Properties

Label 600.6.a.h
Level $600$
Weight $6$
Character orbit 600.a
Self dual yes
Analytic conductor $96.230$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 9 q^{3} + 100 q^{7} + 81 q^{9} - 136 q^{11} - 82 q^{13} - 358 q^{17} + 796 q^{19} + 900 q^{21} - 488 q^{23} + 729 q^{27} + 7466 q^{29} + 2728 q^{31} - 1224 q^{33} - 7794 q^{37} - 738 q^{39} + 18234 q^{41}+ \cdots - 11016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 9.00000 0 0 0 100.000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.a.h 1
5.b even 2 1 120.6.a.a 1
5.c odd 4 2 600.6.f.e 2
15.d odd 2 1 360.6.a.e 1
20.d odd 2 1 240.6.a.j 1
40.e odd 2 1 960.6.a.l 1
40.f even 2 1 960.6.a.w 1
60.h even 2 1 720.6.a.u 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.a.a 1 5.b even 2 1
240.6.a.j 1 20.d odd 2 1
360.6.a.e 1 15.d odd 2 1
600.6.a.h 1 1.a even 1 1 trivial
600.6.f.e 2 5.c odd 4 2
720.6.a.u 1 60.h even 2 1
960.6.a.l 1 40.e odd 2 1
960.6.a.w 1 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 100 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(600))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 100 \) Copy content Toggle raw display
$11$ \( T + 136 \) Copy content Toggle raw display
$13$ \( T + 82 \) Copy content Toggle raw display
$17$ \( T + 358 \) Copy content Toggle raw display
$19$ \( T - 796 \) Copy content Toggle raw display
$23$ \( T + 488 \) Copy content Toggle raw display
$29$ \( T - 7466 \) Copy content Toggle raw display
$31$ \( T - 2728 \) Copy content Toggle raw display
$37$ \( T + 7794 \) Copy content Toggle raw display
$41$ \( T - 18234 \) Copy content Toggle raw display
$43$ \( T - 2444 \) Copy content Toggle raw display
$47$ \( T - 2200 \) Copy content Toggle raw display
$53$ \( T + 10122 \) Copy content Toggle raw display
$59$ \( T + 6776 \) Copy content Toggle raw display
$61$ \( T - 23398 \) Copy content Toggle raw display
$67$ \( T - 9676 \) Copy content Toggle raw display
$71$ \( T - 13728 \) Copy content Toggle raw display
$73$ \( T - 27390 \) Copy content Toggle raw display
$79$ \( T + 93288 \) Copy content Toggle raw display
$83$ \( T - 23276 \) Copy content Toggle raw display
$89$ \( T - 102354 \) Copy content Toggle raw display
$97$ \( T - 49502 \) Copy content Toggle raw display
show more
show less