Properties

Label 600.2.bp.b.173.2
Level $600$
Weight $2$
Character 600.173
Analytic conductor $4.791$
Analytic rank $0$
Dimension $16$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(53,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 10, 10, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.bp (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: 16.0.6879707136000000000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{12} + 81x^{8} - 729x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{20}]$

Embedding invariants

Embedding label 173.2
Root \(-1.71073 - 0.270952i\) of defining polynomial
Character \(\chi\) \(=\) 600.173
Dual form 600.2.bp.b.437.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.221232 - 1.39680i) q^{2} +(1.54327 - 0.786335i) q^{3} +(-1.90211 - 0.618034i) q^{4} +(-1.66775 + 1.48949i) q^{5} +(-0.756934 - 2.32960i) q^{6} +(-2.83274 + 2.83274i) q^{7} +(-1.28408 + 2.52015i) q^{8} +(1.76336 - 2.42705i) q^{9} +(1.71157 + 2.65905i) q^{10} +(-4.95856 + 3.60260i) q^{11} +(-3.42145 + 0.541905i) q^{12} +(3.33009 + 4.58347i) q^{14} +(-1.40255 + 3.61010i) q^{15} +(3.23607 + 2.35114i) q^{16} +(-3.00000 - 3.00000i) q^{18} +(4.09282 - 1.80246i) q^{20} +(-2.14420 + 6.59917i) q^{21} +(3.93513 + 7.72313i) q^{22} +4.89898i q^{24} +(0.562811 - 4.96822i) q^{25} +(0.812857 - 5.13218i) q^{27} +(7.13893 - 3.63747i) q^{28} +(-8.89092 - 2.88884i) q^{29} +(4.73231 + 2.75776i) q^{30} +(2.47112 + 7.60531i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-4.81953 + 9.45887i) q^{33} +(0.504965 - 8.94368i) q^{35} +(-4.85410 + 3.52671i) q^{36} +(-1.61222 - 6.11562i) q^{40} +(8.74337 + 4.45497i) q^{42} +(11.6583 - 3.78800i) q^{44} +(0.674235 + 6.67423i) q^{45} +(6.84291 + 1.08381i) q^{48} -9.04886i q^{49} +(-6.81511 - 1.88526i) q^{50} +(-9.90359 + 5.04613i) q^{53} +(-6.98881 - 2.27080i) q^{54} +(2.90360 - 13.3940i) q^{55} +(-3.50146 - 10.7764i) q^{56} +(-6.00209 + 11.7798i) q^{58} +(4.99294 - 6.87220i) q^{59} +(4.89898 - 6.00000i) q^{60} +(11.1698 - 1.76912i) q^{62} +(1.88008 + 11.8703i) q^{63} +(-4.70228 - 6.47214i) q^{64} +(12.1459 + 8.82454i) q^{66} +(-12.3808 - 2.68396i) q^{70} +(3.85224 + 7.56044i) q^{72} +(-2.93471 - 0.464812i) q^{73} +(-3.03812 - 8.10986i) q^{75} +(3.84107 - 24.2516i) q^{77} +(16.8983 + 5.49059i) q^{79} +(-8.89898 + 0.898979i) q^{80} +(-2.78115 - 8.55951i) q^{81} +(-8.27209 + 16.2349i) q^{83} +(8.15702 - 11.2272i) q^{84} +(-15.9927 + 2.53299i) q^{87} +(-2.71191 - 17.1223i) q^{88} +(9.47175 + 0.534780i) q^{90} +(9.79391 + 9.79391i) q^{93} +(3.02774 - 9.31841i) q^{96} +(7.51450 + 14.7480i) q^{97} +(-12.6395 - 2.00190i) q^{98} +18.3873i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 4 q^{5} + 4 q^{7} - 8 q^{8} + 8 q^{10} - 24 q^{11} - 12 q^{15} + 16 q^{16} - 48 q^{18} - 8 q^{20} + 36 q^{21} - 16 q^{22} + 32 q^{28} + 12 q^{30} + 64 q^{32} + 12 q^{33} + 8 q^{35} - 24 q^{36}+ \cdots + 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.221232 1.39680i 0.156434 0.987688i
\(3\) 1.54327 0.786335i 0.891007 0.453990i
\(4\) −1.90211 0.618034i −0.951057 0.309017i
\(5\) −1.66775 + 1.48949i −0.745843 + 0.666122i
\(6\) −0.756934 2.32960i −0.309017 0.951057i
\(7\) −2.83274 + 2.83274i −1.07068 + 1.07068i −0.0733714 + 0.997305i \(0.523376\pi\)
−0.997305 + 0.0733714i \(0.976624\pi\)
\(8\) −1.28408 + 2.52015i −0.453990 + 0.891007i
\(9\) 1.76336 2.42705i 0.587785 0.809017i
\(10\) 1.71157 + 2.65905i 0.541246 + 0.840864i
\(11\) −4.95856 + 3.60260i −1.49506 + 1.08623i −0.522764 + 0.852477i \(0.675099\pi\)
−0.972297 + 0.233748i \(0.924901\pi\)
\(12\) −3.42145 + 0.541905i −0.987688 + 0.156434i
\(13\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(14\) 3.33009 + 4.58347i 0.890004 + 1.22498i
\(15\) −1.40255 + 3.61010i −0.362137 + 0.932125i
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(18\) −3.00000 3.00000i −0.707107 0.707107i
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) 4.09282 1.80246i 0.915182 0.403042i
\(21\) −2.14420 + 6.59917i −0.467903 + 1.44006i
\(22\) 3.93513 + 7.72313i 0.838973 + 1.64658i
\(23\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(24\) 4.89898i 1.00000i
\(25\) 0.562811 4.96822i 0.112562 0.993645i
\(26\) 0 0
\(27\) 0.812857 5.13218i 0.156434 0.987688i
\(28\) 7.13893 3.63747i 1.34913 0.687416i
\(29\) −8.89092 2.88884i −1.65100 0.536443i −0.672046 0.740510i \(-0.734584\pi\)
−0.978957 + 0.204066i \(0.934584\pi\)
\(30\) 4.73231 + 2.75776i 0.863998 + 0.503495i
\(31\) 2.47112 + 7.60531i 0.443825 + 1.36595i 0.883767 + 0.467928i \(0.154999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) −4.81953 + 9.45887i −0.838973 + 1.64658i
\(34\) 0 0
\(35\) 0.504965 8.94368i 0.0853546 1.51176i
\(36\) −4.85410 + 3.52671i −0.809017 + 0.587785i
\(37\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.61222 6.11562i −0.254914 0.966964i
\(41\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(42\) 8.74337 + 4.45497i 1.34913 + 0.687416i
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 11.6583 3.78800i 1.75755 0.571063i
\(45\) 0.674235 + 6.67423i 0.100509 + 0.994936i
\(46\) 0 0
\(47\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(48\) 6.84291 + 1.08381i 0.987688 + 0.156434i
\(49\) 9.04886i 1.29269i
\(50\) −6.81511 1.88526i −0.963803 0.266617i
\(51\) 0 0
\(52\) 0 0
\(53\) −9.90359 + 5.04613i −1.36036 + 0.693139i −0.973433 0.228970i \(-0.926464\pi\)
−0.386929 + 0.922110i \(0.626464\pi\)
\(54\) −6.98881 2.27080i −0.951057 0.309017i
\(55\) 2.90360 13.3940i 0.391521 1.80605i
\(56\) −3.50146 10.7764i −0.467903 1.44006i
\(57\) 0 0
\(58\) −6.00209 + 11.7798i −0.788113 + 1.54676i
\(59\) 4.99294 6.87220i 0.650026 0.894684i −0.349074 0.937095i \(-0.613504\pi\)
0.999100 + 0.0424110i \(0.0135039\pi\)
\(60\) 4.89898 6.00000i 0.632456 0.774597i
\(61\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) 11.1698 1.76912i 1.41857 0.224679i
\(63\) 1.88008 + 11.8703i 0.236868 + 1.49552i
\(64\) −4.70228 6.47214i −0.587785 0.809017i
\(65\) 0 0
\(66\) 12.1459 + 8.82454i 1.49506 + 1.08623i
\(67\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −12.3808 2.68396i −1.47979 0.320795i
\(71\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(72\) 3.85224 + 7.56044i 0.453990 + 0.891007i
\(73\) −2.93471 0.464812i −0.343482 0.0544022i −0.0176895 0.999844i \(-0.505631\pi\)
−0.325792 + 0.945441i \(0.605631\pi\)
\(74\) 0 0
\(75\) −3.03812 8.10986i −0.350812 0.936446i
\(76\) 0 0
\(77\) 3.84107 24.2516i 0.437731 2.76372i
\(78\) 0 0
\(79\) 16.8983 + 5.49059i 1.90121 + 0.617740i 0.960138 + 0.279526i \(0.0901773\pi\)
0.941069 + 0.338214i \(0.109823\pi\)
\(80\) −8.89898 + 0.898979i −0.994936 + 0.100509i
\(81\) −2.78115 8.55951i −0.309017 0.951057i
\(82\) 0 0
\(83\) −8.27209 + 16.2349i −0.907980 + 1.78201i −0.452638 + 0.891695i \(0.649517\pi\)
−0.455342 + 0.890316i \(0.650483\pi\)
\(84\) 8.15702 11.2272i 0.890004 1.22498i
\(85\) 0 0
\(86\) 0 0
\(87\) −15.9927 + 2.53299i −1.71459 + 0.271565i
\(88\) −2.71191 17.1223i −0.289090 1.82525i
\(89\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(90\) 9.47175 + 0.534780i 0.998410 + 0.0563708i
\(91\) 0 0
\(92\) 0 0
\(93\) 9.79391 + 9.79391i 1.01558 + 1.01558i
\(94\) 0 0
\(95\) 0 0
\(96\) 3.02774 9.31841i 0.309017 0.951057i
\(97\) 7.51450 + 14.7480i 0.762982 + 1.49744i 0.864517 + 0.502604i \(0.167625\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −12.6395 2.00190i −1.27678 0.202222i
\(99\) 18.3873i 1.84800i
\(100\) −4.14106 + 9.10229i −0.414106 + 0.910229i
\(101\) 6.51870 0.648635 0.324317 0.945948i \(-0.394865\pi\)
0.324317 + 0.945948i \(0.394865\pi\)
\(102\) 0 0
\(103\) 6.00467 3.05953i 0.591658 0.301465i −0.132408 0.991195i \(-0.542271\pi\)
0.724066 + 0.689730i \(0.242271\pi\)
\(104\) 0 0
\(105\) −6.25342 14.1996i −0.610272 1.38574i
\(106\) 4.85746 + 14.9497i 0.471798 + 1.45204i
\(107\) −13.6710 + 13.6710i −1.32163 + 1.32163i −0.409166 + 0.912460i \(0.634180\pi\)
−0.912460 + 0.409166i \(0.865820\pi\)
\(108\) −4.71801 + 9.25961i −0.453990 + 0.891007i
\(109\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(110\) −18.0664 7.01893i −1.72256 0.669229i
\(111\) 0 0
\(112\) −15.8271 + 2.50677i −1.49552 + 0.236868i
\(113\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 15.1261 + 10.9898i 1.40443 + 1.02038i
\(117\) 0 0
\(118\) −8.49450 8.49450i −0.781983 0.781983i
\(119\) 0 0
\(120\) −7.29700 8.17030i −0.666122 0.745843i
\(121\) 8.20936 25.2658i 0.746305 2.29689i
\(122\) 0 0
\(123\) 0 0
\(124\) 15.9934i 1.43625i
\(125\) 6.46151 + 9.12408i 0.577935 + 0.816083i
\(126\) 16.9965 1.51416
\(127\) 0.218556 1.37991i 0.0193937 0.122447i −0.976092 0.217357i \(-0.930256\pi\)
0.995486 + 0.0949102i \(0.0302564\pi\)
\(128\) −10.0806 + 5.13632i −0.891007 + 0.453990i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.18734 + 12.8873i 0.365849 + 1.12597i 0.949447 + 0.313926i \(0.101644\pi\)
−0.583598 + 0.812043i \(0.698356\pi\)
\(132\) 15.0132 15.0132i 1.30673 1.30673i
\(133\) 0 0
\(134\) 0 0
\(135\) 6.28871 + 9.76996i 0.541246 + 0.840864i
\(136\) 0 0
\(137\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) −6.48800 + 16.6998i −0.548336 + 1.41139i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 11.4127 3.70820i 0.951057 0.309017i
\(145\) 19.1308 8.42511i 1.58873 0.699667i
\(146\) −1.29850 + 3.99638i −0.107465 + 0.330743i
\(147\) −7.11543 13.9648i −0.586871 1.15180i
\(148\) 0 0
\(149\) 23.5077i 1.92583i −0.269812 0.962913i \(-0.586961\pi\)
0.269812 0.962913i \(-0.413039\pi\)
\(150\) −12.0000 + 2.44949i −0.979796 + 0.200000i
\(151\) −22.6780 −1.84551 −0.922755 0.385388i \(-0.874068\pi\)
−0.922755 + 0.385388i \(0.874068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −33.0249 10.7304i −2.66122 0.864683i
\(155\) −15.4493 9.00308i −1.24092 0.723145i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 11.4077 22.3889i 0.907549 1.78116i
\(159\) −11.3159 + 15.5751i −0.897413 + 1.23518i
\(160\) −0.713040 + 12.6290i −0.0563708 + 0.998410i
\(161\) 0 0
\(162\) −12.5712 + 1.99109i −0.987688 + 0.156434i
\(163\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(164\) 0 0
\(165\) −6.05113 22.9537i −0.471080 1.78695i
\(166\) 20.8469 + 15.1461i 1.61803 + 1.17557i
\(167\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(168\) −13.8775 13.8775i −1.07068 1.07068i
\(169\) −12.3637 + 4.01722i −0.951057 + 0.309017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −22.3129 3.53401i −1.69642 0.268686i −0.768060 0.640378i \(-0.778778\pi\)
−0.928356 + 0.371692i \(0.878778\pi\)
\(174\) 22.8990i 1.73597i
\(175\) 12.4794 + 15.6680i 0.943354 + 1.18439i
\(176\) −24.5165 −1.84800
\(177\) 2.30161 14.5318i 0.172999 1.09227i
\(178\) 0 0
\(179\) 15.6634 + 5.08934i 1.17074 + 0.380395i 0.828917 0.559371i \(-0.188957\pi\)
0.341818 + 0.939766i \(0.388957\pi\)
\(180\) 2.84243 13.1118i 0.211862 0.977299i
\(181\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 15.8469 11.5134i 1.16195 0.844206i
\(187\) 0 0
\(188\) 0 0
\(189\) 12.2355 + 16.8408i 0.890004 + 1.22498i
\(190\) 0 0
\(191\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) −12.3461 6.29068i −0.891007 0.453990i
\(193\) 2.17344 + 2.17344i 0.156448 + 0.156448i 0.780991 0.624543i \(-0.214715\pi\)
−0.624543 + 0.780991i \(0.714715\pi\)
\(194\) 22.2625 7.23354i 1.59836 0.519338i
\(195\) 0 0
\(196\) −5.59250 + 17.2120i −0.399465 + 1.22943i
\(197\) 2.70429 + 5.30746i 0.192673 + 0.378141i 0.967051 0.254581i \(-0.0819375\pi\)
−0.774379 + 0.632722i \(0.781938\pi\)
\(198\) 25.6835 + 4.06786i 1.82525 + 0.289090i
\(199\) 3.07150i 0.217733i −0.994056 0.108866i \(-0.965278\pi\)
0.994056 0.108866i \(-0.0347221\pi\)
\(200\) 11.7980 + 7.79796i 0.834242 + 0.551399i
\(201\) 0 0
\(202\) 1.44214 9.10533i 0.101469 0.640649i
\(203\) 33.3690 17.0024i 2.34205 1.19333i
\(204\) 0 0
\(205\) 0 0
\(206\) −2.94514 9.06421i −0.205198 0.631533i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) −21.2174 + 5.59340i −1.46414 + 0.385982i
\(211\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(212\) 21.9564 3.47756i 1.50797 0.238840i
\(213\) 0 0
\(214\) 16.0712 + 22.1202i 1.09861 + 1.51210i
\(215\) 0 0
\(216\) 11.8901 + 8.63864i 0.809017 + 0.587785i
\(217\) −28.5439 14.5439i −1.93769 0.987301i
\(218\) 0 0
\(219\) −4.89454 + 1.59033i −0.330743 + 0.107465i
\(220\) −13.8009 + 23.6824i −0.930458 + 1.59667i
\(221\) 0 0
\(222\) 0 0
\(223\) −23.0929 3.65756i −1.54642 0.244928i −0.675873 0.737018i \(-0.736233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 22.6619i 1.51416i
\(225\) −11.0657 10.1267i −0.737713 0.675114i
\(226\) 0 0
\(227\) 1.28550 8.11635i 0.0853219 0.538701i −0.907591 0.419856i \(-0.862081\pi\)
0.992913 0.118846i \(-0.0379194\pi\)
\(228\) 0 0
\(229\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(230\) 0 0
\(231\) −13.1420 40.4470i −0.864683 2.66122i
\(232\) 18.6969 18.6969i 1.22751 1.22751i
\(233\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −13.7444 + 9.98589i −0.894684 + 0.650026i
\(237\) 30.3961 4.81426i 1.97444 0.312720i
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) −13.0266 + 8.38494i −0.840864 + 0.541246i
\(241\) −0.345740 0.251195i −0.0222710 0.0161809i 0.576594 0.817031i \(-0.304381\pi\)
−0.598865 + 0.800850i \(0.704381\pi\)
\(242\) −33.4752 17.0564i −2.15186 1.09643i
\(243\) −11.0227 11.0227i −0.707107 0.707107i
\(244\) 0 0
\(245\) 13.4782 + 15.0913i 0.861093 + 0.964147i
\(246\) 0 0
\(247\) 0 0
\(248\) −22.3396 3.53825i −1.41857 0.224679i
\(249\) 31.5594i 2.00000i
\(250\) 14.1740 7.00692i 0.896444 0.443156i
\(251\) 30.3470 1.91549 0.957743 0.287627i \(-0.0928663\pi\)
0.957743 + 0.287627i \(0.0928663\pi\)
\(252\) 3.76016 23.7407i 0.236868 1.49552i
\(253\) 0 0
\(254\) −1.87910 0.610558i −0.117905 0.0383098i
\(255\) 0 0
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −22.6892 + 16.4847i −1.40443 + 1.02038i
\(262\) 18.9274 2.99780i 1.16934 0.185205i
\(263\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(264\) −17.6491 24.2919i −1.08623 1.49506i
\(265\) 9.00057 23.1670i 0.552901 1.42314i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.8777 7.10851i 1.33391 0.433413i 0.446660 0.894704i \(-0.352613\pi\)
0.887249 + 0.461291i \(0.152613\pi\)
\(270\) 15.0380 6.62265i 0.915182 0.403042i
\(271\) −5.09806 + 15.6902i −0.309685 + 0.953112i 0.668202 + 0.743980i \(0.267064\pi\)
−0.977887 + 0.209133i \(0.932936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.1078 + 26.6628i 0.911035 + 1.60783i
\(276\) 0 0
\(277\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(278\) 0 0
\(279\) 22.8159 + 7.41335i 1.36595 + 0.443825i
\(280\) 21.8910 + 12.7570i 1.30824 + 0.762375i
\(281\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.65478 16.7616i −0.156434 0.987688i
\(289\) 9.99235 + 13.7533i 0.587785 + 0.809017i
\(290\) −7.53588 28.5858i −0.442522 1.67862i
\(291\) 23.1938 + 16.8513i 1.35964 + 0.987839i
\(292\) 5.29488 + 2.69788i 0.309859 + 0.157881i
\(293\) 11.9573 + 11.9573i 0.698550 + 0.698550i 0.964098 0.265547i \(-0.0855527\pi\)
−0.265547 + 0.964098i \(0.585553\pi\)
\(294\) −21.0803 + 6.84939i −1.22943 + 0.399465i
\(295\) 1.90910 + 18.8981i 0.111152 + 1.10029i
\(296\) 0 0
\(297\) 14.4586 + 28.3766i 0.838973 + 1.64658i
\(298\) −32.8356 5.20065i −1.90212 0.301266i
\(299\) 0 0
\(300\) 0.766672 + 17.3035i 0.0442638 + 0.999020i
\(301\) 0 0
\(302\) −5.01709 + 31.6767i −0.288701 + 1.82279i
\(303\) 10.0601 5.12588i 0.577938 0.294474i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) −22.2944 + 43.7553i −1.27034 + 2.49319i
\(309\) 6.86100 9.44336i 0.390309 0.537214i
\(310\) −15.9934 + 19.5878i −0.908364 + 1.11251i
\(311\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) 0 0
\(313\) 5.01352 + 31.6541i 0.283381 + 1.78920i 0.560287 + 0.828298i \(0.310691\pi\)
−0.276907 + 0.960897i \(0.589309\pi\)
\(314\) 0 0
\(315\) −20.8163 16.9965i −1.17287 0.957642i
\(316\) −28.7491 20.8874i −1.61726 1.17501i
\(317\) 13.3562 + 6.80530i 0.750156 + 0.382224i 0.786884 0.617102i \(-0.211693\pi\)
−0.0367271 + 0.999325i \(0.511693\pi\)
\(318\) 19.2518 + 19.2518i 1.07959 + 1.07959i
\(319\) 54.4935 17.7060i 3.05105 0.991346i
\(320\) 17.4825 + 3.78991i 0.977299 + 0.211862i
\(321\) −10.3480 + 31.8480i −0.577572 + 1.77758i
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −33.4005 + 3.37414i −1.83864 + 0.185740i
\(331\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(332\) 25.7682 25.7682i 1.41421 1.41421i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −22.4543 + 16.3140i −1.22498 + 0.890004i
\(337\) −35.7325 + 5.65947i −1.94647 + 0.308291i −0.999899 0.0141927i \(-0.995482\pi\)
−0.946575 + 0.322484i \(0.895482\pi\)
\(338\) 2.87601 + 18.1584i 0.156434 + 0.987688i
\(339\) 0 0
\(340\) 0 0
\(341\) −39.6521 28.8089i −2.14728 1.56009i
\(342\) 0 0
\(343\) 5.80390 + 5.80390i 0.313381 + 0.313381i
\(344\) 0 0
\(345\) 0 0
\(346\) −9.87263 + 30.3848i −0.530756 + 1.63350i
\(347\) 16.4538 + 32.2925i 0.883288 + 1.73355i 0.648024 + 0.761620i \(0.275596\pi\)
0.235264 + 0.971931i \(0.424404\pi\)
\(348\) 31.9853 + 5.06598i 1.71459 + 0.271565i
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 24.6459 13.9650i 1.31738 0.746460i
\(351\) 0 0
\(352\) −5.42382 + 34.2446i −0.289090 + 1.82525i
\(353\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(354\) −19.7888 6.42978i −1.05176 0.341739i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 10.5740 20.7527i 0.558855 1.09681i
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) −17.6858 6.87107i −0.932125 0.362137i
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) 0 0
\(363\) −7.19813 45.4472i −0.377804 2.38536i
\(364\) 0 0
\(365\) 5.58671 3.59604i 0.292422 0.188225i
\(366\) 0 0
\(367\) −11.4821 5.85040i −0.599359 0.305388i 0.127862 0.991792i \(-0.459188\pi\)
−0.727221 + 0.686403i \(0.759188\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.7599 42.3487i 0.714380 2.19864i
\(372\) −12.5762 24.6821i −0.652044 1.27971i
\(373\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(374\) 0 0
\(375\) 17.1464 + 9.00000i 0.885438 + 0.464758i
\(376\) 0 0
\(377\) 0 0
\(378\) 26.2301 13.3649i 1.34913 0.687416i
\(379\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(380\) 0 0
\(381\) −0.747778 2.30142i −0.0383098 0.117905i
\(382\) 0 0
\(383\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(384\) −11.5182 + 15.8534i −0.587785 + 0.809017i
\(385\) 29.7166 + 46.1669i 1.51450 + 2.35288i
\(386\) 3.51670 2.55503i 0.178995 0.130048i
\(387\) 0 0
\(388\) −5.17864 32.6967i −0.262906 1.65992i
\(389\) −15.8328 21.7919i −0.802753 1.10490i −0.992401 0.123043i \(-0.960735\pi\)
0.189648 0.981852i \(-0.439265\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 22.8045 + 11.6195i 1.15180 + 0.586871i
\(393\) 16.5959 + 16.5959i 0.837153 + 0.837153i
\(394\) 8.01175 2.60318i 0.403626 0.131146i
\(395\) −36.3604 + 16.0130i −1.82949 + 0.805700i
\(396\) 11.3640 34.9748i 0.571063 1.75755i
\(397\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(398\) −4.29028 0.679514i −0.215052 0.0340609i
\(399\) 0 0
\(400\) 13.5023 14.7543i 0.675114 0.737713i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −12.3993 4.02878i −0.616888 0.200439i
\(405\) 17.3876 + 10.1326i 0.863998 + 0.503495i
\(406\) −16.3667 50.3714i −0.812264 2.49989i
\(407\) 0 0
\(408\) 0 0
\(409\) 22.0917 30.4067i 1.09237 1.50351i 0.247234 0.968956i \(-0.420478\pi\)
0.845132 0.534557i \(-0.179522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −13.3125 + 2.10849i −0.655858 + 0.103878i
\(413\) 5.32344 + 33.6109i 0.261950 + 1.65388i
\(414\) 0 0
\(415\) −10.3860 39.3971i −0.509827 1.93393i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −38.0423 + 12.3607i −1.85849 + 0.603860i −0.863443 + 0.504447i \(0.831697\pi\)
−0.995046 + 0.0994131i \(0.968303\pi\)
\(420\) 3.11891 + 30.8740i 0.152187 + 1.50650i
\(421\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 31.4381i 1.52677i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 34.4529 17.5547i 1.66535 0.848536i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 14.6969 14.6969i 0.707107 0.707107i
\(433\) 9.06101 17.7832i 0.435444 0.854608i −0.564137 0.825681i \(-0.690791\pi\)
0.999582 0.0289266i \(-0.00920891\pi\)
\(434\) −26.6297 + 36.6527i −1.27827 + 1.75938i
\(435\) 22.8990 28.0454i 1.09792 1.34467i
\(436\) 0 0
\(437\) 0 0
\(438\) 1.13855 + 7.18854i 0.0544022 + 0.343482i
\(439\) −7.70518 10.6053i −0.367748 0.506162i 0.584539 0.811366i \(-0.301275\pi\)
−0.952287 + 0.305204i \(0.901275\pi\)
\(440\) 30.0264 + 24.5165i 1.43145 + 1.16878i
\(441\) −21.9621 15.9564i −1.04581 0.759827i
\(442\) 0 0
\(443\) 12.2087 + 12.2087i 0.580054 + 0.580054i 0.934918 0.354864i \(-0.115473\pi\)
−0.354864 + 0.934918i \(0.615473\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −10.2178 + 31.4471i −0.483826 + 1.48906i
\(447\) −18.4849 36.2787i −0.874307 1.71592i
\(448\) 31.6543 + 5.01354i 1.49552 + 0.236868i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −16.5931 + 13.2162i −0.782206 + 0.623019i
\(451\) 0 0
\(452\) 0 0
\(453\) −34.9982 + 17.8325i −1.64436 + 0.837844i
\(454\) −11.0525 3.59119i −0.518722 0.168543i
\(455\) 0 0
\(456\) 0 0
\(457\) 9.48241 9.48241i 0.443568 0.443568i −0.449641 0.893209i \(-0.648448\pi\)
0.893209 + 0.449641i \(0.148448\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.276415 0.200827i 0.0128739 0.00935346i −0.581330 0.813668i \(-0.697467\pi\)
0.594204 + 0.804315i \(0.297467\pi\)
\(462\) −59.4040 + 9.40866i −2.76372 + 0.437731i
\(463\) 6.66935 + 42.1086i 0.309951 + 1.95695i 0.289558 + 0.957160i \(0.406492\pi\)
0.0203929 + 0.999792i \(0.493508\pi\)
\(464\) −21.9796 30.2523i −1.02038 1.40443i
\(465\) −30.9218 1.74586i −1.43397 0.0809625i
\(466\) 0 0
\(467\) −37.6149 19.1657i −1.74061 0.886885i −0.967599 0.252492i \(-0.918750\pi\)
−0.773010 0.634393i \(-0.781250\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 10.9076 + 21.4074i 0.502064 + 0.985355i
\(473\) 0 0
\(474\) 43.5224i 1.99905i
\(475\) 0 0
\(476\) 0 0
\(477\) −5.21633 + 32.9346i −0.238840 + 1.50797i
\(478\) 0 0
\(479\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(480\) 8.83021 + 20.0506i 0.403042 + 0.915182i
\(481\) 0 0
\(482\) −0.427358 + 0.427358i −0.0194656 + 0.0194656i
\(483\) 0 0
\(484\) −31.2302 + 42.9848i −1.41956 + 1.95385i
\(485\) −34.4995 13.4033i −1.56654 0.608613i
\(486\) −17.8351 + 12.9580i −0.809017 + 0.587785i
\(487\) −43.3209 + 6.86135i −1.96306 + 0.310917i −0.964082 + 0.265603i \(0.914429\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 24.0614 15.4878i 1.08698 0.699665i
\(491\) 35.7784 + 25.9945i 1.61466 + 1.17312i 0.845285 + 0.534315i \(0.179431\pi\)
0.769372 + 0.638801i \(0.220569\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −27.3878 30.6656i −1.23099 1.37832i
\(496\) −9.88446 + 30.4212i −0.443825 + 1.36595i
\(497\) 0 0
\(498\) 44.0823 + 6.98195i 1.97537 + 0.312869i
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −6.65153 21.3485i −0.297465 0.954733i
\(501\) 0 0
\(502\) 6.71372 42.3887i 0.299648 1.89190i
\(503\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(504\) −32.3292 10.5044i −1.44006 0.467903i
\(505\) −10.8716 + 9.70956i −0.483779 + 0.432070i
\(506\) 0 0
\(507\) −15.9217 + 15.9217i −0.707107 + 0.707107i
\(508\) −1.26855 + 2.48966i −0.0562826 + 0.110461i
\(509\) 5.78285 7.95941i 0.256320 0.352795i −0.661392 0.750040i \(-0.730034\pi\)
0.917712 + 0.397246i \(0.130034\pi\)
\(510\) 0 0
\(511\) 9.62997 6.99658i 0.426005 0.309511i
\(512\) 22.3488 3.53971i 0.987688 0.156434i
\(513\) 0 0
\(514\) 0 0
\(515\) −5.45716 + 14.0465i −0.240471 + 0.618962i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −37.2137 + 12.0915i −1.63350 + 0.530756i
\(520\) 0 0
\(521\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(522\) 18.0063 + 35.3393i 0.788113 + 1.54676i
\(523\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(524\) 27.1010i 1.18391i
\(525\) 31.5794 + 14.3669i 1.37824 + 0.627025i
\(526\) 0 0
\(527\) 0 0
\(528\) −37.8355 + 19.2781i −1.64658 + 0.838973i
\(529\) 21.8743 + 7.10739i 0.951057 + 0.309017i
\(530\) −30.3686 17.6973i −1.31913 0.768722i
\(531\) −7.87484 24.2363i −0.341739 1.05176i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 2.43699 43.1628i 0.105360 1.86609i
\(536\) 0 0
\(537\) 28.1747 4.46244i 1.21583 0.192568i
\(538\) −5.08913 32.1315i −0.219408 1.38529i
\(539\) 32.5995 + 44.8693i 1.40416 + 1.93266i
\(540\) −5.92366 22.4702i −0.254914 0.966964i
\(541\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(542\) 20.7883 + 10.5921i 0.892932 + 0.454972i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 40.5850 15.2040i 1.73055 0.648299i
\(551\) 0 0
\(552\) 0 0
\(553\) −63.4220 + 32.3151i −2.69698 + 1.37418i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.3507 + 19.3507i −0.819916 + 0.819916i −0.986095 0.166180i \(-0.946857\pi\)
0.166180 + 0.986095i \(0.446857\pi\)
\(558\) 15.4026 30.2293i 0.652044 1.27971i
\(559\) 0 0
\(560\) 22.6619 27.7551i 0.957642 1.17287i
\(561\) 0 0
\(562\) 0 0
\(563\) −6.05011 38.1989i −0.254982 1.60989i −0.699846 0.714294i \(-0.746748\pi\)
0.444864 0.895598i \(-0.353252\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 32.1252 + 16.3686i 1.34913 + 0.687416i
\(568\) 0 0
\(569\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(570\) 0 0
\(571\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −24.0000 −1.00000
\(577\) −3.20905 + 20.2611i −0.133595 + 0.843483i 0.826322 + 0.563198i \(0.190429\pi\)
−0.959917 + 0.280285i \(0.909571\pi\)
\(578\) 21.4212 10.9147i 0.891007 0.453990i
\(579\) 5.06325 + 1.64515i 0.210422 + 0.0683701i
\(580\) −41.5959 + 4.20204i −1.72718 + 0.174480i
\(581\) −22.5566 69.4220i −0.935804 2.88011i
\(582\) 28.6691 28.6691i 1.18837 1.18837i
\(583\) 30.9283 60.7002i 1.28092 2.51395i
\(584\) 4.93980 6.79905i 0.204410 0.281346i
\(585\) 0 0
\(586\) 19.3472 14.0566i 0.799227 0.580673i
\(587\) −26.1058 + 4.13475i −1.07750 + 0.170659i −0.669863 0.742484i \(-0.733647\pi\)
−0.407638 + 0.913144i \(0.633647\pi\)
\(588\) 4.90362 + 30.9603i 0.202222 + 1.27678i
\(589\) 0 0
\(590\) 26.8193 + 1.51423i 1.10413 + 0.0623399i
\(591\) 8.34689 + 6.06437i 0.343345 + 0.249455i
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 42.8352 13.9180i 1.75755 0.571063i
\(595\) 0 0
\(596\) −14.5286 + 44.7143i −0.595113 + 1.83157i
\(597\) −2.41523 4.74015i −0.0988487 0.194001i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 24.3392 + 2.75720i 0.993645 + 0.112562i
\(601\) −30.4135 −1.24059 −0.620297 0.784367i \(-0.712988\pi\)
−0.620297 + 0.784367i \(0.712988\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 43.1361 + 14.0158i 1.75518 + 0.570294i
\(605\) 23.9421 + 54.3650i 0.973384 + 2.21025i
\(606\) −4.93422 15.1860i −0.200439 0.616888i
\(607\) 20.2420 20.2420i 0.821596 0.821596i −0.164741 0.986337i \(-0.552679\pi\)
0.986337 + 0.164741i \(0.0526787\pi\)
\(608\) 0 0
\(609\) 38.1278 52.4784i 1.54502 2.12653i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 56.1853 + 40.8210i 2.26377 + 1.64472i
\(617\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(618\) −11.6726 11.6726i −0.469542 0.469542i
\(619\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(620\) 23.8221 + 26.6731i 0.956718 + 1.07122i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.3665 5.59235i −0.974659 0.223694i
\(626\) 45.3237 1.81150
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −28.3459 + 25.3161i −1.12933 + 1.00862i
\(631\) −1.51387 4.65921i −0.0602661 0.185480i 0.916391 0.400284i \(-0.131089\pi\)
−0.976657 + 0.214804i \(0.931089\pi\)
\(632\) −35.5359 + 35.5359i −1.41354 + 1.41354i
\(633\) 0 0
\(634\) 12.4605 17.1504i 0.494868 0.681128i
\(635\) 1.69087 + 2.62688i 0.0670999 + 0.104245i
\(636\) 31.1501 22.6319i 1.23518 0.897413i
\(637\) 0 0
\(638\) −12.6761 80.0337i −0.501852 3.16857i
\(639\) 0 0
\(640\) 9.16143 23.5811i 0.362137 0.932125i
\(641\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(642\) 42.1961 + 21.5000i 1.66535 + 0.848536i
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(648\) 25.1424 + 3.98217i 0.987688 + 0.156434i
\(649\) 52.0638i 2.04368i
\(650\) 0 0
\(651\) −55.4873 −2.17472
\(652\) 0 0
\(653\) 27.9164 14.2241i 1.09245 0.556633i 0.187553 0.982255i \(-0.439945\pi\)
0.904901 + 0.425622i \(0.139945\pi\)
\(654\) 0 0
\(655\) −26.1790 15.2558i −1.02290 0.596095i
\(656\) 0 0
\(657\) −6.30306 + 6.30306i −0.245906 + 0.245906i
\(658\) 0 0
\(659\) −30.1716 + 41.5277i −1.17532 + 1.61769i −0.570949 + 0.820985i \(0.693425\pi\)
−0.604371 + 0.796703i \(0.706575\pi\)
\(660\) −2.67625 + 47.4004i −0.104173 + 1.84506i
\(661\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −30.2923 41.6938i −1.17557 1.61803i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −38.5147 + 12.5142i −1.48906 + 0.483826i
\(670\) 0 0
\(671\) 0 0
\(672\) 17.8199 + 34.9735i 0.687416 + 1.34913i
\(673\) −12.3476 1.95567i −0.475964 0.0753854i −0.0861567 0.996282i \(-0.527459\pi\)
−0.389808 + 0.920896i \(0.627459\pi\)
\(674\) 51.1633i 1.97074i
\(675\) −25.0403 6.92691i −0.963803 0.266617i
\(676\) 26.0000 1.00000
\(677\) 7.86746 49.6732i 0.302371 1.90910i −0.102520 0.994731i \(-0.532690\pi\)
0.404891 0.914365i \(-0.367310\pi\)
\(678\) 0 0
\(679\) −63.0640 20.4907i −2.42018 0.786363i
\(680\) 0 0
\(681\) −4.39829 13.5366i −0.168543 0.518722i
\(682\) −49.0127 + 49.0127i −1.87679 + 1.87679i
\(683\) 15.9436 31.2910i 0.610063 1.19732i −0.354893 0.934907i \(-0.615483\pi\)
0.964956 0.262410i \(-0.0845173\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 9.39091 6.82290i 0.358547 0.260499i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(692\) 40.2575 + 20.5122i 1.53036 + 0.779757i
\(693\) −52.0866 52.0866i −1.97861 1.97861i
\(694\) 48.7463 15.8386i 1.85038 0.601227i
\(695\) 0 0
\(696\) 14.1523 43.5564i 0.536443 1.65100i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −14.0539 37.5150i −0.531186 1.41793i
\(701\) −0.944387 −0.0356690 −0.0178345 0.999841i \(-0.505677\pi\)
−0.0178345 + 0.999841i \(0.505677\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 46.6331 + 15.1520i 1.75755 + 0.571063i
\(705\) 0 0
\(706\) 0 0
\(707\) −18.4658 + 18.4658i −0.694478 + 0.694478i
\(708\) −13.3590 + 26.2186i −0.502064 + 0.985355i
\(709\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(710\) 0 0
\(711\) 43.1237 31.3312i 1.61726 1.17501i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −26.6481 19.3610i −0.995887 0.723554i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(720\) −13.5102 + 23.1835i −0.503495 + 0.863998i
\(721\) −8.34282 + 25.6766i −0.310703 + 0.956245i
\(722\) −12.1988 23.9414i −0.453990 0.891007i
\(723\) −0.731092 0.115794i −0.0271896 0.00430641i
\(724\) 0 0
\(725\) −19.3563 + 42.5462i −0.718875 + 1.58013i
\(726\) −65.0732 −2.41509
\(727\) −5.73972 + 36.2392i −0.212875 + 1.34404i 0.617386 + 0.786661i \(0.288192\pi\)
−0.830260 + 0.557376i \(0.811808\pi\)
\(728\) 0 0
\(729\) −25.6785 8.34346i −0.951057 0.309017i
\(730\) −3.78700 8.59909i −0.140163 0.318267i
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(734\) −10.7120 + 14.7439i −0.395389 + 0.544206i
\(735\) 32.6673 + 12.6915i 1.20495 + 0.468133i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −56.1086 28.5888i −2.05981 1.04953i
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) −37.2583 + 12.1059i −1.36595 + 0.443825i
\(745\) 35.0146 + 39.2051i 1.28284 + 1.43636i
\(746\) 0 0
\(747\) 24.8163 + 48.7047i 0.907980 + 1.78201i
\(748\) 0 0
\(749\) 77.4529i 2.83007i
\(750\) 16.3646 21.9591i 0.597549 0.801832i
\(751\) −7.14198 −0.260615 −0.130307 0.991474i \(-0.541596\pi\)
−0.130307 + 0.991474i \(0.541596\pi\)
\(752\) 0 0
\(753\) 46.8336 23.8629i 1.70671 0.869612i
\(754\) 0 0
\(755\) 37.8213 33.7788i 1.37646 1.22933i
\(756\) −12.8652 39.5950i −0.467903 1.44006i
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(762\) −3.38007 + 0.535350i −0.122447 + 0.0193937i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 19.5959 + 19.5959i 0.707107 + 0.707107i
\(769\) −51.9529 + 16.8805i −1.87347 + 0.608727i −0.883309 + 0.468792i \(0.844689\pi\)
−0.990161 + 0.139935i \(0.955311\pi\)
\(770\) 71.0603 31.2946i 2.56084 1.12778i
\(771\) 0 0
\(772\) −2.79087 5.47739i −0.100446 0.197135i
\(773\) 45.9867 + 7.28358i 1.65403 + 0.261972i 0.912538 0.408993i \(-0.134120\pi\)
0.741489 + 0.670965i \(0.234120\pi\)
\(774\) 0 0
\(775\) 39.1757 7.99670i 1.40723 0.287250i
\(776\) −46.8164 −1.68061
\(777\) 0 0
\(778\) −33.9417 + 17.2942i −1.21687 + 0.620026i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −22.0531 + 43.2816i −0.788113 + 1.54676i
\(784\) 21.2752 29.2827i 0.759827 1.04581i
\(785\) 0 0
\(786\) 26.8528 19.5097i 0.957806 0.695887i
\(787\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(788\) −1.86367 11.7667i −0.0663904 0.419173i
\(789\) 0 0
\(790\) 14.3229 + 54.3309i 0.509585 + 1.93301i
\(791\) 0 0
\(792\) −46.3388 23.6108i −1.64658 0.838973i
\(793\) 0 0
\(794\) 0 0
\(795\) −4.32675 42.8304i −0.153454 1.51904i
\(796\) −1.89829 + 5.84234i −0.0672832 + 0.207076i
\(797\) 24.3600 + 47.8091i 0.862874 + 1.69349i 0.708781 + 0.705429i \(0.249246\pi\)
0.154093 + 0.988056i \(0.450754\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −17.6216 22.1241i −0.623019 0.782206i
\(801\) 0 0
\(802\) 0 0
\(803\) 16.2265 8.26780i 0.572619 0.291764i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 28.1736 28.1736i 0.991756 0.991756i
\(808\) −8.37052 + 16.4281i −0.294474 + 0.577938i
\(809\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(810\) 18.0000 22.0454i 0.632456 0.774597i
\(811\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) −73.9797 + 11.7172i −2.59618 + 0.411194i
\(813\) 4.47008 + 28.2230i 0.156773 + 0.989823i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −37.5847 37.5847i −1.31412 1.31412i
\(819\) 0 0
\(820\) 0 0
\(821\) −17.6129 + 54.2069i −0.614694 + 1.89183i −0.208609 + 0.977999i \(0.566894\pi\)
−0.406085 + 0.913835i \(0.633106\pi\)
\(822\) 0 0
\(823\) −40.5610 6.42424i −1.41387 0.223935i −0.597687 0.801730i \(-0.703913\pi\)
−0.816182 + 0.577795i \(0.803913\pi\)
\(824\) 19.0613i 0.664033i
\(825\) 44.2813 + 29.2681i 1.54168 + 1.01898i
\(826\) 48.1255 1.67450
\(827\) −7.91378 + 49.9657i −0.275189 + 1.73748i 0.332323 + 0.943166i \(0.392168\pi\)
−0.607512 + 0.794310i \(0.707832\pi\)
\(828\) 0 0
\(829\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(830\) −57.3276 + 5.79126i −1.98987 + 0.201018i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 41.0405 6.50017i 1.41857 0.224679i
\(838\) 8.84928 + 55.8722i 0.305693 + 1.93007i
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) 43.8149 + 2.47381i 1.51176 + 0.0853546i
\(841\) 47.2416 + 34.3231i 1.62902 + 1.18355i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.6360 25.1155i 0.503495 0.863998i
\(846\) 0 0
\(847\) 48.3165 + 94.8265i 1.66018 + 3.25828i
\(848\) −43.9128 6.95511i −1.50797 0.238840i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −16.8983 52.0076i −0.577572 1.77758i
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(864\) −17.2773 23.7801i −0.587785 0.809017i
\(865\) 42.4763 27.3410i 1.44424 0.929623i
\(866\) −22.8351 16.5907i −0.775968 0.563773i
\(867\) 26.2356 + 13.3677i 0.891007 + 0.453990i
\(868\) 45.3052 + 45.3052i 1.53776 + 1.53776i
\(869\) −103.572 + 33.6525i −3.51343 + 1.14158i
\(870\) −34.1079 38.1899i −1.15637 1.29476i
\(871\) 0 0
\(872\) 0 0
\(873\) 49.0450 + 7.76796i 1.65992 + 0.262906i
\(874\) 0 0
\(875\) −44.1500 7.54238i −1.49254 0.254979i
\(876\) 10.2929 0.347763
\(877\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(878\) −16.5181 + 8.41639i −0.557459 + 0.284039i
\(879\) 27.8557 + 9.05085i 0.939548 + 0.305278i
\(880\) 40.8874 36.5171i 1.37832 1.23099i
\(881\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(882\) −27.1466 + 27.1466i −0.914073 + 0.914073i
\(883\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(884\) 0 0
\(885\) 17.8065 + 27.6637i 0.598558 + 0.929904i
\(886\) 19.7541 14.3522i 0.663653 0.482172i
\(887\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(888\) 0 0
\(889\) 3.28981 + 4.52803i 0.110337 + 0.151865i
\(890\) 0 0
\(891\) 44.6270 + 32.4234i 1.49506 + 1.08623i
\(892\) 41.6649 + 21.2293i 1.39504 + 0.710810i
\(893\) 0 0
\(894\) −54.7636 + 17.7938i −1.83157 + 0.595113i
\(895\) −33.7032 + 14.8427i −1.12657 + 0.496138i
\(896\) 14.0059 43.1056i 0.467903 1.44006i
\(897\) 0 0
\(898\) 0 0
\(899\) 74.7569i 2.49328i
\(900\) 14.7895 + 26.1011i 0.492985 + 0.870038i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 17.1657 + 52.8307i 0.570294 + 1.75518i
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) −7.46136 + 14.6437i −0.247614 + 0.485970i
\(909\) 11.4948 15.8212i 0.381258 0.524756i
\(910\) 0 0
\(911\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(912\) 0 0
\(913\) −17.4702 110.303i −0.578180 3.65049i
\(914\) −11.1472 15.3429i −0.368718 0.507497i
\(915\) 0 0
\(916\) 0 0
\(917\) −48.3681 24.6448i −1.59725 0.813842i
\(918\) 0 0
\(919\) −32.6144 + 10.5971i −1.07585 + 0.349565i −0.792764 0.609529i \(-0.791359\pi\)
−0.283087 + 0.959094i \(0.591359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.219364 0.430526i −0.00722437 0.0141786i
\(923\) 0 0
\(924\) 85.0571i 2.79817i
\(925\) 0 0
\(926\) 60.2929 1.98135
\(927\) 3.16273 19.9687i 0.103878 0.655858i
\(928\) −47.1190 + 24.0083i −1.54676 + 0.788113i
\(929\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(930\) −9.27952 + 42.8054i −0.304287 + 1.40365i
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −35.0924 + 48.3005i −1.14826 + 1.58044i
\(935\) 0 0
\(936\) 0 0
\(937\) −59.8290 + 9.47598i −1.95453 + 0.309567i −0.954595 + 0.297907i \(0.903712\pi\)
−0.999932 + 0.0116601i \(0.996288\pi\)
\(938\) 0 0
\(939\) 32.6279 + 44.9085i 1.06477 + 1.46553i
\(940\) 0 0
\(941\) 9.80736 + 7.12546i 0.319711 + 0.232284i 0.736052 0.676925i \(-0.236688\pi\)
−0.416341 + 0.909208i \(0.636688\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 32.3150 10.4998i 1.05176 0.341739i
\(945\) −45.4901 9.86150i −1.47979 0.320795i
\(946\) 0 0
\(947\) −27.8265 54.6126i −0.904240 1.77467i −0.532919 0.846166i \(-0.678905\pi\)
−0.371321 0.928505i \(-0.621095\pi\)
\(948\) −60.7921 9.62853i −1.97444 0.312720i
\(949\) 0 0
\(950\) 0 0
\(951\) 25.9634 0.841920
\(952\) 0 0
\(953\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(954\) 44.8492 + 14.5724i 1.45204 + 0.471798i
\(955\) 0 0
\(956\) 0 0
\(957\) 70.1752 70.1752i 2.26844 2.26844i
\(958\) 0 0
\(959\) 0 0
\(960\) 29.9603 7.89822i 0.966964 0.254914i
\(961\) −26.6548 + 19.3659i −0.859833 + 0.624705i
\(962\) 0 0
\(963\) 9.07338 + 57.2871i 0.292386 + 1.84605i
\(964\) 0.502389 + 0.691479i 0.0161809 + 0.0222710i
\(965\) −6.86209 0.387437i −0.220899 0.0124721i
\(966\) 0 0
\(967\) 28.9688 + 14.7603i 0.931574 + 0.474660i 0.852803 0.522232i \(-0.174901\pi\)
0.0787703 + 0.996893i \(0.474901\pi\)
\(968\) 53.1321 + 53.1321i 1.70773 + 1.70773i
\(969\) 0 0
\(970\) −26.3541 + 45.2237i −0.846180 + 1.45205i
\(971\) 7.77586 23.9316i 0.249539 0.768002i −0.745318 0.666710i \(-0.767702\pi\)
0.994857 0.101293i \(-0.0322979\pi\)
\(972\) 14.1540 + 27.7788i 0.453990 + 0.891007i
\(973\) 0 0
\(974\) 62.0286i 1.98752i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −16.3102 37.0353i −0.521010 1.18305i
\(981\) 0 0
\(982\) 44.2245 44.2245i 1.41126 1.41126i
\(983\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(984\) 0 0
\(985\) −12.4155 4.82353i −0.395592 0.153690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −48.8928 + 31.4712i −1.55392 + 1.00022i
\(991\) 33.3469 + 24.2279i 1.05930 + 0.769626i 0.973959 0.226726i \(-0.0728023\pi\)
0.0853402 + 0.996352i \(0.472802\pi\)
\(992\) 40.3057 + 20.5368i 1.27971 + 0.652044i
\(993\) 0 0
\(994\) 0 0
\(995\) 4.57499 + 5.12251i 0.145037 + 0.162395i
\(996\) 19.5048 60.0296i 0.618033 1.90211i
\(997\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.bp.b.173.2 yes 16
3.2 odd 2 600.2.bp.a.173.1 16
8.5 even 2 600.2.bp.a.173.1 16
24.5 odd 2 CM 600.2.bp.b.173.2 yes 16
25.12 odd 20 inner 600.2.bp.b.437.2 yes 16
75.62 even 20 600.2.bp.a.437.1 yes 16
200.37 odd 20 600.2.bp.a.437.1 yes 16
600.437 even 20 inner 600.2.bp.b.437.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.bp.a.173.1 16 3.2 odd 2
600.2.bp.a.173.1 16 8.5 even 2
600.2.bp.a.437.1 yes 16 75.62 even 20
600.2.bp.a.437.1 yes 16 200.37 odd 20
600.2.bp.b.173.2 yes 16 1.1 even 1 trivial
600.2.bp.b.173.2 yes 16 24.5 odd 2 CM
600.2.bp.b.437.2 yes 16 25.12 odd 20 inner
600.2.bp.b.437.2 yes 16 600.437 even 20 inner