Properties

Label 60.2.e.a.11.5
Level $60$
Weight $2$
Character 60.11
Analytic conductor $0.479$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [60,2,Mod(11,60)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(60, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("60.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 60.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.479102412128\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 4x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 11.5
Root \(0.599676 + 1.28078i\) of defining polynomial
Character \(\chi\) \(=\) 60.11
Dual form 60.2.e.a.11.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.599676 - 1.28078i) q^{2} +(0.468213 + 1.66757i) q^{3} +(-1.28078 - 1.53610i) q^{4} -1.00000i q^{5} +(2.41656 + 0.400324i) q^{6} +0.936426i q^{7} +(-2.73546 + 0.719224i) q^{8} +(-2.56155 + 1.56155i) q^{9} +(-1.28078 - 0.599676i) q^{10} -4.27156 q^{11} +(1.96188 - 2.85500i) q^{12} +3.12311 q^{13} +(1.19935 + 0.561553i) q^{14} +(1.66757 - 0.468213i) q^{15} +(-0.719224 + 3.93481i) q^{16} +2.00000i q^{17} +(0.463897 + 4.21720i) q^{18} -4.27156i q^{19} +(-1.53610 + 1.28078i) q^{20} +(-1.56155 + 0.438447i) q^{21} +(-2.56155 + 5.47091i) q^{22} +7.60669 q^{23} +(-2.48013 - 4.22480i) q^{24} -1.00000 q^{25} +(1.87285 - 4.00000i) q^{26} +(-3.80335 - 3.54042i) q^{27} +(1.43845 - 1.19935i) q^{28} -5.12311i q^{29} +(0.400324 - 2.41656i) q^{30} -2.39871i q^{31} +(4.60831 + 3.28078i) q^{32} +(-2.00000 - 7.12311i) q^{33} +(2.56155 + 1.19935i) q^{34} +0.936426 q^{35} +(5.67948 + 1.93481i) q^{36} -3.12311 q^{37} +(-5.47091 - 2.56155i) q^{38} +(1.46228 + 5.20798i) q^{39} +(0.719224 + 2.73546i) q^{40} +7.12311i q^{41} +(-0.374874 + 2.26293i) q^{42} +1.46228i q^{43} +(5.47091 + 6.56155i) q^{44} +(1.56155 + 2.56155i) q^{45} +(4.56155 - 9.74247i) q^{46} -0.936426 q^{47} +(-6.89830 + 0.642976i) q^{48} +6.12311 q^{49} +(-0.599676 + 1.28078i) q^{50} +(-3.33513 + 0.936426i) q^{51} +(-4.00000 - 4.79741i) q^{52} +4.24621i q^{53} +(-6.81526 + 2.74813i) q^{54} +4.27156i q^{55} +(-0.673500 - 2.56155i) q^{56} +(7.12311 - 2.00000i) q^{57} +(-6.56155 - 3.07221i) q^{58} -7.19612 q^{59} +(-2.85500 - 1.96188i) q^{60} -5.12311 q^{61} +(-3.07221 - 1.43845i) q^{62} +(-1.46228 - 2.39871i) q^{63} +(6.96543 - 3.93481i) q^{64} -3.12311i q^{65} +(-10.3225 - 1.71001i) q^{66} +5.20798i q^{67} +(3.07221 - 2.56155i) q^{68} +(3.56155 + 12.6847i) q^{69} +(0.561553 - 1.19935i) q^{70} +6.67026 q^{71} +(5.88391 - 6.11389i) q^{72} -8.24621 q^{73} +(-1.87285 + 4.00000i) q^{74} +(-0.468213 - 1.66757i) q^{75} +(-6.56155 + 5.47091i) q^{76} -4.00000i q^{77} +(7.54716 + 1.25025i) q^{78} +9.06897i q^{79} +(3.93481 + 0.719224i) q^{80} +(4.12311 - 8.00000i) q^{81} +(9.12311 + 4.27156i) q^{82} -4.68213 q^{83} +(2.67350 + 1.83715i) q^{84} +2.00000 q^{85} +(1.87285 + 0.876894i) q^{86} +(8.54312 - 2.39871i) q^{87} +(11.6847 - 3.07221i) q^{88} -6.24621i q^{89} +(4.21720 - 0.463897i) q^{90} +2.92456i q^{91} +(-9.74247 - 11.6847i) q^{92} +(4.00000 - 1.12311i) q^{93} +(-0.561553 + 1.19935i) q^{94} -4.27156 q^{95} +(-3.31324 + 9.22076i) q^{96} -6.00000 q^{97} +(3.67188 - 7.84233i) q^{98} +(10.9418 - 6.67026i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} - 6 q^{6} - 4 q^{9} - 2 q^{10} + 4 q^{12} - 8 q^{13} - 14 q^{16} + 16 q^{18} + 4 q^{21} - 4 q^{22} - 2 q^{24} - 8 q^{25} + 28 q^{28} + 8 q^{30} - 16 q^{33} + 4 q^{34} + 18 q^{36} + 8 q^{37}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/60\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(37\) \(41\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.599676 1.28078i 0.424035 0.905646i
\(3\) 0.468213 + 1.66757i 0.270323 + 0.962770i
\(4\) −1.28078 1.53610i −0.640388 0.768051i
\(5\) 1.00000i 0.447214i
\(6\) 2.41656 + 0.400324i 0.986555 + 0.163431i
\(7\) 0.936426i 0.353936i 0.984217 + 0.176968i \(0.0566289\pi\)
−0.984217 + 0.176968i \(0.943371\pi\)
\(8\) −2.73546 + 0.719224i −0.967130 + 0.254284i
\(9\) −2.56155 + 1.56155i −0.853851 + 0.520518i
\(10\) −1.28078 0.599676i −0.405017 0.189634i
\(11\) −4.27156 −1.28792 −0.643962 0.765058i \(-0.722710\pi\)
−0.643962 + 0.765058i \(0.722710\pi\)
\(12\) 1.96188 2.85500i 0.566345 0.824168i
\(13\) 3.12311 0.866194 0.433097 0.901347i \(-0.357421\pi\)
0.433097 + 0.901347i \(0.357421\pi\)
\(14\) 1.19935 + 0.561553i 0.320541 + 0.150081i
\(15\) 1.66757 0.468213i 0.430564 0.120892i
\(16\) −0.719224 + 3.93481i −0.179806 + 0.983702i
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0.463897 + 4.21720i 0.109342 + 0.994004i
\(19\) 4.27156i 0.979963i −0.871733 0.489981i \(-0.837004\pi\)
0.871733 0.489981i \(-0.162996\pi\)
\(20\) −1.53610 + 1.28078i −0.343483 + 0.286390i
\(21\) −1.56155 + 0.438447i −0.340759 + 0.0956770i
\(22\) −2.56155 + 5.47091i −0.546125 + 1.16640i
\(23\) 7.60669 1.58610 0.793052 0.609154i \(-0.208491\pi\)
0.793052 + 0.609154i \(0.208491\pi\)
\(24\) −2.48013 4.22480i −0.506254 0.862384i
\(25\) −1.00000 −0.200000
\(26\) 1.87285 4.00000i 0.367297 0.784465i
\(27\) −3.80335 3.54042i −0.731954 0.681354i
\(28\) 1.43845 1.19935i 0.271841 0.226656i
\(29\) 5.12311i 0.951337i −0.879625 0.475668i \(-0.842206\pi\)
0.879625 0.475668i \(-0.157794\pi\)
\(30\) 0.400324 2.41656i 0.0730888 0.441201i
\(31\) 2.39871i 0.430820i −0.976524 0.215410i \(-0.930891\pi\)
0.976524 0.215410i \(-0.0691088\pi\)
\(32\) 4.60831 + 3.28078i 0.814642 + 0.579965i
\(33\) −2.00000 7.12311i −0.348155 1.23997i
\(34\) 2.56155 + 1.19935i 0.439303 + 0.205687i
\(35\) 0.936426 0.158285
\(36\) 5.67948 + 1.93481i 0.946580 + 0.322468i
\(37\) −3.12311 −0.513435 −0.256718 0.966486i \(-0.582641\pi\)
−0.256718 + 0.966486i \(0.582641\pi\)
\(38\) −5.47091 2.56155i −0.887499 0.415539i
\(39\) 1.46228 + 5.20798i 0.234152 + 0.833945i
\(40\) 0.719224 + 2.73546i 0.113719 + 0.432514i
\(41\) 7.12311i 1.11244i 0.831034 + 0.556221i \(0.187749\pi\)
−0.831034 + 0.556221i \(0.812251\pi\)
\(42\) −0.374874 + 2.26293i −0.0578442 + 0.349177i
\(43\) 1.46228i 0.222995i 0.993765 + 0.111498i \(0.0355648\pi\)
−0.993765 + 0.111498i \(0.964435\pi\)
\(44\) 5.47091 + 6.56155i 0.824771 + 0.989191i
\(45\) 1.56155 + 2.56155i 0.232783 + 0.381854i
\(46\) 4.56155 9.74247i 0.672564 1.43645i
\(47\) −0.936426 −0.136592 −0.0682959 0.997665i \(-0.521756\pi\)
−0.0682959 + 0.997665i \(0.521756\pi\)
\(48\) −6.89830 + 0.642976i −0.995684 + 0.0928056i
\(49\) 6.12311 0.874729
\(50\) −0.599676 + 1.28078i −0.0848071 + 0.181129i
\(51\) −3.33513 + 0.936426i −0.467012 + 0.131126i
\(52\) −4.00000 4.79741i −0.554700 0.665281i
\(53\) 4.24621i 0.583262i 0.956531 + 0.291631i \(0.0941979\pi\)
−0.956531 + 0.291631i \(0.905802\pi\)
\(54\) −6.81526 + 2.74813i −0.927440 + 0.373973i
\(55\) 4.27156i 0.575977i
\(56\) −0.673500 2.56155i −0.0900002 0.342302i
\(57\) 7.12311 2.00000i 0.943478 0.264906i
\(58\) −6.56155 3.07221i −0.861574 0.403400i
\(59\) −7.19612 −0.936855 −0.468427 0.883502i \(-0.655179\pi\)
−0.468427 + 0.883502i \(0.655179\pi\)
\(60\) −2.85500 1.96188i −0.368579 0.253277i
\(61\) −5.12311 −0.655946 −0.327973 0.944687i \(-0.606366\pi\)
−0.327973 + 0.944687i \(0.606366\pi\)
\(62\) −3.07221 1.43845i −0.390171 0.182683i
\(63\) −1.46228 2.39871i −0.184230 0.302209i
\(64\) 6.96543 3.93481i 0.870679 0.491851i
\(65\) 3.12311i 0.387374i
\(66\) −10.3225 1.71001i −1.27061 0.210487i
\(67\) 5.20798i 0.636257i 0.948048 + 0.318128i \(0.103054\pi\)
−0.948048 + 0.318128i \(0.896946\pi\)
\(68\) 3.07221 2.56155i 0.372560 0.310634i
\(69\) 3.56155 + 12.6847i 0.428761 + 1.52705i
\(70\) 0.561553 1.19935i 0.0671184 0.143350i
\(71\) 6.67026 0.791615 0.395807 0.918334i \(-0.370465\pi\)
0.395807 + 0.918334i \(0.370465\pi\)
\(72\) 5.88391 6.11389i 0.693425 0.720529i
\(73\) −8.24621 −0.965146 −0.482573 0.875856i \(-0.660298\pi\)
−0.482573 + 0.875856i \(0.660298\pi\)
\(74\) −1.87285 + 4.00000i −0.217715 + 0.464991i
\(75\) −0.468213 1.66757i −0.0540646 0.192554i
\(76\) −6.56155 + 5.47091i −0.752662 + 0.627557i
\(77\) 4.00000i 0.455842i
\(78\) 7.54716 + 1.25025i 0.854547 + 0.141563i
\(79\) 9.06897i 1.02034i 0.860074 + 0.510169i \(0.170417\pi\)
−0.860074 + 0.510169i \(0.829583\pi\)
\(80\) 3.93481 + 0.719224i 0.439925 + 0.0804116i
\(81\) 4.12311 8.00000i 0.458123 0.888889i
\(82\) 9.12311 + 4.27156i 1.00748 + 0.471715i
\(83\) −4.68213 −0.513931 −0.256965 0.966421i \(-0.582723\pi\)
−0.256965 + 0.966421i \(0.582723\pi\)
\(84\) 2.67350 + 1.83715i 0.291703 + 0.200450i
\(85\) 2.00000 0.216930
\(86\) 1.87285 + 0.876894i 0.201955 + 0.0945580i
\(87\) 8.54312 2.39871i 0.915918 0.257168i
\(88\) 11.6847 3.07221i 1.24559 0.327498i
\(89\) 6.24621i 0.662097i −0.943614 0.331049i \(-0.892598\pi\)
0.943614 0.331049i \(-0.107402\pi\)
\(90\) 4.21720 0.463897i 0.444532 0.0488991i
\(91\) 2.92456i 0.306577i
\(92\) −9.74247 11.6847i −1.01572 1.21821i
\(93\) 4.00000 1.12311i 0.414781 0.116461i
\(94\) −0.561553 + 1.19935i −0.0579198 + 0.123704i
\(95\) −4.27156 −0.438253
\(96\) −3.31324 + 9.22076i −0.338156 + 0.941090i
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 3.67188 7.84233i 0.370916 0.792195i
\(99\) 10.9418 6.67026i 1.09969 0.670387i
\(100\) 1.28078 + 1.53610i 0.128078 + 0.153610i
\(101\) 9.12311i 0.907783i −0.891057 0.453891i \(-0.850035\pi\)
0.891057 0.453891i \(-0.149965\pi\)
\(102\) −0.800647 + 4.83311i −0.0792759 + 0.478549i
\(103\) 12.4041i 1.22221i −0.791549 0.611106i \(-0.790725\pi\)
0.791549 0.611106i \(-0.209275\pi\)
\(104\) −8.54312 + 2.24621i −0.837722 + 0.220259i
\(105\) 0.438447 + 1.56155i 0.0427881 + 0.152392i
\(106\) 5.43845 + 2.54635i 0.528229 + 0.247324i
\(107\) 0.936426 0.0905278 0.0452639 0.998975i \(-0.485587\pi\)
0.0452639 + 0.998975i \(0.485587\pi\)
\(108\) −0.567212 + 10.3768i −0.0545800 + 0.998509i
\(109\) −9.12311 −0.873835 −0.436918 0.899502i \(-0.643930\pi\)
−0.436918 + 0.899502i \(0.643930\pi\)
\(110\) 5.47091 + 2.56155i 0.521631 + 0.244234i
\(111\) −1.46228 5.20798i −0.138793 0.494320i
\(112\) −3.68466 0.673500i −0.348167 0.0636398i
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 1.71001 10.3225i 0.160157 0.966787i
\(115\) 7.60669i 0.709328i
\(116\) −7.86962 + 6.56155i −0.730676 + 0.609225i
\(117\) −8.00000 + 4.87689i −0.739600 + 0.450869i
\(118\) −4.31534 + 9.21662i −0.397259 + 0.848458i
\(119\) −1.87285 −0.171684
\(120\) −4.22480 + 2.48013i −0.385670 + 0.226404i
\(121\) 7.24621 0.658746
\(122\) −3.07221 + 6.56155i −0.278144 + 0.594055i
\(123\) −11.8782 + 3.33513i −1.07103 + 0.300719i
\(124\) −3.68466 + 3.07221i −0.330892 + 0.275892i
\(125\) 1.00000i 0.0894427i
\(126\) −3.94910 + 0.434406i −0.351814 + 0.0386999i
\(127\) 4.68213i 0.415472i −0.978185 0.207736i \(-0.933391\pi\)
0.978185 0.207736i \(-0.0666095\pi\)
\(128\) −0.862603 11.2808i −0.0762440 0.997089i
\(129\) −2.43845 + 0.684658i −0.214693 + 0.0602808i
\(130\) −4.00000 1.87285i −0.350823 0.164260i
\(131\) 17.6121 1.53878 0.769388 0.638782i \(-0.220562\pi\)
0.769388 + 0.638782i \(0.220562\pi\)
\(132\) −8.38027 + 12.1953i −0.729409 + 1.06147i
\(133\) 4.00000 0.346844
\(134\) 6.67026 + 3.12311i 0.576223 + 0.269795i
\(135\) −3.54042 + 3.80335i −0.304711 + 0.327340i
\(136\) −1.43845 5.47091i −0.123346 0.469127i
\(137\) 8.24621i 0.704521i 0.935902 + 0.352261i \(0.114587\pi\)
−0.935902 + 0.352261i \(0.885413\pi\)
\(138\) 18.3820 + 3.04514i 1.56478 + 0.259219i
\(139\) 13.8664i 1.17613i −0.808813 0.588066i \(-0.799890\pi\)
0.808813 0.588066i \(-0.200110\pi\)
\(140\) −1.19935 1.43845i −0.101364 0.121571i
\(141\) −0.438447 1.56155i −0.0369239 0.131506i
\(142\) 4.00000 8.54312i 0.335673 0.716922i
\(143\) −13.3405 −1.11559
\(144\) −4.30208 11.2023i −0.358507 0.933527i
\(145\) −5.12311 −0.425451
\(146\) −4.94506 + 10.5616i −0.409256 + 0.874080i
\(147\) 2.86692 + 10.2107i 0.236459 + 0.842163i
\(148\) 4.00000 + 4.79741i 0.328798 + 0.394345i
\(149\) 14.0000i 1.14692i −0.819232 0.573462i \(-0.805600\pi\)
0.819232 0.573462i \(-0.194400\pi\)
\(150\) −2.41656 0.400324i −0.197311 0.0326863i
\(151\) 6.14441i 0.500025i 0.968243 + 0.250013i \(0.0804347\pi\)
−0.968243 + 0.250013i \(0.919565\pi\)
\(152\) 3.07221 + 11.6847i 0.249189 + 0.947751i
\(153\) −3.12311 5.12311i −0.252488 0.414179i
\(154\) −5.12311 2.39871i −0.412832 0.193293i
\(155\) −2.39871 −0.192669
\(156\) 6.12715 8.91648i 0.490564 0.713889i
\(157\) 21.3693 1.70546 0.852729 0.522354i \(-0.174946\pi\)
0.852729 + 0.522354i \(0.174946\pi\)
\(158\) 11.6153 + 5.43845i 0.924065 + 0.432660i
\(159\) −7.08084 + 1.98813i −0.561547 + 0.157669i
\(160\) 3.28078 4.60831i 0.259368 0.364319i
\(161\) 7.12311i 0.561379i
\(162\) −7.77368 10.0782i −0.610758 0.791817i
\(163\) 24.1671i 1.89291i 0.322834 + 0.946456i \(0.395364\pi\)
−0.322834 + 0.946456i \(0.604636\pi\)
\(164\) 10.9418 9.12311i 0.854413 0.712395i
\(165\) −7.12311 + 2.00000i −0.554533 + 0.155700i
\(166\) −2.80776 + 5.99676i −0.217925 + 0.465439i
\(167\) 2.80928 0.217389 0.108694 0.994075i \(-0.465333\pi\)
0.108694 + 0.994075i \(0.465333\pi\)
\(168\) 3.95622 2.32246i 0.305229 0.179182i
\(169\) −3.24621 −0.249709
\(170\) 1.19935 2.56155i 0.0919862 0.196462i
\(171\) 6.67026 + 10.9418i 0.510088 + 0.836742i
\(172\) 2.24621 1.87285i 0.171272 0.142804i
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) 2.05090 12.3803i 0.155478 0.938546i
\(175\) 0.936426i 0.0707872i
\(176\) 3.07221 16.8078i 0.231576 1.26693i
\(177\) −3.36932 12.0000i −0.253253 0.901975i
\(178\) −8.00000 3.74571i −0.599625 0.280752i
\(179\) 14.6875 1.09780 0.548899 0.835889i \(-0.315047\pi\)
0.548899 + 0.835889i \(0.315047\pi\)
\(180\) 1.93481 5.67948i 0.144212 0.423324i
\(181\) 4.24621 0.315618 0.157809 0.987470i \(-0.449557\pi\)
0.157809 + 0.987470i \(0.449557\pi\)
\(182\) 3.74571 + 1.75379i 0.277650 + 0.129999i
\(183\) −2.39871 8.54312i −0.177317 0.631525i
\(184\) −20.8078 + 5.47091i −1.53397 + 0.403321i
\(185\) 3.12311i 0.229615i
\(186\) 0.960258 5.79661i 0.0704096 0.425028i
\(187\) 8.54312i 0.624735i
\(188\) 1.19935 + 1.43845i 0.0874718 + 0.104910i
\(189\) 3.31534 3.56155i 0.241156 0.259065i
\(190\) −2.56155 + 5.47091i −0.185835 + 0.396902i
\(191\) −7.72197 −0.558742 −0.279371 0.960183i \(-0.590126\pi\)
−0.279371 + 0.960183i \(0.590126\pi\)
\(192\) 9.82286 + 9.77299i 0.708904 + 0.705305i
\(193\) 16.2462 1.16943 0.584714 0.811240i \(-0.301207\pi\)
0.584714 + 0.811240i \(0.301207\pi\)
\(194\) −3.59806 + 7.68466i −0.258326 + 0.551726i
\(195\) 5.20798 1.46228i 0.372952 0.104716i
\(196\) −7.84233 9.40572i −0.560166 0.671837i
\(197\) 12.2462i 0.872506i −0.899824 0.436253i \(-0.856305\pi\)
0.899824 0.436253i \(-0.143695\pi\)
\(198\) −1.98156 18.0140i −0.140824 1.28020i
\(199\) 17.6121i 1.24849i 0.781230 + 0.624244i \(0.214593\pi\)
−0.781230 + 0.624244i \(0.785407\pi\)
\(200\) 2.73546 0.719224i 0.193426 0.0508568i
\(201\) −8.68466 + 2.43845i −0.612569 + 0.171995i
\(202\) −11.6847 5.47091i −0.822130 0.384932i
\(203\) 4.79741 0.336712
\(204\) 5.71001 + 3.92375i 0.399780 + 0.274718i
\(205\) 7.12311 0.497499
\(206\) −15.8869 7.43845i −1.10689 0.518261i
\(207\) −19.4849 + 11.8782i −1.35430 + 0.825595i
\(208\) −2.24621 + 12.2888i −0.155747 + 0.852077i
\(209\) 18.2462i 1.26212i
\(210\) 2.26293 + 0.374874i 0.156157 + 0.0258687i
\(211\) 1.34700i 0.0927313i 0.998925 + 0.0463656i \(0.0147639\pi\)
−0.998925 + 0.0463656i \(0.985236\pi\)
\(212\) 6.52262 5.43845i 0.447975 0.373514i
\(213\) 3.12311 + 11.1231i 0.213992 + 0.762143i
\(214\) 0.561553 1.19935i 0.0383870 0.0819861i
\(215\) 1.46228 0.0997266
\(216\) 12.9502 + 6.94920i 0.881152 + 0.472833i
\(217\) 2.24621 0.152483
\(218\) −5.47091 + 11.6847i −0.370537 + 0.791385i
\(219\) −3.86098 13.7511i −0.260901 0.929213i
\(220\) 6.56155 5.47091i 0.442380 0.368849i
\(221\) 6.24621i 0.420166i
\(222\) −7.54716 1.25025i −0.506532 0.0839115i
\(223\) 18.0227i 1.20689i −0.797406 0.603443i \(-0.793795\pi\)
0.797406 0.603443i \(-0.206205\pi\)
\(224\) −3.07221 + 4.31534i −0.205270 + 0.288331i
\(225\) 2.56155 1.56155i 0.170770 0.104104i
\(226\) 17.9309 + 8.39547i 1.19274 + 0.558458i
\(227\) 8.65840 0.574678 0.287339 0.957829i \(-0.407229\pi\)
0.287339 + 0.957829i \(0.407229\pi\)
\(228\) −12.1953 8.38027i −0.807654 0.554997i
\(229\) 0.246211 0.0162701 0.00813505 0.999967i \(-0.497411\pi\)
0.00813505 + 0.999967i \(0.497411\pi\)
\(230\) −9.74247 4.56155i −0.642399 0.300780i
\(231\) 6.67026 1.87285i 0.438871 0.123225i
\(232\) 3.68466 + 14.0140i 0.241910 + 0.920066i
\(233\) 10.0000i 0.655122i −0.944830 0.327561i \(-0.893773\pi\)
0.944830 0.327561i \(-0.106227\pi\)
\(234\) 1.44880 + 13.1708i 0.0947110 + 0.861000i
\(235\) 0.936426i 0.0610857i
\(236\) 9.21662 + 11.0540i 0.599951 + 0.719553i
\(237\) −15.1231 + 4.24621i −0.982351 + 0.275821i
\(238\) −1.12311 + 2.39871i −0.0728001 + 0.155485i
\(239\) −20.8319 −1.34751 −0.673753 0.738957i \(-0.735319\pi\)
−0.673753 + 0.738957i \(0.735319\pi\)
\(240\) 0.642976 + 6.89830i 0.0415039 + 0.445284i
\(241\) −11.3693 −0.732362 −0.366181 0.930544i \(-0.619335\pi\)
−0.366181 + 0.930544i \(0.619335\pi\)
\(242\) 4.34538 9.28078i 0.279332 0.596591i
\(243\) 15.2710 + 3.12985i 0.979636 + 0.200780i
\(244\) 6.56155 + 7.86962i 0.420060 + 0.503801i
\(245\) 6.12311i 0.391191i
\(246\) −2.85155 + 17.2134i −0.181808 + 1.09749i
\(247\) 13.3405i 0.848837i
\(248\) 1.72521 + 6.56155i 0.109551 + 0.416659i
\(249\) −2.19224 7.80776i −0.138927 0.494797i
\(250\) 1.28078 + 0.599676i 0.0810034 + 0.0379269i
\(251\) −25.1035 −1.58452 −0.792259 0.610184i \(-0.791095\pi\)
−0.792259 + 0.610184i \(0.791095\pi\)
\(252\) −1.81181 + 5.31842i −0.114133 + 0.335029i
\(253\) −32.4924 −2.04278
\(254\) −5.99676 2.80776i −0.376270 0.176175i
\(255\) 0.936426 + 3.33513i 0.0586413 + 0.208854i
\(256\) −14.9654 5.66001i −0.935340 0.353751i
\(257\) 2.49242i 0.155473i −0.996974 0.0777365i \(-0.975231\pi\)
0.996974 0.0777365i \(-0.0247693\pi\)
\(258\) −0.585385 + 3.53368i −0.0364445 + 0.219997i
\(259\) 2.92456i 0.181723i
\(260\) −4.79741 + 4.00000i −0.297523 + 0.248069i
\(261\) 8.00000 + 13.1231i 0.495188 + 0.812300i
\(262\) 10.5616 22.5571i 0.652495 1.39359i
\(263\) 15.0981 0.930989 0.465494 0.885051i \(-0.345877\pi\)
0.465494 + 0.885051i \(0.345877\pi\)
\(264\) 10.5940 + 18.0465i 0.652017 + 1.11068i
\(265\) 4.24621 0.260843
\(266\) 2.39871 5.12311i 0.147074 0.314118i
\(267\) 10.4160 2.92456i 0.637447 0.178980i
\(268\) 8.00000 6.67026i 0.488678 0.407451i
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 2.74813 + 6.81526i 0.167246 + 0.414764i
\(271\) 31.7738i 1.93012i −0.262032 0.965059i \(-0.584392\pi\)
0.262032 0.965059i \(-0.415608\pi\)
\(272\) −7.86962 1.43845i −0.477166 0.0872187i
\(273\) −4.87689 + 1.36932i −0.295163 + 0.0828748i
\(274\) 10.5616 + 4.94506i 0.638047 + 0.298742i
\(275\) 4.27156 0.257585
\(276\) 14.9234 21.7171i 0.898282 1.30722i
\(277\) −1.36932 −0.0822743 −0.0411371 0.999154i \(-0.513098\pi\)
−0.0411371 + 0.999154i \(0.513098\pi\)
\(278\) −17.7597 8.31534i −1.06516 0.498721i
\(279\) 3.74571 + 6.14441i 0.224250 + 0.367856i
\(280\) −2.56155 + 0.673500i −0.153082 + 0.0402493i
\(281\) 27.6155i 1.64740i −0.567023 0.823702i \(-0.691905\pi\)
0.567023 0.823702i \(-0.308095\pi\)
\(282\) −2.26293 0.374874i −0.134755 0.0223234i
\(283\) 4.38684i 0.260770i 0.991463 + 0.130385i \(0.0416214\pi\)
−0.991463 + 0.130385i \(0.958379\pi\)
\(284\) −8.54312 10.2462i −0.506941 0.608001i
\(285\) −2.00000 7.12311i −0.118470 0.421936i
\(286\) −8.00000 + 17.0862i −0.473050 + 1.01033i
\(287\) −6.67026 −0.393733
\(288\) −16.9275 1.20777i −0.997464 0.0711682i
\(289\) 13.0000 0.764706
\(290\) −3.07221 + 6.56155i −0.180406 + 0.385308i
\(291\) −2.80928 10.0054i −0.164683 0.586527i
\(292\) 10.5616 + 12.6670i 0.618068 + 0.741282i
\(293\) 30.4924i 1.78139i −0.454605 0.890693i \(-0.650220\pi\)
0.454605 0.890693i \(-0.349780\pi\)
\(294\) 14.7968 + 2.45122i 0.862968 + 0.142958i
\(295\) 7.19612i 0.418974i
\(296\) 8.54312 2.24621i 0.496559 0.130558i
\(297\) 16.2462 + 15.1231i 0.942701 + 0.877532i
\(298\) −17.9309 8.39547i −1.03871 0.486337i
\(299\) 23.7565 1.37387
\(300\) −1.96188 + 2.85500i −0.113269 + 0.164834i
\(301\) −1.36932 −0.0789261
\(302\) 7.86962 + 3.68466i 0.452846 + 0.212028i
\(303\) 15.2134 4.27156i 0.873986 0.245395i
\(304\) 16.8078 + 3.07221i 0.963991 + 0.176203i
\(305\) 5.12311i 0.293348i
\(306\) −8.43441 + 0.927794i −0.482163 + 0.0530385i
\(307\) 8.13254i 0.464149i 0.972698 + 0.232074i \(0.0745513\pi\)
−0.972698 + 0.232074i \(0.925449\pi\)
\(308\) −6.14441 + 5.12311i −0.350110 + 0.291916i
\(309\) 20.6847 5.80776i 1.17671 0.330392i
\(310\) −1.43845 + 3.07221i −0.0816983 + 0.174490i
\(311\) −14.1617 −0.803035 −0.401517 0.915851i \(-0.631517\pi\)
−0.401517 + 0.915851i \(0.631517\pi\)
\(312\) −7.74571 13.1945i −0.438514 0.746992i
\(313\) 10.4924 0.593067 0.296533 0.955022i \(-0.404169\pi\)
0.296533 + 0.955022i \(0.404169\pi\)
\(314\) 12.8147 27.3693i 0.723174 1.54454i
\(315\) −2.39871 + 1.46228i −0.135152 + 0.0823901i
\(316\) 13.9309 11.6153i 0.783673 0.653413i
\(317\) 32.7386i 1.83878i 0.393342 + 0.919392i \(0.371319\pi\)
−0.393342 + 0.919392i \(0.628681\pi\)
\(318\) −1.69986 + 10.2612i −0.0953233 + 0.575420i
\(319\) 21.8836i 1.22525i
\(320\) −3.93481 6.96543i −0.219962 0.389380i
\(321\) 0.438447 + 1.56155i 0.0244717 + 0.0871574i
\(322\) 9.12311 + 4.27156i 0.508411 + 0.238045i
\(323\) 8.54312 0.475352
\(324\) −17.5696 + 3.91270i −0.976089 + 0.217372i
\(325\) −3.12311 −0.173239
\(326\) 30.9526 + 14.4924i 1.71431 + 0.802661i
\(327\) −4.27156 15.2134i −0.236218 0.841302i
\(328\) −5.12311 19.4849i −0.282876 1.07588i
\(329\) 0.876894i 0.0483448i
\(330\) −1.71001 + 10.3225i −0.0941327 + 0.568233i
\(331\) 28.0281i 1.54056i 0.637705 + 0.770281i \(0.279884\pi\)
−0.637705 + 0.770281i \(0.720116\pi\)
\(332\) 5.99676 + 7.19224i 0.329115 + 0.394725i
\(333\) 8.00000 4.87689i 0.438397 0.267252i
\(334\) 1.68466 3.59806i 0.0921804 0.196877i
\(335\) 5.20798 0.284543
\(336\) −0.602100 6.45975i −0.0328473 0.352408i
\(337\) −34.4924 −1.87892 −0.939461 0.342656i \(-0.888674\pi\)
−0.939461 + 0.342656i \(0.888674\pi\)
\(338\) −1.94668 + 4.15767i −0.105885 + 0.226147i
\(339\) −23.3459 + 6.55498i −1.26798 + 0.356018i
\(340\) −2.56155 3.07221i −0.138920 0.166614i
\(341\) 10.2462i 0.554863i
\(342\) 18.0140 1.98156i 0.974087 0.107151i
\(343\) 12.2888i 0.663534i
\(344\) −1.05171 4.00000i −0.0567042 0.215666i
\(345\) 12.6847 3.56155i 0.682919 0.191748i
\(346\) 2.56155 + 1.19935i 0.137710 + 0.0644776i
\(347\) −23.8718 −1.28150 −0.640752 0.767748i \(-0.721377\pi\)
−0.640752 + 0.767748i \(0.721377\pi\)
\(348\) −14.6265 10.0509i −0.784062 0.538785i
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) −1.19935 0.561553i −0.0641081 0.0300163i
\(351\) −11.8782 11.0571i −0.634014 0.590184i
\(352\) −19.6847 14.0140i −1.04920 0.746950i
\(353\) 3.75379i 0.199794i −0.994998 0.0998970i \(-0.968149\pi\)
0.994998 0.0998970i \(-0.0318513\pi\)
\(354\) −17.3898 2.88078i −0.924258 0.153111i
\(355\) 6.67026i 0.354021i
\(356\) −9.59482 + 8.00000i −0.508525 + 0.423999i
\(357\) −0.876894 3.12311i −0.0464102 0.165292i
\(358\) 8.80776 18.8114i 0.465505 0.994215i
\(359\) 1.05171 0.0555069 0.0277535 0.999615i \(-0.491165\pi\)
0.0277535 + 0.999615i \(0.491165\pi\)
\(360\) −6.11389 5.88391i −0.322230 0.310109i
\(361\) 0.753789 0.0396731
\(362\) 2.54635 5.43845i 0.133833 0.285838i
\(363\) 3.39277 + 12.0835i 0.178074 + 0.634221i
\(364\) 4.49242 3.74571i 0.235467 0.196328i
\(365\) 8.24621i 0.431626i
\(366\) −12.3803 2.05090i −0.647127 0.107202i
\(367\) 26.5658i 1.38672i 0.720590 + 0.693361i \(0.243871\pi\)
−0.720590 + 0.693361i \(0.756129\pi\)
\(368\) −5.47091 + 29.9309i −0.285191 + 1.56025i
\(369\) −11.1231 18.2462i −0.579046 0.949860i
\(370\) 4.00000 + 1.87285i 0.207950 + 0.0973650i
\(371\) −3.97626 −0.206437
\(372\) −6.84831 4.70596i −0.355068 0.243993i
\(373\) −0.876894 −0.0454039 −0.0227019 0.999742i \(-0.507227\pi\)
−0.0227019 + 0.999742i \(0.507227\pi\)
\(374\) −10.9418 5.12311i −0.565788 0.264909i
\(375\) −1.66757 + 0.468213i −0.0861127 + 0.0241784i
\(376\) 2.56155 0.673500i 0.132102 0.0347331i
\(377\) 16.0000i 0.824042i
\(378\) −2.57342 6.38199i −0.132362 0.328254i
\(379\) 25.1035i 1.28948i −0.764402 0.644740i \(-0.776966\pi\)
0.764402 0.644740i \(-0.223034\pi\)
\(380\) 5.47091 + 6.56155i 0.280652 + 0.336601i
\(381\) 7.80776 2.19224i 0.400004 0.112312i
\(382\) −4.63068 + 9.89012i −0.236926 + 0.506022i
\(383\) 4.68213 0.239246 0.119623 0.992819i \(-0.461831\pi\)
0.119623 + 0.992819i \(0.461831\pi\)
\(384\) 18.4076 6.72026i 0.939357 0.342942i
\(385\) −4.00000 −0.203859
\(386\) 9.74247 20.8078i 0.495879 1.05909i
\(387\) −2.28343 3.74571i −0.116073 0.190405i
\(388\) 7.68466 + 9.21662i 0.390129 + 0.467903i
\(389\) 28.7386i 1.45711i 0.684989 + 0.728553i \(0.259807\pi\)
−0.684989 + 0.728553i \(0.740193\pi\)
\(390\) 1.25025 7.54716i 0.0633090 0.382165i
\(391\) 15.2134i 0.769374i
\(392\) −16.7495 + 4.40388i −0.845977 + 0.222430i
\(393\) 8.24621 + 29.3693i 0.415966 + 1.48149i
\(394\) −15.6847 7.34376i −0.790182 0.369973i
\(395\) 9.06897 0.456309
\(396\) −24.2602 8.26465i −1.21912 0.415314i
\(397\) 23.1231 1.16052 0.580258 0.814433i \(-0.302952\pi\)
0.580258 + 0.814433i \(0.302952\pi\)
\(398\) 22.5571 + 10.5616i 1.13069 + 0.529403i
\(399\) 1.87285 + 6.67026i 0.0937599 + 0.333931i
\(400\) 0.719224 3.93481i 0.0359612 0.196740i
\(401\) 24.0000i 1.19850i 0.800561 + 0.599251i \(0.204535\pi\)
−0.800561 + 0.599251i \(0.795465\pi\)
\(402\) −2.08488 + 12.5854i −0.103984 + 0.627702i
\(403\) 7.49141i 0.373174i
\(404\) −14.0140 + 11.6847i −0.697224 + 0.581333i
\(405\) −8.00000 4.12311i −0.397523 0.204879i
\(406\) 2.87689 6.14441i 0.142778 0.304942i
\(407\) 13.3405 0.661265
\(408\) 8.44961 4.96026i 0.418318 0.245569i
\(409\) 0.630683 0.0311853 0.0155926 0.999878i \(-0.495037\pi\)
0.0155926 + 0.999878i \(0.495037\pi\)
\(410\) 4.27156 9.12311i 0.210957 0.450558i
\(411\) −13.7511 + 3.86098i −0.678292 + 0.190448i
\(412\) −19.0540 + 15.8869i −0.938722 + 0.782690i
\(413\) 6.73863i 0.331586i
\(414\) 3.52872 + 32.0790i 0.173427 + 1.57659i
\(415\) 4.68213i 0.229837i
\(416\) 14.3922 + 10.2462i 0.705637 + 0.502362i
\(417\) 23.1231 6.49242i 1.13234 0.317935i
\(418\) 23.3693 + 10.9418i 1.14303 + 0.535182i
\(419\) −6.14441 −0.300174 −0.150087 0.988673i \(-0.547955\pi\)
−0.150087 + 0.988673i \(0.547955\pi\)
\(420\) 1.83715 2.67350i 0.0896439 0.130453i
\(421\) −0.630683 −0.0307376 −0.0153688 0.999882i \(-0.504892\pi\)
−0.0153688 + 0.999882i \(0.504892\pi\)
\(422\) 1.72521 + 0.807764i 0.0839817 + 0.0393213i
\(423\) 2.39871 1.46228i 0.116629 0.0710985i
\(424\) −3.05398 11.6153i −0.148314 0.564090i
\(425\) 2.00000i 0.0970143i
\(426\) 16.1191 + 2.67026i 0.780971 + 0.129375i
\(427\) 4.79741i 0.232163i
\(428\) −1.19935 1.43845i −0.0579729 0.0695300i
\(429\) −6.24621 22.2462i −0.301570 1.07406i
\(430\) 0.876894 1.87285i 0.0422876 0.0903170i
\(431\) 36.0453 1.73624 0.868121 0.496353i \(-0.165328\pi\)
0.868121 + 0.496353i \(0.165328\pi\)
\(432\) 16.6663 12.4191i 0.801859 0.597513i
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 1.34700 2.87689i 0.0646581 0.138095i
\(435\) −2.39871 8.54312i −0.115009 0.409611i
\(436\) 11.6847 + 14.0140i 0.559594 + 0.671150i
\(437\) 32.4924i 1.55432i
\(438\) −19.9274 3.30115i −0.952169 0.157735i
\(439\) 29.9009i 1.42709i −0.700608 0.713546i \(-0.747088\pi\)
0.700608 0.713546i \(-0.252912\pi\)
\(440\) −3.07221 11.6847i −0.146462 0.557044i
\(441\) −15.6847 + 9.56155i −0.746888 + 0.455312i
\(442\) 8.00000 + 3.74571i 0.380521 + 0.178165i
\(443\) −25.7446 −1.22316 −0.611582 0.791181i \(-0.709467\pi\)
−0.611582 + 0.791181i \(0.709467\pi\)
\(444\) −6.12715 + 8.91648i −0.290782 + 0.423157i
\(445\) −6.24621 −0.296099
\(446\) −23.0830 10.8078i −1.09301 0.511762i
\(447\) 23.3459 6.55498i 1.10422 0.310040i
\(448\) 3.68466 + 6.52262i 0.174084 + 0.308165i
\(449\) 2.63068i 0.124150i −0.998071 0.0620748i \(-0.980228\pi\)
0.998071 0.0620748i \(-0.0197717\pi\)
\(450\) −0.463897 4.21720i −0.0218683 0.198801i
\(451\) 30.4268i 1.43274i
\(452\) 21.5054 17.9309i 1.01153 0.843397i
\(453\) −10.2462 + 2.87689i −0.481409 + 0.135168i
\(454\) 5.19224 11.0895i 0.243684 0.520455i
\(455\) 2.92456 0.137105
\(456\) −18.0465 + 10.5940i −0.845104 + 0.496110i
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0.147647 0.315342i 0.00689909 0.0147349i
\(459\) 7.08084 7.60669i 0.330505 0.355050i
\(460\) −11.6847 + 9.74247i −0.544800 + 0.454245i
\(461\) 15.8617i 0.738755i −0.929279 0.369377i \(-0.879571\pi\)
0.929279 0.369377i \(-0.120429\pi\)
\(462\) 1.60129 9.66622i 0.0744990 0.449713i
\(463\) 0.936426i 0.0435194i −0.999763 0.0217597i \(-0.993073\pi\)
0.999763 0.0217597i \(-0.00692688\pi\)
\(464\) 20.1584 + 3.68466i 0.935832 + 0.171056i
\(465\) −1.12311 4.00000i −0.0520828 0.185496i
\(466\) −12.8078 5.99676i −0.593308 0.277795i
\(467\) −16.1498 −0.747324 −0.373662 0.927565i \(-0.621898\pi\)
−0.373662 + 0.927565i \(0.621898\pi\)
\(468\) 17.7376 + 6.04261i 0.819922 + 0.279320i
\(469\) −4.87689 −0.225194
\(470\) 1.19935 + 0.561553i 0.0553220 + 0.0259025i
\(471\) 10.0054 + 35.6347i 0.461024 + 1.64196i
\(472\) 19.6847 5.17562i 0.906060 0.238227i
\(473\) 6.24621i 0.287201i
\(474\) −3.63052 + 21.9157i −0.166755 + 1.00662i
\(475\) 4.27156i 0.195993i
\(476\) 2.39871 + 2.87689i 0.109944 + 0.131862i
\(477\) −6.63068 10.8769i −0.303598 0.498019i
\(478\) −12.4924 + 26.6811i −0.571390 + 1.22036i
\(479\) 22.9354 1.04794 0.523971 0.851736i \(-0.324450\pi\)
0.523971 + 0.851736i \(0.324450\pi\)
\(480\) 9.22076 + 3.31324i 0.420868 + 0.151228i
\(481\) −9.75379 −0.444734
\(482\) −6.81791 + 14.5616i −0.310547 + 0.663261i
\(483\) −11.8782 + 3.33513i −0.540479 + 0.151754i
\(484\) −9.28078 11.1309i −0.421853 0.505951i
\(485\) 6.00000i 0.272446i
\(486\) 13.1663 17.6819i 0.597236 0.802066i
\(487\) 15.3287i 0.694608i −0.937753 0.347304i \(-0.887097\pi\)
0.937753 0.347304i \(-0.112903\pi\)
\(488\) 14.0140 3.68466i 0.634385 0.166797i
\(489\) −40.3002 + 11.3153i −1.82244 + 0.511697i
\(490\) −7.84233 3.67188i −0.354280 0.165879i
\(491\) 18.6638 0.842285 0.421143 0.906994i \(-0.361629\pi\)
0.421143 + 0.906994i \(0.361629\pi\)
\(492\) 20.3365 + 13.9747i 0.916840 + 0.630026i
\(493\) 10.2462 0.461466
\(494\) −17.0862 8.00000i −0.768746 0.359937i
\(495\) −6.67026 10.9418i −0.299806 0.491798i
\(496\) 9.43845 + 1.72521i 0.423799 + 0.0774640i
\(497\) 6.24621i 0.280181i
\(498\) −11.3146 1.87437i −0.507021 0.0839924i
\(499\) 1.57756i 0.0706212i 0.999376 + 0.0353106i \(0.0112421\pi\)
−0.999376 + 0.0353106i \(0.988758\pi\)
\(500\) 1.53610 1.28078i 0.0686966 0.0572781i
\(501\) 1.31534 + 4.68466i 0.0587651 + 0.209295i
\(502\) −15.0540 + 32.1520i −0.671892 + 1.43501i
\(503\) −19.8955 −0.887097 −0.443549 0.896250i \(-0.646281\pi\)
−0.443549 + 0.896250i \(0.646281\pi\)
\(504\) 5.72521 + 5.50985i 0.255021 + 0.245428i
\(505\) −9.12311 −0.405973
\(506\) −19.4849 + 41.6155i −0.866211 + 1.85004i
\(507\) −1.51992 5.41327i −0.0675020 0.240412i
\(508\) −7.19224 + 5.99676i −0.319104 + 0.266063i
\(509\) 2.87689i 0.127516i 0.997965 + 0.0637581i \(0.0203086\pi\)
−0.997965 + 0.0637581i \(0.979691\pi\)
\(510\) 4.83311 + 0.800647i 0.214014 + 0.0354533i
\(511\) 7.72197i 0.341600i
\(512\) −16.2236 + 15.7732i −0.716990 + 0.697083i
\(513\) −15.1231 + 16.2462i −0.667701 + 0.717288i
\(514\) −3.19224 1.49465i −0.140803 0.0659261i
\(515\) −12.4041 −0.546590
\(516\) 4.17481 + 2.86881i 0.183786 + 0.126292i
\(517\) 4.00000 0.175920
\(518\) −3.74571 1.75379i −0.164577 0.0770571i
\(519\) −3.33513 + 0.936426i −0.146396 + 0.0411046i
\(520\) 2.24621 + 8.54312i 0.0985029 + 0.374640i
\(521\) 21.7538i 0.953051i −0.879161 0.476525i \(-0.841896\pi\)
0.879161 0.476525i \(-0.158104\pi\)
\(522\) 21.6052 2.37659i 0.945633 0.104021i
\(523\) 0.641132i 0.0280348i −0.999902 0.0140174i \(-0.995538\pi\)
0.999902 0.0140174i \(-0.00446202\pi\)
\(524\) −22.5571 27.0540i −0.985413 1.18186i
\(525\) 1.56155 0.438447i 0.0681518 0.0191354i
\(526\) 9.05398 19.3373i 0.394772 0.843146i
\(527\) 4.79741 0.208979
\(528\) 29.4665 2.74651i 1.28236 0.119527i
\(529\) 34.8617 1.51573
\(530\) 2.54635 5.43845i 0.110606 0.236231i
\(531\) 18.4332 11.2371i 0.799934 0.487649i
\(532\) −5.12311 6.14441i −0.222115 0.266394i
\(533\) 22.2462i 0.963590i
\(534\) 2.50051 15.0943i 0.108207 0.653195i
\(535\) 0.936426i 0.0404852i
\(536\) −3.74571 14.2462i −0.161790 0.615343i
\(537\) 6.87689 + 24.4924i 0.296760 + 1.05693i
\(538\) 17.9309 + 8.39547i 0.773055 + 0.361954i
\(539\) −26.1552 −1.12658
\(540\) 10.3768 + 0.567212i 0.446547 + 0.0244089i
\(541\) 38.9848 1.67609 0.838045 0.545602i \(-0.183699\pi\)
0.838045 + 0.545602i \(0.183699\pi\)
\(542\) −40.6951 19.0540i −1.74800 0.818438i
\(543\) 1.98813 + 7.08084i 0.0853189 + 0.303868i
\(544\) −6.56155 + 9.21662i −0.281324 + 0.395159i
\(545\) 9.12311i 0.390791i
\(546\) −1.17077 + 7.06736i −0.0501043 + 0.302455i
\(547\) 25.2188i 1.07828i 0.842217 + 0.539139i \(0.181250\pi\)
−0.842217 + 0.539139i \(0.818750\pi\)
\(548\) 12.6670 10.5616i 0.541109 0.451167i
\(549\) 13.1231 8.00000i 0.560080 0.341432i
\(550\) 2.56155 5.47091i 0.109225 0.233280i
\(551\) −21.8836 −0.932275
\(552\) −18.8656 32.1368i −0.802972 1.36783i
\(553\) −8.49242 −0.361135
\(554\) −0.821147 + 1.75379i −0.0348872 + 0.0745113i
\(555\) −5.20798 + 1.46228i −0.221067 + 0.0620703i
\(556\) −21.3002 + 17.7597i −0.903329 + 0.753180i
\(557\) 19.7538i 0.836995i 0.908218 + 0.418497i \(0.137443\pi\)
−0.908218 + 0.418497i \(0.862557\pi\)
\(558\) 10.1158 1.11275i 0.428237 0.0471066i
\(559\) 4.56685i 0.193157i
\(560\) −0.673500 + 3.68466i −0.0284606 + 0.155705i
\(561\) 14.2462 4.00000i 0.601476 0.168880i
\(562\) −35.3693 16.5604i −1.49196 0.698558i
\(563\) −36.1606 −1.52399 −0.761994 0.647584i \(-0.775779\pi\)
−0.761994 + 0.647584i \(0.775779\pi\)
\(564\) −1.83715 + 2.67350i −0.0773581 + 0.112575i
\(565\) 14.0000 0.588984
\(566\) 5.61856 + 2.63068i 0.236166 + 0.110576i
\(567\) 7.49141 + 3.86098i 0.314610 + 0.162146i
\(568\) −18.2462 + 4.79741i −0.765594 + 0.201295i
\(569\) 4.87689i 0.204450i −0.994761 0.102225i \(-0.967404\pi\)
0.994761 0.102225i \(-0.0325962\pi\)
\(570\) −10.3225 1.71001i −0.432360 0.0716243i
\(571\) 16.7909i 0.702679i 0.936248 + 0.351339i \(0.114274\pi\)
−0.936248 + 0.351339i \(0.885726\pi\)
\(572\) 17.0862 + 20.4924i 0.714411 + 0.856831i
\(573\) −3.61553 12.8769i −0.151041 0.537940i
\(574\) −4.00000 + 8.54312i −0.166957 + 0.356583i
\(575\) −7.60669 −0.317221
\(576\) −11.6979 + 20.9561i −0.487413 + 0.873171i
\(577\) −15.7538 −0.655839 −0.327919 0.944706i \(-0.606347\pi\)
−0.327919 + 0.944706i \(0.606347\pi\)
\(578\) 7.79579 16.6501i 0.324262 0.692553i
\(579\) 7.60669 + 27.0916i 0.316123 + 1.12589i
\(580\) 6.56155 + 7.86962i 0.272454 + 0.326768i
\(581\) 4.38447i 0.181899i
\(582\) −14.4993 2.40194i −0.601017 0.0995637i
\(583\) 18.1379i 0.751197i
\(584\) 22.5571 5.93087i 0.933421 0.245421i
\(585\) 4.87689 + 8.00000i 0.201635 + 0.330759i
\(586\) −39.0540 18.2856i −1.61330 0.755371i
\(587\) 38.0335 1.56981 0.784904 0.619617i \(-0.212712\pi\)
0.784904 + 0.619617i \(0.212712\pi\)
\(588\) 12.0128 17.4815i 0.495399 0.720924i
\(589\) −10.2462 −0.422188
\(590\) 9.21662 + 4.31534i 0.379442 + 0.177660i
\(591\) 20.4214 5.73384i 0.840023 0.235859i
\(592\) 2.24621 12.2888i 0.0923187 0.505067i
\(593\) 8.24621i 0.338631i −0.985562 0.169316i \(-0.945844\pi\)
0.985562 0.169316i \(-0.0541557\pi\)
\(594\) 29.1118 11.7388i 1.19447 0.481649i
\(595\) 1.87285i 0.0767795i
\(596\) −21.5054 + 17.9309i −0.880897 + 0.734477i
\(597\) −29.3693 + 8.24621i −1.20201 + 0.337495i
\(598\) 14.2462 30.4268i 0.582571 1.24424i
\(599\) 36.8665 1.50632 0.753162 0.657836i \(-0.228528\pi\)
0.753162 + 0.657836i \(0.228528\pi\)
\(600\) 2.48013 + 4.22480i 0.101251 + 0.172477i
\(601\) 14.8769 0.606841 0.303421 0.952857i \(-0.401871\pi\)
0.303421 + 0.952857i \(0.401871\pi\)
\(602\) −0.821147 + 1.75379i −0.0334675 + 0.0714791i
\(603\) −8.13254 13.3405i −0.331183 0.543268i
\(604\) 9.43845 7.86962i 0.384045 0.320210i
\(605\) 7.24621i 0.294600i
\(606\) 3.65219 22.0465i 0.148360 0.895578i
\(607\) 29.4903i 1.19698i 0.801132 + 0.598488i \(0.204232\pi\)
−0.801132 + 0.598488i \(0.795768\pi\)
\(608\) 14.0140 19.6847i 0.568344 0.798318i
\(609\) 2.24621 + 8.00000i 0.0910211 + 0.324176i
\(610\) 6.56155 + 3.07221i 0.265670 + 0.124390i
\(611\) −2.92456 −0.118315
\(612\) −3.86962 + 11.3590i −0.156420 + 0.459159i
\(613\) 0.876894 0.0354174 0.0177087 0.999843i \(-0.494363\pi\)
0.0177087 + 0.999843i \(0.494363\pi\)
\(614\) 10.4160 + 4.87689i 0.420354 + 0.196815i
\(615\) 3.33513 + 11.8782i 0.134486 + 0.478977i
\(616\) 2.87689 + 10.9418i 0.115913 + 0.440859i
\(617\) 14.0000i 0.563619i −0.959470 0.281809i \(-0.909065\pi\)
0.959470 0.281809i \(-0.0909346\pi\)
\(618\) 4.96565 29.9752i 0.199748 1.20578i
\(619\) 20.3061i 0.816171i 0.912944 + 0.408085i \(0.133803\pi\)
−0.912944 + 0.408085i \(0.866197\pi\)
\(620\) 3.07221 + 3.68466i 0.123383 + 0.147979i
\(621\) −28.9309 26.9309i −1.16096 1.08070i
\(622\) −8.49242 + 18.1379i −0.340515 + 0.727265i
\(623\) 5.84912 0.234340
\(624\) −21.5441 + 2.00808i −0.862455 + 0.0803877i
\(625\) 1.00000 0.0400000
\(626\) 6.29206 13.4384i 0.251481 0.537108i
\(627\) −30.4268 + 8.54312i −1.21513 + 0.341179i
\(628\) −27.3693 32.8255i −1.09215 1.30988i
\(629\) 6.24621i 0.249053i
\(630\) 0.434406 + 3.94910i 0.0173071 + 0.157336i
\(631\) 30.1315i 1.19951i 0.800182 + 0.599757i \(0.204736\pi\)
−0.800182 + 0.599757i \(0.795264\pi\)
\(632\) −6.52262 24.8078i −0.259456 0.986800i
\(633\) −2.24621 + 0.630683i −0.0892789 + 0.0250674i
\(634\) 41.9309 + 19.6326i 1.66529 + 0.779710i
\(635\) −4.68213 −0.185805
\(636\) 12.1229 + 8.33054i 0.480706 + 0.330327i
\(637\) 19.1231 0.757685
\(638\) 28.0281 + 13.1231i 1.10964 + 0.519549i
\(639\) −17.0862 + 10.4160i −0.675921 + 0.412049i
\(640\) −11.2808 + 0.862603i −0.445912 + 0.0340974i
\(641\) 47.6155i 1.88070i −0.340208 0.940350i \(-0.610498\pi\)
0.340208 0.940350i \(-0.389502\pi\)
\(642\) 2.26293 + 0.374874i 0.0893106 + 0.0147951i
\(643\) 20.4214i 0.805340i −0.915345 0.402670i \(-0.868082\pi\)
0.915345 0.402670i \(-0.131918\pi\)
\(644\) 10.9418 9.12311i 0.431168 0.359501i
\(645\) 0.684658 + 2.43845i 0.0269584 + 0.0960138i
\(646\) 5.12311 10.9418i 0.201566 0.430500i
\(647\) 3.63043 0.142727 0.0713634 0.997450i \(-0.477265\pi\)
0.0713634 + 0.997450i \(0.477265\pi\)
\(648\) −5.52478 + 24.8491i −0.217034 + 0.976164i
\(649\) 30.7386 1.20660
\(650\) −1.87285 + 4.00000i −0.0734593 + 0.156893i
\(651\) 1.05171 + 3.74571i 0.0412196 + 0.146806i
\(652\) 37.1231 30.9526i 1.45385 1.21220i
\(653\) 26.9848i 1.05600i 0.849245 + 0.527999i \(0.177058\pi\)
−0.849245 + 0.527999i \(0.822942\pi\)
\(654\) −22.0465 3.65219i −0.862086 0.142812i
\(655\) 17.6121i 0.688161i
\(656\) −28.0281 5.12311i −1.09431 0.200024i
\(657\) 21.1231 12.8769i 0.824091 0.502375i
\(658\) −1.12311 0.525853i −0.0437832 0.0204999i
\(659\) −26.9764 −1.05085 −0.525425 0.850840i \(-0.676094\pi\)
−0.525425 + 0.850840i \(0.676094\pi\)
\(660\) 12.1953 + 8.38027i 0.474702 + 0.326202i
\(661\) −46.1080 −1.79339 −0.896696 0.442647i \(-0.854039\pi\)
−0.896696 + 0.442647i \(0.854039\pi\)
\(662\) 35.8977 + 16.8078i 1.39520 + 0.653252i
\(663\) −10.4160 + 2.92456i −0.404523 + 0.113580i
\(664\) 12.8078 3.36750i 0.497038 0.130684i
\(665\) 4.00000i 0.155113i
\(666\) −1.44880 13.1708i −0.0561399 0.510357i
\(667\) 38.9699i 1.50892i
\(668\) −3.59806 4.31534i −0.139213 0.166966i
\(669\) 30.0540 8.43845i 1.16195 0.326249i
\(670\) 3.12311 6.67026i 0.120656 0.257695i
\(671\) 21.8836 0.844809
\(672\) −8.63456 3.10261i −0.333086 0.119686i
\(673\) −10.4924 −0.404453 −0.202227 0.979339i \(-0.564818\pi\)
−0.202227 + 0.979339i \(0.564818\pi\)
\(674\) −20.6843 + 44.1771i −0.796729 + 1.70164i
\(675\) 3.80335 + 3.54042i 0.146391 + 0.136271i
\(676\) 4.15767 + 4.98651i 0.159910 + 0.191789i
\(677\) 34.4924i 1.32565i 0.748774 + 0.662826i \(0.230643\pi\)
−0.748774 + 0.662826i \(0.769357\pi\)
\(678\) −5.60453 + 33.8318i −0.215241 + 1.29930i
\(679\) 5.61856i 0.215620i
\(680\) −5.47091 + 1.43845i −0.209800 + 0.0551619i
\(681\) 4.05398 + 14.4384i 0.155349 + 0.553282i
\(682\) 13.1231 + 6.14441i 0.502510 + 0.235282i
\(683\) 36.1606 1.38365 0.691823 0.722067i \(-0.256808\pi\)
0.691823 + 0.722067i \(0.256808\pi\)
\(684\) 8.26465 24.2602i 0.316007 0.927613i
\(685\) 8.24621 0.315072
\(686\) 15.7392 + 7.36932i 0.600927 + 0.281362i
\(687\) 0.115279 + 0.410574i 0.00439818 + 0.0156644i
\(688\) −5.75379 1.05171i −0.219361 0.0400959i
\(689\) 13.2614i 0.505218i
\(690\) 3.04514 18.3820i 0.115926 0.699790i
\(691\) 29.0798i 1.10625i −0.833100 0.553123i \(-0.813436\pi\)
0.833100 0.553123i \(-0.186564\pi\)
\(692\) 3.07221 2.56155i 0.116788 0.0973756i
\(693\) 6.24621 + 10.2462i 0.237274 + 0.389221i
\(694\) −14.3153 + 30.5744i −0.543403 + 1.16059i
\(695\) −13.8664 −0.525982
\(696\) −21.6441 + 12.7060i −0.820418 + 0.481618i
\(697\) −14.2462 −0.539614
\(698\) −8.39547 + 17.9309i −0.317773 + 0.678693i
\(699\) 16.6757 4.68213i 0.630731 0.177094i
\(700\) −1.43845 + 1.19935i −0.0543682 + 0.0453313i
\(701\) 50.4924i 1.90707i 0.301278 + 0.953536i \(0.402587\pi\)
−0.301278 + 0.953536i \(0.597413\pi\)
\(702\) −21.2848 + 8.58270i −0.803342 + 0.323933i
\(703\) 13.3405i 0.503148i
\(704\) −29.7533 + 16.8078i −1.12137 + 0.633466i
\(705\) −1.56155 + 0.438447i −0.0588115 + 0.0165129i
\(706\) −4.80776 2.25106i −0.180943 0.0847197i
\(707\) 8.54312 0.321297
\(708\) −14.1179 + 20.5449i −0.530583 + 0.772126i
\(709\) −26.4924 −0.994944 −0.497472 0.867480i \(-0.665738\pi\)
−0.497472 + 0.867480i \(0.665738\pi\)
\(710\) −8.54312 4.00000i −0.320617 0.150117i
\(711\) −14.1617 23.2306i −0.531104 0.871217i
\(712\) 4.49242 + 17.0862i 0.168361 + 0.640334i
\(713\) 18.2462i 0.683326i
\(714\) −4.52585 0.749747i −0.169376 0.0280586i
\(715\) 13.3405i 0.498907i
\(716\) −18.8114 22.5616i −0.703016 0.843165i
\(717\) −9.75379 34.7386i −0.364262 1.29734i
\(718\) 0.630683 1.34700i 0.0235369 0.0502696i
\(719\) −5.84912 −0.218135 −0.109068 0.994034i \(-0.534787\pi\)
−0.109068 + 0.994034i \(0.534787\pi\)
\(720\) −11.2023 + 4.30208i −0.417486 + 0.160329i
\(721\) 11.6155 0.432585
\(722\) 0.452029 0.965435i 0.0168228 0.0359298i
\(723\) −5.32326 18.9591i −0.197974 0.705096i
\(724\) −5.43845 6.52262i −0.202118 0.242411i
\(725\) 5.12311i 0.190267i
\(726\) 17.5109 + 2.90083i 0.649889 + 0.107660i
\(727\) 26.5658i 0.985270i −0.870236 0.492635i \(-0.836034\pi\)
0.870236 0.492635i \(-0.163966\pi\)
\(728\) −2.10341 8.00000i −0.0779576 0.296500i
\(729\) 1.93087 + 26.9309i 0.0715137 + 0.997440i
\(730\) 10.5616 + 4.94506i 0.390901 + 0.183025i
\(731\) −2.92456 −0.108169
\(732\) −10.0509 + 14.6265i −0.371492 + 0.540610i
\(733\) −35.1231 −1.29730 −0.648651 0.761086i \(-0.724666\pi\)
−0.648651 + 0.761086i \(0.724666\pi\)
\(734\) 34.0248 + 15.9309i 1.25588 + 0.588019i
\(735\) 10.2107 2.86692i 0.376627 0.105748i
\(736\) 35.0540 + 24.9559i 1.29211 + 0.919885i
\(737\) 22.2462i 0.819450i
\(738\) −30.0396 + 3.30439i −1.10577 + 0.121636i
\(739\) 18.6638i 0.686559i 0.939233 + 0.343279i \(0.111538\pi\)
−0.939233 + 0.343279i \(0.888462\pi\)
\(740\) 4.79741 4.00000i 0.176356 0.147043i
\(741\) 22.2462 6.24621i 0.817235 0.229460i
\(742\) −2.38447 + 5.09271i −0.0875367 + 0.186959i
\(743\) −12.4041 −0.455062 −0.227531 0.973771i \(-0.573065\pi\)
−0.227531 + 0.973771i \(0.573065\pi\)
\(744\) −10.1341 + 5.94910i −0.371533 + 0.218105i
\(745\) −14.0000 −0.512920
\(746\) −0.525853 + 1.12311i −0.0192528 + 0.0411198i
\(747\) 11.9935 7.31140i 0.438820 0.267510i
\(748\) −13.1231 + 10.9418i −0.479828 + 0.400073i
\(749\) 0.876894i 0.0320410i
\(750\) −0.400324 + 2.41656i −0.0146178 + 0.0882401i
\(751\) 15.7392i 0.574333i −0.957881 0.287166i \(-0.907287\pi\)
0.957881 0.287166i \(-0.0927133\pi\)
\(752\) 0.673500 3.68466i 0.0245600 0.134366i
\(753\) −11.7538 41.8617i −0.428332 1.52553i
\(754\) −20.4924 9.59482i −0.746290 0.349423i
\(755\) 6.14441 0.223618
\(756\) −9.71712 0.531153i −0.353408 0.0193178i
\(757\) 19.1231 0.695041 0.347521 0.937672i \(-0.387024\pi\)
0.347521 + 0.937672i \(0.387024\pi\)
\(758\) −32.1520 15.0540i −1.16781 0.546785i
\(759\) −15.2134 54.1833i −0.552211 1.96673i
\(760\) 11.6847 3.07221i 0.423847 0.111441i
\(761\) 51.2311i 1.85712i 0.371177 + 0.928562i \(0.378954\pi\)
−0.371177 + 0.928562i \(0.621046\pi\)
\(762\) 1.87437 11.3146i 0.0679012 0.409886i
\(763\) 8.54312i 0.309282i
\(764\) 9.89012 + 11.8617i 0.357812 + 0.429143i
\(765\) −5.12311 + 3.12311i −0.185226 + 0.112916i
\(766\) 2.80776 5.99676i 0.101449 0.216672i
\(767\) −22.4742 −0.811498
\(768\) 2.43143 27.6059i 0.0877368 0.996144i
\(769\) −26.9848 −0.973098 −0.486549 0.873653i \(-0.661745\pi\)
−0.486549 + 0.873653i \(0.661745\pi\)
\(770\) −2.39871 + 5.12311i −0.0864434 + 0.184624i
\(771\) 4.15628 1.16699i 0.149685 0.0420279i
\(772\) −20.8078 24.9559i −0.748888 0.898181i
\(773\) 16.2462i 0.584336i 0.956367 + 0.292168i \(0.0943766\pi\)
−0.956367 + 0.292168i \(0.905623\pi\)
\(774\) −6.16673 + 0.678347i −0.221658 + 0.0243827i
\(775\) 2.39871i 0.0861641i
\(776\) 16.4127 4.31534i 0.589183 0.154912i
\(777\) 4.87689 1.36932i 0.174958 0.0491240i
\(778\) 36.8078 + 17.2339i 1.31962 + 0.617865i
\(779\) 30.4268 1.09015
\(780\) −8.91648 6.12715i −0.319261 0.219387i
\(781\) −28.4924 −1.01954
\(782\) 19.4849 + 9.12311i 0.696780 + 0.326242i
\(783\) −18.1379 + 19.4849i −0.648197 + 0.696335i
\(784\) −4.40388 + 24.0932i −0.157282 + 0.860473i
\(785\) 21.3693i 0.762704i
\(786\) 42.5606 + 7.05053i 1.51809 + 0.251484i
\(787\) 13.9817i 0.498392i 0.968453 + 0.249196i \(0.0801664\pi\)
−0.968453 + 0.249196i \(0.919834\pi\)
\(788\) −18.8114 + 15.6847i −0.670130 + 0.558743i
\(789\) 7.06913 + 25.1771i 0.251668 + 0.896328i
\(790\) 5.43845 11.6153i 0.193491 0.413255i
\(791\) −13.1100 −0.466137
\(792\) −25.1335 + 26.1158i −0.893079 + 0.927986i
\(793\) −16.0000 −0.568177
\(794\) 13.8664 29.6155i 0.492099 1.05102i
\(795\) 1.98813 + 7.08084i 0.0705118 + 0.251131i
\(796\) 27.0540 22.5571i 0.958903 0.799517i
\(797\) 36.7386i 1.30135i −0.759357 0.650675i \(-0.774486\pi\)
0.759357 0.650675i \(-0.225514\pi\)
\(798\) 9.66622 + 1.60129i 0.342181 + 0.0566852i
\(799\) 1.87285i 0.0662568i
\(800\) −4.60831 3.28078i −0.162928 0.115993i
\(801\) 9.75379 + 16.0000i 0.344633 + 0.565332i
\(802\) 30.7386 + 14.3922i 1.08542 + 0.508207i
\(803\) 35.2242 1.24303
\(804\) 14.8688 + 10.2174i 0.524383 + 0.360341i
\(805\) 7.12311 0.251056
\(806\) −9.59482 4.49242i −0.337963 0.158239i
\(807\) −23.3459 + 6.55498i −0.821815 + 0.230746i
\(808\) 6.56155 + 24.9559i 0.230835 + 0.877944i
\(809\) 46.2462i 1.62593i −0.582312 0.812965i \(-0.697852\pi\)
0.582312 0.812965i \(-0.302148\pi\)
\(810\) −10.0782 + 7.77368i −0.354111 + 0.273139i
\(811\) 25.9246i 0.910337i 0.890405 + 0.455169i \(0.150421\pi\)
−0.890405 + 0.455169i \(0.849579\pi\)
\(812\) −6.14441 7.36932i −0.215627 0.258612i
\(813\) 52.9848 14.8769i 1.85826 0.521755i
\(814\) 8.00000 17.0862i 0.280400 0.598872i
\(815\) 24.1671 0.846536
\(816\) −1.28595 13.7966i −0.0450174 0.482978i
\(817\) 6.24621 0.218527
\(818\) 0.378206 0.807764i 0.0132237 0.0282428i
\(819\) −4.56685 7.49141i −0.159579 0.261771i
\(820\) −9.12311 10.9418i −0.318593 0.382105i
\(821\) 29.2311i 1.02017i −0.860124 0.510085i \(-0.829614\pi\)
0.860124 0.510085i \(-0.170386\pi\)
\(822\) −3.30115 + 19.9274i −0.115141 + 0.695049i
\(823\) 46.8071i 1.63159i 0.578338 + 0.815797i \(0.303701\pi\)
−0.578338 + 0.815797i \(0.696299\pi\)
\(824\) 8.92132 + 33.9309i 0.310789 + 1.18204i
\(825\) 2.00000 + 7.12311i 0.0696311 + 0.247995i
\(826\) −8.63068 4.04100i −0.300300 0.140604i
\(827\) 13.2252 0.459887 0.229943 0.973204i \(-0.426146\pi\)
0.229943 + 0.973204i \(0.426146\pi\)
\(828\) 43.2021 + 14.7175i 1.50138 + 0.511468i
\(829\) −17.1231 −0.594710 −0.297355 0.954767i \(-0.596104\pi\)
−0.297355 + 0.954767i \(0.596104\pi\)
\(830\) 5.99676 + 2.80776i 0.208151 + 0.0974589i
\(831\) −0.641132 2.28343i −0.0222406 0.0792112i
\(832\) 21.7538 12.2888i 0.754177 0.426038i
\(833\) 12.2462i 0.424306i
\(834\) 5.55104 33.5089i 0.192217 1.16032i
\(835\) 2.80928i 0.0972191i
\(836\) 28.0281 23.3693i 0.969371 0.808245i
\(837\) −8.49242 + 9.12311i −0.293541 + 0.315341i
\(838\) −3.68466 + 7.86962i −0.127284 + 0.271851i
\(839\) −48.5647 −1.67664 −0.838320 0.545179i \(-0.816462\pi\)
−0.838320 + 0.545179i \(0.816462\pi\)
\(840\) −2.32246 3.95622i −0.0801324 0.136502i
\(841\) 2.75379 0.0949582
\(842\) −0.378206 + 0.807764i −0.0130338 + 0.0278374i
\(843\) 46.0507 12.9300i 1.58607 0.445331i
\(844\) 2.06913 1.72521i 0.0712224 0.0593840i
\(845\) 3.24621i 0.111673i
\(846\) −0.434406 3.94910i −0.0149352 0.135773i
\(847\) 6.78554i 0.233154i
\(848\) −16.7080 3.05398i −0.573756 0.104874i
\(849\) −7.31534 + 2.05398i −0.251062 + 0.0704923i
\(850\) −2.56155 1.19935i −0.0878605 0.0411375i
\(851\) −23.7565 −0.814362
\(852\) 13.0862 19.0436i 0.448327 0.652424i
\(853\) 49.8617 1.70723 0.853617 0.520902i \(-0.174404\pi\)
0.853617 + 0.520902i \(0.174404\pi\)
\(854\) −6.14441 2.87689i −0.210257 0.0984453i
\(855\) 10.9418 6.67026i 0.374202 0.228118i
\(856\) −2.56155 + 0.673500i −0.0875521 + 0.0230198i
\(857\) 28.7386i 0.981693i 0.871246 + 0.490847i \(0.163312\pi\)
−0.871246 + 0.490847i \(0.836688\pi\)
\(858\) −32.2381 5.34053i −1.10059 0.182323i
\(859\) 37.3923i 1.27581i 0.770115 + 0.637905i \(0.220199\pi\)
−0.770115 + 0.637905i \(0.779801\pi\)
\(860\) −1.87285 2.24621i −0.0638637 0.0765952i
\(861\) −3.12311 11.1231i −0.106435 0.379074i
\(862\) 21.6155 46.1660i 0.736228 1.57242i
\(863\) 27.6175 0.940110 0.470055 0.882637i \(-0.344234\pi\)
0.470055 + 0.882637i \(0.344234\pi\)
\(864\) −5.91167 28.7933i −0.201119 0.979567i
\(865\) 2.00000 0.0680020
\(866\) 10.7942 23.0540i 0.366801 0.783406i
\(867\) 6.08677 + 21.6784i 0.206718 + 0.736236i
\(868\) −2.87689 3.45041i −0.0976482 0.117115i
\(869\) 38.7386i 1.31412i
\(870\) −12.3803 2.05090i −0.419730 0.0695320i
\(871\) 16.2651i 0.551121i
\(872\) 24.9559 6.56155i 0.845112 0.222202i
\(873\) 15.3693 9.36932i 0.520173 0.317103i
\(874\) −41.6155 19.4849i −1.40767 0.659088i
\(875\) −0.936426 −0.0316570
\(876\) −16.1780 + 23.5430i −0.546606 + 0.795443i
\(877\) −3.61553 −0.122088 −0.0610439 0.998135i \(-0.519443\pi\)
−0.0610439 + 0.998135i \(0.519443\pi\)
\(878\) −38.2964 17.9309i −1.29244 0.605138i
\(879\) 50.8481 14.2770i 1.71506 0.481550i
\(880\) −16.8078 3.07221i −0.566590 0.103564i
\(881\) 25.3693i 0.854714i 0.904083 + 0.427357i \(0.140555\pi\)
−0.904083 + 0.427357i \(0.859445\pi\)
\(882\) 2.84049 + 25.8224i 0.0956443 + 0.869485i
\(883\) 10.8265i 0.364342i 0.983267 + 0.182171i \(0.0583125\pi\)
−0.983267 + 0.182171i \(0.941688\pi\)
\(884\) 9.59482 8.00000i 0.322709 0.269069i
\(885\) −12.0000 + 3.36932i −0.403376 + 0.113258i
\(886\) −15.4384 + 32.9731i −0.518665 + 1.10775i
\(887\) −53.4774 −1.79560 −0.897798 0.440408i \(-0.854834\pi\)
−0.897798 + 0.440408i \(0.854834\pi\)
\(888\) 7.74571 + 13.1945i 0.259929 + 0.442779i
\(889\) 4.38447 0.147050
\(890\) −3.74571 + 8.00000i −0.125556 + 0.268161i
\(891\) −17.6121 + 34.1725i −0.590027 + 1.14482i
\(892\) −27.6847 + 23.0830i −0.926951 + 0.772876i
\(893\) 4.00000i 0.133855i
\(894\) 5.60453 33.8318i 0.187444 1.13150i
\(895\) 14.6875i 0.490950i
\(896\) 10.5636 0.807764i 0.352906 0.0269855i
\(897\) 11.1231 + 39.6155i 0.371390 + 1.32272i
\(898\) −3.36932 1.57756i −0.112436 0.0526438i
\(899\) −12.2888 −0.409855
\(900\) −5.67948 1.93481i −0.189316 0.0644936i
\(901\) −8.49242 −0.282924
\(902\) −38.9699 18.2462i −1.29756 0.607532i
\(903\) −0.641132 2.28343i −0.0213355 0.0759877i
\(904\) −10.0691 38.2964i −0.334894 1.27372i
\(905\) 4.24621i 0.141149i
\(906\) −2.45975 + 14.8483i −0.0817198 + 0.493302i
\(907\) 35.8653i 1.19089i −0.803397 0.595444i \(-0.796976\pi\)
0.803397 0.595444i \(-0.203024\pi\)
\(908\) −11.0895 13.3002i −0.368017 0.441382i
\(909\) 14.2462 + 23.3693i 0.472517 + 0.775111i
\(910\) 1.75379 3.74571i 0.0581375 0.124169i
\(911\) −41.8944 −1.38802 −0.694012 0.719963i \(-0.744159\pi\)
−0.694012 + 0.719963i \(0.744159\pi\)
\(912\) 2.74651 + 29.4665i 0.0909461 + 0.975733i
\(913\) 20.0000 0.661903
\(914\) −5.99676 + 12.8078i −0.198355 + 0.423643i
\(915\) −8.54312 + 2.39871i −0.282427 + 0.0792988i
\(916\) −0.315342 0.378206i −0.0104192 0.0124963i
\(917\) 16.4924i 0.544628i
\(918\) −5.49626 13.6305i −0.181404 0.449874i
\(919\) 50.1423i 1.65404i −0.562172 0.827020i \(-0.690034\pi\)
0.562172 0.827020i \(-0.309966\pi\)
\(920\) 5.47091 + 20.8078i 0.180371 + 0.686012i
\(921\) −13.5616 + 3.80776i −0.446868 + 0.125470i
\(922\) −20.3153 9.51191i −0.669050 0.313258i
\(923\) 20.8319 0.685692
\(924\) −11.4200 7.84751i −0.375691 0.258164i
\(925\) 3.12311 0.102687
\(926\) −1.19935 0.561553i −0.0394132 0.0184538i
\(927\) 19.3697 + 31.7738i 0.636183 + 1.04359i
\(928\) 16.8078 23.6089i 0.551742 0.774998i
\(929\) 24.8769i 0.816184i −0.912941 0.408092i \(-0.866194\pi\)
0.912941 0.408092i \(-0.133806\pi\)
\(930\) −5.79661 0.960258i −0.190078 0.0314881i
\(931\) 26.1552i 0.857202i
\(932\) −15.3610 + 12.8078i −0.503167 + 0.419532i
\(933\) −6.63068 23.6155i −0.217079 0.773138i
\(934\) −9.68466 + 20.6843i −0.316892 + 0.676811i
\(935\) −8.54312 −0.279390
\(936\) 18.3761 19.0943i 0.600641 0.624117i
\(937\) 10.4924 0.342773 0.171386 0.985204i \(-0.445175\pi\)
0.171386 + 0.985204i \(0.445175\pi\)
\(938\) −2.92456 + 6.24621i −0.0954902 + 0.203946i
\(939\) 4.91269 + 17.4968i 0.160320 + 0.570987i
\(940\) 1.43845 1.19935i 0.0469170 0.0391186i
\(941\) 9.12311i 0.297405i 0.988882 + 0.148702i \(0.0475096\pi\)
−0.988882 + 0.148702i \(0.952490\pi\)
\(942\) 51.6401 + 8.55464i 1.68253 + 0.278725i
\(943\) 54.1833i 1.76445i
\(944\) 5.17562 28.3153i 0.168452 0.921586i
\(945\) −3.56155 3.31534i −0.115857 0.107848i
\(946\) −8.00000 3.74571i −0.260102 0.121783i
\(947\) −25.5141 −0.829096 −0.414548 0.910027i \(-0.636060\pi\)
−0.414548 + 0.910027i \(0.636060\pi\)
\(948\) 25.8919 + 17.7922i 0.840931 + 0.577864i
\(949\) −25.7538 −0.836003
\(950\) 5.47091 + 2.56155i 0.177500 + 0.0831077i
\(951\) −54.5938 + 15.3287i −1.77033 + 0.497066i
\(952\) 5.12311 1.34700i 0.166041 0.0436565i
\(953\) 10.4924i 0.339883i 0.985454 + 0.169941i \(0.0543579\pi\)
−0.985454 + 0.169941i \(0.945642\pi\)
\(954\) −17.9071 + 1.96981i −0.579765 + 0.0637748i
\(955\) 7.72197i 0.249877i
\(956\) 26.6811 + 32.0000i 0.862927 + 1.03495i
\(957\) −36.4924 + 10.2462i −1.17963 + 0.331213i
\(958\) 13.7538 29.3751i 0.444365 0.949065i
\(959\) −7.72197 −0.249355
\(960\) 9.77299 9.82286i 0.315422 0.317031i
\(961\) 25.2462 0.814394
\(962\) −5.84912 + 12.4924i −0.188583 + 0.402772i
\(963\) −2.39871 + 1.46228i −0.0772972 + 0.0471213i
\(964\) 14.5616 + 17.4644i 0.468996 + 0.562492i
\(965\) 16.2462i 0.522984i
\(966\) −2.85155 + 17.2134i −0.0917470 + 0.553831i
\(967\) 23.6412i 0.760250i −0.924935 0.380125i \(-0.875881\pi\)
0.924935 0.380125i \(-0.124119\pi\)
\(968\) −19.8217 + 5.21165i −0.637093 + 0.167509i
\(969\) 4.00000 + 14.2462i 0.128499 + 0.457654i
\(970\) 7.68466 + 3.59806i 0.246740 + 0.115527i
\(971\) 41.5991 1.33498 0.667490 0.744619i \(-0.267369\pi\)
0.667490 + 0.744619i \(0.267369\pi\)
\(972\) −14.7510 27.4665i −0.473139 0.880988i
\(973\) 12.9848 0.416275
\(974\) −19.6326 9.19224i −0.629069 0.294538i
\(975\) −1.46228 5.20798i −0.0468304 0.166789i
\(976\) 3.68466 20.1584i 0.117943 0.645256i
\(977\) 48.2462i 1.54353i 0.635906 + 0.771767i \(0.280627\pi\)
−0.635906 + 0.771767i \(0.719373\pi\)
\(978\) −9.67465 + 58.4011i −0.309361 + 1.86746i
\(979\) 26.6811i 0.852730i
\(980\) −9.40572 + 7.84233i −0.300455 + 0.250514i
\(981\) 23.3693 14.2462i 0.746125 0.454847i
\(982\) 11.1922 23.9041i 0.357159 0.762812i
\(983\) 3.03984 0.0969558 0.0484779 0.998824i \(-0.484563\pi\)
0.0484779 + 0.998824i \(0.484563\pi\)
\(984\) 30.0937 17.6662i 0.959353 0.563179i
\(985\) −12.2462 −0.390197
\(986\) 6.14441 13.1231i 0.195678 0.417925i
\(987\) 1.46228 0.410574i 0.0465449 0.0130687i
\(988\) −20.4924 + 17.0862i −0.651951 + 0.543586i
\(989\) 11.1231i 0.353694i
\(990\) −18.0140 + 1.98156i −0.572523 + 0.0629782i
\(991\) 16.7909i 0.533382i −0.963782 0.266691i \(-0.914070\pi\)
0.963782 0.266691i \(-0.0859303\pi\)
\(992\) 7.86962 11.0540i 0.249861 0.350964i
\(993\) −46.7386 + 13.1231i −1.48321 + 0.416449i
\(994\) 8.00000 + 3.74571i 0.253745 + 0.118807i
\(995\) 17.6121 0.558341
\(996\) −9.18576 + 13.3675i −0.291062 + 0.423565i
\(997\) 7.61553 0.241186 0.120593 0.992702i \(-0.461520\pi\)
0.120593 + 0.992702i \(0.461520\pi\)
\(998\) 2.02050 + 0.946025i 0.0639578 + 0.0299459i
\(999\) 11.8782 + 11.0571i 0.375811 + 0.349831i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 60.2.e.a.11.5 yes 8
3.2 odd 2 inner 60.2.e.a.11.4 yes 8
4.3 odd 2 inner 60.2.e.a.11.3 8
5.2 odd 4 300.2.h.b.299.8 8
5.3 odd 4 300.2.h.a.299.1 8
5.4 even 2 300.2.e.c.251.4 8
8.3 odd 2 960.2.h.g.191.6 8
8.5 even 2 960.2.h.g.191.3 8
12.11 even 2 inner 60.2.e.a.11.6 yes 8
15.2 even 4 300.2.h.a.299.2 8
15.8 even 4 300.2.h.b.299.7 8
15.14 odd 2 300.2.e.c.251.5 8
20.3 even 4 300.2.h.a.299.4 8
20.7 even 4 300.2.h.b.299.5 8
20.19 odd 2 300.2.e.c.251.6 8
24.5 odd 2 960.2.h.g.191.5 8
24.11 even 2 960.2.h.g.191.4 8
60.23 odd 4 300.2.h.b.299.6 8
60.47 odd 4 300.2.h.a.299.3 8
60.59 even 2 300.2.e.c.251.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.e.a.11.3 8 4.3 odd 2 inner
60.2.e.a.11.4 yes 8 3.2 odd 2 inner
60.2.e.a.11.5 yes 8 1.1 even 1 trivial
60.2.e.a.11.6 yes 8 12.11 even 2 inner
300.2.e.c.251.3 8 60.59 even 2
300.2.e.c.251.4 8 5.4 even 2
300.2.e.c.251.5 8 15.14 odd 2
300.2.e.c.251.6 8 20.19 odd 2
300.2.h.a.299.1 8 5.3 odd 4
300.2.h.a.299.2 8 15.2 even 4
300.2.h.a.299.3 8 60.47 odd 4
300.2.h.a.299.4 8 20.3 even 4
300.2.h.b.299.5 8 20.7 even 4
300.2.h.b.299.6 8 60.23 odd 4
300.2.h.b.299.7 8 15.8 even 4
300.2.h.b.299.8 8 5.2 odd 4
960.2.h.g.191.3 8 8.5 even 2
960.2.h.g.191.4 8 24.11 even 2
960.2.h.g.191.5 8 24.5 odd 2
960.2.h.g.191.6 8 8.3 odd 2