0
\(316\) −4.13993 −0.232889
\(317\) 4.46543 0.250803 0.125402 0.992106i \(-0.459978\pi\)
0.125402 + 0.992106i \(0.459978\pi\)
\(318\) 0 0
\(319\) 31.6043 1.76950
\(320\) −3.49123 −0.195166
\(321\) 0 0
\(322\) −19.1552 −1.06748
\(323\) −35.4058 −1.97003
\(324\) 0 0
\(325\) 26.0840 1.44688
\(326\) −2.37983 −0.131806
\(327\) 0 0
\(328\) −0.660400 −0.0364645
\(329\) 21.1979 1.16868
\(330\) 0 0
\(331\) −30.0470 −1.65153 −0.825765 0.564014i \(-0.809256\pi\)
−0.825765 + 0.564014i \(0.809256\pi\)
\(332\) −2.85366 −0.156615
\(333\) 0 0
\(334\) 4.22401 0.231128
\(335\) −1.29551 −0.0707812
\(336\) 0 0
\(337\) 3.62683 0.197566 0.0987829 0.995109i \(-0.468505\pi\)
0.0987829 + 0.995109i \(0.468505\pi\)
\(338\) −0.165868 −0.00902204
\(339\) 0 0
\(340\) 16.9000 0.916532
\(341\) 48.7701 2.64105
\(342\) 0 0
\(343\) −16.6351 −0.898209
\(344\) 5.76568 0.310865
\(345\) 0 0
\(346\) −3.83472 −0.206156
\(347\) 25.2388 1.35489 0.677446 0.735572i \(-0.263087\pi\)
0.677446 + 0.735572i \(0.263087\pi\)
\(348\) 0 0
\(349\) 28.8966 1.54680 0.773401 0.633917i \(-0.218554\pi\)
0.773401 + 0.633917i \(0.218554\pi\)
\(350\) −20.5673 −1.09937
\(351\) 0 0
\(352\) −5.43746 −0.289818
\(353\) −4.43635 −0.236123 −0.118062 0.993006i \(-0.537668\pi\)
−0.118062 + 0.993006i \(0.537668\pi\)
\(354\) 0 0
\(355\) −2.04223 −0.108390
\(356\) 3.31264 0.175570
\(357\) 0 0
\(358\) −4.36893 −0.230905
\(359\) 22.3860 1.18149 0.590743 0.806860i \(-0.298835\pi\)
0.590743 + 0.806860i \(0.298835\pi\)
\(360\) 0 0
\(361\) 34.4973 1.81565
\(362\) 3.71793 0.195410
\(363\) 0 0
\(364\) 10.3813 0.544130
\(365\) 41.8676 2.19145
\(366\) 0 0
\(367\) −10.4628 −0.546152 −0.273076 0.961992i \(-0.588041\pi\)
−0.273076 + 0.961992i \(0.588041\pi\)
\(368\) 6.69512 0.349007
\(369\) 0 0
\(370\) −3.49123 −0.181500
\(371\) −11.1282 −0.577746
\(372\) 0 0
\(373\) −13.1068 −0.678646 −0.339323 0.940670i \(-0.610198\pi\)
−0.339323 + 0.940670i \(0.610198\pi\)
\(374\) 26.3212 1.36104
\(375\) 0 0
\(376\) −7.40907 −0.382094
\(377\) 21.0899 1.08618
\(378\) 0 0
\(379\) −10.8284 −0.556219 −0.278110 0.960549i \(-0.589708\pi\)
−0.278110 + 0.960549i \(0.589708\pi\)
\(380\) −25.5355 −1.30994
\(381\) 0 0
\(382\) −5.53343 −0.283115
\(383\) 23.3409 1.19266 0.596331 0.802739i \(-0.296625\pi\)
0.596331 + 0.802739i \(0.296625\pi\)
\(384\) 0 0
\(385\) −54.3129 −2.76804
\(386\) 23.0916 1.17533
\(387\) 0 0
\(388\) 12.8349 0.651593
\(389\) 10.9206 0.553696 0.276848 0.960914i \(-0.410710\pi\)
0.276848 + 0.960914i \(0.410710\pi\)
\(390\) 0 0
\(391\) −32.4091 −1.63900
\(392\) −1.18572 −0.0598878
\(393\) 0 0
\(394\) 14.5861 0.734838
\(395\) 14.4534 0.727231
\(396\) 0 0
\(397\) −1.28277 −0.0643805 −0.0321902 0.999482i \(-0.510248\pi\)
−0.0321902 + 0.999482i \(0.510248\pi\)
\(398\) −19.8939 −0.997192
\(399\) 0 0
\(400\) 7.18868 0.359434
\(401\) −5.44679 −0.272000 −0.136000 0.990709i \(-0.543425\pi\)
−0.136000 + 0.990709i \(0.543425\pi\)
\(402\) 0 0
\(403\) 32.5448 1.62117
\(404\) −6.80546 −0.338584
\(405\) 0 0
\(406\) −16.6295 −0.825306
\(407\) −5.43746 −0.269525
\(408\) 0 0
\(409\) 4.04403 0.199965 0.0999823 0.994989i \(-0.468121\pi\)
0.0999823 + 0.994989i \(0.468121\pi\)
\(410\) 2.30561 0.113866
\(411\) 0 0
\(412\) −12.3966 −0.610737
\(413\) −4.47909 −0.220402
\(414\) 0 0
\(415\) 9.96277 0.489053
\(416\) −3.62848 −0.177901
\(417\) 0 0
\(418\) −39.7706 −1.94524
\(419\) 11.3722 0.555570 0.277785 0.960643i \(-0.410400\pi\)
0.277785 + 0.960643i \(0.410400\pi\)
\(420\) 0 0
\(421\) 36.4875 1.77829 0.889145 0.457626i \(-0.151300\pi\)
0.889145 + 0.457626i \(0.151300\pi\)
\(422\) 19.4285 0.945766
\(423\) 0 0
\(424\) 3.88952 0.188892
\(425\) −34.7983 −1.68797
\(426\) 0 0
\(427\) 24.2982 1.17587
\(428\) 0.144488 0.00698411
\(429\) 0 0
\(430\) −20.1293 −0.970722
\(431\) −21.7781 −1.04901 −0.524506 0.851407i \(-0.675750\pi\)
−0.524506 + 0.851407i \(0.675750\pi\)
\(432\) 0 0
\(433\) 15.7500 0.756897 0.378448 0.925622i \(-0.376458\pi\)
0.378448 + 0.925622i \(0.376458\pi\)
\(434\) −25.6617 −1.23180
\(435\) 0 0
\(436\) 12.4288 0.595232
\(437\) 48.9693 2.34252
\(438\) 0 0
\(439\) −29.8767 −1.42594 −0.712968 0.701196i \(-0.752650\pi\)
−0.712968 + 0.701196i \(0.752650\pi\)
\(440\) 18.9834 0.905000
\(441\) 0 0
\(442\) 17.5644 0.835454
\(443\) −33.1876 −1.57679 −0.788395 0.615169i \(-0.789088\pi\)
−0.788395 + 0.615169i \(0.789088\pi\)
\(444\) 0 0
\(445\) −11.5652 −0.548243
\(446\) −13.2705 −0.628375
\(447\) 0 0
\(448\) 2.86107 0.135173
\(449\) −33.4784 −1.57994 −0.789972 0.613144i \(-0.789905\pi\)
−0.789972 + 0.613144i \(0.789905\pi\)
\(450\) 0 0
\(451\) 3.59090 0.169089
\(452\) 4.15551 0.195459
\(453\) 0 0
\(454\) −8.11658 −0.380930
\(455\) −36.2436 −1.69913
\(456\) 0 0
\(457\) 15.5789 0.728750 0.364375 0.931252i \(-0.381283\pi\)
0.364375 + 0.931252i \(0.381283\pi\)
\(458\) −17.7272 −0.828338
\(459\) 0 0
\(460\) −23.3742 −1.08983
\(461\) −19.6290 −0.914212 −0.457106 0.889412i \(-0.651114\pi\)
−0.457106 + 0.889412i \(0.651114\pi\)
\(462\) 0 0
\(463\) 26.0267 1.20956 0.604782 0.796391i \(-0.293260\pi\)
0.604782 + 0.796391i \(0.293260\pi\)
\(464\) 5.81232 0.269830
\(465\) 0 0
\(466\) 9.99766 0.463132
\(467\) 27.4418 1.26986 0.634929 0.772571i \(-0.281029\pi\)
0.634929 + 0.772571i \(0.281029\pi\)
\(468\) 0 0
\(469\) 1.06167 0.0490234
\(470\) 25.8668 1.19314
\(471\) 0 0
\(472\) 1.56553 0.0720594
\(473\) −31.3507 −1.44151
\(474\) 0 0
\(475\) 52.5793 2.41251
\(476\) −13.8496 −0.634795
\(477\) 0 0
\(478\) −16.5064 −0.754987
\(479\) −20.6312 −0.942662 −0.471331 0.881956i \(-0.656226\pi\)
−0.471331 + 0.881956i \(0.656226\pi\)
\(480\) 0 0
\(481\) −3.62848 −0.165444
\(482\) −16.9919 −0.773959
\(483\) 0 0
\(484\) 18.5660 0.843910
\(485\) −44.8096 −2.03470
\(486\) 0 0
\(487\) −1.04823 −0.0474997 −0.0237499 0.999718i \(-0.507561\pi\)
−0.0237499 + 0.999718i \(0.507561\pi\)
\(488\) −8.49269 −0.384446
\(489\) 0 0
\(490\) 4.13961 0.187009
\(491\) −33.0819 −1.49296 −0.746482 0.665406i \(-0.768259\pi\)
−0.746482 + 0.665406i \(0.768259\pi\)
\(492\) 0 0
\(493\) −28.1357 −1.26717
\(494\) −26.5394 −1.19406
\(495\) 0 0
\(496\) 8.96928 0.402733
\(497\) 1.67361 0.0750718
\(498\) 0 0
\(499\) −6.65247 −0.297805 −0.148903 0.988852i \(-0.547574\pi\)
−0.148903 + 0.988852i \(0.547574\pi\)
\(500\) −7.64119 −0.341724
\(501\) 0 0
\(502\) −22.2583 −0.993438
\(503\) −17.2357 −0.768500 −0.384250 0.923229i \(-0.625540\pi\)
−0.384250 + 0.923229i \(0.625540\pi\)
\(504\) 0 0
\(505\) 23.7594 1.05728
\(506\) −36.4045 −1.61838
\(507\) 0 0
\(508\) −19.5394 −0.866922
\(509\) 21.2969 0.943970 0.471985 0.881606i \(-0.343538\pi\)
0.471985 + 0.881606i \(0.343538\pi\)
\(510\) 0 0
\(511\) −34.3106 −1.51781
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 7.59811 0.335138
\(515\) 43.2794 1.90712
\(516\) 0 0
\(517\) 40.2866 1.77180
\(518\) 2.86107 0.125708
\(519\) 0 0
\(520\) 12.6679 0.555522
\(521\) −20.1473 −0.882668 −0.441334 0.897343i \(-0.645495\pi\)
−0.441334 + 0.897343i \(0.645495\pi\)
\(522\) 0 0
\(523\) −4.80666 −0.210181 −0.105090 0.994463i \(-0.533513\pi\)
−0.105090 + 0.994463i \(0.533513\pi\)
\(524\) −13.7848 −0.602193
\(525\) 0 0
\(526\) 27.5780 1.20246
\(527\) −43.4176 −1.89130
\(528\) 0 0
\(529\) 21.8246 0.948896
\(530\) −13.5792 −0.589842
\(531\) 0 0
\(532\) 20.9264 0.907274
\(533\) 2.39625 0.103793
\(534\) 0 0
\(535\) −0.504442 −0.0218089
\(536\) −0.371075 −0.0160280
\(537\) 0 0
\(538\) −5.98578 −0.258065
\(539\) 6.44729 0.277705
\(540\) 0 0
\(541\) −19.3496 −0.831904 −0.415952 0.909386i \(-0.636552\pi\)
−0.415952 + 0.909386i \(0.636552\pi\)
\(542\) 17.3044 0.743287
\(543\) 0 0
\(544\) 4.84071 0.207544
\(545\) −43.3918 −1.85870
\(546\) 0 0
\(547\) 23.5743 1.00796 0.503982 0.863714i \(-0.331868\pi\)
0.503982 + 0.863714i \(0.331868\pi\)
\(548\) 17.1391 0.732146
\(549\) 0 0
\(550\) −39.0882 −1.66673
\(551\) 42.5124 1.81109
\(552\) 0 0
\(553\) −11.8446 −0.503685
\(554\) 4.11281 0.174737
\(555\) 0 0
\(556\) −1.76011 −0.0746452
\(557\) 13.9116 0.589453 0.294727 0.955582i \(-0.404771\pi\)
0.294727 + 0.955582i \(0.404771\pi\)
\(558\) 0 0
\(559\) −20.9207 −0.884850
\(560\) −9.98865 −0.422097
\(561\) 0 0
\(562\) 5.24793 0.221370
\(563\) −39.4046 −1.66071 −0.830354 0.557236i \(-0.811862\pi\)
−0.830354 + 0.557236i \(0.811862\pi\)
\(564\) 0 0
\(565\) −14.5078 −0.610349
\(566\) −1.87337 −0.0787436
\(567\) 0 0
\(568\) −0.584961 −0.0245444
\(569\) −9.12190 −0.382410 −0.191205 0.981550i \(-0.561240\pi\)
−0.191205 + 0.981550i \(0.561240\pi\)
\(570\) 0 0
\(571\) −20.3135 −0.850095 −0.425047 0.905171i \(-0.639743\pi\)
−0.425047 + 0.905171i \(0.639743\pi\)
\(572\) 19.7297 0.824941
\(573\) 0 0
\(574\) −1.88945 −0.0788641
\(575\) 48.1291 2.00712
\(576\) 0 0
\(577\) −11.2761 −0.469428 −0.234714 0.972064i \(-0.575415\pi\)
−0.234714 + 0.972064i \(0.575415\pi\)
\(578\) −6.43244 −0.267554
\(579\) 0 0
\(580\) −20.2921 −0.842585
\(581\) −8.16451 −0.338721
\(582\) 0 0
\(583\) −21.1491 −0.875906
\(584\) 11.9922 0.496242
\(585\) 0 0
\(586\) −8.40851 −0.347352
\(587\) 48.2944 1.99333 0.996663 0.0816316i \(-0.0260131\pi\)
0.996663 + 0.0816316i \(0.0260131\pi\)
\(588\) 0 0
\(589\) 65.6030 2.70312
\(590\) −5.46563 −0.225016
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 9.83676 0.403947 0.201974 0.979391i \(-0.435264\pi\)
0.201974 + 0.979391i \(0.435264\pi\)
\(594\) 0 0
\(595\) 48.3521 1.98224
\(596\) −16.6486 −0.681954
\(597\) 0 0
\(598\) −24.2931 −0.993419
\(599\) 4.67625 0.191066 0.0955332 0.995426i \(-0.469544\pi\)
0.0955332 + 0.995426i \(0.469544\pi\)
\(600\) 0 0
\(601\) −8.37334 −0.341556 −0.170778 0.985310i \(-0.554628\pi\)
−0.170778 + 0.985310i \(0.554628\pi\)
\(602\) 16.4960 0.672327
\(603\) 0 0
\(604\) 5.70123 0.231980
\(605\) −64.8182 −2.63524
\(606\) 0 0
\(607\) −38.4154 −1.55923 −0.779616 0.626258i \(-0.784586\pi\)
−0.779616 + 0.626258i \(0.784586\pi\)
\(608\) −7.31418 −0.296629
\(609\) 0 0
\(610\) 29.6499 1.20049
\(611\) 26.8837 1.08760
\(612\) 0 0
\(613\) 18.6423 0.752955 0.376477 0.926426i \(-0.377135\pi\)
0.376477 + 0.926426i \(0.377135\pi\)
\(614\) −0.609988 −0.0246171
\(615\) 0 0
\(616\) −15.5570 −0.626808
\(617\) 15.6409 0.629678 0.314839 0.949145i \(-0.398050\pi\)
0.314839 + 0.949145i \(0.398050\pi\)
\(618\) 0 0
\(619\) 16.3358 0.656591 0.328296 0.944575i \(-0.393526\pi\)
0.328296 + 0.944575i \(0.393526\pi\)
\(620\) −31.3138 −1.25759
\(621\) 0 0
\(622\) −2.93104 −0.117524
\(623\) 9.47770 0.379716
\(624\) 0 0
\(625\) −9.26626 −0.370650
\(626\) −13.6998 −0.547554
\(627\) 0 0
\(628\) −21.7894 −0.869491
\(629\) 4.84071 0.193012
\(630\) 0 0
\(631\) 26.0065 1.03530 0.517650 0.855592i \(-0.326807\pi\)
0.517650 + 0.855592i \(0.326807\pi\)
\(632\) 4.13993 0.164677
\(633\) 0 0
\(634\) −4.46543 −0.177345
\(635\) 68.2166 2.70709
\(636\) 0 0
\(637\) 4.30235 0.170465
\(638\) −31.6043 −1.25123
\(639\) 0 0
\(640\) 3.49123 0.138003
\(641\) 35.3060 1.39450 0.697251 0.716827i \(-0.254406\pi\)
0.697251 + 0.716827i \(0.254406\pi\)
\(642\) 0 0
\(643\) 45.2085 1.78285 0.891425 0.453167i \(-0.149706\pi\)
0.891425 + 0.453167i \(0.149706\pi\)
\(644\) 19.1552 0.754820
\(645\) 0 0
\(646\) 35.4058 1.39302
\(647\) −7.32633 −0.288028 −0.144014 0.989576i \(-0.546001\pi\)
−0.144014 + 0.989576i \(0.546001\pi\)
\(648\) 0 0
\(649\) −8.51252 −0.334146
\(650\) −26.0840 −1.02310
\(651\) 0 0
\(652\) 2.37983 0.0932013
\(653\) −23.2699 −0.910620 −0.455310 0.890333i \(-0.650472\pi\)
−0.455310 + 0.890333i \(0.650472\pi\)
\(654\) 0 0
\(655\) 48.1260 1.88044
\(656\) 0.660400 0.0257843
\(657\) 0 0
\(658\) −21.1979 −0.826379
\(659\) −24.7534 −0.964257 −0.482128 0.876101i \(-0.660136\pi\)
−0.482128 + 0.876101i \(0.660136\pi\)
\(660\) 0 0
\(661\) −15.8312 −0.615763 −0.307881 0.951425i \(-0.599620\pi\)
−0.307881 + 0.951425i \(0.599620\pi\)
\(662\) 30.0470 1.16781
\(663\) 0 0
\(664\) 2.85366 0.110743
\(665\) −73.0588 −2.83310
\(666\) 0 0
\(667\) 38.9142 1.50676
\(668\) −4.22401 −0.163432
\(669\) 0 0
\(670\) 1.29551 0.0500499
\(671\) 46.1787 1.78271
\(672\) 0 0
\(673\) 10.2447 0.394903 0.197452 0.980313i \(-0.436733\pi\)
0.197452 + 0.980313i \(0.436733\pi\)
\(674\) −3.62683 −0.139700
\(675\) 0 0
\(676\) 0.165868 0.00637955
\(677\) 25.9343 0.996735 0.498367 0.866966i \(-0.333933\pi\)
0.498367 + 0.866966i \(0.333933\pi\)
\(678\) 0 0
\(679\) 36.7215 1.40924
\(680\) −16.9000 −0.648086
\(681\) 0 0
\(682\) −48.7701 −1.86750
\(683\) 24.9994 0.956574 0.478287 0.878204i \(-0.341258\pi\)
0.478287 + 0.878204i \(0.341258\pi\)
\(684\) 0 0
\(685\) −59.8366 −2.28624
\(686\) 16.6351 0.635130
\(687\) 0 0
\(688\) −5.76568 −0.219815
\(689\) −14.1130 −0.537664
\(690\) 0 0
\(691\) −0.0335560 −0.00127653 −0.000638266 1.00000i \(-0.500203\pi\)
−0.000638266 1.00000i \(0.500203\pi\)
\(692\) 3.83472 0.145774
\(693\) 0 0
\(694\) −25.2388 −0.958053
\(695\) 6.14494 0.233091
\(696\) 0 0
\(697\) −3.19680 −0.121088
\(698\) −28.8966 −1.09375
\(699\) 0 0
\(700\) 20.5673 0.777372
\(701\) −9.20230 −0.347566 −0.173783 0.984784i \(-0.555599\pi\)
−0.173783 + 0.984784i \(0.555599\pi\)
\(702\) 0 0
\(703\) −7.31418 −0.275860
\(704\) 5.43746 0.204932
\(705\) 0 0
\(706\) 4.43635 0.166964
\(707\) −19.4709 −0.732279
\(708\) 0 0
\(709\) −36.9470 −1.38758 −0.693788 0.720180i \(-0.744059\pi\)
−0.693788 + 0.720180i \(0.744059\pi\)
\(710\) 2.04223 0.0766436
\(711\) 0 0
\(712\) −3.31264 −0.124147
\(713\) 60.0504 2.24890
\(714\) 0 0
\(715\) −68.8810 −2.57600
\(716\) 4.36893 0.163275
\(717\) 0 0
\(718\) −22.3860 −0.835437
\(719\) 18.1986 0.678695 0.339347 0.940661i \(-0.389794\pi\)
0.339347 + 0.940661i \(0.389794\pi\)
\(720\) 0 0
\(721\) −35.4676 −1.32088
\(722\) −34.4973 −1.28386
\(723\) 0 0
\(724\) −3.71793 −0.138176
\(725\) 41.7829 1.55178
\(726\) 0 0
\(727\) −40.9131 −1.51738 −0.758692 0.651450i \(-0.774161\pi\)
−0.758692 + 0.651450i \(0.774161\pi\)
\(728\) −10.3813 −0.384758
\(729\) 0 0
\(730\) −41.8676 −1.54959
\(731\) 27.9100 1.03229
\(732\) 0 0
\(733\) 31.2487 1.15420 0.577099 0.816674i \(-0.304185\pi\)
0.577099 + 0.816674i \(0.304185\pi\)
\(734\) 10.4628 0.386188
\(735\) 0 0
\(736\) −6.69512 −0.246785
\(737\) 2.01771 0.0743232
\(738\) 0 0
\(739\) 53.2276 1.95801 0.979004 0.203841i \(-0.0653427\pi\)
0.979004 + 0.203841i \(0.0653427\pi\)
\(740\) 3.49123 0.128340
\(741\) 0 0
\(742\) 11.1282 0.408528
\(743\) −14.3198 −0.525343 −0.262672 0.964885i \(-0.584604\pi\)
−0.262672 + 0.964885i \(0.584604\pi\)
\(744\) 0 0
\(745\) 58.1241 2.12950
\(746\) 13.1068 0.479875
\(747\) 0 0
\(748\) −26.3212 −0.962397
\(749\) 0.413391 0.0151050
\(750\) 0 0
\(751\) 13.6154 0.496835 0.248417 0.968653i \(-0.420090\pi\)
0.248417 + 0.968653i \(0.420090\pi\)
\(752\) 7.40907 0.270181
\(753\) 0 0
\(754\) −21.0899 −0.768049
\(755\) −19.9043 −0.724392
\(756\) 0 0
\(757\) −1.08985 −0.0396112 −0.0198056 0.999804i \(-0.506305\pi\)
−0.0198056 + 0.999804i \(0.506305\pi\)
\(758\) 10.8284 0.393307
\(759\) 0 0
\(760\) 25.5355 0.926270
\(761\) −0.380018 −0.0137757 −0.00688783 0.999976i \(-0.502192\pi\)
−0.00688783 + 0.999976i \(0.502192\pi\)
\(762\) 0 0
\(763\) 35.5597 1.28735
\(764\) 5.53343 0.200193
\(765\) 0 0
\(766\) −23.3409 −0.843339
\(767\) −5.68050 −0.205111
\(768\) 0 0
\(769\) −36.7259 −1.32437 −0.662185 0.749340i \(-0.730371\pi\)
−0.662185 + 0.749340i \(0.730371\pi\)
\(770\) 54.3129 1.95730
\(771\) 0 0
\(772\) −23.0916 −0.831084
\(773\) 32.3346 1.16299 0.581497 0.813548i \(-0.302467\pi\)
0.581497 + 0.813548i \(0.302467\pi\)
\(774\) 0 0
\(775\) 64.4773 2.31609
\(776\) −12.8349 −0.460746
\(777\) 0 0
\(778\) −10.9206 −0.391522
\(779\) 4.83029 0.173063
\(780\) 0 0
\(781\) 3.18070 0.113815
\(782\) 32.4091 1.15895
\(783\) 0 0
\(784\) 1.18572 0.0423470
\(785\) 76.0717 2.71512
\(786\) 0 0
\(787\) 24.8290 0.885059 0.442529 0.896754i \(-0.354081\pi\)
0.442529 + 0.896754i \(0.354081\pi\)
\(788\) −14.5861 −0.519609
\(789\) 0 0
\(790\) −14.4534 −0.514230
\(791\) 11.8892 0.422731
\(792\) 0 0
\(793\) 30.8156 1.09429
\(794\) 1.28277 0.0455239
\(795\) 0 0
\(796\) 19.8939 0.705121
\(797\) 44.2527 1.56751 0.783756 0.621069i \(-0.213301\pi\)
0.783756 + 0.621069i \(0.213301\pi\)
\(798\) 0 0
\(799\) −35.8651 −1.26882
\(800\) −7.18868 −0.254158
\(801\) 0 0
\(802\) 5.44679 0.192333
\(803\) −65.2073 −2.30111
\(804\) 0 0
\(805\) −66.8752 −2.35704
\(806\) −32.5448 −1.14634
\(807\) 0 0
\(808\) 6.80546 0.239415
\(809\) 46.5615 1.63701 0.818507 0.574497i \(-0.194802\pi\)
0.818507 + 0.574497i \(0.194802\pi\)
\(810\) 0 0
\(811\) −43.6323 −1.53214 −0.766068 0.642759i \(-0.777789\pi\)
−0.766068 + 0.642759i \(0.777789\pi\)
\(812\) 16.6295 0.583579
\(813\) 0 0
\(814\) 5.43746 0.190583
\(815\) −8.30852 −0.291035
\(816\) 0 0
\(817\) −42.1713 −1.47539
\(818\) −4.04403 −0.141396
\(819\) 0 0
\(820\) −2.30561 −0.0805153
\(821\) −25.5524 −0.891783 −0.445892 0.895087i \(-0.647113\pi\)
−0.445892 + 0.895087i \(0.647113\pi\)
\(822\) 0 0
\(823\) −28.7281 −1.00140 −0.500699 0.865622i \(-0.666924\pi\)
−0.500699 + 0.865622i \(0.666924\pi\)
\(824\) 12.3966 0.431857
\(825\) 0 0
\(826\) 4.47909 0.155848
\(827\) −10.3886 −0.361248 −0.180624 0.983552i \(-0.557812\pi\)
−0.180624 + 0.983552i \(0.557812\pi\)
\(828\) 0 0
\(829\) −43.4017 −1.50740 −0.753702 0.657216i \(-0.771734\pi\)
−0.753702 + 0.657216i \(0.771734\pi\)
\(830\) −9.96277 −0.345813
\(831\) 0 0
\(832\) 3.62848 0.125795
\(833\) −5.73971 −0.198869
\(834\) 0 0
\(835\) 14.7470 0.510341
\(836\) 39.7706 1.37550
\(837\) 0 0
\(838\) −11.3722 −0.392847
\(839\) −43.9907 −1.51873 −0.759363 0.650667i \(-0.774489\pi\)
−0.759363 + 0.650667i \(0.774489\pi\)
\(840\) 0 0
\(841\) 4.78307 0.164934
\(842\) −36.4875 −1.25744
\(843\) 0 0
\(844\) −19.4285 −0.668758
\(845\) −0.579084 −0.0199211
\(846\) 0 0
\(847\) 53.1187 1.82518
\(848\) −3.88952 −0.133567
\(849\) 0 0
\(850\) 34.7983 1.19357
\(851\) −6.69512 −0.229506
\(852\) 0 0
\(853\) 11.3844 0.389794 0.194897 0.980824i \(-0.437563\pi\)
0.194897 + 0.980824i \(0.437563\pi\)
\(854\) −24.2982 −0.831467
\(855\) 0 0
\(856\) −0.144488 −0.00493851
\(857\) −20.7779 −0.709760 −0.354880 0.934912i \(-0.615478\pi\)
−0.354880 + 0.934912i \(0.615478\pi\)
\(858\) 0 0
\(859\) −0.522296 −0.0178205 −0.00891025 0.999960i \(-0.502836\pi\)
−0.00891025 + 0.999960i \(0.502836\pi\)
\(860\) 20.1293 0.686404
\(861\) 0 0
\(862\) 21.7781 0.741764
\(863\) −21.6000 −0.735273 −0.367637 0.929969i \(-0.619833\pi\)
−0.367637 + 0.929969i \(0.619833\pi\)
\(864\) 0 0
\(865\) −13.3879 −0.455202
\(866\) −15.7500 −0.535207
\(867\) 0 0
\(868\) 25.6617 0.871016
\(869\) −22.5107 −0.763624
\(870\) 0 0
\(871\) 1.34644 0.0456223
\(872\) −12.4288 −0.420893
\(873\) 0 0
\(874\) −48.9693 −1.65641
\(875\) −21.8620 −0.739070
\(876\) 0 0
\(877\) −30.1710 −1.01880 −0.509401 0.860529i \(-0.670133\pi\)
−0.509401 + 0.860529i \(0.670133\pi\)
\(878\) 29.8767 1.00829
\(879\) 0 0
\(880\) −18.9834 −0.639931
\(881\) 7.64922 0.257709 0.128854 0.991664i \(-0.458870\pi\)
0.128854 + 0.991664i \(0.458870\pi\)
\(882\) 0 0
\(883\) −1.50660 −0.0507012 −0.0253506 0.999679i \(-0.508070\pi\)
−0.0253506 + 0.999679i \(0.508070\pi\)
\(884\) −17.5644 −0.590755
\(885\) 0 0
\(886\) 33.1876 1.11496
\(887\) −39.8124 −1.33677 −0.668385 0.743816i \(-0.733014\pi\)
−0.668385 + 0.743816i \(0.733014\pi\)
\(888\) 0 0
\(889\) −55.9036 −1.87495
\(890\) 11.5652 0.387666
\(891\) 0 0
\(892\) 13.2705 0.444328
\(893\) 54.1913 1.81344
\(894\) 0 0
\(895\) −15.2529 −0.509850
\(896\) −2.86107 −0.0955816
\(897\) 0 0
\(898\) 33.4784 1.11719
\(899\) 52.1323 1.73871
\(900\) 0 0
\(901\) 18.8280 0.627252
\(902\) −3.59090 −0.119564
\(903\) 0 0
\(904\) −4.15551 −0.138210
\(905\) 12.9802 0.431475
\(906\) 0 0
\(907\) −9.53619 −0.316644 −0.158322 0.987388i \(-0.550608\pi\)
−0.158322 + 0.987388i \(0.550608\pi\)
\(908\) 8.11658 0.269358
\(909\) 0 0
\(910\) 36.2436 1.20146
\(911\) 5.26468 0.174427 0.0872133 0.996190i \(-0.472204\pi\)
0.0872133 + 0.996190i \(0.472204\pi\)
\(912\) 0 0
\(913\) −15.5167 −0.513526
\(914\) −15.5789 −0.515304
\(915\) 0 0
\(916\) 17.7272 0.585723
\(917\) −39.4393 −1.30240
\(918\) 0 0
\(919\) −37.6756 −1.24280 −0.621401 0.783492i \(-0.713436\pi\)
−0.621401 + 0.783492i \(0.713436\pi\)
\(920\) 23.3742 0.770624
\(921\) 0 0
\(922\) 19.6290 0.646445
\(923\) 2.12252 0.0698636
\(924\) 0 0
\(925\) −7.18868 −0.236362
\(926\) −26.0267 −0.855291
\(927\) 0 0
\(928\) −5.81232 −0.190799
\(929\) 2.88639 0.0946995 0.0473497 0.998878i \(-0.484922\pi\)
0.0473497 + 0.998878i \(0.484922\pi\)
\(930\) 0 0
\(931\) 8.67255 0.284231
\(932\) −9.99766 −0.327484
\(933\) 0 0
\(934\) −27.4418 −0.897925
\(935\) 91.8932 3.00523
\(936\) 0 0
\(937\) 23.2591 0.759842 0.379921 0.925019i \(-0.375951\pi\)
0.379921 + 0.925019i \(0.375951\pi\)
\(938\) −1.06167 −0.0346648
\(939\) 0 0
\(940\) −25.8668 −0.843681
\(941\) 26.7089 0.870686 0.435343 0.900265i \(-0.356627\pi\)
0.435343 + 0.900265i \(0.356627\pi\)
\(942\) 0 0
\(943\) 4.42146 0.143982
\(944\) −1.56553 −0.0509537
\(945\) 0 0
\(946\) 31.3507 1.01930
\(947\) 54.1066 1.75823 0.879115 0.476610i \(-0.158135\pi\)
0.879115 + 0.476610i \(0.158135\pi\)
\(948\) 0 0
\(949\) −43.5135 −1.41251
\(950\) −52.5793 −1.70590
\(951\) 0 0
\(952\) 13.8496 0.448868
\(953\) 35.2174 1.14080 0.570402 0.821366i \(-0.306787\pi\)
0.570402 + 0.821366i \(0.306787\pi\)
\(954\) 0 0
\(955\) −19.3185 −0.625131
\(956\) 16.5064 0.533856
\(957\) 0 0
\(958\) 20.6312 0.666563
\(959\) 49.0362 1.58346
\(960\) 0 0
\(961\) 49.4480 1.59510
\(962\) 3.62848 0.116987
\(963\) 0 0
\(964\) 16.9919 0.547272
\(965\) 80.6180 2.59518
\(966\) 0 0
\(967\) −14.2979 −0.459790 −0.229895 0.973215i \(-0.573838\pi\)
−0.229895 + 0.973215i \(0.573838\pi\)
\(968\) −18.5660 −0.596734
\(969\) 0 0
\(970\) 44.8096 1.43875
\(971\) 10.0236 0.321672 0.160836 0.986981i \(-0.448581\pi\)
0.160836 + 0.986981i \(0.448581\pi\)
\(972\) 0 0
\(973\) −5.03579 −0.161440
\(974\) 1.04823 0.0335874
\(975\) 0 0
\(976\) 8.49269 0.271845
\(977\) −0.00109169 −3.49262e−5 0 −1.74631e−5 1.00000i \(-0.500006\pi\)
−1.74631e−5 1.00000i \(0.500006\pi\)
\(978\) 0 0
\(979\) 18.0124 0.575678
\(980\) −4.13961 −0.132235
\(981\) 0 0
\(982\) 33.0819 1.05568
\(983\) 28.0299 0.894016 0.447008 0.894530i \(-0.352490\pi\)
0.447008 + 0.894530i \(0.352490\pi\)
\(984\) 0 0
\(985\) 50.9235 1.62256
\(986\) 28.1357 0.896025
\(987\) 0 0
\(988\) 26.5394 0.844330
\(989\) −38.6019 −1.22747
\(990\) 0 0
\(991\) −25.5039 −0.810157 −0.405078 0.914282i \(-0.632756\pi\)
−0.405078 + 0.914282i \(0.632756\pi\)
\(992\) −8.96928 −0.284775
\(993\) 0 0
\(994\) −1.67361 −0.0530838
\(995\) −69.4542 −2.20185
\(996\) 0 0
\(997\) −43.2073 −1.36839 −0.684195 0.729300i \(-0.739846\pi\)
−0.684195 + 0.729300i \(0.739846\pi\)
\(998\) 6.65247 0.210580
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5994.2.a.ba.1.2 10
3.2 odd 2 5994.2.a.bb.1.9 10
9.2 odd 6 666.2.e.e.445.8 yes 20
9.4 even 3 1998.2.e.e.667.9 20
9.5 odd 6 666.2.e.e.223.8 20
9.7 even 3 1998.2.e.e.1333.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.e.e.223.8 20 9.5 odd 6
666.2.e.e.445.8 yes 20 9.2 odd 6
1998.2.e.e.667.9 20 9.4 even 3
1998.2.e.e.1333.9 20 9.7 even 3
5994.2.a.ba.1.2 10 1.1 even 1 trivial
5994.2.a.bb.1.9 10 3.2 odd 2